2017/046630 A1 |1 I 000 D10 KOO0 00 0

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

23 March 2017 (23.03.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/046630 A1l

(51

eay)

(22)

(25)
(26)
1

(72)
1

74

International Patent Classification:
GO6F 9/445 (2006.01) GO6F 9/50 (2006.01)
GO6F 9/44 (2006.01)

International Application Number:
PCT/IB2015/057099

International Filing Date:
15 September 2015 (15.09.2015)

English
Publication Language: English

Applicant: TELEFONAKTIEBOLAGET LM ERIC-
SSON (PUBL) [SE/SE]; SE-164 83 Stockholm (SE).

Filing Language:

Inventors; and

Applicants (for US only): JAHANBANIFAR, Azadeh
[IR/CA]; 1160 St Mattheu, Apt. 1208, Montreal, Québec
H3H 2P4 (CA). TOEROE, Maria [CA/CA]J; #1803-1212
Ave. des Pins O, Montreal, Québec H3G 1A9 (CA).
KHENDEK, Ferhat [CA/CA]; 3460 Rosedale, Montreal,
Québec H4B 2G6 (CA).

Agents: NICOLAESCU, Alex et al.; Fricsson Canada
Inc., 8400 Decarie Blvd., Town of Mount Royal, Québec
H4P 2N2 (CA).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: RUNTIME ADJUSTMENT OF CONFIGURATION MODELS FOR CONSISTENCY PRESERVATION

/ 100
Consistency Rules{s
I
PCanstraints System Canfiguration
Profile
______ N 138
160 vatidator 10
uses
Change Request | Checking FConstraints <
¥
Constraint Violation M= . i Respects
Changes Rejected Checking : NP CoPstramt :
LConstraints/PConstraints | Violation
' System
t Applying the Configuration

Constraint
Violation

} Changes

140
3

:
|

Not Adjustable
Changes Rejected

Adjustment Agent 120 [-

Adjustment |I
Modification!

Applying the

fon:

FiG. 1

(57) Abstract: A system performs runtime adjustment of a configuration model. The system receives, at runtime, a change request
directed at one or more modified entities in the configuration model. Based on leadership information, one or more infringing entit-
ies are identified among the one or more moditied entities. The leadership information indicates an impact that one entity has on an -
other entity with respect to a given constraint. Based on the leadership information, a propagation scope is identitied for a constraint
violated by an infringing entity. The propagation scope includes the infringing entity and other entities that are potentially affected
by the request. For resolving single constraint violation, a collection of paths are created in the propagation scope and a path is selec-
ted one at a time starting from the shortest path in the collection. For resolving multiple constraint violation, a bonded path is formed
for a group of propagation scopes that overlap.

10

15

20

WO 2017/046630 PCT/IB2015/057099

Runtime Adjustment of Configuration Models for Consistency Preservation

TECHNICAL FIELD

[0001] Embodiments of the invention relate to management of a system configuration.

BACKGROUND

[0002] A system configuration consists of many entities with many configuration attributes
that are interrelated by system constraints. A system configuration is consistent when all the
constraints are satisfied by the entities, their attributes and relations. At runtime a system
configuration may be modified, for instance, in response to changes in the system
environment or for the purposes of fine-tuning the system security or performance. These
changes may jeopardize the configuration consistency as some constraints may be violated. A
violation of a constraint means that the changes are not safe and/or incomplete. This could be
caused by an administrator who requests the changes but is not aware of all the relations
between all involved entities and attributes.

[0003] In some systems, a set of consistency rules or system constraints are defined to
guarantee the consistency of the configuration and avoid system malfunctioning. Thus, any
reconfiguration requests are to be checked against the system constraints.

[0004] Some systems use configuration checkers to detect these violations and veto the
proposed changes if the changes violate the consistency rules. Such an approach is inflexible

because in some cases constraint violations might be resolvable.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

SUMMARY

[0005] According to one embodiment, a method for runtime adjustment of a configuration
model is provided. The method comprises: receiving, at runtime, a change request directed at
one or more modified entities in the configuration model; identifying an infringing entity
among the one or more modified entities based on leadership information, wherein the
leadership information indicates an impact that one entity has on another entity with respect
to a given constraint, and wherein the infringing entity violates at least one constraint in the
configuration model; identifying, based on the leadership information, a propagation scope
for the infringing entity and a constraint violated by the infringing entity, wherein the
propagation scope includes the infringing entity and a set of other entities that are potentially
affected by the change request; creating a collection of paths in the propagation scope, each
path connecting the infringing entity to one or more of the other entities; and starting from a
shortest path, selecting a path at a time from the collection to find a runtime adjustment
solution for the selected path such that no constraints in the propagation scope are violated.
[0006] According to another embodiment, a system is provided for performing runtime
adjustment of a configuration model. The system comprises: a memory and processing
circuitry coupled to the memory. The processing circuitry is adapted to: receive, at runtime, a
change request directed at one or more modified entities in the configuration model; identify
an infringing entity among the one or more modified entities based on leadership information,
wherein the leadership information indicates an impact that one entity has on another entity
with respect to a given constraint, and wherein the infringing entity violates at least one
constraint including a violated constraint in the configuration model; identify, based on the
leadership information, a propagation scope for the infringing entity and a constraint violated
by the infringing entity, wherein the propagation scope includes the infringing entity and a set
of other entities that are potentially affected by the change request; create a collection of
paths in the propagation scope, each path connecting the infringing entity to one or more of
the other entities; and starting from a shortest path, select a path at a time from the collection
to find a runtime adjustment solution for the selected path such that no constraints in the
propagation scope are violated.

[0007] According to yet another embodiment, a system is provided for performing runtime
adjustment of a configuration model. The system comprises: a receiver module adapted to
receive, at runtime, a change request directed at one or more modified entities in the
configuration model; a first identifying module adapted to identify an infringing entity among

the one or more modified entities based on leadership information, wherein the leadership

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

information indicates an impact that one entity has on another entity with respect to a given
constraint, and wherein the infringing entity violates at least one constraint in the
configuration model; a second identifying module adapted to identify, based on the
leadership information, a propagation scope for the infringing entity and a constraint violated
by the infringing entity, the propagation scope including the infringing entity and a set of
other entities that are potentially affected by the change request; a path building module
adapted to create a collection of paths in the propagation scope, each path connecting the
infringing entity to one or more of the other entities; and a solution finding module adapted to
select a path at a time, starting from a shortest path, from the collection to find a runtime
adjustment solution for the selected path such that no constraints in the propagation scope are
violated.

[0008] According to one embodiment, a method for runtime adjustment of a configuration
model is provided. The method comprises: receiving, at runtime, a change request directed at
one or more modified entities in the configuration model; identifving a set of infringing
entities among the one or more modified entities based on leadership information, wherein
the leadership information indicates an impact that one entity has on another entity with
respect to a given constraint, and wherein the set of infringing entities violate a plurality of
constraints in the configuration model; identifying a propagation scope for each violated
constraint of the plurality of constraints, wherein the propagation scope includes one of the
infringing entities and a set of other entities that are potentially affected by the change
request; forming a bonded path for a group of propagation scopes that overlap, wherein the
bonded path connects selected entities from each propagation scope in the group with one or
more common entities in an intersection of the group; and finding a runtime adjustment
solution for the group subject to all constraints in which entities of the bonded path
participate.

[0009] According to another embodiment, a system is provided for performing runtime
adjustment of a configuration model. The system comprises: a memory and processing
circuitry coupled to the memory. The processing circuitry is adapted to: receive, at runtime, a
change request directed at one or more modified entities in the configuration model; identify
a set of infringing entities among the one or more modified entities based on leadership
information, wherein the leadership information indicates an impact that one entity has on
another entity with respect to a given constraint, and wherein the set of infringing entitics
violate a plurality of constraints in the configuration model; identify a propagation scope for

cach violated constraint of the plurality of constraints, wherein the propagation scope

10

15

20

WO 2017/046630 PCT/IB2015/057099

includes one of the infringing entities and a set of other entities that are potentially affected
by the change request; form a bonded path for a group of propagation scopes that overlap,
wherein the bonded path connects selected entities from each propagation scope in the group
with one or more common entities in an intersection of the group; and find a runtime
adjustment solution for the group subject to all constraints in which entities of the bonded
path participate.

[0010] According to yet another embodiment, a system is provided for performing runtime
adjustment of a configuration model. The system comprises: a receiver module adapted to
receive, at runtime, a change request directed at one or more modified entities in the
configuration model; a first identifying module adapted to identify a set of infringing entities
among the one or more modified entities based on leadership information, wherein the
leadership information indicates an impact that one entity has on another entity with respect
to a given constraint, and wherein the set of infringing entities violate a plurality of
constraints in the configuration model; a second identifying module adapted to identify a
propagation scope for each violated constraint of the plurality of constraints, wherein the
propagation scope includes one of the infringing entities and a set of other entities that are
potentially affected by the change request; a path building module adapted to form a bonded
path for a group of propagation scopes that overlap, wherein the bonded path connects
selected entities from each propagation scope in the group with one or more common entities
in an intersection of the group; and a solution finding module adapted to find a runtime
adjustment solution for the group subject to all constraints in which entities of the bonded

path participate.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Figure 1 illustrates a model based framework for managing changes to a system
configuration according to one embodiment.

[0012] Figure 2A illustrates a configuration model of a two-tier appliance according to one
embodiment.

[0013] Figure 2B illustrates another representation of the model of Figure 2A based on the
leadership information defined for constrained entities according to one embodiment.
[0014] Figures 3A and 3B illustrate the relation between entities of a domain model
according to one embodiment.

[0015] Figure 4 illustrates multiple paths in a propagation scope for an infringing entity
which violates a constraint according to one embodiment.

[0016] Figure 5 illustrates an example of overlapping propagation scopes and their
intersection according to one embodiment.

[0017] Figure 6 illustrates an example of overlapping propagation scopes and their
intersection according to another embodiment.

[0018] Figure 7 is a flow diagram illustrating a method of an overall approach for runtime
configuration adjustment according to one embodiment.

[0019] Figure 8A is a flow diagram illustrating a method for runtime configuration
adjustment according to one embodiment.

[0020] Figure 8B is a flow diagram illustrating a method for runtime configuration
adjustment according to another embodiment.

[0021] Figure 9 illustrates a system for performing runtime configuration adjustment
according to one embodiment.

[0022] Figure 10 illustrates a computer system for performing runtime configuration

adjustment according to one embodiment.

DETAILED DESCRIPTION

[0023] The various features of the invention will now be described with reference to the
figures. These various aspects are described hereafter in greater detail in connection with
exemplary embodiments and examples to facilitate an understanding of the invention, but
should not be construed as limited to these embodiments. Rather, these embodiments are
provided so that the disclosure will be thorough and complete, and will fully convey the

scope of the invention to those skilled in the art.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

[0024] Many aspects of the invention are described in terms of sequences of actions or
functions to be performed by elements of a computer system or other hardware capable of
executing programmed instructions. It will be recognized that the various actions could be
performed by specialized circuits, by program instructions being executed by one or more
processors, or by a combination of both. Moreover, the invention can additionally be
considered to be embodied entirely within any form of computer readable carrier or carrier
wave containing an appropriate set of computer instructions that would cause a processor to
carry out the techniques described herein.

[0025] In some alternate implementations, the functions/acts may occur out of the order
noted in the sequence of actions. Furthermore, in some illustrations, some blocks may be
optional and may or may not be executed.

[0026] In order to resolve inconsistencies caused by incomplete runtime changes to a system
configuration, an approach is described herein for completing the incomplete set of changes
and adjusting automatically configurations at runtime. The runtime adjustment consists of
modifications to other entities or attributes to re-establish the configuration consistency.
These modifications are referred to as the “complementary modifications™ as they complete
the initial partial change set.

[0027] The system described herein is a self-adaptive system, as it can adjust itself to
changes during runtime. However, finding a proper set of complementary modifications in
response to requested changes is sometimes non-straightforward. One reason is that these
modifications are affecting other configuration entities, which are themselves involved in
other constraints that may potentially be violated by the complementary modifications. Thus,
the initial changes can propagate throughout the configuration and affect other configuration
entities up to the point that the constraints are all satisfied or all entities have been considered
and no solution is found. Such a change propagation process may result in changing a large
number of entities. It is not desirable to change a large number of entities because the
configuration is a representation of the real system and any changes in the configuration are
applied on real system entities. Thus, it is a good practice to keep the modifications minimal
so as not to destabilize the system.

[0028] Moreover, to best serve the system requirements, the initial configuration is often
designed and generated with optimization in mind, resulting in specific values for the
different entities. Finding new values for such entities through change propagation may
provide a valid configuration but may not preserve the optimization or configuration

designer’s preferences anymore. To avoid unwanted changes as such, it is better to keep the

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

change propagation minimum and modify the minimal set of entities. That is, the
complementary modifications are minimized whenever possible.

[0029] Embodiments of the invention provide a model-based approach for automating the
adjustment of configurations at runtime. The adjustment approach is defined with respect to
the system constraints and the impact of the system entities on each other. To reduce the
number of complementary modifications, a propagation scope for solving each violated
constraint is defined with respect to “leadership,” which describes the impact that the system
entities may have on each other. The leadership concept is defined based on the relations and
dependencies between the configuration entities and their attributes. It reflects that some
entities and attributes have dominant or leader role toward others, the followers. These roles
will be explained in more detail in the following description. The leadership concept can be
used to direct an incremental propagation, which is established to reduce the number of
modified entities and avoid affecting entities unnecessarily.

[0030] In some embodiments, the initial changes are proposed as a bundle, in contrast to a
single entity change. These changes may violate multiple constraints. The change
propagation for solving each violated constraint results in modification of certain entities that
might also be impacted from the propagation of another violated constraint. Such related
changes are solved together. After determining the propagation scopes and identifying the
entities to be modified, the problem of maintaining the system consistency can be formulated
as a Constraint Satisfaction Problem (CSP) and solved by a constraint solver to find the valid
complementary modifications for runtime adjustment of the system configuration.

[0031] A model-based framework for configuration change management is presented in the
following description. A system configuration is a logical representation of system resources,
their relations and dependencies. For the representation and manipulation of configurations, a
configuration schema is usually used to specify the correct structure of the configuration
entities, their relations and the constraints. To be valid and consistent, a configuration
respects its schema regarding the structural and semantic constraints of the schema. A system
reconfiguration may happen for various reasons such as in response to environment change,
or users’ requests for fine-tuning. These changes may violate the consistency of the
configuration, and a system can reject changes that cause such violations, or adjust to the
changes by making complementary modifications to the system configuration.

[0032] Figure 1 illustrates a model based framework 100 for managing changes to a system
configuration 140 according to one embodiment. The framework 100 includes a

configuration validator 110 to validate the change requests submitted by an administrator or

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

management applications 160. The framework 100 also includes an adjustment agent 120 that
finds complementary modifications, if any exist, to resolve the potential inconsistencies
detected in the validation phase. In one embodiment, the system configuration 140 may be
validated by the validator 110 using a partial validation approach, which prunes unnecessary
constraints and thus reduces the cost and time of validation. The result of the partial
validation may be used by the adjustment agent 120, which, whenever possible, automatically
adjusts the configuration in case of detecting constraint violations.

[0033] The system configuration model used for the configuration change management is
briefly explained below. In one embodiment, the Unified Modeling Language (UML) and its
profiling mechanism are used to capture the concepts and relations of the system
configuration 140 in a system configuration profile 130. System constraints, in the form of
consistency rules 150, are added to the profile 130 as Object Constraint Language (OCL)
constraints. The relations and dependencies between the configuration entities or attributes
indicate that some of them have a determining role and lead the others especially during
configuration changes. In one embodiment, the constraints may be enriched by adding the
leadership information to express the way the constrained entities may impact each other.
More specifically, the leader, follower, and peer roles are defined for the constrained entities
to indicate the influence of the entities on each other, ¢.g., in a constraint the leader entities
have influence over the other follower entities. In other constraints, peer entities have equal
effect on each other.

[0034] An example explaining the leadership concept and constraints is provided below,
before further details of Figure 1 is described. The example uses the Open Virtualization
Format (OVF) to further explain the leadership concept. OVF is a packaging standard defined
by the Distributed Management Task Force (DMTF). OVF introduces an extensible format to
describe the packaging and distribution of software products (appliances) for virtual systems.
[0035] Figure 2A illustrates a simple configuration model 200 of a two-tier appliance that
consists of a Web Tier 220 with a Virtual System (Web Server) and a DB Tier 210 with two
Virtual Systems (DB1 and DB2) according to one embodiment. The OVF package definition
allows for the specification of proximity requirements for the deployment of Virtual Systems
in a given scope (e.g., host, rack, etc.) through the definition of Placement Group policies for
the Virtual Systems and Virtual System Collections:

[0036] Affinity Policy: It is used to specify that two or more Virtual Systems are deployed
closely together.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

[0037] Availability Policy: It is used to specify that two or more Virtual Systems are
deployed separately.

[0038] In the model 200 shown in Figure 2A, the DB Virtual Systems (DB1 and DB2) are to
be deployed on hosts that are on different physical racks for fault tolerance. Thus, the
placement group (PG) PG1 with the “Availability” policy is specified for the Virtual System
Collection of the DB Tier 210; it is shown as a property of the DB Tier 210. On the other
hand, the DB2 and Web Server Virtual Systems are to be deployed on hosts which are in the
same physical rack for fast communication, so the placement group PG2 with the “Affinity”
policy is specified for these two Virtual Systems shown as a property of each the DB2 and
the Web Server Virtual Systems.

[0039] Figure 2B illustrates another representation 250 of the configuration model 200 based
on the leadership information defined for constrained entities, according to one embodiment.
Before describing the representation 250, it is helpful to first describe Figure 3A and Figure
3B, in which the concept of constraints is introduced and the relation of leader/follower
entities in a constraint is explained.

[0040] Figures 3A and 3B illustrate the relation between the entities of a simplified OVF
domain model 300 according to one embodiment. In Figure 3B, the domain model 300 is an
instance of the configuration profile 130 of Figure 1. In Figure 3A, a set of restrictions 310
are shown as an example of the constraints added to the domain model 300. The restrictions
310 are an instance of the consistency rules 150 of Figure 1. The configuration model 200 of
Figure 2A is a configuration model instance of the domain model 300. The configuration
model 200 has to be consistent with the domain model 300 and its consistency is checked by
applying the restrictions 310 to its entities. In this example, the restrictions 310 that the
Placement Group policies impose on the deployment of Virtual Systems are expressed with
the OCL constraints in Figure 3A. However, an OCL constraint does not capture the impact
of the constrained entities on each other; ¢.g., the Virtual Systems and the Virtual System
Collections (including their PGs) are the dominant entities in the C1 and C2 OVF domain
constraints. This means that these entities determine which Hosts are eligible for the
deployment, and force a change to the deployment if the constraints are not satisfied. Thus,
the Virtual System and Virtual System Collection entities have the leader role and drive the
Host entity, which is the follower. This means that if the PG attribute of the Virtual System
entity changes and the constraint is violated due to this change, the Host of the Virtual
System is to be changed accordingly, to follow the Virtual System change and satisfy the
constraint (¢.g., by picking a new host in an eligible rack). On the other hand, if the Host of

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
10

the Virtual System changes (e.g., when the Host is moved to another rack, when the Host
fails or is removed from the system, ¢tc.) and this change violates the constraint, the Virtual
System and its Placement Group Policy cannot be changed as the role semantics does not
allow the leader entity to adjust to the changes of the follower entities. As a consequence the
Virtual Systems cannot be deployed in the latter case.

[0041] Referring back to Figure 2B, in the representation 250, the constraints are represented
by ovals and the entities by rectangles. The participation of each entity in a constraint is
captured with an edge between the constraint and the constrained entity. The role of the entity
in the constraint is shown as a label on this edge (¢.g., label “L” represents the Leader role,
label “F” represents the Follower role and label “P”, not illustrated, represents the Peer role).
This representation 250 is used in the rest of the description as it focuses on the role of
entities in the constraints and depicts how the constrained entities can affect each other.
Although the constraints are applied on all the entities of the same context (¢.g., Constraint
Cl1 is applicable on both DB Tier 210 and Web Tier 220), for the sake of simplicity Figure
2B only shows the relation of the constraints to the entities where the constraints can be
checked. For example, constraint C1 is not shown for Web Tier 220 because the PG attribute
of the Web Tier 220 does not have a value C1, so there is no need to check C1 for the Web
Tier 220.

[0042] Referring again to Figure 1, in one embodiment, the constraints can be categorized
based on the role of changed entities in the constraints. Three sets of constraints,
LConstraints, FConstraints and PConstraints (shown in Figure 1 as the consistency rules
150), can be created. The validator 110 starts the validation by checking the most restrictive
category, i.c., FConstraints. If a violation occurs in FConstraints, the validation is stopped
and the changes are rejected. This is because the FConstraints set collects the constraints for
the changes of follower entities only, and follower entities cannot impact the leader entities.
On the other hand, a violation of LConstraints and/or PConstraints still allows for the
adjustment of the changed configuration by modifying the respective follower or peer entities
of the LConstraints or PConstraints. After validating the FConstraints, the validator 110
checks the LConstraints and PConstraints. If no constraint violation is found, the requested
changes are applied to the system configuration 140. If any constraint violation is found, the
adjustment agent 120 will use the leadership information defined in the consistency rules 150
to determine whether an adjustment can be made to the system configuration to resolve the
violation. If valid modifications can be found, the adjustment agent 120 applies the

modification to the system configuration 140. Otherwise, the requested changes are rejected.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
11

[0043] The consistency of the configuration is to be maintained throughout the system
lifecycle to avoid any mal-functioning of the services and applications deploying this
configuration. A configuration model is consistent when it satisfies all the structural and
semantical rules, i.e., all the constraints of its metamodel (also referred to as profile). The
constraints are rules which force special restrictions on related entities of the configuration.
To ensure consistency, any reconfiguration is checked against the consistency rules. Thus, if
a constraint is violated because of changes in one or more of its constrained entities, the other
entities involved in the constraint can be modified to satisfy the constraint, i.c., to
complement the proposed changes. In turn, these complementary modifications can cause
other inconsistencies as the modified entities may be subject to other constraints. Thus, these
newly violated constraints need to be handled as well. The modifications propagate in the
configuration model to the point when all the constraints are satisfied (i.c., when the
adjustment is successful), or no further modification is possible while still some constraints
are not satisfied (i.e., when no successful adjustment is possible) and the change is rejected.
[0044] The adjustment process is defined as a set of complementary modifications and, if
necessary, the propagation of these modifications in the model to find a solution which
satisfies all the constraints. Thus, a solution includes some entities of the configuration model
with new values that along with the other entities of the model satisfy all the constraints. In
this sense, two steps of the adjustment can be considered: the first step is to identify the scope
of changes (i.e., what entities of the model may need to be modified); and the second step is
to modify as few entities as possible in the scope in such a way that satisfies all the
constraints (i.., #ow the modifications are to be made). One approach is to first identify the
propagation scope for each invalid change by collecting all the entities that can be affected by
the invalid change, then to modify a minimum subset of this scope to satisfy the violated
constraints. For this purpose, the modifications are propagated incrementally and additional
entities are selected to be modified in each iteration. Two scenarios are described in the
following: (1) the single constraint violation, and (2) the multiple constraint violation.

[0045] Before describing the two scenarios, two challenges posed by the automated
adjustment of configuration models, which are “change propagation” and “multiple related
changes”, are explained. Furthermore, the formal definitions of the context and the concepts
are presented, and finally the approach for overcoming the challenges is described.

[0046] Change propagation. The configurations of large systems consist of thousands of
interrelated entities. In such models, an attempt to resolve the violation of a single constraint

can result in changes of multiple entities, which in turn may violate other constraints. For

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
12

instance, in the model 200 shown in Figure 2A, if the PG attribute of the Web Tier 220 is
changed to “Affinity,” then C1 constraint is violated. The “Affinity” Placement Group policy
of the DB Tier 210 specifies that both DB1 and DB2 are to be on the same Rack; however,
the model 200 indicates that DB1 is on Hostl of Rack1 and DB2 is on Host2 of Rack2. To
resolve the violation, if DB2 is deployed on a Host of Rack1 (e.g., Host1), then C2 constraint
is violated as DB2 and Web Server are constrained to be in the same Rack. However, if DB1
was deployed on a Host of Rack?2 (e.g., Host2) then both constraints are satisfied.

[0047] The changes may propagate in an exponential manner and finally result in changing a
large number of entities. In the worst case, the whole configuration model may be changed.
This is not desirable as more changes result in more constraints to be solved, which costs
more time and computation. Moreover, more changes in the configuration mean the
reconfiguration of more system entities in the running system, as the configuration changes
are to be applied on system entitics. More reconfigurations in the system, in turn, risk more of
the system stability, which is especially undesirable in highly available systems. Thus, it is
better to keep the changes minimum and change only the entities that are necessary. The issue
is how to limit the change propagation to reduce the number of changes and reduce the cost
of changes.

[0048] As mentioned earlier, multiple changes may be requested in a change bundle. Some of
these changes may violate some constraint(s) that would cause change propagation. The
propagation of different changes may overlap in the sense that they may affect the same
entities, which makes the resolution of the violation more complicated. On the other hand, the
resolution of certain violations may not be made independently and a solution is only possible
when the propagations of multiple changes are considered together. The challenge is how to
decide when multiple changes are related and how to consider their propagation together.
[0049] The model based framework described herein provides a formal definition of the
constraints over the stereotypes of the configuration profile. By applying the stereotypes of
the profile to the entities of the configuration models, it is ensured that the constraints are also
applied to all the instances of those stereotypes. As both the configuration model and the
profile are known, the constraints that are applied to the entities of the model can be found.
For the sake of simplicity, the constraints are used as part of the configuration model.

[0050] In one embodiment, a configuration model is defined as a tuple G = <En, C, Role, f>,
where En is a set of configuration entities, and C is a set of configuration constraints; e.g., the
constraints for assuring the affinity or availability for virtual systems in the OVF

configuration example.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
13

[0051] Role is a set of leadership roles for the constrained entities, Role = {leader, follower,
peer}, and f is a function defined over the cross-product of entities and constraints and which
associates a role with an entity in a constraint f: En x C — Role, with the following two
constraints:

[0052] (1) For any constraint if there is a leader entity then there is at least one follower and
there is no peer entity: Vc € C: Jeny € En with f(eny, ¢) =leader) = Jeny € En with f(en,,
¢) = follower A Aen, € En with f(en,, ¢) = peer.

[0053] (2) For any constraint if there is a peer entity all entities involved in the constraint are
peer: Ve € C: deny € Enwith f(eny, ¢) = peer = Veny € En with f(eny, ¢) # Nil, f f(eny, ¢)
= peer.

[0054] In the following description, the term ChangeBundle is used to denote the initial set of
changed entities. The subset of entities of the ChangeBundle that causes violation is referred
to as IncompleteChangeSet, which is obtained from the validation phase. The subset of
constraints that are violated by the infringing entities is called the ViolatedConstraintSet and
it is also obtained from the validation phase. An entity of the IncompleteChangeSet is cither a
leader or peer entity in the violated constraint because if the entity was a follower, then the
change was rejected in the validation phase. Follower entities cannot affect the leader entities
and thus there is no possibility for any adjustment.

[0055] IncompleteChangeSet = {eny € ChangeBundle | 3¢ € C with (eny, ¢) = (leader or peer)
A ¢ is not satisfied}. ViolatedConstraintSet = { ¢ € C| 3 eny € ChangeBundle with (eny, ¢) =
(leader or peer) A ¢ is not satisfied }

[0056] The SinkSet contains the entities which have only follower or peer role in all the
constraints in which they are involved.

[0057] SinkSet = {en, € En | V¢, € C with f(eny, ¢y) # Nil, f(en, cy) = (follower or peer)}.
[0058] Additionally, a binary relation c, named Compulsion, is defined on the model entitics
(eni, en; € En) as follows:

[0059] V eni, en; € En, en; = en; & (3c € C| f(en,, ¢) =leader A f(eny, ¢) = follower) vV (3¢
€ C |f(eni, ¢) = peer A f(en;, c) =peer), or V en;, en; € En, en; &= en; & J eng € En | en; &
eng A\ engt en; .

[0060] The compulsion relation is transitive by definition.

[0061] Each entity of the IncompleteChangSet is referred to as an infringing entity. For one
infringing entity of each violated constraint, its propagation scope is determined. The
propagation scope is basically a slice of the configuration model which contains all the

entities and constraints that can be affected by the propagation of the change. The scope is

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
14

created based on the leadership information according to the compulsion relation between the
entities. This means the constraints in which the changed entity is the leader or peer are
selected and added to the scope, as well as other entities involved in those constraints. Later if
any selected entity has a leader or peer role in other constraints, the propagation continues
and the follower or peer entities of those constraints are also selected and added to the scope.
The propagation continues until it reaches either the entities that are only followers in all the
constraints that they participate, or all the peers of the constraint are already selected.

[0062] For one infringing entity (en;) of each violated constraint (c;), a propagation scope PSi
= <E;, Ci, Role, > is defined. The definitions of Role and f; are the same as the Role and f of
the model.

[0063] The E; (i.c., the entity set of the PSi) is defined by accumulating the infringing entity
(en;) as well as all the entities which are in Compulsion relation with en;. In other words, all
the entities that are followers or peers of the infringing entity directly or indirectly (through
other entities and constraints) are gathered in the scope. Thus, the E; is defined as:

[0064] en; EE;, and V en; € En, en; &> en; & en; € E;

[0065] The constraint set of the scope C; includes the constraints in which the entities of the
scope are involved including the violated constraint c;.

[0066] Path creation in each scope. In each propagation scope, a set of propagation paths can
be identified. A path is defined as an ordered set of entities that starts with an infringing
entity. The path is created following the compulsion relation between the entities. It ends if
the entity is a sink entity in the scope or if it is only leader/peer for entities of the path itself —
to avoid cycles. The paths are used for change propagation within each scope.

[0067] For an infringing entity en;, a Pathy, is an ordered set of entities of the scope PSi (in
which en; is the head of the path) that is defined as follows:

[0068] (1) en; € Path,,

[0069] (2) V enj € E;, en; € Pathy, iff en; & en;, and V eny € Pathy, (eny & en;) V (en; & eny),
and

[0070] (3) 3 eny € Path, such that eny € SinkSet, or 3 en; € E;, eny & en; = en; € Path,
[0071] The collection of all paths in a propagation scope is called a PathCollection. Besides
the first entity, which is common in all paths of a PathCollection, different paths of the
PathCollection can have other entities in common as well.

[0072] Figure 4 illustrates multiple paths in a propagation scope for an infringing entity (E1)
which violates constraint C1 according to one embodiment. As E1 is a leader entity in C1, its

change can propagate to the follower entities of C1 which results in multiple paths (i.c., Path

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
15

A, Path B, Path C, Path D). The paths start with E1 and end with an entity with only the
follower role, e.g., Path A ends with E7, which is an entity with only the follower role in C2.
[0073] An approach for solving single constraint violation is provided in the following
description. The use of the propagation scope for an infringing entity of a violated constraint
isolates the runtime adjustment problem and ensures that all the entities that may be impacted
during change propagation are already gathered in the scope. The problem of a scope can be
handled separately if there is only one scope, or in case that the scope does not have any
common entities with the other scopes.

[0074] A PathCollection of each scope may contain multiple different paths. To find a
solution for the infringing entity of the scope (i.¢., the complementary changes which satisfies
the constraints of the scope), one path at a time is selected. The system (e.g., the adjustment
agent 120 of Figure 1) attempts to find a solution of complementary modifications for the
entities of the path. If no solution can be found in the selected path, another path from the
PathCollection is selected. The path selection ends when either a solution is found in the
selected path or when all the paths are exhausted. If all the paths are exhausted and no
solution is found, all the paths of the PathCollection are taken together to find a solution that
may change multiple follower entities of different constraints.

[0075] Incremental propagation for the shortest path. The paths in the PathCollection can be
ordered according to their length. As it is desirable to change the least number of entities, a
solution is attempted for the shortest path. In one embodiment, an incremental change
propagation is used to select the minimum number of entities in the path for modifications.
This means that in each increment, new values are found for a selected follower or peer entity
of a violated constraint. In the first increment, the selected entity is the second entity of the
path which is subsequent to the infringing entity of the scope. In the second increment, the
next entity of the path is selected and so on. Each selected entity, which is not the last entity
of the path, participates in two sets of constraints: MandatoryC and RelaxC.

[0076] The first set of constraints, MandatoryC, includes the constraints in which the selected
entity has a follower role. The set is called MandatoryC because it contains the constraints
that are mandatory to satisfy by the change of the selected entity.

[0077] The second set of constraints, RelaxC, includes the constraints in which the selected
entity has a leader or peer role. This set is called RelaxC. Although the adjustment agent 120
tries to find a change for the selected entity that satisfies the constraints of this set as well, if
no solution can be found, the problem can be relaxed by removing these constraints. This is

because the selected entity has the leader/peer role in these constraints, and if these

10

WO 2017/046630 PCT/IB2015/057099
16

constraints are violated, the violation may be resolved in the next increment when the next
entity of the path is selected (which is a follower or peer in the constraints of the RelaxC).
[0078] In each increment, the purpose is to find a change for the selected entity which
satisfies all the MandatoryC and RelaxC. If no solution can be found, the RelaxC constraints
are removed to relax the problem. If by removing the RelaxC constraints the problem is
solvable, a new increment is added which means that the next entity of the path becomes the
selected entity for which the MandatoryC and RelaxC constraints are identified. The
propagation stops at any increment where a solution is found. If no solution can be found
after removing the RelaxC constraints, the selected path is unsolvable.

[0079] Note that the RelaxC is empty in the last increment when the selected entity is the last
entity of the path. Thus, only the MandatoryC set needs to be solved in the last increment.

Algorithm_1: Incremental Change Propagation for the Shortest Path

Input: PropagationScope, ViolatedConstraint, PathCollection, ConstraintSet
Qutput: Solution

1: //Sort the PathCollection based on the length of the paths
2. Sort(PathCollection][])

3: UnSolvablePath:= False

4. SolutionFound:=False

5: MandatoryC:={ViolatedConstraint }

6: RelaxC:={}

7. For (j:=0; j<{PathCollection| &SolutionFound==False; j++)
8: SelectedPath:= PathCollection][]]

9: For(i=1; i<|SelectedPath|&UnSolvablePath==False; i++)
10: entity:= SelectedPath][i]

11: For each constraint in ConstraintSet

12: If (F(entity,constraint) == leader or peer then
13: RelaxC:= RelaxC U {constraint}

14: Else If (F(entity,constraint) = follower then
15: MandatoryC:= MandatoryC W {constraint}
16: End if

17: End for

18: Solution:= Solve(MandatoryC \ RelaxC)

19: If (Solution#{})) then

20: SolutionFound:=True

21: Return Solution

22: Else If (Solve(MandatoryC)=—={}) then

23: UnSolvablePath:= True

24 Else RelaxC:={}

25: End if

26: End for

27: MandatoryC:={ViolatedConstraint}

28: End for

29: Solution:= Solve(ConstraintSet)

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
17

30: Return Solution

[0080] Algorithm 1 describes the process of incremental change propagation for the shortest
path. The inputs of the algorithm are the ViolatedConstraint, its propagation scope for an
infringing entity, and the PathCollection and the ConstraintSet of the propagation scope. And
the output is the Solution that is obtained from the constraint solver. First the PathCollection
is sorted based on the length of its paths (line 2). Two flags are used to determine the
satisfiability of the path and the problem which are UnSolvablePath and SolutionFound
respectively. Both are false in the beginning (lines 3, 4). For each path the MandatoryC
collects incrementally the constraints that are mandatory to satisfy and RelaxC is the set of
constraints that can be relaxed and be handled in the next increment (lines 5, 6). In the
beginning MandatoryC has the initially violated constraint (i.c., ViolatedConstraint). The
paths of the PathCollection are selected one at a time starting with the shortest until a solution
is found for a selected path or reach to the end of PathCollection set (lines 7-28). In each
selected path, the process takes the incremental propagation approach by selecting the next
entity and considering its constraints from the ConstraintSet (lines 9-17). If the entity has a
leader or peer role in some constraints, they will be added to RelaxC set (lines 12, 13) and if
the entity is a follower in some constraints, they are added to MandatoryC (lines 14, 15).
Then the satisfiability of the constraints is checked. If there is a solution that satisfies the
constraints of both MadatoryC and RelaxC sets, then the solution is returned and the flag
SolutionFound is set so the other paths would not be traversed for a solution (lines 18-21).
Otherwise the MandatoryC constraints are checked without the RelaxC set and if they are not
satisfiable (the Solution is empty) that means that no solution can be found in this path so the
UnSolvablePath flag is set (lines 22, 23). The other possible case is when the MandatoryC
constraints are satisfiable but the RelaxC are not satisfiable. In this case the RelaxC set is
emptied (line 24), and the process proceeds to the next increment and it selects the next entity
of the path and repeats the same routine till the process reaches the end of the path or finds a
solution. If the path is unsolvable, then all the constraints except the Violated Constraint are
removed from the MandatoryC set (line 27) and the next path of the PathCollection is
selected. After traversing all the paths if no solution is found then the processes tries to find a
solution by considering all of them together which means solving the whole ConstraintSet of
the scope (lines 29-30).

[0081] An approach for solving multiple constraint violation is provided in the following

description. Multiple changes that are requested as a change bundle may cause multiple

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
18

constraint violation. In this case for each violated constraint, on¢ infringing entity is selected,
and a propagation scope and PathCollection are calculated. If these propagation scopes are
disjoint (i.e., no common entity between them), then each scope is solved individually similar
to the single constraint violation. On the other hand, if the propagation scopes have an
intersection, the scopes are not to be solved separately. In this case, the change bundle may
contain related changes and it may not be possible to find a solution for each scope
separately. A solution is possible only when the related changes are considered together as a
single problem.

[0082] Figure 5 illustrates a model 500, which is an example of overlapping propagation
scopes and their intersection according to one embodiment. In the model 500, two entities E1,
E12 are infringing entities, each violating one constraint (C1, C8 respectively). For each
infringing entity, the propagation scope (PS1, PS2 respectively) and PathCollection are
calculated. For PS1 of E1, there are three paths: Path A = {E1, E2, E3, E4}, Path B = {E1,
E6, E7, E8, E9, E11} and Path C = {E1, E2, E3, E5}. For PS2 of E10, there is only on¢ path,
Path X = {E12, E10, E11}. The two scopes PS1 and PS2 have an intersection that contains a
common entity E11. As the changes in each of PS1 and PS2 affect the common entity, and
both Path B and Path X include the common entity, Path B and Path X are solved together to
satisfy the constraints in PS1 and PS2.

[0083] Thus, in one embodiment, overlapping scopes are solved together. For this purpose,
overlapping scopes are grouped together into a Group. For each Group, an Infersect captures
the common entities of the overlapping scopes. The Groups are disjoint (i.¢., they have no
common entities) as the overlapping scopes are collected in the same Group.

[0084] Figure 6 illustrates a model 600, which is an example of partially overlapping
propagation scopes according to one embodiment. In the model 600, propagation scopes PS1
and PS2 are overlapped, and propagation scopes PS2 and PS3 are overlapped. Even though
the three overlapping propagation scopes have two disjoint overlapping regions, these three
scopes are considered as one group and are grouped together into Group1. The Intersection of
Groupl, which is called Intersectl, contains all of common entities in the two overlapping
regions. In this example, Intersect]1={E10, E11}.

[0085] Furthermore, the GroupSet is the collection of the Groups and the InfersectSet is the
collection of the Intersects of the Groups. The process of forming the Groups of a GroupSet
is presented in the following description.

[0086] In one embodiment, each of the scopes is compared with the Groups of the GroupSet.

If the scope has common entities with a Group, the scope is added to the Group and the

10

WO 2017/046630 PCT/IB2015/057099
19

Intersect of the Group is updated accordingly with the common entities. If a scope cannot be
added to any of the existing Groups, a new Group is created with an empty Intersect (i.€.,

how the first Group is formed).

Algorithm_2: Grouping the overlapping scopes

Input: PropagationScopeCollection,
Qutput: GroupSet, IntersectSet

1: // Grouping the overlapping scopes

2. GroupSet ;= {}

3: IntersectSet .= {}

4. For each PS; in PropagationScopeCollection

5: =-1

6: For (j:=0; j<|GroupSet|;j++)

7 If (Epsim EGroupj ?é {}) then

8: If (K==-1)

9: Intersect; := Intersect; U (Epsi N Ecroup;)
10: Group; := Group; U PS;

11: K5

12: Else ///PS; is already added to Groupk

13: Groupy :Groupy U Group;

14: Intersecty :Intersect, U IntersectjU (Epsi N Ecroup;)
15: Delete Group;

16: Delete Intersect;

17: J--

18: End if

19: End if

20: End for

21: // If PSi has no intersection with the groups, create a new group
with the PSi and an empty intersection for that

22: If (K==-1) then

23: GroupSet ;= GroupSet U {PS;}

24: IntersectSet := IntersectSet U {}
25: Endif
26: End for

27: Return GroupSet, IntersectSet

[0087] Algorithm 2 describes how the Groups are formed with overlapping scopes. The
input of the algorithm is the collection of all propagation scopes (i.¢.,
PropagationScopeCollection) and the outputs are the GroupSet and IntersectSet. At the
beginning both GroupSet and IntersectSet are empty (lines 2, 3). Each propagation scope is
compared with the groups of the GroupSet to find out the Group with which it has common
entities (lines 4-18). An integer variable K is used to keep track of the addition of the scope to
a Group (K keeps the index of that Group). At the beginning K is set to value (-1) for the

scope (line 5). If a Group with common entities with the scope is found and the scope has not

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
20

been added yet to a group (i.e. K=-1), the scope is added to the Group and the common
entities are added to the Intersect of the Group and K is set to the index of the Group (lines 6-
12). After adding the scope to a Group, it is also checked if the scope has common entities
with other groups of the GroupSet. Such groups are merged with the Group to which the
scope has been added and also the Intersect is updated as needed. The merged Groups and
their Intersects are deleted. (lines 12-18). After checking all the Groups, if the K is still -7, i.¢e.
no Group can be found which has common entities with the scope, then a new Group is
created with the scope and with empty Intersect (lines 22-25). The group finding procedure is
repeated for each scope, and finally the calculated GroupSet and IntersectSet are returned as
the output (line 27).

[0088] Bonding the related paths of each group. Once the related scopes are grouped, and
the respective Groups are created, the system (e.g., the adjustment agent 120 of Figure 1)
tries to solve each Group separately. If a Group contains a single scope, it can be solved as a
single constraint violation through incremental change propagation for the shortest path.
Otherwise, to avoid changing all entities of a Group and reduce the number of changed
entities, the adjustment agent 120 proceeds as follows: In each Group the paths which have
common entities with the Intersect of the Group are selected to form the BondedPath of the
Group. In other words, the related paths are bonded and the other paths which do not have
common entities with the Intersect of the Group are disregarded. The entities of the bonded
paths of each Group are the primary candidates for the complementary modifications.

[0089] Initial changes that are related to each other are requested in the same change bundle.
Thus, when potential inconsistencies are detected for a requested change bundle, there is a
high chance that the solution is possible only by considering the related scopes together.
Grouping the scopes and bonding their paths provides such a solution if it exists.

[0090] Similarly to the single constraint violation, for each entity in the BondedPath, the
mandatory constraints (MandatoryC) need to be identified and satisfied by the
complementary changes. The MandatoryC in this case contains all the constraints in which
the entities of the BondedPath are participating (as leader, follower or peer). Unlike in case of
the single constraint violation, the incremental propagation cannot be performed; thus, there
is no need for the RelaxC. The adjustment agent 120 of Figure 1 tries to find a solution by
considering the BondedPath of a Group. If no solution can be found that satisfies all the
constraints in MandatoryC, then the other paths of the Group are considered as well.
Algorithm 3 describes a process for the path bonding and finding the solution for multiple-

constraint violation.

WO 2017/046630 PCT/IB2015/057099
21

Algorithm_3: Bonding the related paths and its resolution

Input: PathCollectionSet, Group, Intersect, IncompleteChangeSet,
ConstraintSet
Qutput: Solution

Solution:={}
BondedPath:={}
MandatoryC.={}
// Bonding the related paths of each Group
: For each en;in IncompleteChangeSet && Group;
For each pathy in PathCollection,;
If (pathy N Intersect; #{}) then
BondedPath:=BondedPath U pathy
End if
10: End for
11: End for
12: //ldentifying the constraints related to the entities of the bonded path
13: For each eny in BondedPath
14: For each ¢, in ConstraintSet

e AR R

h

15: If (f(eny, cy) # Nil) then

16: MandatoryC:= MandatoryC U {c,}
17 End if

18: End for

19: End for

20: Solution:=Solve(MandatoryC)
21: If (Solution#{}) then
22: Return Solution

23: Else

24 MandatoryC.={}

25: For each eny in Egroupi

26: For each c, in ConstraintSet
27: If (f(eny, cy) # Nil) then
28: MandatoryC:= MandatoryC U {cy}
29: End if

30: End for

31: End for

32: Solution:=Solve(MandatoryC)
33: End if

34: Return Solution

[0091] The Group, its PathCollectionSet, its Intersect, its ConstraintSet and the
IncompleteChangeSet are the input of the algorithm and the output is the Solution for the
group. For the given Group, the BondedPath, the MandatoryC and the Solution are initialized
at the beginning (lines 1-3). A BondedPath is calculated for the Group i.e., for each infringing
entity of the IncompleteChangeSet, which also belongs to the Group (line 5). The process

10

15

WO 2017/046630 PCT/IB2015/057099
22

selects the paths from its PathCollectionSet that has common entities with the Intersect of the
Group (line 6). The identified paths are added to the BondedPath of the Group (lines 6-10).
[0092] Next the constraints related to the entities of the BondedPath are added to
MandatoryC (lines 13-19). A solution for the Group satisfies all the MandatoryC constraints
(line20). If such a solution exists (Solution is not empty), it is returned as the output, i.¢., the
ultimate solution for the Group (lines 21, 22). If the BondedPath is not satisfiable (Solution is
empty) then all the paths of the Group are considered and all the constraints of the Group are
added to MandatoryC (lines 23-31). The result of solving the MandatoryC is the solution of
the Group (line 32). If the constraints of the MandatoryC are satisfiable the Solution is not
empty, otherwise the Solution is empty. In either case the Solution is returned as the output of
the algorithm (line 34).

[0093] After calculating the scopes and grouping the related ones together, a decision is made
as to how to solve each of them. This means that the adjustment agent 120 decides which
method (incremental change propagation or the bonded path) is suitable for each group. This

decision is made based on the number of scopes in each group.

10

WO 2017/046630 PCT/IB2015/057099

23

Algorithm_4: Overall approach to the adjustments

Input: PathCollectionSet, GroupSet, IntersectSet, IncompleteChangeSet,

ConstraintSet, ViolatedConstraintSet

Qutput: Solution

1: Solution:={}
2. For each Group; in GroupSet

98]

PartialSolution:={}
ScopeNumber;=0
ViolatedConstraint:={ }
// Count the number of scopes in the group
For each scope;jin Group;
ScopeNumber++
End for
// Incremental Propagation is called for a group with a single scope
If (ScopeNumber==1) then
ViolatedConstraint:= Select (scope;j, ViolatedConstraintSet)
PartialSolution:= IncrementalPropagation (PropagationScope;,
ViolatedConstraint, PathCollection;, ConstraintSet;)
//Multiple scopes are solved by Path Bonding
Else
Partial Solution:= BondingPath (PathCollectionSet, Group;,
Intersect;, IncompleteChangeSet, ConstraintSet;)
End if
If (PartialSolution #{}) then
Solution:=Solution L PartialSolution
Else
Solution={}
Return Solution
End if

- End for
: Return Solution

[0094] Algorithm 4 describes the overall approach to the adjustments, which includes the

incremental propagation method (Algorithm 1) and the path bonding method (Algorithm_3).

The inputs of the algorithm are PathCollectionSet, GroupSet, IntersectSet,

IncompleteChangeSet, ConstraintSet, and the ViolatedConstraintSet. The algorithm tries to

solve each Group in the GroupSet resulting in a PartialSolution. The final Solution for the

incomplete change set is the union of the non-empty PartialSolutions of all Groups or it is

empty. Thus the output is empty if not all the Groups are solvable, otherwise it contains the

complementary changes for adjusting the configuration model. The algorithm starts by

initializing the Solution as an empty set (line 1). For each Group in the GroupSet a

PartialSolution and the ScopeNumber are initialized (line 3, 4). Then the number of scopes is

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
24

calculated for the Group (lines 7-9). If there is only one scope in the Group then the
incremental change propagation method is used for solving the Group (lines 11-14). If there
is more than one scope in the Group then the path bonding method is called to solve the
Group (lines 15-17). In either case the PartialSolution of the Group is obtained. If the
PartialSolution is not empty (i.e. the Group is solvable) then the returned PartialSolution is
added to the final Solution (lines 17-19) and the procedure repeats for the next Group. If the
PartialSolution is empty it means that the Group is not solvable and thus there is no final
Solution (lines 20-23). The reason is that a Solution is only complete when all the Groups of
the GroupSet are solved. Even if one Group in unsolvable, it means that no complete Solution
exists and the adjustment is not possible, as there are no complementary changes resolving
the violations caused by the infringing entities of the Group. At the end, if all Groups in the
GroupSet are solvable, the ultimate Solution is returned (line 25) containing all the
complementary changes needed for the adjustment.

[0095] It is noted that if no complete Solution exists and the adjustment is not possible, all
requested changes to the entities in the ChangeBundle are rejected. On the other hand, if all
Groups in the GroupSet are solvable and the ultimate Solution is found, the requested
changes to the entities in the ChangeBundle are accepted and applied to these entities, and the
adjustment (found in the ultimate Solution) is also applied to the other entities affected by the
requested changes.

[0096] Figure 7 is a flow diagram illustrating a method 700 of an overall approach for
runtime configuration adjustment according to one embodiment. The method 700 begins by
creating a propagation scope and PathCollection for an infringing entity of each violated
constraint at step 710. At step 720, Algorithm_2 is used to create Groups from the
propagation scopes. For each Group in Groups, the method 700 determines whether the
Group includes only one propagation scope at step 730. If the Group includes only one
propagation scope, the method 700 uses Algorithm_1 to find TempSolution for the Group at
step 740 by applying the incremental change propagation method described in Algorithm 1,
and proceeds to step 760. If the Group includes only one propagation scope, the method 700
uses Algorithm_3 at step 750 to find TempSolution for the Group by creating the
BondedPath, and proceeds to step 760. At step 760, if TempSolution is empty, it means that
no adjustment exists for the requested change bundle. Thus at step 770 all the modifications
are rejected and the method 700 ends. If at step 760 TempSolution is not empty, the
TempSolution is added to the Solution at step 780, and the method 700 proceeds to determine
whether all Groups have been checked at step 790. If all groups have been checked at step

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
25

790, the method 700 returns the Solution at step 795 and ends. If not all groups are checked at
step 790, the method 700 returns to step 730 until all groups are checked, at which point the
method 700 returns the Solution at step 795 and ends.

[0097] Figure 8A is another flow diagram illustrating a method 800 for runtime adjustment
of a configuration model of a system according to one embodiment. The method 800 may be
performed for resolving single constraint violation. The method 800 begins at step 801 when
the system receives, at runtime, a request with one or more modified entities in a
configuration model. In the formal definition provided above, the “one or more modified
entities” are the ChangeBundle, which is the initial set of changed entities. At step 802, an
infringing entity is identified among the one or more modified entities based on leadership
information, wherein the leadership information indicates an impact that one entity has on
another entity with respect to a given constraint, and wherein the infringing entity violates at
least one constraint in the configuration model. At step 803, based on the leadership
information, a propagation scope is identified for the infringing entity and a constraint
violated by the infringing entity, wherein the propagation scope includes the infringing entity
and a set of other entities that are potentially affected by the request. At step 804, a collection
of paths are created in the propagation scope, each path connecting the infringing entity to
one or more of the other entities. At step 803, starting from a shortest path, a path is selected
at a time from the collection to find a runtime adjustment solution for the selected path such
that no constraints in the propagation scope are violated.

[0098] Figure 8B is another flow diagram illustrating a method 810 for runtime adjustment of
a configuration model of a system according to yet another embodiment. The method 810
may be performed for resolving multiple constraint violation. The method 810 begins at step
811 when the system receives, at runtime, a change request directed at one or more modified
entities in a configuration model. In the formal definition provided above, the “one or more
modified entities” are the ChangeBundle, which is the initial set of changed entities. At step
812, a set of infringing entities is identified among the one or more modified entities based on
leadership information, wherein the leadership information indicates an impact that one entity
has on another entity with respect to a given constraint, and wherein the set of infringing
entities violate a plurality of constraints in the configuration model. At step 813, a
propagation scope is identified for each violated constraint of the plurality of constraints,
wherein the propagation scope includes one of the infringing entities and a set of other
entities that are potentially affected by the change request. At step 814, the system forms a
bonded path for a group of propagation scopes that overlap, wherein the bonded path

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
26

connects selected entities from each propagation scope in the group with one or more
common entities in an intersection of the group. At step 815, the system finds a runtime
adjustment solution for the group subject to all constraints in which entities of the bonded
path participate.

[0099] A model-based approach for the runtime adjustment of configurations has been
described. The approach can be adopted by a self-adaptive system, which attempts to resolve
the potential inconsistencies that are detected during the configuration validation. These
inconsistencies which often happen due to incomplete reconfiguration changes can be
completed by adding complementary modifications, i.e., runtime configuration adjustments.
Moreover, the complementary modifications of the configuration entities are kept to the
minimum to reduce the time and computational cost of changes and not to destabilize the
system during the changes at runtime.

[00100] Figure 9 illustrates a system 900 for runtime adjustment of a configuration model
according to one embodiment. In one embodiment, the system 900 comprises a receiver
module 910 adapted or operative to receive, at runtime, a change request directed at one or
more modified entities in the configuration model; a first identifying module 920 adapted or
operative to identify an infringing entity among the one or more modified entities based on
leadership information, wherein the leadership information indicates an impact that one entity
has on another entity with respect to a given constraint, and wherein the infringing entity
violates at least one constraint in the configuration model; and a second identifying module
930 adapted or operative to identify, based on the leadership information, a propagation
scope for the infringing entity and a constraint violated by the infringing entity, the
propagation scope including the infringing entity and a set of other entities that are potentially
affected by the change request. The system 900 further includes a path building module 940
adapted or operative to create a collection of paths in the propagation scope, each path
connecting the infringing entity to one or more of the other entities. The system 900 further
includes a solution finding module 950 adapted or operative to select a path at a time, starting
from a shortest path, from the collection to find a runtime adjustment solution for the selected
path such that no constraints in the propagation scope are violated.

[00101] Alternatively or additionally, the receiver module 910 of the system 900 may be
adapted or operative to receive, at runtime, a change request directed at one or more modified
entities in the configuration model; the first identifying module 920 may be adapted or
operative to identify a set of infringing entities among the one or more modified entities

based on leadership information, wherein the leadership information indicates an impact that

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
27

one entity has on another entity with respect to a given constraint, wherein the set of
infringing entities violate a plurality of constraints in the configuration model; the second
identifying module 930 may be adapted or operative to identify a propagation scope for each
violated constraint of the plurality of constraints, wherein the propagation scope includes one
of the infringing entitics and a set of other entities that are potentially affected by the change
request; the path building module 940 may be adapted or operative to form a bonded path for
a group of propagation scopes that overlap, wherein the bonded path connects selected
entities from each propagation scope in the group with one or more common entities in an
intersection of the group; and the solution finding module 950 may be adapted or operative to
find a runtime adjustment solution for the group subject to all constraints in which entities of
the bonded path participate.

[00102] Figure 10 illustrates a computer system 1000 within which a set of instructions, for
causing the machine to perform any one or more of the methodologies, ¢.g., methods,
algorithms, steps or logic, discussed herein, may be executed. In one embodiment, the
computer system 1000 may be part of a networked system, and/or operate in a cloud
computing environment where multiple server computers in one or more service centers
collectively provide computing services on demand. While only a single machine is
illustrated, the term “machine” shall also be taken to include any collection of machines (e.g.,
computers) that individually or jointly execute one or more sets of instructions to perform any
one or more of the methodologies discussed herein.

[00103] The computer system 1000 includes processing circuitry 1002, such as one or more
general-purpose processors, each of which can be: a microprocessor, a central processing unit
(CPU), a multicore processor, or the like. The processing circuitry 1002 may also be one or
more special-purpose processing devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network
processor, or the like. In one embodiment, the processing device 1002 is adapted or operative
to execute the operations of an adjustment agent 120 (also shown in Figure 1), which contains
instructions executable by the processing circuitry 1002 to perform the methods 700, 800 and
810 of Figures 7, 8A and 8B, respectively.

[00104] In one embodiment, the processor circuitry 1002 is coupled to one or more memory
devices such as: a main memory 1004 (¢.g., read-only memory (ROM), flash memory,
dynamic random access memory (DRAM), etc.), a secondary memory 1018 (¢.g., a magnetic
data storage device, an optical magnetic data storage device, ¢tc.), and other forms of

computer-readable media, which communicate with each other via a bus or interconnect

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
28

1030. The memory devices may also include different forms of ROMs, different forms of
random access memories (RAMs), static random access memory (SRAM), or any type of
media suitable for storing electronic instructions. In one embodiment, the memory devices
may store the code and data of the adjustment agent 120, which may be entirely or partially
stored in one or more of the locations shown as dotted boxes and labeled by the reference
numeral 120, or in other location(s) not shown in Figure 10.

[00105] The computer system 1000 may further include a network interface device 1008. A
part or all of the data and code of the adjustment agent 120 may be transmitted or received
over a network 1020 via the network interface device 1008.

[00106] In one embodiment, the computer system 1000 stores code (composed of software
instructions) and data using computer-readable media, such as non-transitory tangible
computer-readable media (¢.g., computer-readable storage media such as magnetic disks;
optical disks; read only memory; flash memory). The term “non-transitory computer-readable
medium” should be taken to include a single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers) that store the one or more sets of
instructions. The computer system 1000 may also receive and transmit (internally and/or with
other electronic devices over a network) code and data using transitory computer-readable
transmission media (€.g., electrical, optical, acoustical or other form of propagated signals).
[00107] In one embodiment, a non-transitory computer-readable medium stores thereon
instructions that, when executed on one or more processors of the computer system 1000,
cause the computer system 1000 to perform the methods 700, 800 and 810 of Figures 7, 8A
and 8B, respectively.

[00108] The operations of the flow diagrams of Figures 7, 8A and 8B, as well as
Algorithm_1, Algorithm 2, Algorithm_3 and Algorithm_4 may be performed by the
embodiments of Figures 1, 9 and 10. However, it should be understood that the operations of
the flow diagrams and algorithms can be performed by embodiments of the invention other
than those discussed with reference to Figures 1, 9 and 10, and the embodiments discussed
with reference to Figures 1, 9 and 10 can perform operations different than those discussed
with reference to the flow diagrams and algorithms. While the flow diagrams and algorithms
show a particular order of operations performed by certain embodiments of the invention, it
should be understood that such order is exemplary (¢.g., alternative embodiments may
perform the operations in a different order, combine certain operations, overlap certain

operations, etc.).

10

WO 2017/046630 PCT/IB2015/057099
29

[00109] It is to be understood that the above description is intended to be illustrative, and not
restrictive. Many other embodiments will be apparent to those of skill in the art upon reading
and understanding the above description. Although the present invention has been described
with reference to specific exemplary embodiments, it will be recognized that the invention is
not limited to the embodiments described, but can be practiced with modification and
alteration within the spirit and scope of the appended claims. Accordingly, the specification
and drawings are to be regarded in an illustrative sense rather than a restrictive sense. The
scope of the invention should, therefore, be determined with reference to the appended

claims, along with the full scope of equivalents to which such claims are entitled.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

30
CLAIMS
What is claimed is:
1. A method (800) for runtime adjustment of a configuration model of a system,

comprising:

receiving (801), at runtime, a change request directed at one or more modified entities
in the configuration model;

identifying (802) an infringing entity among the one or more modified entities based
on leadership information, wherein the leadership information indicates an impact that one
entity has on another entity with respect to a given constraint, and wherein the infringing
entity violates at least one constraint in the configuration model;

identifying (830), based on the leadership information, a propagation scope for the
infringing entity and a constraint violated by the infringing entity, wherein the propagation
scope includes the infringing entity and a set of other entities that are potentially affected by
the change request;

creating (840) a collection of paths in the propagation scope, each path connecting the
infringing entity to one or more of the other entities; and

starting from a shortest path, selecting (850) a path at a time from the collection to
find a runtime adjustment solution for the selected path such that no constraints in the

propagation scope are violated.

2. The method of claim 1, wherein identifying the infringing entity further comprises:
identifying an entity among the one or more modified entities that has a leader role or

a peer role as the infringing entity.

3. The method of claim 1, wherein each path in the collection of paths includes an
ordered set of entities, in which one of any two entities in the path has an impact on the other

one.

4, The method of claim 1, wherein selecting the path further comprises:

for each selected path starting from the infringing entity, incrementally adding one
entity at a time to a set of entities on the path; and

finding the runtime adjustment solution for the set of entities to satisfy a set of

constraints imposed on the set of entities.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
31

5. The method of claim 4, wherein an incrementally added entity has a follower role
with respect to a first constraint and a leader role with respect to a second constraint, the
method further comprises:

finding the runtime adjustment solution for the set of entities to satisfy the set of
constraints that include the violated constraint, the first constraint and the second constraint;
and

when no runtime adjustment solution is found, finding the runtime adjustment
solution for the set of entities to satisfy the set of constraints including the violated constraint

and the first constraint, and excluding the second constraint.

6. The method of claim 1, further comprising:
when all paths in the collection are exhausted and no runtime adjustment solution is
found, finding the runtime adjustment solution subject to all constraints in the propagation

scope.

7. The method of claim 1, wherein each path in the collection ends with a sink entity
having a follower role only, or with an entity having a follower role in addition to a leader or

peer role for another entity that is already on the path.

8. A method (810) for runtime adjustment of a configuration model of a system,
comprising:

receiving (811), at runtime, a change request directed at one or more modified entities
in the configuration model;

identifying (812) a set of infringing entities among the one or more modified entities
based on leadership information, wherein the leadership information indicates an impact that
one entity has on another entity with respect to a given constraint, wherein the set of
infringing entities violate a plurality of constraints in the configuration model;

identifying (813) a propagation scope for each violated constraint of the plurality of
constraints, wherein the propagation scope includes one of the infringing entities and a set of
other entities that are potentially affected by the change request;

forming (814) a bonded path for a group of propagation scopes that overlap, wherein
the bonded path connects selected entities from each propagation scope in the group with one

or more common entities in an intersection of the group; and

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
32

finding (815) a runtime adjustment solution for the group subject to all constraints in

which entities of the bonded path participate.

9. The method of claim 8, wherein at least one propagation scope has no overlap with
other propagation scopes, the method further comprising:
finding another runtime adjustment solution for the at least one propagation scope

separately from the other propagation scopes.

10. The method of claim 8, wherein forming the bonded path further comprises:

for each propagation scope in the group, creating a set of paths each of which includes
an ordered set of entities, and one of any two entities in the path has an impact on the other
one according to the leadership information; and

selecting at least a path from each propagation scope in the group that connects the
one infringing entity of the propagation scope with at least one common entity in the

intersection of the group to form a combination of selected paths as the bonded path.

11. The method of claim 10, wherein each path in the collection ends with a sink entity
having a follower role only, or with an entity having a follower role in addition to a leader or

peer role for another entity that is already on the path

12. The method of claim 8, further comprising:
forming the group of propagation scopes by incrementally adding a propagation scope
to the group if the added propagation scope overlaps with at least one propagation scope in

the group.

13. The method of claim 8, further comprising:
when no runtime adjustment solution is found for the bonded path, finding the

runtime adjustment solution subject to all constraints in the group.

14. A system (1000) for performing runtime adjustment of a configuration model,
comprising:

amemory (1004, 1018); and

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
33

processing circuitry (1002) coupled to the memory, wherein the processing circuitry is
adapted to:

receive, at runtime, a change request directed at one or more modified entitics in the
configuration model;

identify an infringing entity among the one or more modified entities based on
leadership information, wherein the leadership information indicates an impact that one entity
has on another entity with respect to a given constraint, and wherein the infringing entity
violates at least one constraint including a violated constraint in the configuration model;

identify, based on the leadership information, a propagation scope for the infringing
entity and a constraint violated by the infringing entity, wherein the propagation scope
includes the infringing entity and a set of other entities that are potentially affected by the
change request;

create a collection of paths in the propagation scope, each path connecting the
infringing entity to one or more of the other entities; and

starting from a shortest path, select a path at a time from the collection to find a
runtime adjustment solution for the selected path such that no constraints in the propagation

scope are violated.

15. The system of claim 14, wherein the processing circuitry is further adapted to:
identify an entity among the one or more modified entities that has a leader role or a

peer role as the infringing entity.

16. The system of claim 14, wherein each path in the collection of paths includes an
ordered set of entities, in which one of any two entities in the path has an impact on the other

one.

17. The system of claim 14, wherein the processing circuitry is further adapted to:

for each selected path starting from the infringing entity, incrementally add one entity
at a time to a set of entities on the path;

find the runtime adjustment solution for the set of entities to satisfy a set of

constraints imposed on the set of entities.

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099
34

18. The system of claim 17, wherein an incrementally added entity has a follower role
with respect to a first constraint and a leader role with respect to a second constraint, the
processing circuitry is further adapted to:

find the runtime adjustment solution for the set of entities to satisfy the set of
constraints that include the at least one constraint, the first constraint and the second
constraint; and

when no runtime adjustment solution is found, find the runtime adjustment solution
for the set of entities to satisfy the set of constraints including the at least one constraint and

the first constraint, and excluding the second constraint.

19. The system of claim 14, wherein the processing circuitry is further adapted to:
when all paths in the collection are exhausted and no runtime adjustment solution is
found, find the runtime adjustment solution subject to all constraints in the propagation

scope.

20. The system of claim 19, wherein each path in the collection ends with a sink entity
having a follower role only, or with an entity having a follower role in addition to a leader or

peer role for another entity that is already on the path.

21. A system for runtime adjustment of a configuration model, comprising:

amemory (1004, 1018); and

processing circuitry (1002) coupled to the memory, wherein the processing circuitry is
adapted to:

receive, at runtime, a change request directed at one or more modified entitics in the
configuration model;

identify a set of infringing entities among the one or more modified entities based on
leadership information, wherein the leadership information indicates an impact that one entity
has on another entity with respect to a given constraint, wherein the set of infringing entities
violate a plurality of constraints in the configuration model;

identify a propagation scope for each violated constraint of the plurality of
constraints, wherein the propagation scope includes one of the infringing entities and a set of

other entities that are potentially affected by the change request;

10

15

20

25

30

WO 2017/046630 PCT/IB2015/057099

35

form a bonded path for a group of propagation scopes that overlap, wherein the
bonded path connects selected entities from each propagation scope in the group with one or
more common entities in an intersection of the group; and

find a runtime adjustment solution for the group subject to all constraints in which

entities of the bonded path participate.

22. The system of claim 21, wherein at least one propagation scope has no overlap with
other propagation scopes, and wherein the processing circuitry is further adapted to:
find another runtime adjustment solution for the at least one propagation scope

separately from the other propagation scopes.

23. The system of claim 21, wherein the processing circuitry is further adapted to:

for each propagation scope in the group, create a set of paths each of which includes
an ordered set of entities, and one of any two entities in the path has an impact on the other
one according to the leadership information; and

select at least a path from each propagation scope in the group, wherein the selected
path connects the one infringing entity of the propagation scope with at least one common
entity in the intersection of the group to form a combination of selected paths as the bonded
path.

24, The system of claim 23, wherein each path in the collection ends with a sink entity
having a follower role only, or with an entity having a follower role in addition to a leader or

peer role for another entity that is already on the path.

25. The method of claim 21, wherein the processing circuitry is further adapted to:
form the group of propagation scopes by incrementally adding a propagation scope to

the group if the added propagation scope overlaps with at least one propagation scope in the

group.

26. The system of claim 21, wherein the processing circuitry is further adapted to:
when no runtime adjustment solution is found for the bonded path, find the runtime

adjustment solution subject to all constraints in the group.

10

15

20

25

30

35

WO 2017/046630 PCT/IB2015/057099
36

27. A system (900) for performing runtime adjustment of a configuration model,
comprising:

areceiver module (910) adapted to receive, at runtime, a change request directed at
one or more modified entities in the configuration model;

a first identifying module (920) adapted to identify an infringing entity among the one
or more modified entities based on leadership information, wherein the leadership
information indicates an impact that one entity has on another entity with respect to a given
constraint, and wherein the infringing entity violates at least one constraint in the
configuration model;

a second identifying module (930) adapted to identify, based on the leadership
information, a propagation scope for the infringing entity and a constraint violated by the
infringing entity, the propagation scope including the infringing entity and a set of other
entities that are potentially affected by the change request;

a path building module (940) adapted to create a collection of paths in the propagation
scope, each path connecting the infringing entity to one or more of the other entities; and

a path selecting module (950) adapted to select a path at a time, starting from a
shortest path, from the collection to find a runtime adjustment solution for the selected path

such that no constraints in the propagation scope are violated.

28. A system (900) for runtime adjustment of a configuration model, comprising:
areceiver module (910) adapted to receive, at runtime, a change request directed at
one or more modified entities in the configuration model;

a first identifying module (920) adapted to identify a set of infringing entities among
the one or more modified entities based on leadership information, wherein the leadership
information indicates an impact that one entity has on another entity with respect to a given
constraint, wherein the set of infringing entities violate a plurality of constraints in the
configuration model;

a second identifying module (930) adapted to identify a propagation scope for each
violated constraint of the plurality of constraints, wherein the propagation scope includes one
of the infringing entities and a set of other entities that are potentially affected by the change
request;

a path building module (940) adapted to form a bonded path for a group of
propagation scopes that overlap, wherein the bonded path connects selected entities from
cach propagation scope in the group with one or more common entities in an intersection of

the group; and

WO 2017/046630 PCT/IB2015/057099
37

a solution finding module (950) adapted to find a runtime adjustment solution for the

group subject to all constraints in which entities of the bonded path participate.

PCT/IB2015/057099

WO 2017/046630

1/10

} Ol

suoiedipoiN TO1EILIPoIN pajreiay saduey)
€ =
-~ 027 edy jusunsnipy
1
! uone|oIA
vl ssfuewy “ UIRASHO)
uonesnsyuo) ayy SuiAjddy 1
WaisAs !
“ € UOIIBIOIA “ SIUIBIISUO) 4 /SIUIRLISUODT \
! JUBAISUO) ON ! Buppayd pa1d3foy saduey) N
_ !
spodsoy | . T UONBIOIA JUIRLSUOC) >
— By ool
h 4 sjulelIsuon4 3uppsy)d ysanbay a8uey) G
sasn —
- U oI folepieA 091
sijoid ¥

uofyeinSyyuo) WoalsAs

SIUIRIISUOD)d

syesuo)y |

001 \

SIUIBLISUOD 4

05 L sapny Axualsisuo)

PCT/IB2015/057099

WO 2017/046630

2/10

_" 7
SN
1
v
\
'
3
1
L

wd

13AI3S GO

111 G

02z

04z

[350H
o] o ._
< 1
If!l a—-
A
N T
.
I 1
190 b, ™\ b
Sae N '
II_I I..I..l I(‘4
!I/ 1 IIINN——
94 pe-- 1 \s
4
A
\\
011490 |
H

V¢ Ol
Y=oy Cd=P0Y 1d=>P0y
£1S0H 71S0H | 150K
Auly=79d Aiuly=794
IIAIBS GIA 79a 1494
AIG{IDAY= | D
ﬂmo:, M AR (€]

™

00

PCT/IB2015/057099

WO 2017/046630

3/10

g€ "old
AYUIEY
ANjrgepeay -
<<WUNUI>> PE
1S0H
Adod TS0
<<U0NB.R2WUNUI>>
WIISAGIENIIIA
mx}
ad "0
Ao iAo puamddeld | . d
Sumg :py |~ Uons9flo)
10 | WDISAGIENIIA

dnoanjmomaoe]g

e

00g

Ve "Old

(O[0BY IS0 TA=0RY IS0y [A sarjdwin Apuily
,=hotjo Jiuatade] g 3d za=~Aorjoqiuowooe;d 3d 1A
PUE TA<>[A|WRISASIBNLUA I TAS [ANVIO)<-
{yoourisuyjje 3108

ANV

(sppeyIsory ga<syoeysoy [A sarduwr Ayjiqejieay
;=AM o Juawade] 4 3d- ca=AotjoJiuauaoe] L 3d A
PUB 7A<C> [AJWIQISAQIBNIIA (ZA |A)

[TV 10J<=()20UBISUujj{R J}os 17D AUl

WISASIENLIA JX2IU0D

(o Is0U ZA=0RY IS0y (A sarjdun

TA< | AJIIDISAG [RIMIA 17AS [ANV I0)<-SA 1S
sorjdur ANutpyy ,=Ad1j0diuotwaoe; 4 5d jos
NV OPRRYISOY TANoBY 1504 [A sotjdu
A< | AJWRISAQBNIHA TTA JA)V IO <-SA J08
sarpdun

UOTIOBJOINSASTENIIIA IXJU0D

I

0Le

PCT/IB2015/057099

WO 2017/046630

4/10

L@

{rig'o13'93'13} :Q Ped

{s3'13} D yed

{83'va‘13} g ured

{£3v3°13} vuyred

WO 2017/046630 PCT/IB2015/057099
5/10

FIG. 5

change
‘\

PCT/IB2015/057099

WO 2017/046630

6/10

{113°'013} = 3095403

{fsd “sd"!

Sd} = jdnourn)

9 "Old

WO 2017/046630
7/10

Start

Y
Create the propagation scope and

PathCollection for each infringing
entity 710

v

Create Groups from the
propagation sCopes using
Algorthm 2 720

For each
Group in Groups, is there

<@

only one scope in Group]

No

i

Find TempSolution for the Group
by creating the BondedPath and
applying Algorithm 3 750

PCT/IB2015/057099

Y eg—

Find TempSolation for the Group
by applving the incremental
change propagation method using
Alporithm 1 740

Is TempSolution
not empty? 760

Yes

No \l/

Add the TempSeolution to the
Solution 780

Are all Groups checked? 790

There 1s no adjustment for the
requested change bundle. Thus [—
reject all the moditications 770

Return the
Solution 795

WO 2017/046630 PCT/IB2015/057099

8/10

/ 800

Receive, at runtime, a change request directed at one or more modified entities in a
configuration model
801

Y

ldentify an infringing entity among the one or more modified entities based on leadership

information, wherein the leadership information indicates an impact that one entity has on

another entity with respect to a given constraint, and wherein the infringing entity violates
at least one constraint in the configuration model 802

Y

identify, based on the leadership information, a propagation scope for the infringing entity

and a constraint violated by the infringing enfity, wherein the propagation scope includes

the infringing entity and a set of other entities that are potentially affected by the request
803

Y

Create a collection of paths in the propagation scope, each path connecting the infringing
entity fo one or more of the other entities 804

!

Starting from a shortest path, select a path at a time from the collection to find a runtime
adjustment solution for the selected path such that no constraints in the propagation scope
are viplated 805

FIG. 8A

WO 2017/046630 PCT/IB2015/057099
9/10

/ 810

Receive, at runtime, a change request directed at one or more modified entities in a
configuration model
&1

Y

ldentify a set of infanging entities among the one or more modified entities based on
leadership information, wherein the leadership information indicates an impact that one
entity has on another entity with respect to a given constraint, and wherein the set of
infringing entities violate a plurality of constraints in the configuration model 812

Y

Identify a propagation scope for each violated constraint of the plurality of constraints,
wherein the propagation scope includes one of the infringing entities and a set of othet
entities that are potentially affected by the request 813

Y

Form a bonded path for a group of propagation scopes that overlap, wherein the bonded
path connects selected entities from each propagation scope in the group with one or more
cornmon entifies in an intersection of the group 814

!

Find a runtime adjustment solution for the group subject to all constraints in which entities
of the bonded path participate 815

FIG. 8B

PCT/IB2015/057099

WO 2017/046630

10/10

r————
INGDY () @l 800}
el \/_ INFNLSARQY “ | AXOWIN 3DIAIA FOVAHALNI X
o, AMYANODES AHOMLIN
A 0C0F LOINNODYILNYSNE
000% r————-—mn r———=
WALSAS ¥ALNdWOD |y oy [| o0 |1 Inaov I zom
\ ININLSNIaY - ~>m0§m_§ A1 INSWISNFAY |] AHLINDHEID
oz | ke — ! L} nivw 0 e ——1 L oniss300u4
036 31INaon 0%6 IINAOW
ONIGNIH NOILROS ONIGTING HiVd

!

!

<

06 WALSAS

'

'

'

086 3NAOW
ONIAZLLNIA ONOOIS

026 IMNAON
ONIAJLNAGE LSHI4

016

AMNAOW HIAZ03

3

AHOMLIN

azol

01 Ol

6 Ol

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2015/057099

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/445 GO6F9/44
ADD.

GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X AZADEH JAHANBANIFAR ET AL:

XP055204833,

DOI: 10.1109/ISORC.2015.22
ISBN: 978-1-47-998781-8
page 288 - page 291

"Partial
Validation of Configurations at Runtime",
2015 TEEE 18TH INTERNATIONAL SYMPOSIUM ON
REAL-TIME DISTRIBUTED COMPUTING,

1 April 2015 (2015-04-01), pages 288-291,

1-28

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 March 2016

Date of mailing of the international search report

09/03/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Noll, Joachim

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2015/057099

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

JAHANBANIFAR AZADEH ET AL: "A Model-Based
Approach for the Integration of
Configuration Fragments",

17 July 2015 (2015-07-17), CORRECT SYSTEM
DESIGN; [LECTURE NOTES IN COMPUTER
SCIENCE; LECT.NOTES COMPUTER], SPRINGER
INTERNATIONAL PUBLISHING, CHAM, PAGE(S)
125 - 136, XP047314858,

ISSN: 0302-9743

ISBN: 978-3-642-22877-3

[retrieved on 2015-07-17]

page 125 - page 136

US 6 002 854 A (LYNCH JOHN [US] ET AL)
14 December 1999 (1999-12-14)

column 1, line 15 - column 7, line 38
column 9, line 50 - column 14, Tine 63
column 17, Tine 43 - column 23, Tine 20
figures 1-12(5)

US 2012/304174 A1l (ARNOLD WILLIAM C [US]
ET AL) 29 November 2012 (2012-11-29)
paragraphs [0002] - [0008]

paragraphs [0021] - [0095]

figures 1-11

Dmtf: "Open Virtualization Format
Specification v 1.1.0",

12 January 2010 (2010-01-12), XP055009707,
Retrieved from the Internet:
URL:http://dmtf.org/sites/default/files/st
andards/documents/DSP0243 1.1.0.pdf
[retrieved on 2011-10-17]

page 10 - page 39

1-28

1-28

1-28

1-28

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2015/057099
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6002854 A 14-12-1999 NONE
US 2012304174 Al 29-11-2012 US 2010306772 Al 02-12-2010
US 2012304174 Al 29-11-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

