一种带有外部短路装置的充气式过电压防护放电器。

一种带有外部短路装置的充气式过电压防护放电器(1)，一个开口环(11)形式的弹性夹板(11)用于使该充气式放电器(1)的两个电极(3,4)从外部短路的装置，该弹性夹板被套装在两个电极(3,4)之间的绝缘体(2)上，其端部之一(13)具有两个倒向成形的鱼尾板(14,15)，从而构成短路弓形板(12)。一个置入该短路弓形板和所述绝缘体之间且由可熔融材料制成的间隔件(20)使所述鱼尾板(14,15)与所述电极(3,4)保持一定径向间距。这样一种过电压防护放电器尤其适合于安装在容纳大量防护放电器的盒式结构中。
权利要求书

1. 一种充气式过电压防护放电器, 它带有至少两个电极和一个安装在两个电极之间的绝缘体和一个外部短路装置形式的过载防护器。

其中, 所述短路装置由一个有导电能力且在所述过电压防护放电器的轴向展开的短路弓形板组成; 一个施加弹力的固定装置和一个在热量输入时可熔融的间隔件使该弓形板的端部与所述电极保持一定径向间距。

其中, 该固定装置由一个可在所述绝缘体上弹开且由一种条状弹性材料制成的开口环组成; 所述短路弓形板安装在该开口环的一端。

其特征在于:

所述间隔件(20、23)安装在所述短路弓形板(12)的中部(13)和所述绝缘体(2)之间, 并由一个固定在所述短路弓形板的中部(13)且由一种塑料或一种焊接材料制成的铆钉(21)组成。

2. 按权利要求1所述的过电压防护放电器, 其带有三个电极(3、4、5)和两个绝缘体(6、7),

其特征在于:

另一个同样类型的短路弓形板(10)被套装在第二个绝缘体(6)上。
带有外部短路装置的充气式过电压防护放电器

本发明涉及电路元件领域，它用于一种充气式过电压防护放电器的结构设计，该过电压防护放电器配备一个外部短路装置。这类短路装置通常用于双电极过电压防护放电器和三电极过电压防护放电器。它们在长时间的承载时保护过电压防护放电器，这种短路装置通常包括一个可在高温下熔融的结构元件，借助该结构元件所述两个电极或者那个中间电极和一个或两个端部电极被短路。

在一种公知的这种类型的双电极防护放电器中，电平行于该两个电极安装一个弹簧接点和一个防护放电器接点，其中，该弹簧接点借助一个厚度在该防护放电器的绝缘体上且在高温时软化的间隔件与该防护放电器接点保持一定间隔。该间隔件由一在正常运行温度下尺寸稳定、在高温时软化的玻璃纤维强化塑料组成，例如由多磷酸盐组成（EP 0 548 587 A1）。

此外，公知了一种适用于双电极和三电极防护放电器的外部短路装置，该短路装置由一个由一种热溶双金属制成的双层夹板组成，其中所述夹板的两层在其自由端转变成一个单稳动元件（Schnappiecelement），该动元件的一部分在过载情况下搭接所述防护放电器的两个外部电极。在双电极防护放电器中，该双金属夹板座落在防护放电器的绝缘体上（WO 87/06399 A1）。

公知了一种适用于三电极防护放电器的外部短路装置，该装置由一套装在中间电极上且由一开口环制成的夹板组成。该开口环的一端与侧部被加工成形的臂部一起共同形成一个短路弓形板。所述两个臂部的自由端部借助一个安装在中间电极和短路弓形板之间且由一种可熔融绝缘材料制成的间隔件与所述防护放电器的端部电极保持一定径向间距。在此所述两个臂部的自由端部可配置专有接点。代替应用一个在中间电极和短路弓形板之间的间隔件，所述接点也可涂覆一绝缘层（US 4,984,125 A）。在该相似构造且既可用于三电极防护放电器也可用于双电极防护放电器的外部短路装置中，所述短路弓形板两个臂部的自由端部被弯折，使得它们贴靠在各电极的环状棱
部，其中，所述自由端在接点位置范围内具有一在热量输入时可熔融的绝缘层(FR-A-2 670 624)。

本发明的目的是以一个上型的具有权利要求1前序部分中特征的充气式防护放电器为基础，对短路装置进行设计，使得它在径向尽可能不超出所述过电压防护放电器，并保证触点可靠接触且易于装配。

本发明的目的是这样来实现的，即，所述间隔件安装在短路弓形板的中部和绝缘体之间，并且由一种固定在短路弓形板的中部且由一种塑料或一种焊料材料(Lotmateriale)制成的铆钉组成。

短路装置的这一构造利用了本身已公知(US 4,984,125)的短路装置的结构，但是在此所述夹板不是套装在一个电极上，而是−以同样公知的方式(FR-A-2 670 624)−套装在位于两个电极之间的绝缘体上。由此无电位地安装短路弓形板；这一点在最窄的安装情况下(箱式或盒式)对在所述短路弓形板与一个导电体的接触连接柱单侧接触时不会出现短路障碍可有利地发挥作用，−因为所述间隔件安装在所述短路弓形板和绝缘体之间，所以它可被制成得相对薄一些；通常一个相对价廉物美的热塑性塑料可用于该间隔件，因为所述绝缘体与所述短路电极相比升温迟缓。

由此，根据本发明构造的带有短路装置的过电压防护放电器的出色之处在于：具有一个十分紧凑并在将大量这种防护放电器装入箱式结构中十分节省空间的结构，其中，所述短路装置可由一个或两个部件组成，并由于其简单结构可易于与不同几何尺寸的防护放电器相匹配。该短路装置也可事后安装；它也可在触发后被替换，只要所述防护放电器本身还没有受到损害。

根据本发明构造的短路装置既可用于双电极防护放电器，也可用于三电极防护放电器。在用于三电极防护放电器情况下，在这种防护放电器中存在的两个绝缘体中每一个都要配备一个前述结构的短路装置。

所述新型短路装置的可弹开开口环由一种耐热塑料或一种导电性稍差的弹性金属(例如弹簧钢或一种铜合金)组成，其中，在该开口环的一端上套装或以其他方式固定一个导电能力很好(例如由铜制成)的金属短路弓形板。但该开口环优选由与所述短路弓形板相同的材料组成，并与其一体构造，其中，为形成所述短路弓形板，在该开口环的一个端部配置两个侧部被加工成形的鱼尾板。为改善接触，该鱼尾板的自由端略为弯曲。

本发明的实施例如图1至图5中示出，附图中:
图 1 示出一种带有两个电极的气柱式过电压防护放电器，它配置一个短路装置；
图 2 示出该没有防护放电器的短路装置；
图 3 示出一种过电压防护放电器，其中，所述短路装置的间隔件由一个铆钉组成；
图 4 示出一种带有特殊防护放电器电极结构的短路装置；
图 5 示出一种三电极防护放电器，它带有两个套装的在两个绝缘体上的短路装置。

图 1 示出一种过电压防护放电器 1，它由所述电极 2 和两个电极 3、4 组成，在所述绝缘体 2 上套装一个短路装置 10，该短路装置由一个在图 2 中独立示出的弹性金属制开口环 11 和一个绝缘间隔件 20 组成。在此，该开口环 11 在其一端被构造成短路弓形板 12，具有一个平展中部和两个在侧面成形且端部略为弯折的鱼尾板 14 和 15。在此这样来选择所述短路弓形板 12 的轴向长度，使其在轴向不超出所述过电压防护放电器的短路弓形板（参看图 5）。所述间隔件 20 也可由一种焊接材料组成。

如图 3 所示，一个塑料铆钉 21 用作所述短路弓形板 13 的间隔件，该塑料铆钉固定在所述短路弓形板的中部 13 的一个未进一步示出的孔中。

如图 4 所示，所述过电压防护放电器的电极 31 和 32 具有一个大于所述绝缘体 2 的外径，由此弯折原短路装置 16 端部的做法成为多余。

图 5 示出一种防护放电器，在该防护放电器中，在所述端部电极 3 和 4 之间还安装一个中间电极 5，其中，该防护放电器具有两个绝缘体 6 和 7，在每个绝缘体上套装一个短路装置 10，就象它用于图 1 或图 3 所示防护放电器一样。