

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

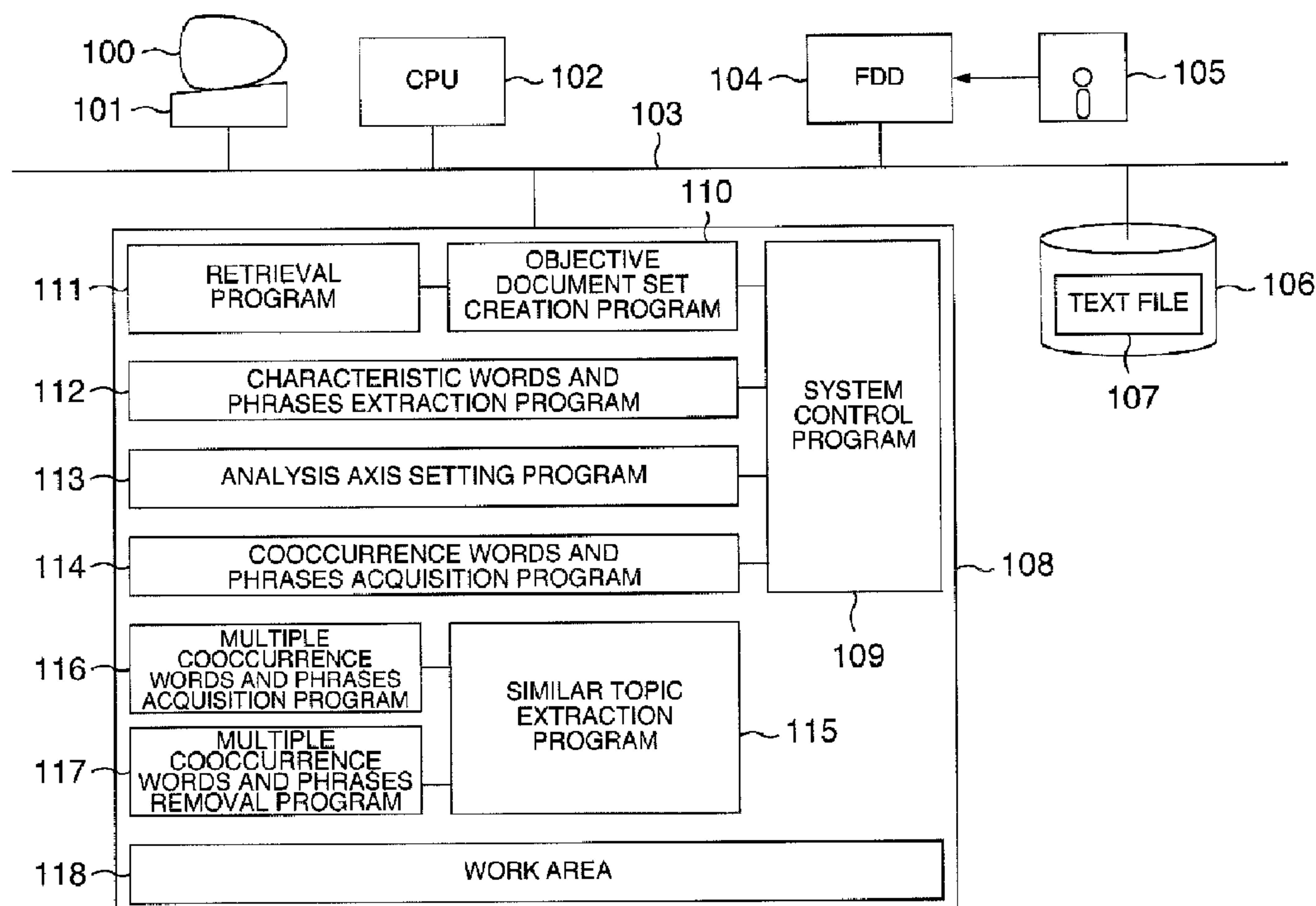
CA 2348420 C 2006/07/11

(11)(21) 2 348 420

(12) BREVET CANADIEN
CANADIAN PATENT

(13) C

(22) Date de dépôt/Filing Date: 2001/06/05
(41) Mise à la disp. pub./Open to Public Insp.: 2002/08/20
(45) Date de délivrance/Issue Date: 2006/07/11
(30) Priorité/Priority: 2001/02/20 (JP2001-042690)


(51) Cl.Int./Int.Cl. G06F 17/27(2006.01),
G06F 3/14 (2006.01), G06F 17/30(2006.01)

(72) Inventeurs/Inventors:
SUGAYA, NATSUKO, JP;
TADA, KATSUMI, JP;
SATO, YOSHIFUMI, JP;
MATSUBAYASHI, TADATAKA, JP;
INABA, YASUHIKO, JP;
TOKUNAGA, MIKIHICO, JP

(73) Propriétaire/Owner:
HITACHI, LTD., JP

(74) Agent: KIRBY EADES GALE BAKER

(54) Titre : METHODE ET APPAREIL D'AFFICHAGE DE DONNEES POUR L'ANALYSE DE TEXTES
(54) Title: DATA DISPLAY METHOD AND APPARATUS FOR USE IN TEXT MINING

(57) Abrégé/Abstract:

In a text mining technique, if the system only extracts characteristic words and phrases frequently cooccurring with the respective components of an analysis axis as an analysis condition, similar words and phrases are extracted for any component. To clearly indicate existence of characteristic words and phrases which do not appear as coocurrence words and phrases for other components of the analysis axis, it is desired to appropriately present distinguishable features between the components to the user. For this purpose, the frequency of appearances of a plurality of characteristic words and phrases in a document satisfying each analysis condition is calculated. As a result, multiple coocurrence words and phrases and component-coocurrence words and phrases are discriminatively displayed. It is therefore possible for the user to appropriately analyse the contents of a plurality of documents.

ABSTRACT OF THE DISCLOSURE

In a text mining technique, if the system only extracts characteristic words and phrases frequently cooccurring with the respective components of an analysis axis as an analysis condition, similar words and phrases are extracted for any component. To clearly indicate existence of characteristic words and phrases which do not appear as cooccurrence words and phrases for other components of the analysis axis, it is desired to appropriately present distinguishable features between the components to the user. For this purpose, the frequency of appearances of a plurality of characteristic words and phrases in a document satisfying each analysis condition is calculated. As a result, multiple cooccurrence words and phrases and component-cooccurrence words and phrases are discriminatively displayed. It is therefore possible for the user to appropriately analyze the contents of a plurality of documents.

- 1 -

DATA DISPLAY METHOD AND APPARATUS FOR
USE IN TEXT MINING

BACKGROUND OF THE INVENTION

5 The present invention relates to a data display method and a data display apparatus in which various data is acquired, from a data base of documents beforehand registered thereto, for a set of specified documents and the acquired data is displayed.

10 With recent development of word processors, personal computers, and the like, the amount of electronic information generated by such word processors and personal computers are increasing. Moreover, the amount of electronic information available via 15 worldwide web (WWW), e-mail, newswire, and the like are rapidly increasing. In firms and companies, it is quite important to analyze the contents of such electronic information for efficient use thereof.

In general, most electronic information is 20 described in texts, that is, in a format of statements. The text information, for example, the contents of a questionnaire of free answer type cannot be easily analyzed by computers or the like and hence have been heretofore analyzed by human power. However, the 25 information analysis by human power is attended with problems as follows. (1) The pertinent person in charge of analysis must read all documents for the processing. Therefore, when the amount of documents is

- 2 -

largely increased, this method is not practical. (2) The information analysis is carried out according to subjective judgement of the user. Therefore, the results of information analysis vary depending on 5 knowledge and skill of the user.

Therefore, an increasing need exists for a text mining technique as a technique to support the information analysis by human power. Agrawal et al U.S. Patent 6,006,223 entitled "Mapping Words, Phrases 10 Using Sequential-Pattern To Find User Specific Trends In a Text Database" issued on December 21, 1999 concretely describes a processing procedure of text mining. This will be referred to as prior art 1 herebelow. In the text mining, a search or retrieval is 15 made through text information beforehand registered to detect new knowledge according to, for example, cooccurrence of words and phrases, a tendency of occurrence of words and phrases contained in the information to be processed. Specifically, for a set of processing 20 objective documents, an analysis axis representing points of view for analysis is set to acquire words and phrases representing features or characteristics of a set of documents according to a correspondence to constituent components of the analysis axis. In this 25 expression, "to acquire words and phrases according to a correspondence to constituent components of the analysis axis" means, for example, "to acquire words and phrases which cooccur in a predetermined range with

- 3 -

constituent components of the analysis axis." By referring to the words and phrases, the user can recognize a tendency of a set of documents. Fig. 2 shows an example of analysis in which a set of news items of 5 "0157" in newspapers are analyzed using "the month of report or publication of the pertinent news item" as the analysis axis. That is, the analysis condition is expressed as "news item reported in 'July'", "news item reported in 'August'", and the like. In the analysis 10 using the publication month as the analysis axis, words "infection, patient, symptom, hospitalization, etc." are acquired in association with "July" as a component of the analysis axis; words "damage, provision of means, hospitalization, group infection, etc." are 15 acquired in association with "August" as a component of the analysis axis; words "sales amount, minus, foods, perishable, etc." are acquired in association with "September" as a component of the analysis axis; and so on. By referring to the words, the user can obtain a 20 tendency that the set of documents contains topics: "Patients infected with "0157 disease-causing bacteria" are hospitalized" in "July", "Group infection with "0157 bacteria" through provision of meals" in "August", and "Sales amount of perishable foods and the 25 like lowered due to influence of 0157".

Fig. 3 shows an example of a processing procedure of prior art 1 in a problem analysis diagram (PAD). In step 300, a set of documents is specified as

- 4 -

an object of the text mining. In a case of a questionnaire in which a pertinent document database contains documents collected according to predetermined points of view, the database is directly specified as an 5 objective document set. In a case of items of newspapers in which the database contains documents gathered according to various points of view such as politics, economy, sports, and the like, a full text search is conducted according to an analysis purpose of the user 10 to specify a set of documents. "A full text search" is a technique in which all texts of the documents as the processing objects are inputted to a pertinent computer system to thereby generate a database in a registration stage. In a retrieval stage, in response to a character string specified by the user, all documents 15 containing the character string are retrieved from the database. For example, Kato et al U.S. Patent 6,094,647 entitled "Presearch Type Document Search Method and Apparatus" assigned to the present assignee 20 describes the full text search in detail. This technique will be referred to as prior art 2 herebelow. In step 301, characteristic words and phrases, namely, words and phrases which characterize the contents are extracted from the set of documents specified in step 25 300. The characteristic words and phrases may be extracted by referring to a dictionary or by using statistical information. The characteristic words and phrases are not limited to words. For example, when

- 5 -

the dictionary contains a complex word including two or more words, for example, "disease-causing colon bacillus", the characteristic words and phrases extracted in step 301 may include tow or more words.

5 Conversely, the characteristic words and phrases to be extracted may be limited to a word. In step 302, an analysis axis is set as points of view for the analysis. In this example, "date", "age", "sex", and the like assigned as bibliographical information items 10 of a document are specified as the analysis axis or words and phrases specified by the user are set as constituent components of the analysis axis. For example, when it is desired to acquire difference of awareness or consciousness by age from a questionnaire, 15 the age is set as the analysis axis. In this situation, values representing ages such as "20" and "30" are specified as components of the analysis axis. Finally, in step 303, processing of step 304 is repeatedly executed for the components of the analysis axis 20 set in step 302. In step 304, a search is made through the characteristic words and phrases extracted in step 301 to extract words and phrases strongly related to the components of the analysis axis, for example, a cooccurrence word/phrase which cooccurs in a predetermined range. The predetermined range is specified, for 25 example, "within one document", "within one paragraph", "within one sentence" or "within m or n words (m and n are integers)." In prior art 1, words and phrases are

- 6 -

obtained by establishing correspondence to the components of the analysis axis to thereby help the user recognize a tendency of the set of documents. As above, since the words and phrases characterizing the 5 pertinent set of documents are automatically obtained by establishing correspondence to the components of the analysis axis in prior art 1, the load imposed on the user can be reduced and the difference in the analysis results between users can be minimized.

10

SUMMARY OF THE INVENTION

According to prior art 1, the words and phrases characterizing the pertinent set of documents are automatically obtained by establishing correspondence to the components of the analysis axis. Therefore, it is possible to minimize the load imposed on the user described above, and the fluctuation or dispersion of the analysis resultant from respective knowledge and skill of users can be minimized. 15

20

However, prior art 1 is attended with a problem as below. As can be seen from an analysis example of Fig. 4, when the words and phrases with a high frequency of cooccurrence with each component of the analysis axis are simply extracted from the set of 25 documents, the same words and phrases italicized in Fig. 4 such as "disease-causing colon bacillus", "food poisoning", "infection" and "group" are extracted for any component. That is, cooccurrence words and phrases

such as "patient" and "symptom" of "July" and "inspection" and "foods" of "August" which rarely appears for other components of the analysis axis are ignored. It is therefore not possible to appropriately present a 5 different point with respect to meaning between the components of the analysis axis to the user.

It is therefore an object of the present invention to provide a data display method and a data display apparatus in which the user can suitably 10 analyze the contents of a plurality of documents.

According to one aspect of the present invention, a frequency of appearances of a plurality of words and phrases in a document satisfying each analysis condition is calculated and the words and 15 phrases are displayed according to a result of the calculation.

Another object of the present invention is to provide a document processing system which supports a text mining function to clarify similar points and 20 different points of words and phrases cooccurring with each component of an analysis axis so that the user can appropriately analyze a tendency of a set of the documents.

In accordance with one aspect of the present invention there is provided a text mining method, comprising: a characteristic words and phrases extraction step of selecting, from a set of documents, 5 all of or part of the documents as an objective document set and extracting, from the objective document set, words and phrases characteristically appearing in the objective document set; a mining scheme creation step of setting a mining scheme including specified components of an analysis axis; a 10 related words and phrases acquisition step of acquiring, from the words and phrases extracted by said characteristic words and phrases extraction step, related words and phrases selected when the relativity 15 thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components included in the mining scheme of the analysis axis; a multiple related words and phrases extraction step of comparing 20 the related words and phrases between the respective components of the analysis axis included in the mining scheme and extracting, as multiple related words and phrases, those related words and phrases related to many components of the analysis axis included in the 25 mining scheme; and a multiple related words and phrases removing step of removing said extracted multiple related words and phrases to create component-related words and phrases.

- 8a -

In accordance with another aspect of the present invention there is provided a text mining apparatus, comprising: characteristic words and phrases extraction means for selecting, from a set of documents, all of or part of the documents as an objective document set and for extracting, from the objective document set, words and phrases characteristically appearing in the objective document set; mining scheme creation means for setting a mining scheme including specified components of an analysis axis; related words and phrases extraction means for obtaining, from the words and phrases extracted by said characteristic words and phrases extraction means, related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in the mining scheme; multiple related words and phrases extraction means for comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as multiple related words and phrases, related words and phrases related to many components of the analysis axis included in the mining scheme; and multiple related words and phrases removing means for removing said extracted multiple related words and phrases to create component-related words and phrases.

- 8a -

characteristically appearing in the objective document set; mining scheme creation means for setting a mining scheme including specified components of an analysis axis; related words and phrases extraction means for 5 obtaining, from the words and phrases extracted by said characteristic words and phrases extraction means, related words and phrases strongly related to the respective specified components of the analysis axis included in the mining scheme; and multiple related 10 words and phrases extraction means for comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as multiple related words and phrases, related words and phrases related to many 15 components of the analysis axis included in the mining scheme.

In accordance with yet another aspect of the present invention there is provided a computer readable medium having stored thereon instructions for execution 20 on a processor to configure a text mining system, the text mining system comprises: a characteristic words and phrases extraction module for selecting, from a set of documents, all of or part of the documents as an objective document set and for extracting, from the 25 objective document set, words and phrases characteristically appearing in the objective document set; a mining scheme creation module for setting a mining scheme including specified components of an analysis axis; a related words and phrases extraction 30 module for obtaining, from the words and phrases

- 8b -

In accordance with yet another aspect of the present invention there is provided a computer readable medium having stored thereon instructions for execution on a processor to configure a text mining system, the

5 text mining system comprises: a characteristic words and phrases extraction module for selecting, from a set of documents, all of or part of the documents as an objective document set and for extracting, from the objective document set, words and phrases

10 characteristically appearing in the objective document set; a mining scheme creation module for setting a mining scheme including specified components of an analysis axis; a related words and phrases extraction module for obtaining, from the words and phrases

15 extracted by said characteristic words and phrases extraction module, related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective

20 specified components of the analysis axis included in the mining scheme; a multiple related words and phrases extraction module for comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme and of

25 extracting, as multiple related words and phrases, related words and phrases related to many components of the analysis axis included in the mining scheme; and a multiple related words and phrases removing module for removing said extracted multiple related words and

30 phrases to create component-related words and phrases.

- 8c -

In accordance with still yet another aspect of the present invention there is provided a computer readable medium containing instructions for execution on a processor for implementing a text mining method comprising the steps of: selecting, from a set of documents, all of or part of the documents as an objective document set and extracting, from the objective document set, words and phrases characteristically appearing in the objective document set; setting a mining scheme including specified components of an analysis axis; acquiring from the words and phrases extracted by said characteristic words and phrases extraction step, related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in the mining scheme; comparing the related words and phrases between the respective components included in the mining scheme and extracting, as multiple related words and phrases, related words and phrases related to many components of the analysis axis included in the mining scheme; and removing said extracted multiple related words and phrases to create component-related words and phrases.

In accordance with still yet another aspect of the present invention there is provided a text-mining oriented data structure representing a physical implementation of a data model for organizing and representing information used by a processor including

- 8d -

multiple related words and phrases generated from a document set, said multiple related words and phrases being determined by those related to more than a designated number of components of an analysis axis

5 included in a mining scheme, said data structure comprising: from a set of documents, all of or part of the documents as an objective document set and extracting, from the objective document set, words and phrases characteristically appearing in the objective

10 document set; a mining scheme including specified components of the analysis axis; related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the

15 respective specified components of the analysis axis included in the mining scheme acquired from the words and phrases extracted by said characteristic words and phrases extraction step; a set of multiple related words and phrases generated by comparing the related

20 words and phrases between the respective components of the analysis axis included in the mining scheme; and a set of component-related words and phrases generated by removing said extracted multiple-related words and phrases.

25

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments of

30 the invention when taken in conjunction with the accompanying drawings in which:

Fig. 1 is a schematic block diagram showing

- 9 -

structure of an embodiment according to the present invention;

Fig. 2 is a schematic diagram for explaining prior art 1;

5 Fig. 3 is a PAD showing the contents of processing of prior art 1;

Fig. 4 a schematic diagram for explaining a problem of prior art 1;

10 Fig. 5 is a diagram exemplifying the contents of processing of multiple occurrence words and phrase extraction of the present invention;

15 Fig. 6 is a diagram showing a display format of words and phrases extracted from a retrieval objective document according to an embodiment of the present invention;

Fig. 7 is a PAD showing steps to generate a set of multiple cooccurrence words and phrases and a set of component-cooccurrence words and phrases according to an embodiment of the present invention;

20 Fig. 8 is a PAD showing the contents of processing of a similar topic extraction process in an embodiment of the present invention;

25 Fig. 9 is a PAD showing steps to create (a set of) component-cooccurrence words and phrases in an embodiment of the present invention;

Fig. 10 is a process diagram showing the contents of processing to analyze document extraction characteristic words and phrases in an embodiment of

- 10 -

the present invention;

Fig. 11 is a diagram showing the contents of multiple cooccurrence words and phrases acquisition processing in an embodiment of the present invention;

5 and

Fig. 12 is a diagram showing the contents of multiple cooccurrence words and phrases removal processing in an embodiment of the present invention.

10 DETAILED DESCRIPTION OF THE EMBODIMENTS

Prior to explanation of an embodiment of the present invention, description will be given of the principle of the present invention using the document retrieval method. When a text mining execution indication is inputted, a set of documents as an object of the text mining is accessed to extract therefrom characteristic words and phrases characterizing the contents to obtain, from the extracted characteristic words and phrases, words and phrases strongly or deeply related to components of a specified analysis axis, for example, cooccurrence (i.e. coincident) words and phrases cooccurring (i.e. occurring together) in a predetermined range. The contents of the processing are similar to those of prior art 1. As a result, cooccurrence words and phrases can be obtained for the respective components of the analysis axis as shown in Fig. 4. In the present invention, the cooccurrence words and phrases are compared between the components of the analysis axis to acquire, as multiple cooccur-

- 11 -

rence words and phrases, words and phrases related to many components. By removing the multiple cooccurrence words and phrases from the cooccurrence words and phrases of the respective components, component-
5 cooccurrence words and phrases are created.

A concrete example of the processing will be described by referring to Figs. 5 and 6. First, cooccurrence words and phrases related to many components of the analysis axis are obtained as multiple
10 cooccurrence words and phrases. In the example shown in Fig. 5, "disease-causing colon bacillus", "food poisoning", "infection", "group", etc. are obtained as cooccurrence words and phrases for the most components. These words and phrases are obtained as multiple
15 cooccurrence words and phrases. In the example of this diagram, although the words and phrases as the cooccurrence words and phrases of many components are simply obtained as multiple cooccurrence words and phrases, weighting may be conducted according to a sequence of
20 cooccurrence words and phrases and/or strength of cooccurrence of the pertinent words and phrases. The strength of cooccurrence is indicated by a value calculated according to the number of cooccurrences between the respective components and the pertinent word/phrase
25 or between other components and the pertinent word/phrase. For example, a characteristic word/phrase which rarely cooccurs with other components, but cooccurs many times with the pertinent component has

greater strength of cooccurrence with the pertinent component. Next, elemental cooccurrence words and phrases or component-cooccurrence words and phrases are created by removing the multiple cooccurrence words and 5 phrases from the cooccurrence words and phrases of the respective components. In the example shown in Fig. 5, the multiple cooccurrence words and phrases (italicized in the diagram) such as "*disease-causing colon bacillus*", "*food poisoning*", "*infection*", "*group*", etc. 10 are removed from the cooccurrence words and phrases of the respective components to create component-cooccurrence words and phrases. To display results of the processing to the user, the multiple cooccurrence words and phrases may be presented as similar topics of 15 components of the analysis axis and the component-cooccurrence words and phrases are presented as topics of the respective components, for example, as shown in Fig. 6. In this diagram, each of the values displayed as importance indicate a degree of relationship to 20 components, namely, the number of components to which the pertinent word/phrase is related. Moreover, if the restriction of the cooccurrence words and phrases to be obtained as multiple cooccurrence words and phrases is relaxed to extract cooccurrence words and phrases with 25 a lower degree of importance as the multiple cooccurrence words and phrases, cooccurrence words and phrases unique to the respective components can be obtained as component-cooccurrence words and phrases. Therefore,

- 13 -

it is possible to present topics unique to the respective components.

In this method described above, the cooccurrence words and phrases are compared between the components of the analysis axis such that cooccurrence words and phrases related to many components are obtained as multiple cooccurrence words and phrases. The component-cooccurrence words and phrases are created by removing the multiple cooccurrence words and phrases 5 from the cooccurrence words and phrases of the respective components. Resultantly, it is possible to clarify the similar points of the respective components of the analysis axis as the multiple cooccurrence words and phrases and the differences therebetween as component-cooccurrence words and phrases. Therefore, it is 10 possible to provide a document processing system in which the user can appropriately analyze a tendency of 15 a set of documents.

The principle of the present invention will 20 be described by referring to the PAD shown in Fig. 7. When an indication of text mining execution is inputted, a set of documents as an object of the text mining is specified in step 300. In step 301, characteristic words and phrases characterizing the contents 25 are extracted from the set of documents specified in step 300. In step 302, an analysis axis is set as points of view for the analysis. In step 303, processing of step 304 is repeatedly executed for each compo-

- 14 -

ment of the analysis axis set in step 302. In step 304, the characteristic words and phrases extracted in step 301 is accessed to obtain therefrom words and phrases strongly related to the pertinent component of 5 the analysis axis, for example, cooccurrence words and phrases cooccurring in a predetermined range. The contents of processing from step 300 to step 304 are similar to those of prior art 1. As a result, cooccurrence words and phrases corresponding to the respective 10 components of the analysis axis can be obtained as shown in Fig. 4. Moreover, according to the present invention, the cooccurrence words and phrases are compared between the components of the analysis axis and cooccurrence words and phrases related to many 15 components are obtained as multiple cooccurrence words and phrases. Thereafter, component-cooccurrence words and phrases are created by removing the multiple cooccurrence words and phrases from the cooccurrence words and phrases of the respective components.

20 According to the present invention, when an indication of similar topic extraction is inputted in step 700, the cooccurrence words and phrases related to many components of the analysis axis are obtained as multiple cooccurrence words and phrases.

25 Description will now be given of an embodiment of the present invention by referring to the accompanying drawings.

Fig. 1 shows constitution of a document

- 15 -

processing system according to an embodiment of the present invention in a block diagram. The document system according to the present invention includes as shown in Fig. 1, a display 100, a keyboard 101, a 5 central processing unit (CPU) 102, a floppy disk drive (FDD) 104, a magnetic disk device 106, a main memory 108, and a bus 103 connecting the constituent components to each other. The magnetic disk device 106 is a secondary storage to store a text file 107. Information stored in the floppy disk 105 is accessed by the 10 floppy disk drive 104. The floppy disk drive 104 and the magnetic disk device 106 may be configured to be connected to other devices connected, for example, via a communication line, not shown in Fig. 1, to each 15 other.

Stored in the main storage 108 are a system control program 109, an objective document set creation program 110, a retrieval program 111, a characteristic words and phrases extraction program 112, an analysis 20 axis setting program 113, a cooccurrence words and phrases acquisition program 114, a similar topic extraction program 115, a multiple cooccurrence words and phrases acquisition program 116, and a multiple cooccurrence words and phrases removal program 117. 25 Additionally, a work area 118 is reserved in the main storage 108. These programs may be stored on a computer-readable recording medium such as a magnetic disk 106 or a floppy disk 105.

Description will next be given of the processing executed by the embodiment of the present invention by referring to Fig. 8. When a text mining execution indication from the keyboard 101, a function 5 call from another program, or the like is received, the system control program 109 starts its operation to control the objective document set creation program 110, the characteristic words and phrases extraction program 112, the analysis axis setting program 113, the 10 cooccurrence words and phrases acquisition program 114, and the similar topic extraction program 115.

In step 800, the system control program 109 initiates the document set creation program 110 to access the text file 107 to accordingly create a set of 15 documents as an object of the processing. When the text file 107 is a document database of documents collected according to predetermined points of view, for example, of a questionnaire, the document database may be directly set as the objective document set. 20 Alternatively, when the text file 107 is a document database of documents of, for example, newspapers and documents are gathered according to various points of view such as politics, economy, sports, and the like, a full text search may be conducted according to an 25 analysis purpose of the user to specify a set of documents. When the full text search or the like is used to create the objective document set, the objective document set creation program 110 initiates the

- 17 -

retrieval program 111 to make a retrieval operation through the text file 107 using a specified retrieval condition. As a result, a set of documents thus retrieved is created as the objective document set.

5 The retrieval program 111 includes an existing retrieval technique like that of prior art 2. In step 801, the document set creation program 110 initiates the characteristic words and phrases extraction program 112 to extract, from the objective document set created 10 in step 800, characteristic words and phrases characterizing the pertinent contents. The characteristic words and phrases may be extracted by referring to, for example, a dictionary or by using statistical information. Furthermore, words/phrases having the same meaning 15 may be collected using a thesaurus or the like to be replaced with one word/phrase. The characteristic words and phrases to be extracted are not limited to words. For example, when the dictionary includes a complex word including two or more words, the characteristic 20 word/phrase extracted in this step may include two or more words. Conversely, the characteristic word/phrase to be extracted may be limited to one word.

In step 802, the program 110 initiates the analysis axis setting program 113 to set an analysis 25 axis as points of view for the analysis. In this case, "date", "age", "sex", and the like assigned as bibliographical information of a document are specified as the analysis axis or words and phrases specified by the

- 18 -

user are set as components of the analysis axis. For example, to acquire difference of awareness or consciousness by age from a questionnaire, the age is set as the analysis axis. In this situation, values 5 representing ages such as "20" and "30" are specified as components of the analysis axis. In step 803, the program 110 initiates the cooccurrence words and phrases acquisition program 114 to repeatedly execute processing of step 804 for the components of the 10 analysis axis set in step 802.

In step 804, from the characteristic words and phrases extracted in step 801, words and phrases strongly related to the components of the analysis axis are obtained. For example, when "age", "sex", and the 15 like assigned as bibliographic information items are specified as components of the analysis axis, characteristic words and phrases extracted from documents to which the pertinent bibliographic information is assigned are obtained as words and phrases strongly 20 related to the bibliographic information. For example, when "age" is set as an analysis axis in the example of the questionnaire, characteristic words and phrases extracted from a document to which "age is 20" is assigned are obtained as words and phrases strongly 25 related to the component "20".

When a specified word/phrase is set as a component of the analysis axis, cooccurrence words and phrases cooccurring with the specified word/phrase are

- 19 -

acquired, for example, within a predetermined range. The predetermined range is specified, for example, "within one document", "within one paragraph", "within one sentence", or "within m or n words (m and n are 5 integers)." The processing from step 800 to step 804 is similar to that of prior art 1. In this embodiment, when the similar topic extraction indication is received from the keyboard 101 or when a function call is received from another program in step 805, the 10 similar topic extraction program 115 is initiated in step 806 to conduct similar topic extraction.

Fig. 9 shows the processing of the similar topic extraction by the similar topic extraction program 115. In step 900, for each characteristic 15 word/phrase obtained in step 801, a degree of importance is calculated according to the number of cooccurrence components of the analysis axis. In step 901, any characteristic word/phrase having a degree of importance (step 900) exceeding a predetermined value 20 is extracted as a multiple cooccurrence word/phrase. In step 902, the multiple cooccurrence words and phrases removal program 117 is initiated to repeatedly execute processing of step 903 for the components of the analysis axis. In step 903, component-cooccurrence 25 words and phrases are created by removing the multiple cooccurrence words and phrases obtained in step 901 from the cooccurrence words and phrases of the pertinent component.

- 20 -

Referring now to Fig. 8, description will be given in detail of the processing of this embodiment. In step 800, the system control program 109 initiates the document set creation program 110 in which 5 documents as an object of the processing are selected from the text file 107 to be collected as a document set for the processing. When the text file 107 is a document database including documents collected according to beforehand determined points of view, for 10 example, of a questionnaire, the document database may be set as the objective document set. Conversely, when the text file 107 is a document database of documents of, for example, newspapers and documents are gathered according to various points of view such as politics, 15 economy, sports, and the like, a full text search may be conducted according to an analysis purpose of the user to select documents to thereby create a set of documents. When the full text search or the like is used to create the objective document set, the objective 20 document set creation program 110 initiates the retrieval program 111 to make a retrieval through the text file 107 using a specified retrieval condition. As a result, a set of documents thus retrieved is created as the objective document set. For the 25 retrieval program 111, an existing retrieval technique like that of prior art 2 is employed.

Fig. 10 shows an example of text mining for news items regarding the "O157 disease-causing

- 21 -

bacteria" in a newspaper database. In this example shown in Fig. 10, a newspaper database is stored in the text file 107 in advance. By executing the retrieval program 111, the pertinent database is limited to 5 contain only news items including "0157" to obtain processing objective document set including document 0012, document 0130, document 0293, document 0535, document 0829, etc. If the objective documents are structured documents, the documents may be limited such 10 that each document contains "0157" in any structure.

In step 801, the characteristic words and phrases extraction program 112 is initiated to extract, from the objective document set created in step 800, characteristic words and phrases characterizing the 15 contents. The characteristic words and phrases may be extracted by referring to, for example, a dictionary or by using statistical information. Furthermore, words/phrases having the same meaning may be collected using a thesaurus or the like to be replaced with one 20 word/phrase. U.S. Patent 6,047,299 issued on April 4, 2000 (Kaijima) proposes an example of the thesaurus such as an electronic terminology dictionary used for the support of editing and translation of a document. The characteristic words and phrases to be extracted 25 are not limited to words. For example, when a complex word including two or more words is contained in the dictionary, the characteristic word/phrase extracted in this step may include two or more words. Conversely,

- 22 -

the characteristic word/phrase to be extracted may be limited to one word. In the example of Fig. 10, from the objective document set created in step 800, there are extracted characteristic words and phrases "elementary school, group, infection, disease-causing colon bacillus, food poisoning, patient, stomachache, bleeding, diarrhea, symptom, hospitalization, family, secondary infection, supermarket, perishable foods, sales amount, damage, ...".

10 In step 802, the analysis axis setting program 113 is initiated to set an analysis axis as points of view for the analysis. In this case, "date", "age", "sex", and the like assigned as bibliographical information items of a document are specified as the 15 analysis axis or words and phrases specified by the user are set as components of the analysis axis. In the example shown in Fig. 10, "news items published in 'July'", "news items published in 'August'", etc. are specified as analysis conditions. In step 803, the 20 cooccurrence words and phrases acquisition program 114 is initiated to repeatedly execute processing of step 804 for the components of the analysis axis specified in step 802.

In step 804, from the characteristic words 25 and phrases extracted in step 801, words and phrases strongly related to the pertinent component of the analysis axis are obtained. In the example of Fig. 10, a bibliographic information item of newspaper, i.e.,

the month in which items are published is set as the component of the analysis axis. Therefore, "disease-causing colon bacillus, food poisoning, infection, measures, hygiene, ..." are extracted as words and 5 phrases strongly related to the component of the analysis axis, i.e., "July" from the newspaper items published in "July". In the display method of the words and phrases, the words and phrases may be sorted in a sequence of frequency of appearances thereof in 10 the newspaper items published in "July" to be displayed as the words and phrases deeply related to "July". Alternatively, the words and phrases may be sorted in an ascending sequence of frequency of appearances in the overall database such that the words and phrases 15 less frequently appear in the database are distinguishably displayed in the starting part of the list.

That is, the items above means that the words and phrases "disease-causing colon bacillus, food poisoning, infection, measures, hygiene, ..." 20 frequently appear in the newspaper items published in "July". Similarly, as the words and phrases deeply related to "August", "disease-causing colon bacillus, infection, food poisoning, measures, group, ..." are obtained from the newspaper items published in 25 "August". Additionally, as the words and phrases deeply related to "September", "disease-causing colon bacillus, food poisoning, measures, group, infection ..." are obtained from the newspaper items

- 24 -

published in "September". The processing from step 800 to step 804 is similar to that of prior art 1.

In this embodiment, when the similar topic extraction indication is received from the keyboard 101 or when a function call is received from another program in step 805, the similar topic extraction program 115 is initiated in step 806 to conduct similar topic extraction. Referring next to Fig. 9, description will be given in detail of the similar topic extraction.

In step 900, for each characteristic word/phrase obtained in step 801, the similar topic extraction program 115 calculates a degree of importance according to the number of cooccurrence components of the analysis axis.

It can be understood from the example of Fig. 10, for the characteristic word/phrase "disease-causing colon bacillus", cooccurrence takes place for all of the six components of the analysis axis. Therefore, the degree of importance is calculated as, for example, $6/6 \times 100 = 100\%$. Furthermore, for the characteristic word/phrase "group food poisoning", cooccurrence takes place for four components of the analysis axis. Therefore, the degree of importance is calculated as, for example, $4/6 \times 100 = 67\%$. In the operation, the characteristic words and phrases may be sorted in a descending order of frequency of appearances for each component. For a characteristic word/phrase of a

- 25 -

predetermined sequential position and characteristic words and phrases following the characteristic word/phrase, the degree of importance is regarded as lower importance although cooccurrence exists for the 5 respective components, and hence these characteristic words and phrases are not taken into consideration when the frequency of appearances is counted. Additionally, for example, for characteristic words and phrases of which the frequency of appearances in the newspaper 10 items published in "July" is less than a predetermined value, it may be considered that cooccurrence does not exist with "July", and hence these characteristic words and phrases are not taken into consideration when the frequency of appearances is counted.

15 In step 901, any characteristic word/phrase with the degree of importance (step 900) exceeding a predetermined value is extracted as a multiple cooccurrence word/phrase.

Fig. 11 shows an example of multiple cooccurrence words and phrases acquisition. In the example of 20 Fig. 11, multiple cooccurrence words and phrases are acquired from ten higher characteristic words and phrases with respect to the frequency of cooccurrence selected from the characteristic words and phrases 25 cooccurring with the respective components of the analysis axis shown in Fig. 10. Assume that the threshold value is set to "50%". For example, words and phrases "disease-causing colon bacillus", "food

- 26 -

poisoning", "infection", and "group" cooccur with all components of the analysis axis in a range from "July" to "December". Therefore, for these words and phrases, the degree of importance is calculated as 100%. This 5 consequently exceeds the threshold value "50%", and hence these words and phrases are obtained as multiple cooccurrence words and phrases. The word "measure" cooccurs with five components excepting "October" among six components. Therefore, the degree of importance 10 thereof is calculated as 83%. This consequently exceeds the threshold value "50%", and hence the word "measure" is obtained as one of the multiple cooccurrence words and phrases.

In step 902, the multiple cooccurrence words 15 and phrases removal program 117 is initiated to repeatedly execute processing of step 903 for the components of the analysis axis. In step 903, the multiple cooccurrence words and phrases obtained in step 901 are removed from the cooccurrence words and phrases of the 20 pertinent component to thereby create component-cooccurrence words and phrases. Fig. 12 shows an example of the removal of multiple cooccurrence words and phrases. In the example of Fig. 12, "disease-causing colon bacillus", "food poisoning", "infection", 25 "group", etc. obtained as multiple cooccurrence words and phrases are removed from the cooccurrence words and phrases of the respective components to create component-cooccurrence words and phrases.

As can be seen from Fig. 6, when presenting the results of the operation above to the user, the multiple cooccurrence words and phrases may be displayed as similar topics of the components of the analysis axis and the component-cooccurrence words and phrases are displayed as topics of the respective components. In Fig. 6, the value indicated as a degree of importance is a degree of depth or strength of a relationship represented by the number of related components. It may also be possible to relax the restriction of cooccurrence words and phrases to be obtained as multiple cooccurrence words and phrases such that cooccurrence words and phrases with a lower degree of importance are extracted as multiple cooccurrence words and phrases. Resultantly, cooccurrence words and phrases unique to the respective components are obtained as the component-cooccurrence words and phrases. Therefore, it is possible to present topics unique to the respective components to the user.

Moreover, the system may be configured such that the user can make a selection on a screen to display either one of or both of the multiple cooccurrence words and phrases and the component-cooccurrence words and phrases as results of the operation. It is also possible that the user can specify on a screen a threshold value of the degree of importance for the cooccurrence words and phrases to be extracted as the multiple cooccurrence words and phrases.

Description has been given in detail of the contents of processing executed by the embodiment. In the method of the embodiment described above, the cooccurrence words and phrases are compared between the 5 components of the analysis axis to obtain, as multiple cooccurrence words and phrases, cooccurrence words and phrases related with many components. Thereafter, component-cooccurrence words and phrases are generated by removing the multiple cooccurrence words and phrases 10 from the cooccurrence words and phrases of the respective components. Therefore, similar points of the respective components of the analysis axis can be presented as the multiple cooccurrence words and phrases to the user, and distinguishing features 15 thereof can be presented as the component-cooccurrence words and phrases to the user. That is, there is implemented a text mining function which can clearly present the results analysis to the user as above. Consequently, it is possible to provide a document 20 processing system in which the user can appropriately analyze a tendency of a set of documents.

In the description of the embodiment, a full text search is used to selectively create a set of documents. However, the similar processing is possible 25 in a case in which the overall set of documents stored in the database is specified as the objective document set or in which a text or a document is used as a search condition to set a result of the search as the

objective document set.

In the description of the example of the embodiment, specified bibliographical information is set as the analysis axis for the text mining operation.

5 However, the similar processing is possible also when specified words and phrases are set as components of the analysis axis for the text mining operation. In this situation, characteristic words and phrases extracted from the objective document set are presented
10 to the user. The user selects components from the presented words and phrases or inputs particular words and phrases from the keyboard.

The specification and drawings are, accordingly, to be regarded in an illustrative rather than a
15 restrictive sense. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims.

- 30 -

CLAIMS:

1. A text mining method, comprising:
 - a characteristic words and phrases extraction
 - 5 step of selecting, from a set of documents, all of or part of the documents as an objective document set and extracting, from the objective document set, words and phrases characteristically appearing in the objective document set;
- 10 a mining scheme creation step of setting a mining scheme including specified components of an analysis axis;
 - a related words and phrases acquisition step of acquiring, from the words and phrases extracted by
 - 15 said characteristic words and phrases extraction step, related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components included
 - 20 in the mining scheme of the analysis axis;
- a multiple related words and phrases extraction step of comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme and
- 25 extracting, as multiple related words and phrases, those related words and phrases related to many components of the analysis axis included in the mining scheme; and

a multiple related words and phrases removing step of removing said extracted multiple related words and phrases to create component-related words and phrases.

5

2. A text mining method according to claim 1, wherein:

related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in the mining scheme are coincident words and phrases occurring together in a predetermined range with the respective specified components of the analysis axis included in the mining scheme;

said related words and phrases acquisition step includes a coincident words and phrases acquisition step of obtaining, from the words and phrases extracted by said characteristic words and phrases extraction step, coincident words and phrases occurring together in a predetermined range with the respective specified components of the analysis axis included in the mining scheme; and

said multiple related words and phrases extraction step includes a multiple coincident words and phrases extraction step of comparing the coincident words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as multiple coincident words and phrases,

- 32 -

coincident words and phrases related to many components of the analysis axis included in the mining scheme.

3. A text mining method according to claim 1,
5 wherein the objective document set is a document set obtained by conducting a retrieval by using a word/phrase, a statement, or a document as a retrieval condition.

10 4. A text mining method according to claim 1,
wherein said multiple related words and phrases extraction step includes:

15 a multiple coincident words and phrases acquisition step of comparing the coincident words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as multiple coincident words and phrases, coincident words and phrases related to many components of the analysis axis included in the mining scheme.

20 5. A text mining method according to claim 2,
wherein said multiple related words and phrases extraction step includes:

25 a multiple coincident words and phrases acquisition step of comparing the coincident words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as multiple coincident words and phrases, coincident words and phrases related to many components 30 of the analysis axis included in the mining scheme.

- 33 -

6. A text mining method according to claim 4 or 5, wherein the coincident words and phrases related to many components of the analysis axis included in the mining scheme are words and phrases extracted as 5 coincident words and phrases for at least a predetermined number of components.

7. A text mining method according to claim 4 or 5, wherein the coincident words and phrases related 10 to many components of the analysis axis included in the mining scheme are words and phrases extracted as coincident words and phrases having a value exceeding a predetermined value, the value being calculated according to strength of coincidence of the coincident 15 words and phrases with each of the components of the analysis axis included in the mining scheme and the number of the coincident components.

8. A text mining method according to claim 6, 20 wherein said multiple coincident words and phrases acquisition step includes an importance calculation step for calculating multiple coincident words and phrases according to a predetermined calculation formula.

25

9. A text mining method according to claim 7, wherein said multiple coincident words and phrases acquisition step includes an importance calculation step for calculating multiple coincident words and 30 phrases according to a predetermined calculation

formula.

10. A text mining method according to claim 8, wherein the importance calculation step is performed according to a predetermined calculation formula using the number of the components of the analysis axis associated with the multiple coincident words and phrases.
- 10 11. A text mining method according to claim 9, wherein the importance calculation step is performed according to a predetermined calculation formula using strength of coincidence of the multiple coincident words and phrases with each of the components of the analysis axis included in the mining scheme and the number of the coincident components.
12. A text mining method according to claim 1, further comprising a related words and phrases indication step of indicating the multiple related words and phrases obtained by said multiple related words and phrases acquisition step and the component-related words and phrases obtained by the multiple related words and phrases removing step.
- 25 13. A text mining method according to claim 5, further comprising a coincident words and phrases indication step of indicating the multiple coincident words and phrases obtained by said multiple coincident words and phrases acquisition step and the component

- 35 -

coincident related words and phrases obtained by the multiple related words and phrases removing step.

14. A text mining method according to claim 8,
5 further comprising a coincident words and phrases indication step of indicating the multiple coincident words and phrases and the importance obtained by said multiple coincident words and phrases acquisition step and the component related words and phrases obtained by
10 the multiple related words and phrases removing step.

15. A text mining apparatus, comprising:
characteristic words and phrases extraction means for selecting, from a set of documents, all of or
15 part of the documents as an objective document set and for extracting, from the objective document set, words and phrases characteristically appearing in the objective document set;

mining scheme creation means for setting a
20 mining scheme including specified components of an analysis axis;

related words and phrases extraction means for obtaining, from the words and phrases extracted by said characteristic words and phrases extraction means,
25 related words and phrases selected when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in the mining scheme;

- 36 -

multiple related words and phrases extraction means for comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as

5 multiple related words and phrases, related words and phrases related to many components of the analysis axis included in the mining scheme; and

multiple related words and phrases removing means for removing said extracted multiple related

10 words and phrases to create component-related words and phrases.

16. A computer readable medium having stored thereon instructions for execution on a processor to

15 configure a text mining system, the text mining system comprises:

a characteristic words and phrases extraction module for selecting, from a set of documents, all of or part of the documents as an objective document set

20 and for extracting, from the objective document set, words and phrases characteristically appearing in the objective document set;

a mining scheme creation module for setting a mining scheme including specified components of an

25 analysis axis;

a related words and phrases extraction module for obtaining, from the words and phrases extracted by said characteristic words and phrases extraction module, related words and phrases selected when the

30 relativity thereof calculated according to a

- 37 -

predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in the mining scheme;

5 a multiple related words and phrases extraction module for comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme and of extracting, as multiple related words and phrases,
10 related words and phrases related to many components of the analysis axis included in the mining scheme; and
15 a multiple related words and phrases removing module for removing said extracted multiple related words and phrases to create component-related words and phrases.

17. A computer readable medium containing instructions for execution on a processor for implementing a text mining method comprising the steps
20 of:

selecting, from a set of documents, all of or part of the documents as an objective document set and extracting, from the objective document set, words and phrases characteristically appearing in the objective
25 document set;

setting a mining scheme including specified components of an analysis axis;

acquiring from the words and phrases extracted by said characteristic words and phrases
30 extraction step, related words and phrases selected

when the relativity thereof calculated according to a predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in

5 the mining scheme;

comparing the related words and phrases between the respective components included in the mining scheme and extracting, as multiple related words and phrases, related words and phrases related to many 10 components of the analysis axis included in the mining scheme; and

removing said extracted multiple related words and phrases to create component-related words and phrases.

15

18. A text-mining oriented data structure representing a physical implementation of a data model for organizing and representing information used by a processor including multiple related words and phrases 20 generated from a document set, said multiple related words and phrases being determined by those related to more than a designated number of components of an analysis axis included in a mining scheme, said data structure comprising:

25 from a set of documents, all of or part of the documents as an objective document set and extracting, from the objective document set, words and phrases characteristically appearing in the objective document set;

- 39 -

a mining scheme including specified components of the analysis axis;

related words and phrases selected when the relativity thereof calculated according to a 5 predetermined calculation formula exceeds a predetermined value with respect to the respective specified components of the analysis axis included in the mining scheme acquired from the words and phrases extracted by said characteristic words and phrases 10 extraction step;

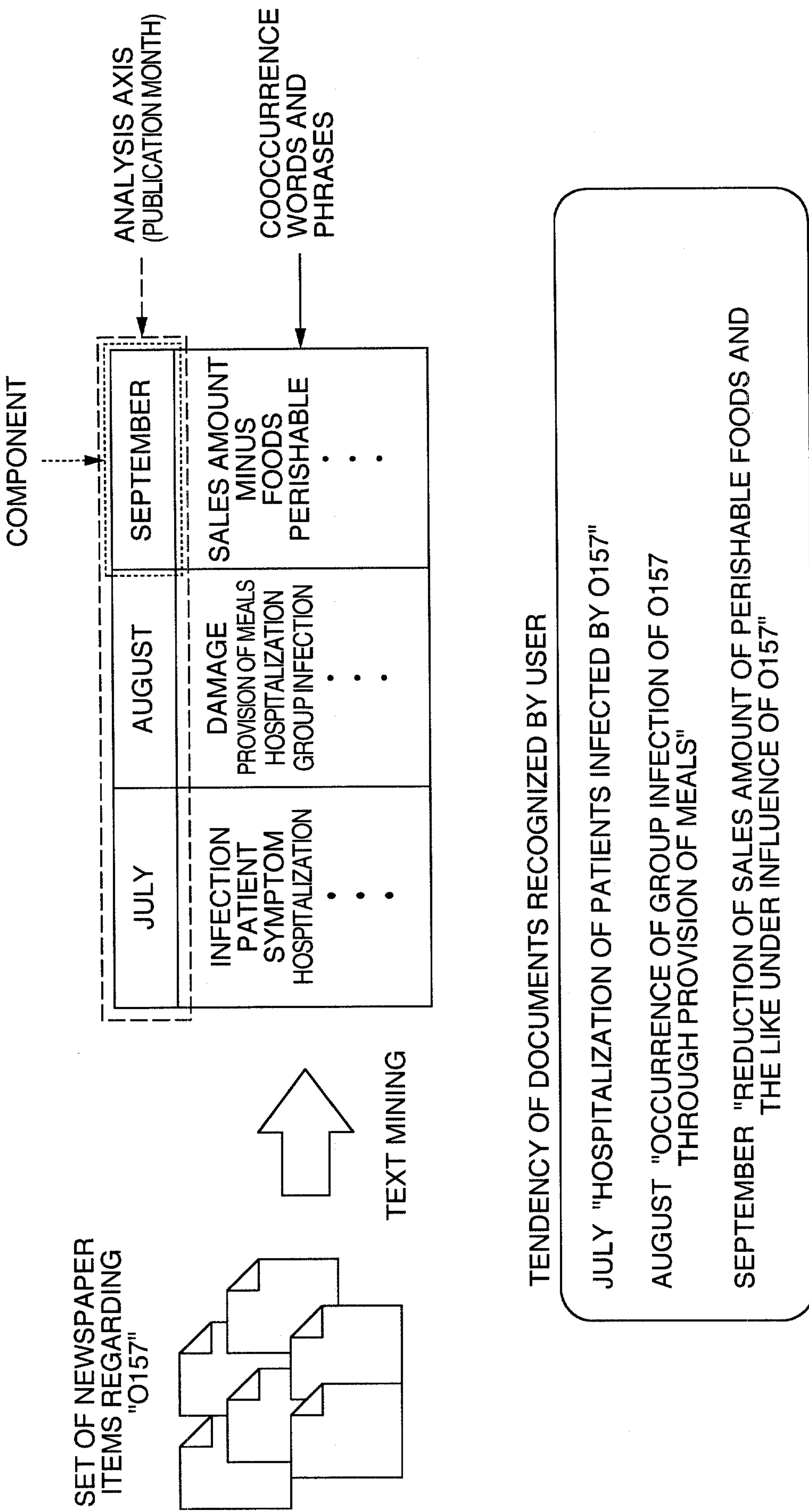
a set of multiple related words and phrases generated by comparing the related words and phrases between the respective components of the analysis axis included in the mining scheme; and

15 a set of component-related words and phrases generated by removing said extracted multiple-related words and phrases.

19. The text-mining method of any one of claims 1 20 to 14, wherein said components of the analysis axis constitute at least part of a time domain.

20. The text-mining apparatus of claim 15, wherein said components of the analysis axis constitute 25 at least part of a time domain.

21. The computer readable medium of claim 16 or 17, wherein said components of the analysis axis constitute at least part of a time domain.


- 40 -

22. The text-mining oriented data structure of
claim 18, wherein said components of the analysis axis
constitute at least part of a time domain.

FIG. 1

FIG.2 PRIOR ART

FIG.3

PRIOR ART

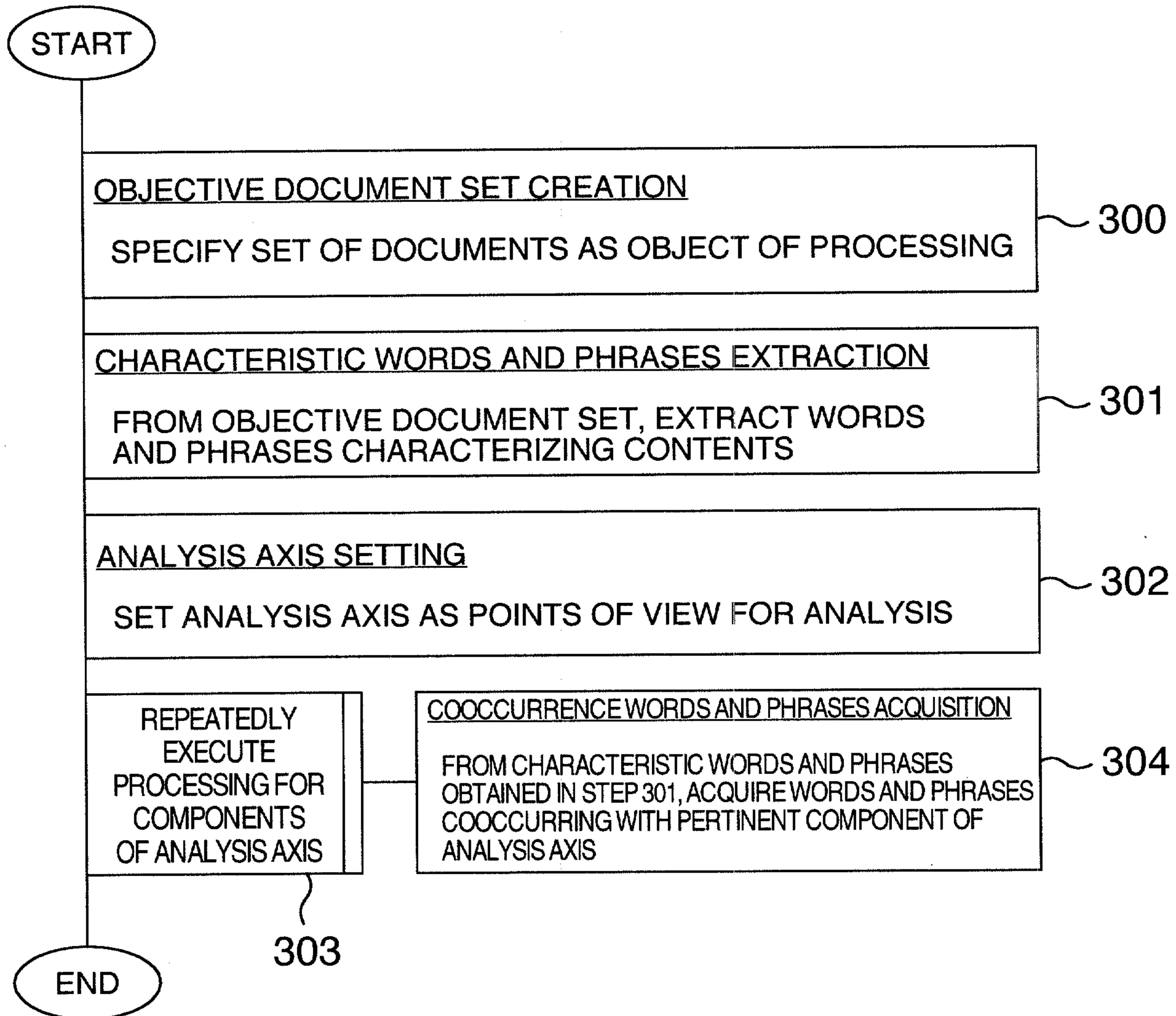


FIG.4

	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
1	DISEASE-CAUSING COLONBACILLUS					
2	FOOD POISONING					
3	INFECTION	MEASURE	MEASURE	REDUCTION	FOOD POISONING	INFECTION
4	MEASURE	GROUP	GROUP	GROUP	PROVISION OF MEALS	MEASURE
5	HYGIENE	HYGIENE	HYGIENE	FOOD POISONING	SCHOOL	PROVISION OF MEALS
6	GROUP	GROUP	GROUP	SCHOOL	PUBLIC HEALTH CENTER	GROUP FOOD POISONING
7	PATIENT	CITY OF SAKAI	CITY OF SAKAI	SCHOOL	PATIENT	CITY OF SAKAI
8	GROUP FOOD POISONING	DETECTION	DETECTION	SALES AMOUNT	GROUP FOOD POISONING	OSAKA PREFECTURE
9	SYMPTOM	INSPECTION	INSPECTION	RETAIL	MEASURE	CAUSE
10	DETECTION	FOODS	DETECTION			

FIG. 5

	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
1	DISEASE-CAUSING COLON BACILLUS					
2	FOOD POISONING					
3	INFECTION	FOOD POISONING	MEASURE	FOOD POISONING	REDUCTION	INFECTION
4	MEASURE	MEASURE	GROUP	GROUP	PROVISION OF MEALS	MEASURE
5	HYGIENE	HYGIENE	INFECTION	GROUP FOOD POISONING	FOOD POISONING	PROVISION OF MEALS
6	GROUP	CITY OF SAKAI	SCHOOL	SCHOOL	SCHOOL	GROUP FOOD POISONING
7	PATIENT	DETECTION	CITY OF SAKAI	SALES AMOUNT	PATIENT	CITY OF SAKAI
8	GROUP FOOD POISONING	INSPECTION	PROVISION OF MEALS	RETAIL	GROUP FOOD POISONING	OSAKA PREFECTURE
9	SYMPTOM	FOODS	OSAKA PREFECTURE	DETECTION	MEASURE	CAUSE
10	DETECTION					

MULTIPLE COOCURRENCE WORDS AND PHRASES

DISEASE-CAUSING COLON BACILLUS

FOOD POISONING

INFECTION

GROUP

HYGIENE

CITY OF SAKAI

DETECTION

INSPECTION

FOODS

FIG.6

MULTIPLE COOCCURRENCE WORDS AND PHRASES

	SIMILAR TOPICS	IMPORTANCE
1	DISEASE-CAUSING COLON BACILLUS	100%
2	FOOD POISONING	100%
3	INFECTION	100%
4	GROUP	100%
5	MEASURE	83%
6	GROUP FOOD POISONING	67%
•	•	•
9	MEASURE CENTER	
10	HOSPITALIZATION	

TOPICS FOR EACH COMPONENT

	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
1	HYGIENE	HYGIENE	SCHOOL	FOODS	PROVISION OF MEALS	PROVISION OF MEALS
2	PATIENT	CITY OF SAKAI	CITY OF SAKAI	REDUCTION	SCHOOL	CITY OF SAKAI
3	REDUCTION	DETECTION	PROVISION OF MEALS	SCHOOL	PUBLIC HEALTH CENTER	OSAKA PREFECTURE
4	DETECTION	INSPECTION	OSAKA PREFECTURE	SALES AMOUNT	PATIENT	CAUSE
5	OSAKA PREFECTURE	FOODS	FOODS	RETAIL	GROUP INFECTION	STAFF
6	OCCURRENCE	OSAKA PREFECTURE	DETECTION	DETECTION	KINDERGARTEN	SPECIAL
7	SAME CITY	DEALERS CONCERNED	HYGIENE	RECOVERY	ONE PERSON	SCHOOL MEALS PROVISION
8	INSPECTION	DAMAGE	CHILDREN	OCCURRENCE	16 DAYS	RECOVERY
9	PATIENT	DEALERS CONCERNED	MINUS	DAMAGE	OCCURRENCE	HOSPITALIZATION
10	REDUCTION	IN THE CITY	EATING AND DRINKING			

FIG.7

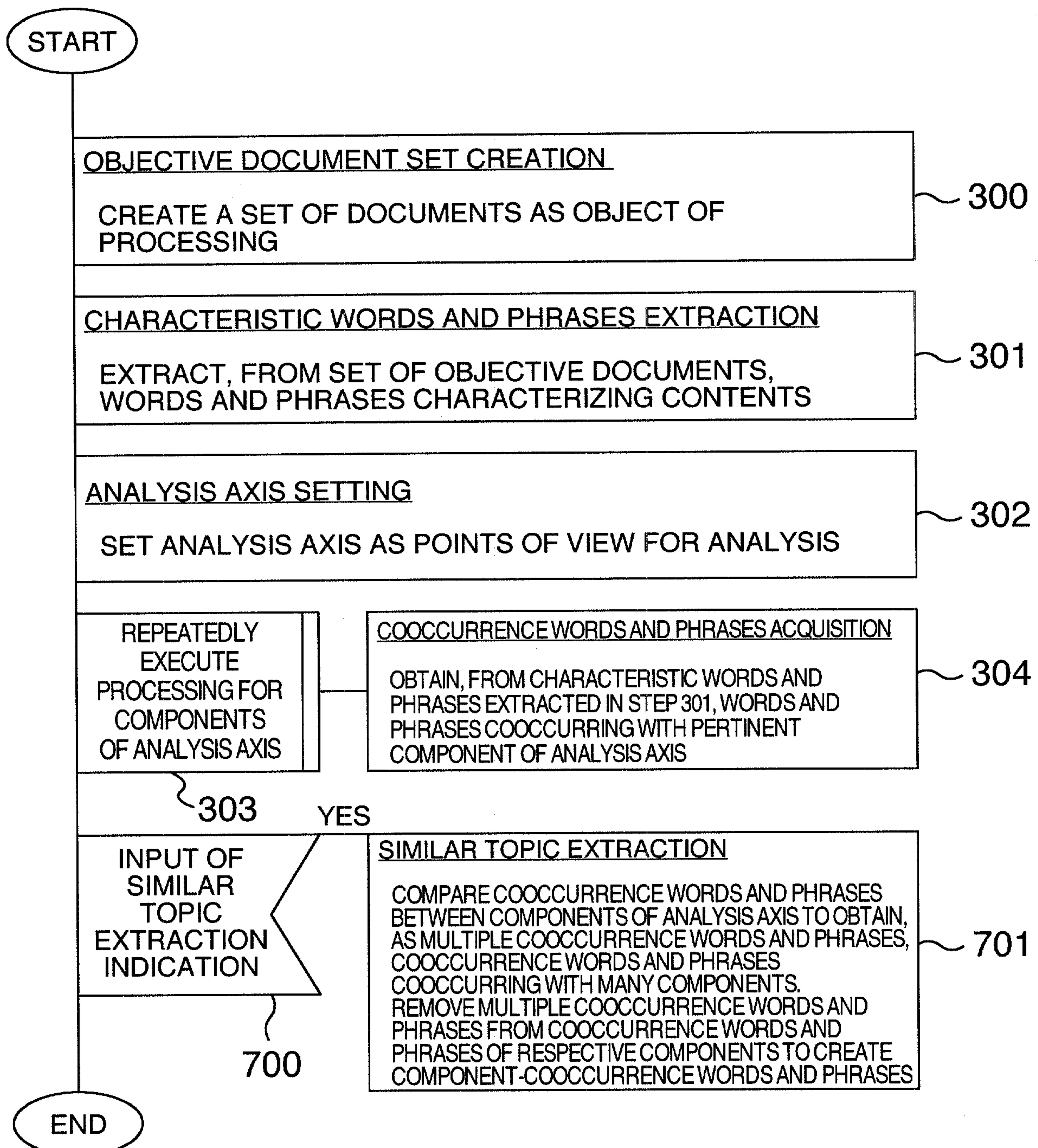


FIG.8

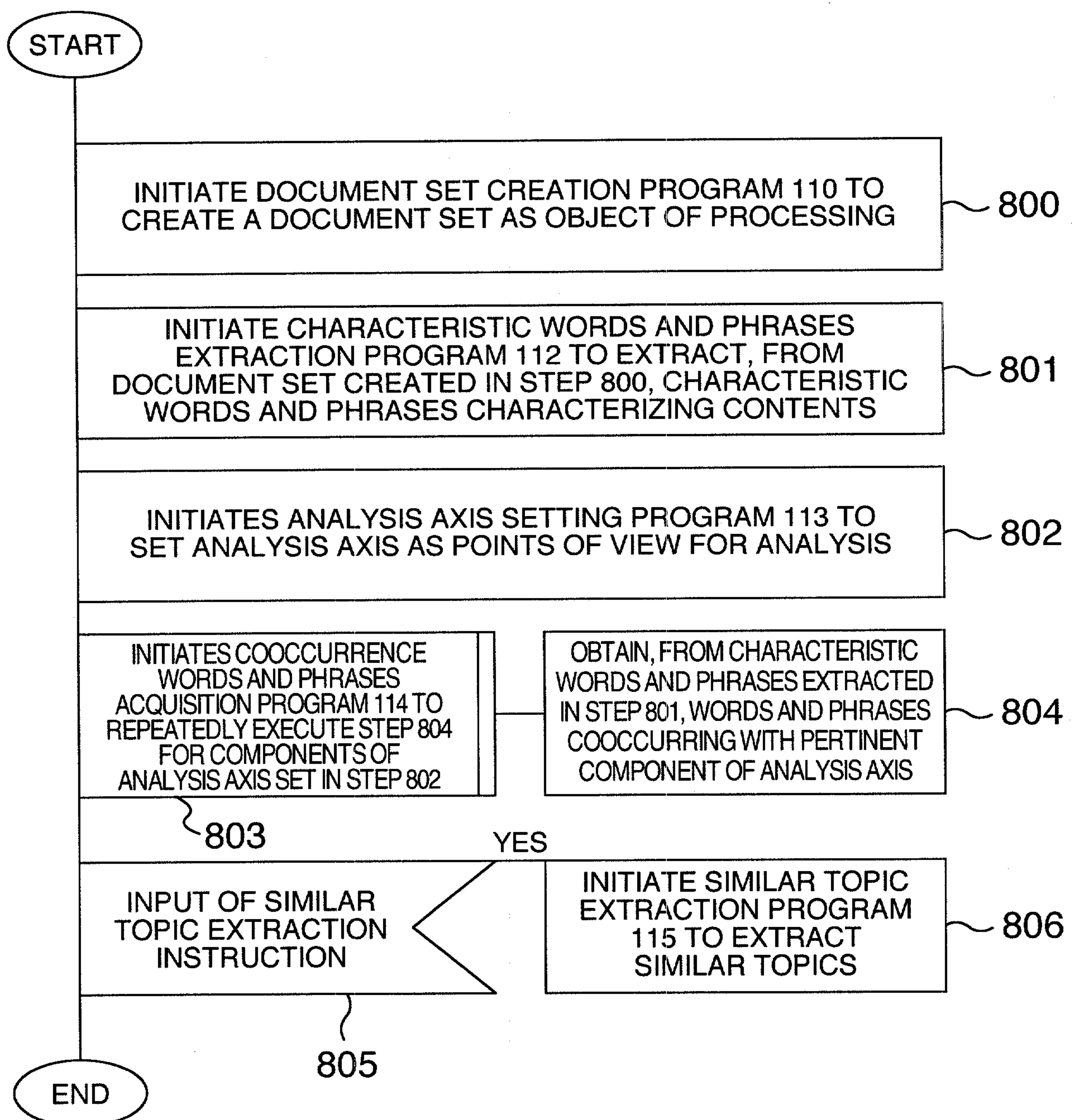


FIG.9



FIG.10

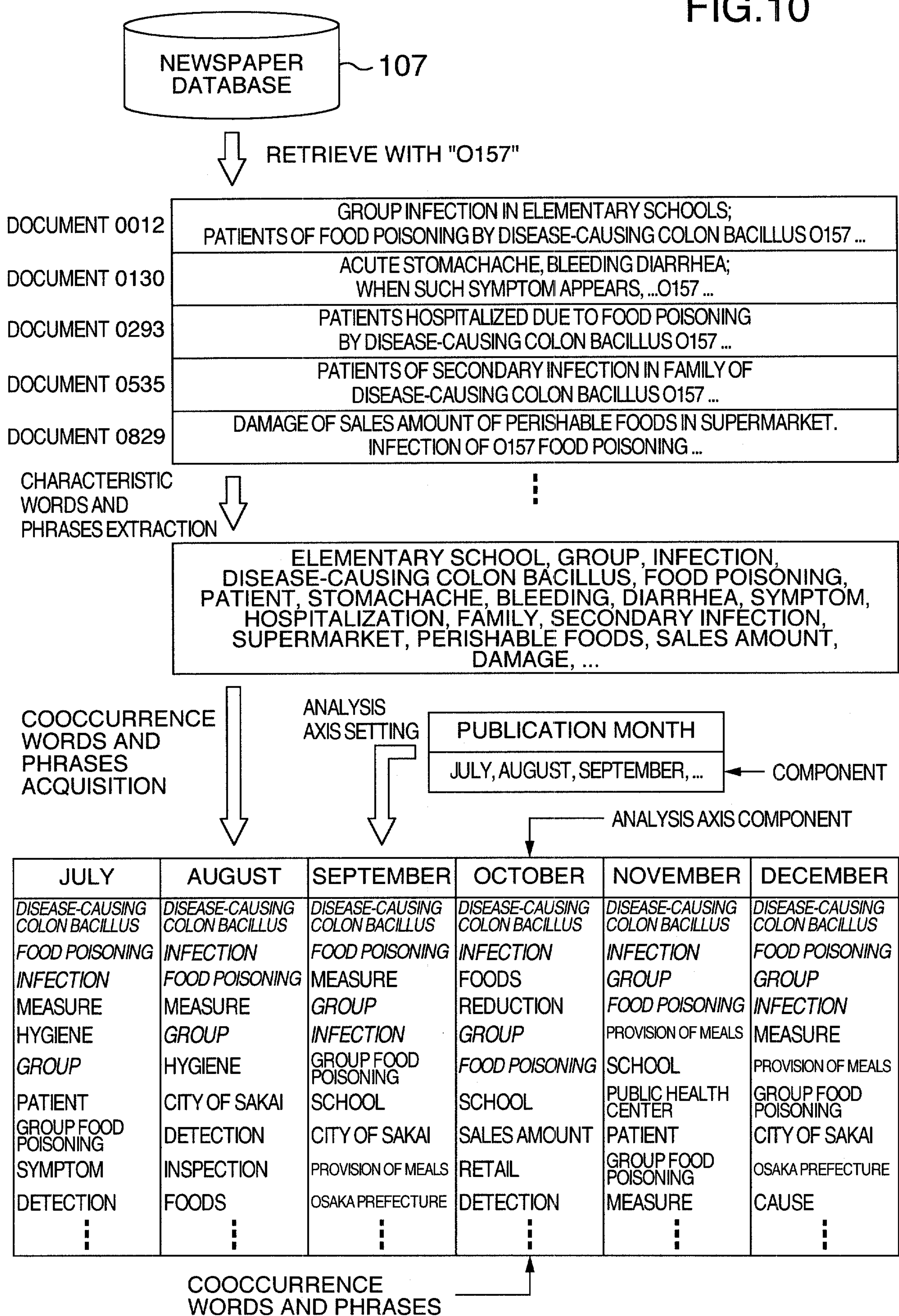


FIG. 1

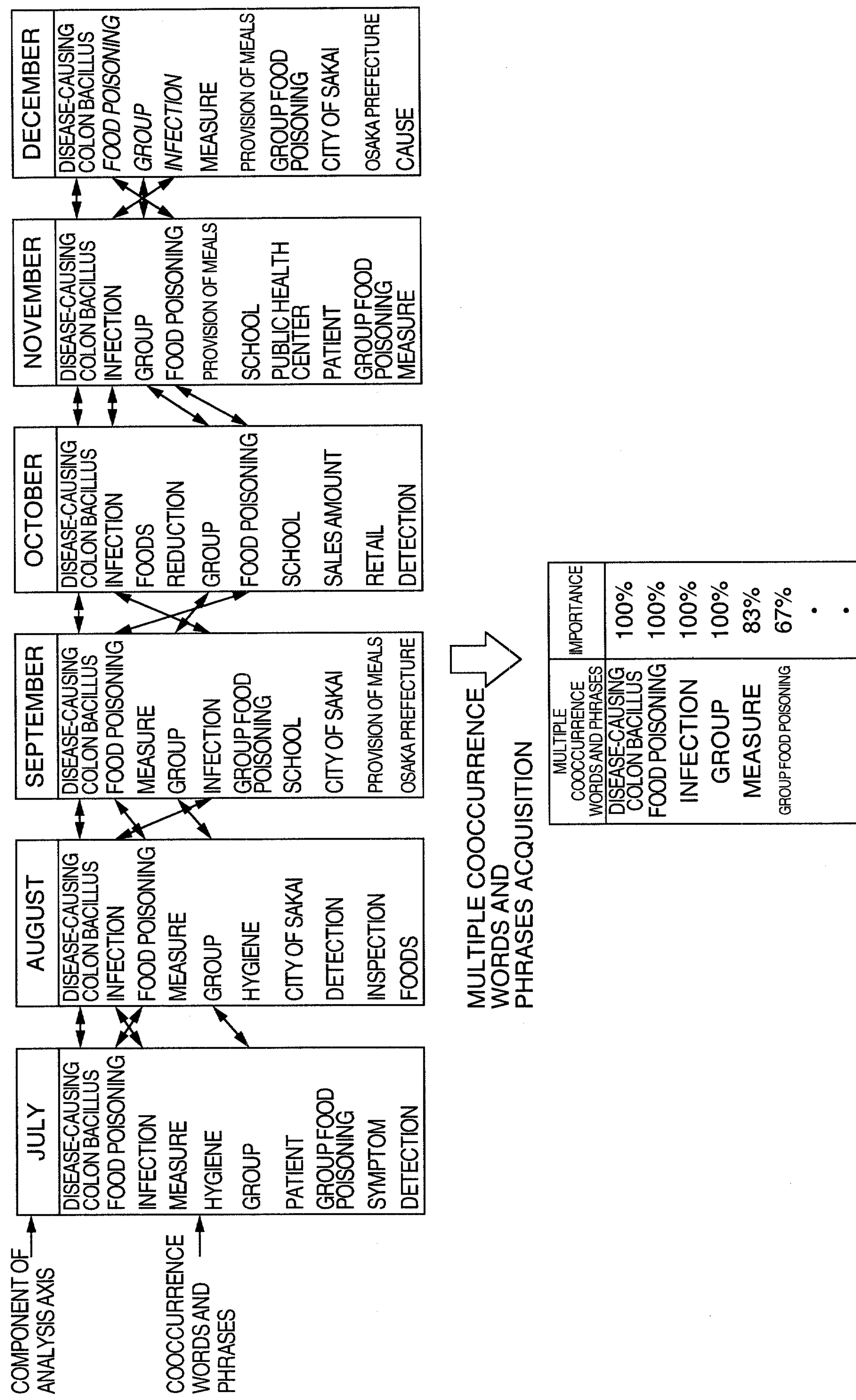
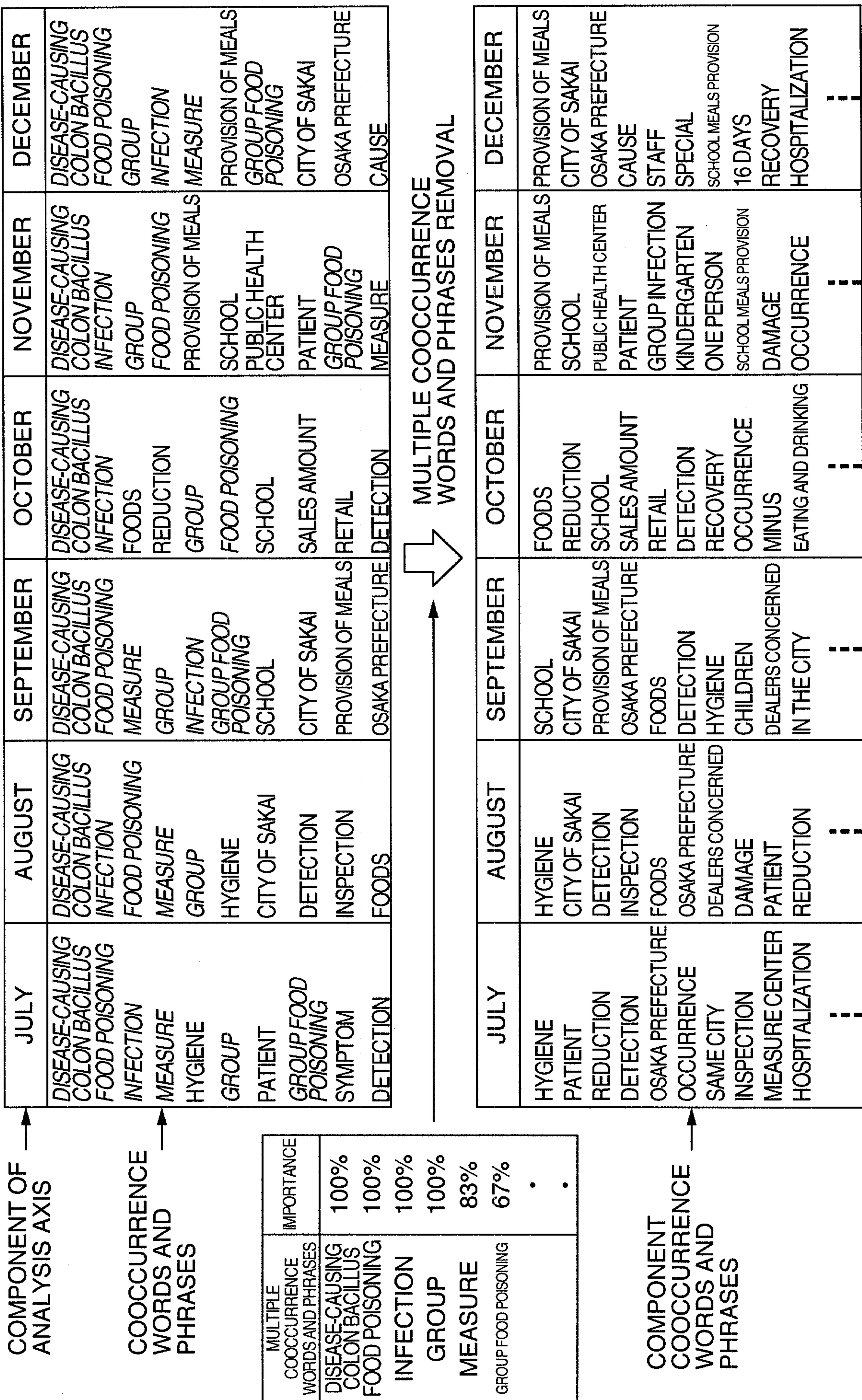
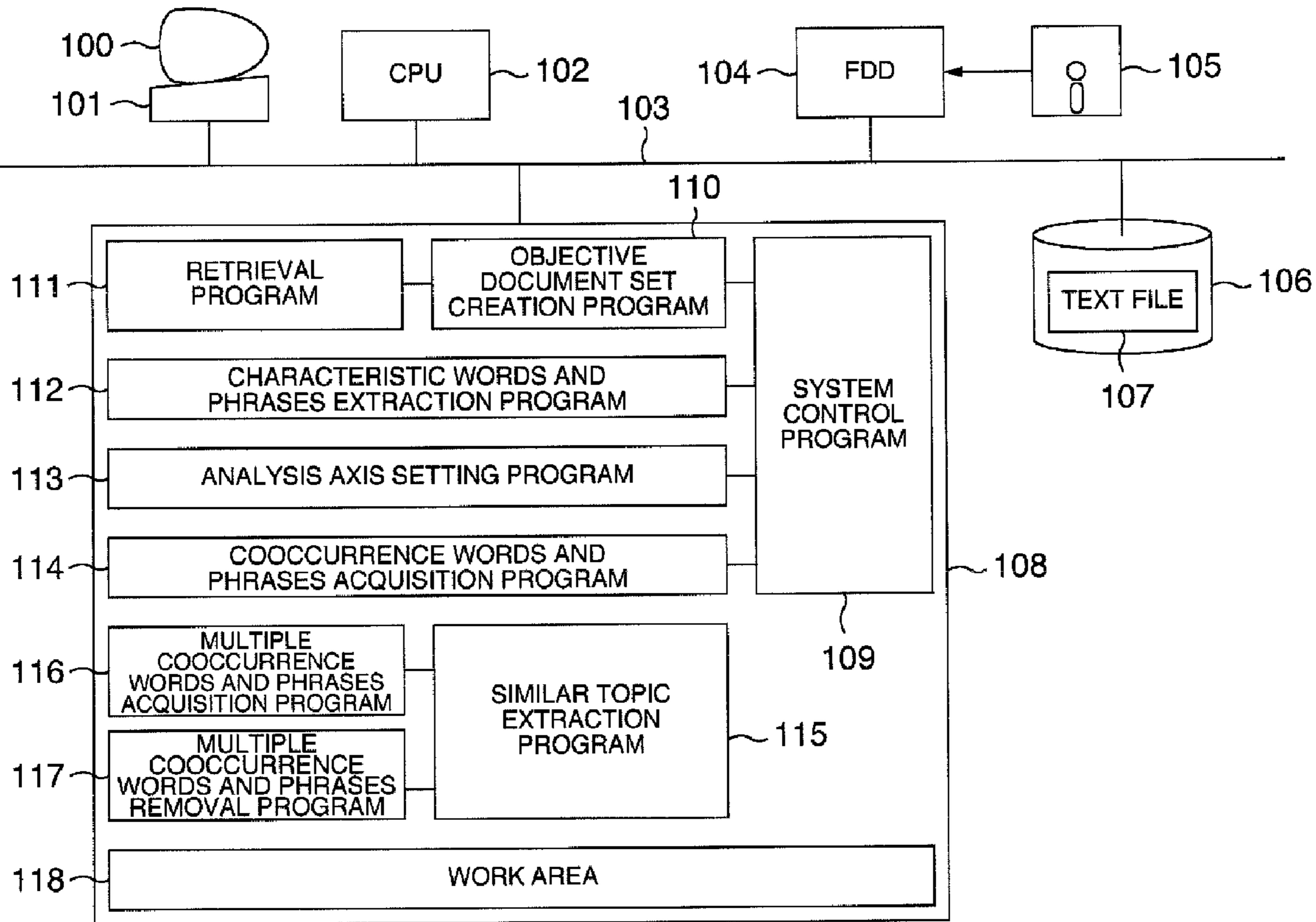




FIG.12

