用于制备负载的茂金属催化剂的方法和使用该催化剂制备聚烯烃的方法

摘要

本发明涉及一种用于制备负载的茂金属催化剂的方法，且一种使用所述负载的茂金属催化剂制备聚烯烃的方法。其中可以将根据本发明的用于制备负载的茂金属催化剂的方法的简单步骤制备的负载的茂金属催化剂应用于在低压或高压下聚合的聚烯烃的聚合，以及可以容易地控制制备的聚烯烃的分子量分布，以及存在如下效果：其催化剂活性显著高于现有的负载的茂金属催化剂，并且可以容易地控制分子量分布。
1. 一种用于制备负载的镍金属催化剂的方法，其包括:

i) 通过使载体与作为由下面化学式7表示的化合物的助催化剂1反应制备在所述载体的径基上负载有助催化剂的载体；ii) 通过使镍金属化合物与所述负载有助催化剂的载体反应制备在载体上逐渐负载有助催化剂和镍金属化合物的催化前体；和 iii) 通过使所述催化前体与作为由下面化学式8表示的化合物的助催化剂2反应制备依次负载有助催化剂1、镍金属化合物和助催化剂2的镍金属催化剂；

其中，所述镍金属化合物为选自由下面化学式1至化学式3表示的化合物中的一种或多中，以及基于1摩尔的负载在所述镍金属化合物上的过渡金属，按照在所述助催化剂2中包含的硼，所述助催化剂2的负载量为0.1至10,000摩尔，

[化学式1]
(C₆R₃,R₄) (C₆,R₃) R₆b),MQ₀

[化学式2]

在所述化学式1、2或3中，

C₆ 和 C₆′各自相同或不同，且选自环戊二烯基、茚基、4、5、6、7-四氢-1-茚基和茚基中的一种；R₃和 R₄相同或不同，且为氢基、碳数为1～20的烷基、碳数为3～23的环烷基、碳数为6～26的芳基、碳数为2～22的链烯基、碳数为7～27的烷基芳基、碳数为7～27的芳基烷基、碳数为8～28的芳基链烯基或碳数为1～20的烷基甲硅烷基；R⁰和 R⁰相同或不同，且为氢基或碳数为1～6的烃基；a、a′、b或b′分别为1～4的整数；

MQ 为元素周期表中4B族、5B族或6B族的过渡金属；

Q 为卤素原子或碳数为1～20的烷基、碳数为2～22的链烯基、碳数为6～26的芳基、碳数为7～27的烷基芳基、碳数为7～27的芳基烷基或碳数为1～20的烷基，k 为2或3，z 为0或1，并且当k 为3时，z 为0；

B 为选自碳数为1～4的烷基或含有硅、锗、磷、氮、硼或铝的烃基中的一种；

在化学式3中，J 为选自NR₆、O、PR₆和S中的一种基团，R₆为碳数为1～20的烷基或取代的烷基；

位于R₆、R₆′、B或R₆上的氢基中的任意一个为由化学式4.5或6表示的基团，

[化学式4]
在上述化学式 4 中，
Z 为氧原子或硫原子；
R 和 R' 相同或不同，且为氢基，碳数为 1 ～ 20 的烷基，碳数为 3 ～ 23 的环烷基，碳数
为 6 ～ 26 的芳基，碳数为 2 ～ 22 的链烯基，碳数为 7 ～ 27 的烷基芳基，碳数为 7 ～ 27 的
芳基烷基，碳数为 8 ～ 28 的芳基链烯基；两个 R' 可以相互连接形成环；
G 为碳数为 1 ～ 20 的烷氧基；
[化学式 5]

在上述化学式 5 中，
Z' 为氧原子或硫原子，两个 Z' 中的至少一个为氧原子；
R 和 R'' 相同或不同，且为碳数为 1 ～ 20 的烷基，碳数为 3 ～ 23 的环烷基，碳数为 6 ～
26 的芳基，碳数为 2 ～ 22 的链烯基，碳数为 7 ～ 27 的烷基芳基，碳数为 7 ～ 27 的芳基烷
基，碳数为 8 ～ 28 的芳基链烯基；
R 和 R''，或者两个 R'' 可以相互连接形成环；
[化学式 6]

在上述化学式 6 中，
Z'' 为氧原子、硫原子、氮原子、磷原子或砷原子；
R'' 为氢、碳数为 1 ～ 40 的烷基，碳数为 3 ～ 43 的环烷基，碳数为 6 ～ 46 的芳基，碳数为 2 ～ 42 的链烯基，碳数为 7 ～ 47 的烷基芳基，碳数为 7 ～ 47 的芳基烷基或碳数为 8 ～ 48 的芳基链烯基；
R'' 为碳数为 1 ～ 40 的烷氧基；
n 为 1 或 2, 当 \(Z'' \) 为氧或硫时, \(n \) 为 1; 当 \(Z'' \) 为氮、磷或砷时, \(n \) 为 2.

[化学式 7]

\[[\text{Al}(\text{R}^3)^3]_n \]

在上述化学式 7 中，

\(\text{R}^3 \) 各自相同或不同, 且为卤素原子, 碳数为 1 ～ 20 的烃基或者被卤素取代的碳数为 1 ～ 20 的烃基, 且 \(n \) 为大于 2 的整数。

[化学式 8]

\[\text{T}^- \text{[BQ]^-} \]

在上述化学式 8 中，

\(\text{T}^- \) 为化合价为 +1 的多离子原子; \(\text{B} \) 为 +3 形式的氧化态的硼; 以及 Q 分别独立地选自氢化物、二烷基酰氨基、卤化物、醇化物、芳醚、烃基、卤化碳基和卤代烃基, 且上述的 Q 含有 20 以下的碳原子, 但是仅有一个 Q 为卤化物。

2. 根据权利要求 1 所述的用于制备负载的茂金属催化剂的方法, 其中, 上述步骤 ii) 由如下步骤构成: 通过使化学式 2 或化学式 3 表示的茂金属化合物 2 和化学式 1 表示的茂金属化合物 1 与负载有助催化剂的载体反应制备负载有茂金属化合物 1 和 2 和助催化剂 1 的载体。

3. 根据权利要求 1 至 2 中任一项所述的用于制备负载的茂金属催化剂的方法, 其中, 由化学式 1 表示的化合物为 [A-O-(CH_{2})_{n}-C_{6}H_{5}]_{2}ZrCl_{2} 或 [A-O-(CH_{2})_{n}-C_{6}H_{5}]_{2}ZrCl_{3}, 其中 \(n \) 为 4 ～ 8 的整数, 以及 A 为选自甲氧基甲基、叔丁氧基甲基、四氢呋喃基、四氢呋喃基、1- 乙氧基乙基、1- 甲基 -1- 甲氧基乙基和叔丁基中的一种。

4. 根据权利要求 1 至 2 中任一项所述的用于制备负载的茂金属催化剂的方法, 其中, 由化学式 2 表示的化合物为 [A-O-(CH_{2})_{n}-C_{6}H_{5}]C(CH_{2})_{2}[C_{6}H_{5}]ZrCl_{2}、[A-O-(CH_{2})_{n}-C_{6}H_{5}]Si(CH_{2})_{2}[C_{6}H_{5}]ZrCl_{2}、[C_{6}H_{5}]C(CH_{2})_{2}(A-O-(CH_{2})_{n}-C_{6}H_{5})ZrCl_{2} 或 [C_{6}H_{5}]Si(CH_{2})_{2}(A-O-(CH_{2})_{n}-C_{6}H_{5})ZrCl_{2}, 其中 \(n \) 为 4 ～ 8 的整数, 以及 A 为选自甲氧基甲基、叔丁氧基甲基、四氢呋喃基、四氢呋喃基、1- 乙氧基乙基、1- 甲基 -1- 甲氧基乙基和叔丁基中的一种。

5. 根据权利要求 1 至 2 中任一项所述的用于制备负载的茂金属催化剂的方法, 其中, 由化学式 3 表示的化合物为 [(A’-D-(CH_{2})_{n})X(C_{6}H_{5})(NCMe_{2})]TiCl_{2}, 其中, X 为亚甲基、亚乙基或硅, D 为氧原子或氮原子, 以及 A’ 为选自氢; 碳数为 1 ～ 20 的烷基、链烯基、芳基、烷基芳基、芳基烷基、烷基硅烷基、芳基硅烷基、甲氧基甲基、叔丁氧基甲基、四氢呋喃基、四氢呋喃基、1- 乙氧基乙基、1- 甲基 -1- 甲氧基乙基和叔丁基中的一种。

6. 根据权利要求 1 至 2 中任一项所述的用于制备负载的茂金属催化剂的方法, 其中, 所述载体是在 200 ～ 800\(^\circ\) C 下干燥。

7. 根据权利要求 1 至 2 中任一项所述的用于制备负载的茂金属催化剂的方法, 其中, 所述载体为选自二氧化硅、二氧化硅 - 氧化铝和二氧化硅 - 氧化镁中的一种。

8. 根据权利要求 1 所述的用于制备负载的茂金属催化剂的方法, 其中, 由化学式 7 表示的化合物为选自甲基氧烷 (MAO)、乙基铝氧化、芳基铝氧化和芳基铝氧化中的一种。

9. 根据权利要求 1 所述的用于制备负载的茂金属催化剂的方法, 其中, 所述助催化剂
2. 为选自如下化合物中的一种或多种：三甲基铵四苯基硼酸盐、甲基十八烷基铵四苯基硼酸盐、三乙基铵四苯基硼酸盐、三丙基铵四苯基硼酸盐、三正丁基铵四苯基硼酸盐、甲基十四烷基铵四苯基硼酸盐、N,N-二甲基苯铵四苯基硼酸盐、N,N-二乙基苯铵四苯基硼酸盐、N,N-二甲基(N,2,4,6-三甲基苯铵)四苯基硼酸盐、三甲基铵四(五氟苯基)硼酸盐、甲基双十四烷基铵四(五氟苯基)硼酸盐、三乙基铵四(五氟苯基)硼酸盐、三丙基铵四(五氟苯基)硼酸盐、三正丁基铵四(五氟苯基)硼酸盐、三仲丁基铵四(五氟苯基)硼酸盐、N,N-二甲基苯铵四(五氟苯基)硼酸盐、N,N-二乙基苯铵四(五氟苯基)硼酸盐、N,N-二甲基(N,2,4,6-三甲基苯铵)四(五氟苯基)硼酸盐、三甲基铵四(2,3,4,6-四氟苯基)硼酸盐、三乙基铵四(2,3,4,6-四氟苯基)硼酸盐、三丙基铵四(2,3,4,6-四氟苯基)硼酸盐、三正丁基铵四(2,3,4,6-四氟苯基)硼酸盐、三仲丁基铵四(2,3,4,6-四氟苯基)硼酸盐、N,N-二甲基苯铵四(2,3,4,6-四氟苯基)硼酸盐、N,N-二乙基苯铵四(2,3,4,6-四氟苯基)硼酸盐、N,N-二甲基(N,2,4,6-三甲基苯铵)四(2,3,4,6-四氟苯基)硼酸盐、双十四烷基铵四(五氟苯基)硼酸盐、双十四烷基铵四(五氟苯基)硼酸盐、三乙基铵四(五氟苯基)硼酸盐、甲基十八烷基铵四(五氟苯基)硼酸盐、甲基二(十八烷基)铵四(五氟苯基)硼酸盐和甲基二(十四烷基)铵四(五氟苯基)硼酸盐。

10. 根据权利要求1所述的用于制备负载的茂金属催化剂的方法，其中，在化学式4中，Z为氧原子;R和R'各自相同或不同，且为碳数为1～20的烷基;在化学式5中，Z'为氧原子;R和R"各自相同或不同，且为碳数为1～20的烷基;以及在化学式6中，Z"为氧原子;R"'各自相同或不同，且为碳数为1～40的烷基;以及n为1。

11. 根据权利要求1所述的用于制备负载的茂金属催化剂的方法，其中，M为钛、锆或铪，Q为卤素，以及k为2。

12. 一种用于制备聚烯烃的方法，其中，在根据权利要求1所述的方法制备的负载的茂金属催化剂的存在下在低压或高压下聚合基于烯烃的单体。

13. 根据权利要求12所述的用于制备聚烯烃的方法，其中，所述聚合是以淤浆法或气相法进行的。

14. 根据权利要求12所述的用于制备聚烯烃的方法，其中，将所述负载的茂金属催化剂注入到基于烯烃的单体中，其中，当被注入时，所述负载的茂金属催化剂为通过在碳数为5～12的脂肪族烃溶剂、芳族烃溶剂或被氯原子取代的烃溶剂中稀释而制备的淤浆形式。
用于制备负载的茂金属催化剂的方法和使用该催化剂制备
聚烯烃的方法

技术领域
[0001] 本发明涉及一种用于制备负载的茂金属催化剂的方法，以及更具体而言，涉及一种用于制备高活性的负载的茂金属催化剂的方法和使用该茂金属催化剂制备聚烯烃的方法。

背景技术
[0003] 从那时起，Exxon提交了关于使用在环戊二烯基配体上具有不同取代基的茂金属化合物的烯烃聚合的专利（美国专利申请第5,324,800号）。
[0004] 由于上述的茂金属催化剂具有均匀的活性位点，其具有如下优点：聚合物的分子量分布窄，易于共聚、第二单体的分布均匀和在丙烯聚合的情况下还可以根据催化剂的对称性控制聚合物的立体结构。特别地，现有的齐格勒-纳塔催化剂仅可以制备全同立构的聚丙烯，但是在使用茂金属催化剂的情况下，可以立构规整性地制备多种聚丙烯，例如，全同立构聚丙烯、间同立构聚丙烯、不规则的聚丙烯和半全同立构聚丙烯等。例如，在通过使用茂金属合成间间同立构聚丙烯的情况下，其具有如下特征：具有低结晶度、合适的刚度和硬度、良好的透明度以及具有高的耐冲击性。也就是说，关于茂金属催化剂的研究正在火热地进行，因为其具有如下优点：通过在制备聚烯烃时使用茂金属催化剂可以控制立体结构，还可以容易地控制聚合物的性能。
[0005] 然而，其存在如下问题：在使用上述均相催化剂的聚合技术中，在气相法或液相法的情况下难以保持聚合物的形状，以及为了使茂金属催化剂的最高的活性需要大量的MAO。所述茂金属催化剂应该在被负载在合适的载体上后使用，从而解决上述问题。此外，在如上所述的负载催化剂的情况下，其具有如下优点：根据用量可以控制重量分布、可以提高制备的聚合物的表观密度、以及还可以减少反应器中的污垢现象，以及可以控制制备的聚合物的形状。
[0006] 作为用于制备负载的茂金属催化剂的方法的如下方法已经广为人知：在首先使用茂金属化合物和载体物理化学地结合之后再通过与铝氧烷接触而制备负载的茂金属催化剂的方法；在将铝氧烷负载在载体上之后再通过与茂金属化合物反应而制备负载的茂金属催化剂的方法；在首先使铝氧烷与茂金属化合物接触之后再通过将其负载在载体上而制备负载的茂金属催化剂的方法等。在负载后应该保持具有单活性位点的催化剂结构，从而所述负载的催化剂具有与均相催化剂相同的高活性和共聚效率。此外，在聚合过程中，所述催化剂不能从载体上移除，从而防止在反应器中的污垢。此外，聚合物的细度、细度分布和表观密度取决于粒子的形状和负载的催化剂的机械性能。 韩国登记公开第10-0404780号公开了一种
具有含硅环烷基 (silacycloalkyl) 取代基的茂金属化合物，和使用该茂金属化合物的负载的催化剂，但是在气相法或液相法中使用上述茂金属催化剂的情况下，由于所述催化剂从载体中分离出来，在反应器中可能出现污垢。

在用于制备负载的催化剂的上述多种方法中的用于制备具有单活性位点的非均相催化剂的最古老的方法包括在将铝氧烷负载在载体上之后再与茂金属化合物反应。例如，所述负载的催化剂经过如下步骤制备：使二氧化硅与铝氧烷裂解反应，过滤掉滤液，然后与焊料甲苯或脂族烃溶液中的二茂锆反应，以及所述负载的催化剂可以用于以气相法或液相法的聚合或共聚中。所述用于负载的方法具有相对高活性，因为助催化剂被物理化学地固定到载体的表面上，并且所述催化剂是以一种通过离子键与助催化剂组合的形式存在。此外，所述用于负载的方法可以容易地应用于已知的裂解法或气相法中，因为可以制备单相催化剂，其中其不需要在聚合反应器中进一步使用铝氧烷。然而，其存在如下缺点：可能在反应器中出现污垢，因为不能完全防止催化剂的分离，以及由于可以与二氧化硅化合物的铝氧烷是有限的，因此可以由此合成的茂金属化合物也是有限的。

国际专利公开第 WO2002/040549 号公开了烯烃聚合催化剂，其包含载体、离子化活化剂（例如，二甲基硅烷四（五氟苯基）硼酸盐、三甲基甲烷四（五氟苯基）硼酸盐等）和负载的活化剂（例如茂金属化合物，MAO 等）；日本专利公开第 2008-121027 公开了用于制备烯烃聚合物的催化剂，其包含载体（例如，二氧化硅）、过渡金属化合物（例如，甲基铝氧烷、双茚基二氯化锆等）和 [PhMe_2Me][B(C_6F_5)_4]；美国专利公开 2006/0116490 号公开了用于聚合烯烃的茂金属催化剂，其包含茂金属化合物和与离子化合物化合的助催化剂（例如铝氧烷、四（五氟苯基）硼酸盐等）和载体；以及 Akhiro Yano 公开了乙烯聚合催化剂，其包含茂金属化合物和二甲基硅烷四（五氟苯基）硼酸盐（Me_3PhNH.B(C_6F_5)_4/三异丁基铝（t-BuAl），《分子催化剂杂志 A：化学》(Journal of Molecular Catalysis A: Chemical)156_2000. 133-141。然而，存在如下缺点：上述催化剂具有低活性，并且不能容易地控制分子量分布。

发明内容

技术问题

为了解决上述问题，本发明提供了一种用于制备高活性负载的茂金属催化剂的方法，与现有的负载的茂金属催化剂相比，所述茂金属催化剂可以以简单的步骤制备并且具有相当高的催化活性。

此外，本发明提供了一种用于制备聚烯烃的方法，其中，根据本发明所述的用于制备高活性的负载的茂金属催化剂的方法制备的负载的茂金属催化剂可以应用在在低压或高压下聚合的聚烯烃的聚合方法中，可以容易地控制聚烯烃的分子量分布，并且在制备过程中可以防止污垢。

技术方案
为了实现所述第一技术目的，本发明提供了一种用于制备负载的茂金属催化剂的方法，其中，所述茂金属化合物为选自由下面化学式1至化学式3表示的化合物中的一种或多种，以及，所述方法包括如下步骤：(i) 通过使载体与助催化剂反应制备负载有助催化剂的载体；(ii) 通过使茂金属化合物与负载有助催化剂的载体反应制备在载体中逐渐负载有助催化剂和茂金属化合物的催化剂前体；和 (iii) 通过使所述催化剂前体和助催化剂反应制备茂金属催化剂。

化学式 1

化学式 2

化学式 3

在上述化学式 1、2 或 3 中，

cp 和 cp’ 各自相同或不同，且选自环戊二烯基、芳基、4, 5, 6, 7- 四氢 -1- 芳基和芳基；r" 和 r'" 相同或不同，且为氨基、碳数为 1-20 的烷基、碳数为 23-3 的环烷基、碳数为 6-26 的芳基、碳数为 2-22 的链烯基、碳数为 7-27 的烷基芳基、碳数为 7-27 的芳基烷基、碳数为 8-28 的芳基链烯基或碳数为 1-20 的烷基甲硅烷基 (alkylsilyl)；r" 和 r'" 相同或不同，且为氢基或碳数为 1-6 的烃基；a、a’、b 或 b’ 分别为 1-4 的整数；

M 为元素周期表中 4B 族、5B 族或 6B 族的过渡金属；

Q 为卤素原子、或碳数为 1-20 的烷基、碳数为 2-22 的链烯基、碳数为 6-26 的芳基、碳数为 7-27 的烷基芳基、碳数为 7-27 的芳基烷基、或碳数为 1-20 的烷基，k 为 2 或 3，z 为 0 或 1，并且当 k 为 3 时，z 为 0；

B 为选自碳数为 1-4 的烷基或含有硅、锗、磷、氮、硼或铝的烃基；

在化学式 3 中，j 为选自 nr"、o、pr" 和 s 中的一种，r" 为碳数为 1-20 的烷基或取代的烷基；

位于 r'、r"、b 或 r" 上的氨基中的任意一个为由化学式 4, 5 或 6 表示的基团。
在上述化学式 4 中，
Z 为氧原子或硫原子，且优选为氧原子；
R 和 R’ 相同或不同，且为氨基、碳数为 1~20 的烷基、碳数为 3~23 的环烷基、碳数为 6~26 的芳基、碳数为 2~22 的链烯基、碳数为 7~27 的烷基芳基、碳数为 7~27 的芳基环基或碳数为 8~28 的芳基链烯基，优选优选相同或不同，且为碳数为 1~20 的烷基，两个 R’ 可以相互连接形成环；
G 为碳数为 1~20 的烷氧基、碳数为 6~26 的芳氧基、碳数为 1~20 的烷硫基、碳数为 6~26 的芳硫基，苯基或碳数为 1~20 取代的苯基，或者优选为碳数为 1~20 的烷氧基，且可以与 R’ 连接形成环；
当 Z 为硫原子时，G 应该为烷氧基或芳氧基；
当 G 为烷硫基、芳硫基、苯基或取代的苯基时，Z 应该为氧原子。][化学式 5]

在上述化学式 5 中，
Z’ 为氧原子或硫原子，或者优选为氧原子，两个 Z’ 中的至少一个为氧原子；
R 和 R’ 相同或不同，且为氨基、碳数为 1~20 的烷基、碳数为 3~23 的环烷基、碳数为 6~26 的芳基、碳数为 2~22 的链烯基、碳数为 7~27 的烷基芳基、碳数为 7~27 的芳基环基或碳数为 8~28 的芳基链烯基，或者优选相同或不同，且为碳数为 1~20 的烷基；
R 和 R’，或者两个 R’ 可以相互连接形成环。][化学式 6]

在上述化学式 6 中，
Z” 为氧、硫、氮、磷或砷原子，或者优选氧原子；
R’” 各自相同或不同，且为氨基、碳数为 1~40 的烷基、碳数为 3~43 的环烷基、碳数为 2~42 的链烷基。
数为 6~46 的芳基、碳数为 2~42 的链烯基、碳数为 7~47 的烷基芳基、碳数为 7~47 的芳基烷基或碳数为 8~48 的芳基链烯基，或者优选彼此相同或不同，且为碳数为 1~40 的烷基；
[0047] n”为各自为氢基、碳数为 1~40 的烷基、碳数为 6~46 的芳基、碳数为 2~42 的链烯基、碳数为 7~47 的烷基芳基、碳数为 1~40 的烷基甲硅烷基、碳数为 6~46 的芳基甲硅烷基、苯基或碳数为 6~46 的取代的苯基，优选碳数为 1~40 的烷基；
[0048] n 为 1 或 2，或优选为 1，当 Z”为氧或硫时，n 为 1；当 Z”为氢、磷或砷时，n 为 2]
[0049] 为了解决技术问题，本发明提供了一种用于制备聚烯烃的方法，其中，所述基于烯烃的单体在根据本发明制备的负载的茂金属催化剂的存在下被聚合。
[0050] 以下文中，将详细地描述本发明。
[0051] 用于制备根据本发明的用于聚烯烃的聚合的负载的茂金属催化剂的方法由如下步骤构成：(i) 通过使载体与助催化剂 1 反应制备负载有助催化剂的载体；(ii) 通过使负载有助催化剂的载体与茂金属化合物反应制备在载体中逐渐负载有助催化剂和茂金属化合物的催化剂前体；和 (iii) 通过使所述催化剂前体与助催化剂 2 反应制备茂金属催化剂。
[0052] 此时，上述步骤 ii) 可以由如下步骤构成：通过使化学式 2 或化学式 3 表示的茂金属化合物和化学式 1 表示的茂金属化合物与负载有助催化剂 1 的载体反应制备负载有茂金属化合物 1 和 2 和助催化剂 1 的载体。
[0053] 此外，在上述步骤 i) 之前，可以进一步实施如下步骤：通过使选自由化学式 1 至 3 表示的化合物中的一种或多种茂金属化合物与载体反应制备负载有茂金属化合物 1’的载体。
[0054] 特别地，本发明的特征在于包括如下步骤：(步骤 a1) 使包含铝的有机金属化合物的助催化剂 1 与所述载体反应；(步骤 b1) 通过使负载的助催化剂与茂金属化合物反应制备负载有助催化剂 1 和茂金属化合物的载体，所述茂金属化合物被官能团取代，例如作为环戊二烯、环戊二烯衍生物或桥基上的氧-给体（0-给体）的能够起到路易斯碱作用的氧基；或者通过其中包含硼的有机金属化合物的助催化剂 2 反应制备负载有茂金属化合物和助催化剂 1 和 2 的负载的茂金属催化剂；其中，本发明可以提供在反应器中不会产生污染同时在聚合烯烃的过程中不会使负载的催化剂分离的具有优异的聚合活性的负载的茂金属催化剂。
[0055] 所述载体和助催化剂 1 的反应 (a1) 可以在溶剂中或者不在溶剂中进行。可使用的溶剂包括脂肪族烃溶剂（例如，己烷和戊烷）和芳香烃溶剂（例如甲苯）。
[0056] 在上述步骤 (a1) 中的反应温度可以为 -20℃至 100℃，因为在上述温度范围内，所述反应溶剂可以以液态存在，且优选 -10℃至 100℃，更优选 0℃至 80℃，因为在上述温度范围内，所述反应可以最优地进行。同时，所述反应时间可以为 10 分钟至 24 小时。
[0057] 从上述过程中得到的负载有助催化剂的催化剂可以在其通过过滤或在减压下蒸馏除去反应溶剂后再使用，如有必要，可以在用芳族烃（例如甲苯）索氏过滤后再使用。
[0058] 用于茂金属催化剂和负载有助催化剂 1 的载体的反应 (b1) 的可使用的溶剂主要为有机溶剂，例如，脂肪族烃溶剂，如己烷和戊烷；芳香烃溶剂，例如甲苯和苯；氯原子取代的烃溶剂，如二氯甲烷；基于醚的溶剂，例如二乙醚和 THF；丙酮和乙酸乙酯，且优选为己烷、庚烷和甲苯。
[0059] 在上述步骤 (b1) 中，所述反应温度可以为 0℃至 100℃，以及反应时间可以优选为
5 分钟至 24 小时。

【0060】通过使用催化剂 2 与负载支架催化剂 1 和茂金属化合物的载体反应制备负载的茂金属化合物的步骤（c1）中可使用的溶剂主要为有机溶剂，例如，脂肪族烃溶剂，如己烷和戊烷；芳族烃溶剂，例如甲苯和苯；取代的烃溶剂，例如二氯甲烷；基于二乙醚的溶剂，例如二乙醚和 THF；丙酮和乙酸乙酯等，且优选己烷、庚烷和甲苯。

【0061】在上述步骤（c1）中，所述反应温度可以为 0°C 至 100°C，以及反应时间可以优选为 5 分钟至 24 小时。

【0062】此外，本发明的特征在于包括如下步骤：（步骤 a2）使包含铝的有机金属化合物的助催化剂 1 与所述载体反应；（步骤 b2）通过使负载的助催化剂与不同的两种以上的茂金属化合物相互反应制备负载有催化剂 1 和茂金属化合物 1 和 2 的载体，所述茂金属化合物被改性取代，例如作为环戊二烯、环戊二烯衍生物或桥基上的氧-给体（O-给体）的能够起到路易斯酸作用的烷氧基，和（步骤 c2）通过其中包含磷的有机金属化合物的助催化剂 2 反应制备负载有催化剂 1 和 2 和茂金属化合物 1 和 2 的复合的负载的茂金属化合物；其中，当聚合烯烃时所述负载的催化剂没有被分离，从而在反应器中没有出现污染，本发明还可以提供具有优异的聚合活性的复合的负载的茂金属催化剂。

【0063】所述载体和助催化剂 1 的反应（步骤 a2）可以在溶剂中或者不在溶剂中进行。可使用的溶剂包括脂肪族烃溶剂（例如，己烷和戊烷）和芳族烃溶剂（例如甲苯）。

【0064】在上述步骤（a2）中，反应温度可以为 -20°C 至 100°C，因为上述温度范围内，所述反应溶剂可以以液态存在，且优选 -10°C 至 100°C，更优选 0°C 至 80°C，因为在上述温度范围内，所述反应可以最优地进行。同时，所述反应温度可以为 10 分钟至 24 小时。

【0065】从上述过程中得到的负载催化剂的催化剂可以在其通过过滤或在减压下蒸馏而除去反应溶剂后再使用。如有必要，可以在用芳烃烃（例如甲苯）索氏过滤后再使用。

【0066】在茂金属催化剂与负载支架催化剂 1 的载体的反应（b2）中可使用的溶剂主要为有机溶剂，例如，脂肪族烃溶剂，如己烷和戊烷；芳族烃溶剂，例如甲苯和苯；取代的烃溶剂，例如二氯甲烷；基于二乙醚的溶剂，例如二乙醚和 THF；丙酮和乙酸乙酯等，且优选己烷、庚烷和甲苯。

【0067】在上述步骤（b2）中，所述反应温度可以为 0°C 至 100°C，以及反应时间可以优选为 5 分钟至 24 小时。

【0068】通过使用催化剂 2 与负载支架催化剂 1 和茂金属化合物 1 和 2 的载体反应制备复合的负载的茂金属催化剂的步骤（c2）中可使用的溶剂主要为有机溶剂，例如，脂肪族烃溶剂，如己烷和戊烷；芳族烃溶剂，例如甲苯和苯；取代的烃溶剂，例如二氯甲烷；基于二乙醚的溶剂，例如二乙醚和 THF；丙酮和乙酸乙酯等，且优选己烷、庚烷和甲苯。

【0069】在上述步骤（c2）中，所述反应温度可以为 0°C 至 100°C，以及反应时间可以优选为 5 分钟至 24 小时。

【0070】此外，本发明的特征在于包括如下步骤：（步骤 a3）通过使含选自上述化合物 1 至化合物 3 中的一种以上的茂金属化合物 1 与载体反应制备负载有茂金属化合物 1 的载体，所述茂金属化合物被改性取代，例如作为环戊二烯、环戊二烯衍生物或桥基上的氧-给体（O-给体）的能够起到路易斯酸作用的烷氧基；（步骤 b3）通过使包含铝的有机金属化合物的助催化剂 1 与负载有茂金属化合物 1 的载体反应制备负载有催化剂 1 和茂金属化合物...
的载体；
(步骤c3) 通过使选自化学式1至化学式3中的一种以上的茂金属化合物2
与负载有茂金属化合物1和助催化剂1的载体反应制备负载有茂金属化合物1、助催化剂1
和茂金属化合物2的载体；
(步骤d) 通过使包含硼的有机金属化合物的助催化剂2与
负载有茂金属化合物1、助催化剂1和茂金属化合物2的载体反应制备负载有茂金属化合物1、茂金属化合物2、助催化剂1和助催化剂2的负载的茂金属催化剂；其中，当聚合烯烃
时所述负载的催化剂没有被分离，从而在反应器中没有出现污垢，本发明还可以提供具有
优异的聚合活性的复杂的负载的茂金属催化剂。

[0071] 所述载体和茂金属化合物的反应(a3) 可以使用溶剂，以及可使用的溶剂主要为
有机溶剂，例如，脂肪族烃溶液，如己烷和戊烷；芳族烃溶剂，例如甲苯和苯；取代的烃溶
剂，例如二氯甲烷；基于二甲醚的溶剂，例如二甲醚和THF；丙酮和乙酸乙酯等，且优选己
烷、庚烷和甲苯。

[0072] 在上述步骤(a3) 中，所述反应温度可以为0℃至100℃，以及反应时间可以优选为
5分钟至24小时。

[0073] 通过使包含铝的有机金属化合物的助催化剂1与负载有茂金属化合物1的载体反
应(b3) 制备负载有茂金属化合物1和助催化剂1的载体的步骤可以在溶剂中或不在
溶剂中进行。可使用的溶剂包括脂肪族烃溶剂（例如，己烷和戊烷）和芳族烃溶剂（例如
甲苯）。

[0074] 在上述步骤(b3) 中，反应温度可以为-20℃至100℃，因为在上述温度范围内，所
述反应溶剂可以以液态存在，且优选-10℃至100℃，更优选0℃至80℃，因为在上述温度范
围内，所述反应可以最优地进行。同时，所述反应时间可以为10分钟至24小时。

[0075] 从上述过程中得到的负载有茂金属化合物1和助催化剂1的载体可以在其通过过滤
或在减压下蒸馏除去反应溶剂后再使用，如有必要，可以在用芳族烃（例如甲苯）索氏过
滤后再使用。

[0076] 通过使选自化学式1至化学式3中的一种以上的茂金属化合物与负载有茂金属化合
物1和助催化剂1的载体反应制备负载有茂金属化合物1、助催化剂1和茂金属化合物2
的载体的步骤(c3) 中可以使用溶剂，以及可使用的溶剂主要为有机溶剂，例如，脂肪族烃
溶剂，如己烷和戊烷；芳族烃溶剂，例如甲苯和苯；取代的烃溶剂，例如二氯甲烷；基于二
甲醚的溶剂，例如二甲醚和THF；丙酮和乙酸乙酯等，且优选己烷、庚烷和甲苯。

[0077] 在上述步骤(c3) 中，所述反应温度可以为0℃至100℃，以及反应时间可以优选为
5分钟至24小时。

[0078] 通过使包含硼的有机金属化合物的助催化剂2与负载有茂金属化合物1、助催化
剂1和茂金属化合物2的载体中反应制备负载有茂金属化合物1、助催化剂1、茂金属化合
物2的载体反应制备负载有茂金属化合物1、茂金属化合物2、助催化剂1和助催化剂2的负
载的茂金属催化剂的步骤(d) 中可以使用溶剂，以及可使用的溶剂主要为有机溶剂，例如，
脂肪族烃溶剂，如己烷和戊烷；芳族烃溶剂，例如甲苯和苯；取代的烃溶剂，例如二氯甲烷；
基于二甲醚的溶剂，例如二甲醚和THF；丙酮和乙酸乙酯等，且优选己烷、庚烷和甲苯。

[0079] 在上述步骤(d) 中，所述反应温度可以为0℃至100℃，以及反应时间可以优选为
5分钟至24小时。

[0080] 从上述过程中得到的负载有茂金属的催化剂可以在其通过过滤或在减压下蒸馏
除去反应溶剂后再使用，如有必要，可以在用糠族烃（例如甲苯）索氏过滤后再使用。

【0081】使用根据本发明的负载的茂金属催化剂的聚烯烃的组合可以通过使用溶液法、溶浆法或气相法、或渗浆法和气相法的组合的所有方法进行，且优选使用溶浆法或气相法。

【0082】根据本发明的负载的茂金属催化剂可以通过在溶剂中以溶浆的形式稀释而被注入，所述溶剂为碳数为5-12的脂肪烃溶剂，例如戊烷、己烷、庚烷、壬烷、癸烷及其异构体；芳香烃溶剂，例如甲苯和苯；和被氮原子取代的烃溶剂，例如二氯甲烷和氯苯。在此的溶剂可以优选通过少量的烃基铝处理除去起到催化毒作用的微量的水、空气等而使用，其还可以进一步使用助催化剂。

【0083】可以通过使用根据本发明的负载的茂金属催化剂聚合的基于烯烃的单体包括：乙烯、丙烯、α-烯烃、环烯烃等，以及还可以聚合含有两个以上的双键的基于二烯烃的单体、基于三烯烃的单体等。上述单体的实例包括：乙烯、丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯、1-癸烯、1-十一碳烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-二十碳烯（1-indene）、降冰片烯、降冰片二烯、乙叉降冰片烯、乙烯基降冰片烯、环戊二烯、1-丁二烯、1,5-戊二烯、1,6-己二烯、苯乙烯、α-甲基苯乙烯、二乙烯基苯、3-氯甲基苯乙烯等，以及可以通过混合两种以上的单体而共聚合上述单体。

【0084】也就是说，根据本发明的方法可以由如下步骤构成：通过使包含铝的有机金属化合物的助催化剂1与所述载体反应制备负载有催化剂1的载体；通过使负载有催化剂1的载体与茂金属化合物反应制备负载有催化剂1和茂金属化合物的载体；和通过使包含硼的有机金属化合物的助催化剂2与负载有催化剂自由化学式1至化学式3表示的茂金属化合物和助催化剂1的载体反应制备负载有茂金属化合物和助催化剂1和2的载体的茂金属化合物催化剂。

【0085】通过使包含铝的有机金属化合物的助催化剂1与所述载体反应制备负载有催化剂1的载体；通过使由化学式1或化学式3表示的茂金属化合物和由化学式1表示的茂金属化合物与负载有催化剂1的载体反应制备负载有催化剂1和茂金属化合物的载体；和通过使包含硼的有机金属化合物的助催化剂2与负载有催化剂1和茂金属化合物的载体反应制备负载有催化剂1和2的茂金属化合物的载体；或者优选地，通过使由上述化学式1至化学式3表示的化合物中的一种以上的茂金属化合物与所述载体反应制备负载有茂金属化合物的载体；通过使包含铝的有机金属化合物的助催化剂1与负载有茂金属化合物的载体反应制备负载有催化剂1和茂金属化合物的载体；通过使由化学式1至化学式3表示的化合物中的一种以上的茂金属化合物与负载有茂金属化合物的载体反应制备负载有催化剂1和茂金属化合物的载体；通过使包含硼的有机金属化合物的助催化剂2与负载有茂金属化合物的载体反应制备负载有催化剂1和茂金属化合物的载体；和通过使包含硼的有机金属化合物的助催化剂2与负载有茂金属化合物的载体反应制备负载有催化剂1和茂金属化合物的载体。
[0091] [化学式 3]

[0092]

[0093] [在上述化学式 1、2 或 3 中，]

[0094] Cp 和 Cp’ 各自相同或不同，且选自环戊二烯基、茚基、4, 5, 6, 7-四氢-1-茚基和芴基；R’和 R”相同或不同，且为氢基、碳数为 1~20 的烷基、碳数为 3~23 的环烷基、碳数为 6~26 的芳基、碳数为 2~22 的链烯基、碳数为 7~27 的烷烃芳基、碳数为 7~27 的芳基烷基、碳数为 8~28 的芳基链烯基或碳数为 1~20 的烷基甲硅烷基 (alkylsilyl); R’和 R”相同或不同，且为氢基或碳数为 1~6 的烃基; a, a’, b 或 b’ 分别为 1~4 的整数；

[0095] M 为元素周期表中 4B 族、5B 族或 6B 族的过渡金属；

[0096] Q 为卤素原子或碳数为 1~20 的烷基、碳数为 2~22 的链烯基、碳数为 6~26 的芳基、碳数为 7~27 的烷烃芳基、碳数为 7~27 的芳基烷基或碳数为 1~20 的亚烷基，k 为 2 或 3, z 为 0 或 1，并且当 k 为 3 时，z 为 0；

[0097] B 为选自碳数为 1~4 的烷基或含有硅、锗、磷、硫、硼或铝的烃基；

[0098] 在化学式 3 中，J 为选自 NR’, O、PR’和 S 中的一种，R”为碳数为 1~20 的烷基或取代的烷基；

[0099] 位于 R”, R”, B 或 R”上的氨基中的任意一个为由化学式 4, 5 或 6 表示的基团]

[0100] [化学式 4]

[0101]

[0102] [在上述化学式 4 中，]

[0103] Z 为氧原子或硫原子，且优选为氧原子；

[0104] R 和 R’相同或不同，且为氢基、碳数为 1~20 的烷基、碳数为 3~23 的环烷基、碳数为 6~26 的芳基、碳数为 2~22 的链烯基、碳数为 7~27 的烷烃芳基、或碳数为 7~27 的芳基烷基、碳数为 8~28 的芳基链烯基，或者优选相同或不同，且为碳数为 1~20 的烷基，两个 R’ 可以相互连接形成环；

[0105] G 为碳数为 1~20 的烷氧基、碳数为 6~26 的芳氧基、碳数为 1~20 的烷硫基、碳数为 6~26 的芳硫基，苯基或碳数为 1~20 取代的苯基，或者优选为碳数为 1~20 的烷氧基，且可
以与 R' 连接形成环；

【0106】当 Z 为硫原子时, G 应该为氧原子或芳氧基；

【0107】当 G 为烷基基、芳基基, 苯基或取代的苯基时, Z 应该为氧原子]

【0108】[化学式 5]

【0109】

【0110】[在上述化学式 5 中,]

【0111】Z' 为氧原子或硫原子, 或者优选为氧原子, 两个 Z' 中的至少一个为氧原子；

【0112】R 和 R'' 相同或不同, 且为碳数为1~20 的烷基、碳数为3~23 的环烷基、碳数为6~26 的芳基、碳数为 2~22 的链烯基, 碳数为 7~27 的烷基芳基、碳数为 7~27 的芳基烷基、碳数为 8~28 的芳基链烯基, 或者优选相同或不同, 且为碳数为 1~20 的烷基, 两个 R' 可以相互连接形成环；

【0113】R 和 R'', 或者两个 R'' 可以相互连接形成环]

【0114】[化学式 6]

【0115】

【0116】[在上述化学式 6 中,]

【0117】Z'' 为氧、硫、氮、磷或砷原子, 或者优选氧原子；

【0118】R''' 各自相同或不同, 且为氢基、碳数为 1~40 的烷基、碳数为 3~43 的环烷基、碳数为 6~46 的芳基、碳数为 2~42 的链烯基, 碳数为 7~47 的烷基芳基、碳数为 7~47 的芳基烷基、碳数为 8~48 的芳基链烯基, 或者优选彼此相同或不同, 且为碳数为 1~40 的烷基；

【0119】R'''' 各自为氢基、碳数为 1~40 的烷基、碳数为 6~46 的芳基、碳数为 2~42 的链烯基、碳数为 7~47 的烷基芳基、碳数为 1~40 的烷基甲硅烷基、碳数为 6~46 的芳基甲硅烷基、苯基或碳数为 6~46 的取代的苯基, 优选碳数为 1~40 的烷基；

【0120】n 为 1 或 2, 或优选为 1, 当 Z'' 为氧或硫时, n 为 1; 当 Z'' 为氮、磷或砷时, n 为 2]

【0121】在由化学式 1 至化学式 3 表示的化合物中, M 为钛、锆或铪, Q 优选为卤素, 最优选为氯, 以及 K 优选为 2。

【0122】同时, 根据本发明的由上述化学式 1 表示的茂金属化合物的典型的实例为

\[
[A-O-(CH_2)_a-C_3H_5]^2ZrCl_4\text{或 } [A-O-(CH_2)_a-C_3H_5]_2ZrCl_3, \text{其中 } a \text{ 为 } 4~8 \text{ 的整数, 以及 } A \text{ 可以为选自甲氧基甲基、叔丁氧基甲基、四氢吡喃基、四氢呋喃基、1-乙氧基乙基、1-甲基-1-甲氧基乙基和叔丁基中的一种。}
\]
【0123】 同时，对于由上述化学式2表示的化合物，B为位于两个C₉环之间的且赋予催化剂中的C₇环立体刚性的结构性联结，C₇环基本以不同的方式被取代，从而赋予两个C₇环之间的立体差异，以及选择R³,R⁴,R⁵,从而使 (C₇R⁴R⁵) 为基本不同于 (C₇R⁴R⁵) 的环。

【0124】 根据优选的实施例，由上述化学式2表示的茂金属化合物的典型的实例包括 [A-0-(CH₃)₂-C₃H₅]C(CH₃)₃(C₇H₅)₂ZrCl₂, [A-0-(CH₃)₂-C₃H₅]Si(CH₃)₃(C₇H₅)₂ZrCl₂, [C₇H₅]C(CH₃)₃(A-0-(CH₃)₂-C₃H₅)₂ZrCl₂, [C₇H₅]C(CH₃)₃(A-0-(CH₃)₂-C₃H₅)₂ZrCl₂, 其中，a 为 4~8 的整数，以及 A 可以为选自甲氧基甲基，叔丁氧基甲基，四氢吡喃基，四氢呋喃基，1-乙基氧乙基，1-甲基-1-甲氧基乙基和叔丁基中的一种。

【0125】 根据本发明的优选的实施例，由上述化学式3表示的茂金属化合物的典型的实例为 [(A’-D-(CH₅)₃)](CH₃)₃X(C₇H₅)(NCMe₅)₂]TiCl₂, 其中，X 为亚甲基，亚乙基或硅，D 为氧原子或氮原子，以及 A’ 可以为选自氢，碳数为 1~20 的烷基，链烯基，芳基，烷基芳基，芳基烷基，烷基甲硅烷基，基甲硅烷基，甲氧基甲基，叔丁氧基甲基，四氢基甲基，四氢吡喃基；1-乙基氧乙基， 1-甲基-1-甲氧基乙基和叔丁基中的基团。

【0126】 用于本发明的载体含有羟基和硅氧烷基团，其在通过干燥除去表面的水之后具有高反应性。具体而言，可以使用在高温下干燥的二氧化硅、氧化硅-氧化铝，二氧化硅-氧化镁等，以及它们通常包括氧化物，磷酸盐，磷酸盐和磷酸盐组分，例如，Na₂O，K₂CO₃，BaSO₄，Mg(NO₃)₂。此时，所述干燥温度为 200 至 800°C，优选 300 至 600°C，且更优选 500 至 400°C；当其低于 200°C 时，由于大量的水，助催化剂可以与表面的水反应；当其超过 800°C 时，由于羟基大量消失而仅留下硅氧烷基团从而与助催化剂反应的位点减少，其是不合适的。

【0127】 由上述化学式7表示的助催化剂1为包含铝的有机金属化合物，其与在常用的茂金属催化剂的存在下用于聚合烯烃的助催化剂相同。当上述助催化剂1被负载时，负载在载体上的羟基与铝金属结合。

【0128】 [化学式7]

【0129】 [Al(R⁵)-O]-

【0130】 在上述化学式7中，n 为 1~20 的烃基或被卤素取代的烃基，且 n 为 2 以上的整数]。

【0131】 用于上述化学式7表示的化合物可以线性，环形或网状的形式存在，上述化合物的实例包括甲基铝氧烷（MAO）、乙基铝氧烷，异丁基铝氧烷，丁基铝氧烷等。

【0132】 其后，由上述化学式8表示的化合物被所述为第二助催化剂，从而可以制备负载的茂金属催化剂。

【0133】 [化学式8]

【0134】 [T^³[BQ]⁻]

【0135】 在上述化学式8中，

【0136】 T^³为化合价为 +1 的多原子离子，B 为 +3 形式的氧化态的硅，以及 Q 分别独立地选自氢化物，二烷基酰胺基（dialkylamido），卤化物，醇化物，芳醚，烃基，卤化烃基（halocarbyl）和卤代烃基，且上述的 Q 含有 20 以下的碳原子，但是仅有一个 Q 为卤化物]。
括：三取代的酰胺，例如三基甲基酰胺、四苯基四苯基硼酸盐、三乙基酰胺
四苯基硼酸盐、三丙基酰胺、四苯基硼酸盐、三正丁基酰胺、四苯基硼酸盐、三甲基酰胺、四苯基硼酸盐、二正丁基酰胺、四苯基硼酸盐、三乙基酰胺、四苯基硼酸盐、三丙基酰胺、四苯基硼酸盐、二甲基酰胺、四苯基硼酸盐、三乙基酰胺、四苯基硼酸盐、二正丁基酰胺、四苯基硼酸盐、三乙基酰胺、四苯基硼酸盐、二甲基酰胺、四苯基硼酸盐、二乙基酰胺、四苯基硼酸盐、二甲基酰胺、二丙基酰胺、二甲基酰胺、二乙基酰胺、二丙基酰胺、二甲基酰胺。上述酰胺可以由一个酰胺和两个C11或C16酰胺的胺得到。上述三取代酰胺的胺为Witco公司注册商标Kemamine T970和Akzo Nobel注册商标为ArmeenM2HT。

【0139】同时，在所述负载的茂金属催化剂中[硼]/[过渡金属]的摩尔比可以为0.01 至1,000，优选0.1至100，且更优选0.2至10；上述重合摩尔比小于0.01时，增加的活性效果非常低，因为低含量的硼，以及当其超过1,000时，活性不再增加，并且残留的但是没有负载的硼酸盐的含量增加，从而在聚合过程中其可以导致在反应器中的污垢。

【0140】此外，根据本发明制备的负载的茂金属催化剂实际上可以用于烯烃的聚合中，以及分别地，使所述催化剂与基于烯烃单体（例如乙烯、丙烯、1-丁烯、1-己烯、1-辛烯等）接触从而可以制备预聚合的催化剂，然后再使用。

【0141】在下面的实施例中的聚合和制备催化剂的过程中需要的有机试剂和溶剂为购自Aldrich公司的产品，其通过标准方法纯化。使用购自Applied GasTechnology公司的高纯度的乙烯，在其经过水和氧气过滤机之后进行聚合，以及在所有的催化剂制备、负载和聚合的过程中禁止与空气和水接触从而提高实验的再现性。

【0142】同时，为了确认催化剂的结构，使用300MHz NMR(Bruker)得到图谱。

【0143】同时，为了分析负载的催化剂，使用购自GBC公司生产的XRF积分模式的ICP—AES（电感耦合等离子体原子发射光谱仪）。从上述的ICP分析，可以知道在与负载的催化剂反应后滤液中的锆和硼的浓度。

【0144】有益效果

【0145】根据用于制备本发明的负载的茂金属催化剂的方法，其具有如下效果：由简单方法制备的负载的茂金属催化剂可以应用于在低压或高压下聚合的聚烯烃的聚合，可以控制制备的聚烯烃的分子量分布，以及与现有的茂金属催化剂相比催化剂活性非常高，并且通
具体实施方式

[0146] 在下文中，参照优选的实施例将更加详细地描述本发明，但不限于此。

[0147] 在下文中，将描述优选的实施例从而理解本发明，但是下面的实施例仅用于描述本发明的实施例，以及本领域的技术人员容易理解的是在本发明的实质和范围内的多种修改和变化是可能的，而所述修改和变化归于所述的权利要求中。

[0148] 实施例

[0149] 实施例

[0150] 在下面的实施例中的聚合和制备催化剂的过程中需要的有机试剂和溶剂为购自Aldrich公司的产品，其通过标准方法纯化，使用购自Applied Gas Technology公司的高纯度的乙烷，在其经过水和氧气过滤器之后进行聚合，以及在所有的催化剂制备、负载和聚合的过程中禁止与空气和水接触从而提高实验的再现性。

[0151] <茂金属化合物的合成>

[0152] <合成实施例1 [t-Bu-0-(CH2)n-C6H5]2ZrCl4的合成>

[0153] 1. 根据在文献Tetrahedron Lett.2951(1988)公开的方法，使用6-氯乙醇制备t-Bu-0-(CH2)n-C6H5并与NaCl反应得到t-Bu-0-(CH2)n-C6H5Cl (产率：60%，沸点80°C /0.1mmHg)。此外，在-78°C下将t-Bu-0-(CH2)n-C6H5溶解在THF中，缓慢加入正丁基锂，然后将其温度升至室温，然后反应8小时。在-78°C下缓慢加入预合成的锂盐的ZrCl4(THF)2(1.70g, 4.50mmol)/THF(30mL)的悬浊液之后，在室温下再次使上述溶液反应6小时。所有易挥发的物质均在真空下干燥，然后通过加入已烷溶液过滤得到油性液体物质。在真空中干燥过滤的溶液之后，加入已烷以在低温(-20°C)下沉淀。过滤得到的沉淀物得到[tBu-0-(CH2)n-C6H5]2ZrCl4化合物，其为白色固体物质的物质(产率：92%)。

[0154] 3H NMR (300MHz, CDCl3): 6.28 (t, J=2.6Hz, 2H), 6.19 (t, J=2.6Hz, 2H), 3.31 (t, 6.6Hz, 2H), 2.62 (t, J=8Hz), 1.7–1.3 (m, 8H), 1.17 (s, 9H).

[0156] <合成实施例2> [甲基-(6-叔丁氧基乙基)甲硅烷基(n=5-四甲基-CP)(叔丁基氧基烷基)TiCl4的合成>

[0157] 在室温下将50g的Mg (固体)加入到10L的反应器中之后，加入300mL的THF。在加入250g的L之后，使反应器的温度保持在50°C。在使反应器的温度稳定之后，使用送料泵将25g的6-叔丁氧基乙基氯以5mL/分钟的速率加入到反应器中。根据加入6-叔丁氧基乙基氯，可以观察到反应器的温度升高到约4-5°C。在持续加入6-叔丁氧基乙基氯的同时，继续搅拌12小时。在反应12小时之后，可以得到黑色反应溶液。取出2mL的制备的黑色溶液之后，加入水以得到有机层，从而可以理解通过3H-NMR可以确认6-叔丁氧基乙基氯和由6-叔丁氧基乙基氯令人满意地进行格氏反应。然后，合成6-叔丁氧基乙基氯化镁。

[0158] 将500g的MeSiCl3和1L的THF加入到反应器中，然后使温度冷却至-20°C。使用加料泵以5mL/分钟的速率加入500g的合成的6-叔丁氧基乙基氯化镁。在完成加入格氏试剂之后，进行搅拌12小时，同时使反应器的温度逐渐升高至室温。在12小时的反应后，可以观
察到产生了白色的 MgCl₂盐。加入 4L 的己烷通过实验用滤脱水过滤机 (labdori, HanKang Engineering 公司) 去除盐可以得到滤液。在将所得的滤液加入到反应器中之后，通过在 70℃下加入己烷可以得到浅黄色的液体。通过 1H-NMR 可以确认所得的液体为所需的甲基（6-叔丁氧基甲基）二氯硅烷。

\[{\text{1H-NMR (CDCl₃): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H).}} \]

[0159] 在将 1.2 摩尔 (150g) 的四甲基环戊二烯和 2.4L 的 THF 加入到反应器中之后，使温度冷却至 -20℃。使用加料泵将 480ml 的正丁基锂以 5ml/分钟的速率加入到反应器中。在加入正丁基锂之后，保持搅拌 12 小时，同时使反应器的温度逐渐升高至室温。在反应 12 小时之后，将 1 当量的甲基（6-叔丁氧基甲基）二氯硅烷（326g, 350ml) 快速加入到反应器中。当将反应器的温度逐渐升高至室温时，保持搅拌 12 小时；再次将反应器的温度冷却至 0℃；然后加入 2 当量的 t-BuNiH。搅拌反应器 12 小时，同时使反应器的温度逐渐升高至室温。在反应 12 小时后，除去 THF；加入 4L 的手烷，通过 labdori 可以得到无色的滤液。在将所得的滤液再次加入到反应器中之后，通过在 70℃下除去己烷可以得到黄色的溶液。通过 1H-NMR 可以确认所得的黄色溶液为甲基（6-叔丁氧基甲基）（四甲基 Cpxl)叔丁基氨基硅烷化合物。

[0161] 将 TiCl₃ (THF) (310mmol) 快速加入到 -78℃的配体的二氯盐中，所述配体的二氯盐是由 n-BuLi 和配体甲基（四甲基 Cpxl) 叔丁基氨基硅烷在 THF 溶液中合成的。当将反应溶液逐渐从 -78℃升高至室温时，保持搅拌 12 小时。在搅拌 12 小时之后，在室温下向反应器中加入 1 当量的 PbCl₂ (10mmol) 之后保持搅拌 12 小时。在搅拌 12 小时之后，可以得到青黑色的溶液。在从制备的反应溶液中除去 THF 之后，通过加入己烷过滤产物。在从所得的滤液中除去己烷之后，通过 1H-NMR 可以确认为所需的 [甲基 (6-叔丁氧基甲基) 甲硅烷基 (n⁵-四甲基 Cpxl) (叔丁基氨基)] TiCl₂。

[0162] \[{\text{1H-NMR (CDCl₃): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8-0.8 (m), 1.4 (s, 9H), 1.2 <1 36 (s, 9H), 0.7 (s, 3H).}} \]

[0163] \[\text{合成实施例 3: [(Cpxl)_2-CpH]-ZrCl₃ 的制备} \]

[0164] 使用购自 Aldrich 公司的产品。

[0165] \[\text{合成实施例 4-6: 叔丁氧基甲基甲硅烷基双齿基二氯化锆的合成} \]

[0166] 在 0℃下在 20 分钟内将 17.5ml 的 2.5M n-BuLi 溶液注入到溶于 20ml 的醚中的 5ml 的醚中，在室温下保持搅拌 2 小时。在将 5.25g的叔丁氧基甲基甲硅烷基二氯化锆溶于 1mol 的醚之后，在 -78℃下在 10 分钟内将其加入到醚基锂溶液中。在室温下在搅拌反应溶液 3 小时之后，通过过滤除去氯化锂，在真空在干燥溶剂，因而得到与结构同分异构体混合的产物。通过 1H-NMR 确认结构同分异构体。

[0167] \[{\text{1H NMR (500MHz, CDCl₃): 1.17 (叔丁氧基, 9H, s), 3.59 (t, 2H, m), 0.21 (MeSi, 3H, s), 0.47 (CH₂, 2H, m), 0.89 (CH₂, 2H, m), 1.28 (CH₂, 2H, m), 1.56 (CH₃, 4H, m), 3.26 (OCH₃, t, JHH=0.014), 7.48 (ArH, 2H, m), 7.38 (ArH, 2H, m), 7.26 (ArH, 2H, m), 7.16 (ArH, 2H, m), 6.90 (ArH, H, m), 6.60 (ArH, 2H, m).}} \]

[0168] 将如上所述的通过 1H NMR 确认的物质溶于 40ml 的醚中，然后在 -78℃下在 20 分钟内注入到 17.5ml 的 2.5M 的 n-BuLi 溶液中。在室温下搅拌 3 小时之后，在加入己烷固化
后通过过滤得到产物。

将 1g 的氯化钻加入到 20ml 的甲苯中，然后搅拌。将 30ml 的甲苯 / 醋的 1:2 溶液加入到 2.3g 的根据上述方法得到的配体固体中，然后在 -78°C 下在 20 分钟内将其注入到氯化氢溶液中。在室温下搅拌 16 小时后，进行过滤。通过用已烷重结晶所述物质得到最终的催化剂。

[0170] 1H NMR (500MHz, CDCl₃): 1.15 (未指基氧, 9H, s), 1.12 (MeSi, 3H, s), 1.34 (CH₃, 6H, m), 4.47 (CH₂, 2H, m), 1.60 (CH₂, 2H, m), 3.26 (CH₂, t, J=11.04, 7.40 (ArH, 2H, m), 7.33 (ArH, 2H, m), 7.28 (ArH, 2H, m), 6.76 (ArH, 2H, m), 6.90 (ArH, 2H, m), 5.83 (ArH, 2H, m)。

[0171] <合成实施例 5> [t-Bu-O-(CH₂)₅-C₆H₄]₂HCl₃ 的合成

[0172] 根据在文献（Tetrahedron Lett. 2951 (1988)）公开的方法，使用 6-氯己酯制备 t-Bu-O-(CH₂)₅-C₆H₄，并与 NaCp 反应得到 t-Bu-O-(CH₂)₅-C₆H₄(产率 60%，沸点 80°C/0.1mmHg)。此外，在 -78°C 下将 t-Bu-O-(CH₂)₅-C₆H₄溶于 THF 中；逐渐增加正丁基锂 (n-BuLi) 将温度升至室温；然后反应 8 小时。再在 -78°C 下缓慢加入预合成的锂盐的 HfCl₄(1.44g, 5.50mmol) / THF (30ml) 的悬浮液之后，在室温下再次使上述溶液反应 6 小时。所有易挥发的产物均在真空下干燥，然后通过加入己烷溶剂过滤得到油性液体物质。在真空中干燥过滤溶剂之后，加入已烷以在低温(-20°C)下沉淀。过滤得到的沉淀物得到 [t-Bu-O-(CH₂)₅-C₆H₄]₂HfCl₄，其中为白色固体物质的形式（产率 88%）。

[0173] 1H-NMR (300MHz, CDCl₃): 6.19 (t, J=2.6Hz, 2H), 6.08 (t, J=2.6Hz, 2H), 3.31 (t, 6.6Hz, 2H), 2.65 (t, J=8Hz, 1.56-1.48 (m, 4H), 1.34 (m, 4H), 1.17 (s, 9H)。

[0174] 13C-NMR (CDCl₃): 134.09, 116.06, 111.428, 72.42, 61.33, 30.42, 30.67, 30.14, 29.20, 27.52, 26.01。

[0175] <制备由助催化剂 1 层 + 异金属催化剂层 + 助催化剂 2 层组成的催化剂的制备实施例 4>

[0176] 制备实施例 1

[0177] 将 10ml 的甲苯加入到 3g 的表面积为 280m²/g 和孔体积为 1.47ml/g 且被增塑化的二氧化硅（Sylpodol 2212, Grace Davison）中；在 70°C 下与 MAO 15ml（10wt% 的甲苯溶液）反应 2 小时；然后通过用甲苯洗涤除去未反应的 MAO 溶液。在 50°C 下，在其与 0.72 毫摩尔的由合成实施例 1 得到的含有叔丁氧基基团的异金属化合物反应 1 小时之后，用甲苯洗涤。然后，在 50°C 下使其与 1.2 毫摩尔的三苯甲基（五氟苯基）硼酸盐（TB）反应 1 小时，然后在 50°C 下在减压下干燥制备固态的催化剂。硼 (B)/ 过渡金属 (Zr) 的摩尔比为 1.3。

[0178] 制备实施例 2

[0179] 除了使用 0.6 毫摩尔三苯甲基（五氟苯基）硼酸盐（TB）之外，使用与制备实施例 1 相同的方法。硼 (B)/ 过渡金属 (Zr) 的摩尔比为 0.7。

[0180] 制备实施例 3

[0181] 除了使用 0.15 毫摩尔三苯甲基（五氟苯基）硼酸盐（TB）之外，使用与制备实施例 1 相同的方法。硼 (B)/ 过渡金属 (Zr) 的摩尔比为 0.2。

[0182] 制备实施例 4

[0183] 除了使用二甲基苯铵（五氟苯基）硼酸盐 (AB) 代替 TB 之外，使用与制备实施例 1 相同的方法。
[0184] 制备实施例 5
[0185] 除了使用由合成实施例 2 得到的包含叔丁氧基基团的茂金属化合物代替由合成实施例 1 得到的茂金属化合物之外，使用与制备实施例 1 相同的方法。
[0186] 制备实施例 6
[0187] 除了使用由合成实施例 4 得到的基于双烯基的茂金属化合物代替由合成实施例 1 得到的茂金属化合物之外，使用与制备实施例 1 相同的方法。
[0188] 制备对比实施例 1
[0189] 除了使用 30ml 的 MAO 代替 15ml 的 MAO 且不使用 TB 之外，使用与制备实施例 1 相同的方法。
[0190] 制备对比实施例 2
[0191] 除了在 50°C 下使 15ml 的 MAO（10wt% 的甲苯溶液）反应 1 小时；用甲苯洗涤除去未反应的 MAO；在 50°C 下减压；然后干燥，代替三苯甲基四（五氟苯基）硼酸盐（TB）之外，以与制备实施例 1 相同的方法制备。
[0192] 制备对比实施例 3
[0193] 除了不使用 TB 之外，使用与制备实施例 5 相同的方法。
[0194] 制备对比实施例 4
[0195] 除了使用由合成实施例 3 得到的茂金属化合物之外，使用与制备实施例 1 相同的方法。
[0196] 制备对比实施例 5
[0197] 除了不使用 TB 之外，使用与制备实施例 4 相同的方法。
[0198] 制备对比实施例 6
[0199] 除了不使用 TB 之外，使用与制备实施例 6 相同的方法。
[0200] < 聚乙烯的制备和物理性能的评估 >
[0201] 实施例 1
[0202] 将 3L 正己烷注入到体积为 5L 的高压反应器中，同时不与空气和氧气接触；注入三乙基铝使得对正己烷的浓度为 0.6mmol/L 的三乙基铝，然后注入 30mg 的由制备实施例 1 得到的固态的催化剂。然后，在 80°C 下连续注入乙烯以聚合 2 小时，同时保持 9 巴的压力。然后，停止供给乙烯，除去压力完成反应。分离由上述方法得到的悬浮液，并干燥制备聚乙烯粒子。
[0203] 实施例 2
[0204] 除了使用由制备实施例 2 得到的催化剂代替由制备实施例 1 得到的催化剂之外，使用与实施例 1 相同的方法。
[0205] 实施例 3
[0206] 除了使用由制备实施例 3 得到的催化剂代替由制备实施例 1 得到的催化剂之外，使用与实施例 1 相同的方法。
[0207] 实施例 4
[0208] 除了使用由制备实施例 4 得到的催化剂代替由制备实施例 1 得到的催化剂之外，使用与实施例 1 相同的方法。
[0209] 实施例 5
[0210] 除了使用由制备实施例5得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0211] 实施例6
[0212] 除了使用由制备实施例6得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0213] 实施例7
[0214] 除了注入30mg的由制备对比实施例1得到的固态的催化剂代替由制备实施例1得到的催化剂，然后还注入对应于摩尔比为B/Zr=2的量的TB之外，使用与实施例1相同的方法。
[0215] 实施例8
[0216] 除了在40巴下聚合乙烯之外，使用与实施例1相同的方法。
[0217] 实施例9
[0218] 除了使用AB代替TB之外，使用与实施例1相同的方法。
[0219] 对比实施例1
[0220] 除了使用由制备对比实施例1得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0221] 对比实施例2
[0222] 除了使用由制备对比实施例4得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0223] 对比实施例3
[0224] 除了使用由制备对比实施例3得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0225] 对比实施例4
[0226] 除了使用由制备对比实施例5得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0227] 对比实施例5
[0228] 除了使用由制备对比实施例6得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0229] 对比实施例6
[0230] 除了使用由制备对比实施例2得到的催化剂代替由制备实施例1得到的催化剂之外，使用与实施例1相同的方法。
[0231] 对比实施例7
[0232] 除了在40巴下聚合乙烯之外，使用与对比实施例1相同的方法。
[0233] 物理性能的评估
[0234] 1) 熔体指数(MI, 2.16kg): 评估温度:190℃，基于ASTM 1238评估。
[0235] 2) 高负载熔体指数(HLMI, 21.16kg): 评估温度:190℃，基于ASTM 1238评估。
[0236] 3) MFR(HLMI/MI): 比率为将HLMI熔体指数(MI, 21.16kg负载)除以MI(MI, 2.16kg负载)。
[0237] 表1为低压聚合性能，其中，在乙烯聚合过程中压力为9巴，以及表2为高压聚合

22
性能，其中，在乙烯聚合过程中，压力为 40 巴。

【表 1】

<table>
<thead>
<tr>
<th>组</th>
<th>硼酸盐助催化剂</th>
<th>负载的茂金属催化剂</th>
<th>活性(kgPE/g 催化剂)</th>
<th>MI(2.16Kg) (g/10min)</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>TB</td>
<td>制备实施例 1</td>
<td>39</td>
<td>1.2</td>
<td>17</td>
</tr>
<tr>
<td>实施例 2</td>
<td>TB</td>
<td>制备实施例 2</td>
<td>36</td>
<td>0.85</td>
<td>18</td>
</tr>
<tr>
<td>实施例 3</td>
<td>TB</td>
<td>制备实施例 3</td>
<td>7</td>
<td>0.69</td>
<td>19</td>
</tr>
<tr>
<td>实施例 4</td>
<td>AB</td>
<td>制备实施例 4</td>
<td>31</td>
<td>1.1</td>
<td>17</td>
</tr>
<tr>
<td>实施例 5</td>
<td>TB</td>
<td>制备实施例 5</td>
<td>3.5</td>
<td><0.1</td>
<td>-</td>
</tr>
<tr>
<td>实施例 6</td>
<td>TB</td>
<td>制备实施例 6</td>
<td>4.5</td>
<td>0.68</td>
<td>35</td>
</tr>
<tr>
<td>实施例 7</td>
<td>在 TB</td>
<td>制备对比实施例 1</td>
<td>9.4</td>
<td>0.4</td>
<td>22</td>
</tr>
</tbody>
</table>

【表 2】

<table>
<thead>
<tr>
<th>对比实施例</th>
<th>之后</th>
<th>制备对比实施例</th>
<th>MI(2.16Kg) (g/10min)</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比实施例 1</td>
<td>-</td>
<td>制备对比实施例 1</td>
<td>3.1</td>
<td>0.78</td>
</tr>
<tr>
<td>对比实施例 2</td>
<td>TB</td>
<td>制备对比实施例 4</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>对比实施例 3</td>
<td>-</td>
<td>制备对比实施例 3</td>
<td>0.9</td>
<td><0.1</td>
</tr>
<tr>
<td>对比实施例 4</td>
<td>-</td>
<td>制备对比实施例 5</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>对比实施例 5</td>
<td>-</td>
<td>制备对比实施例 6</td>
<td>0.5</td>
<td>0.16</td>
</tr>
<tr>
<td>对比实施例 6</td>
<td>-</td>
<td>制备对比实施例 2</td>
<td>10</td>
<td>0.75</td>
</tr>
</tbody>
</table>

对于表 1，TB 为三苯甲基四（五氟苯基）硼酸盐，AB 为二甲基苯胺四（五氟苯基）硼酸盐。

对于表 1，在实施例 5 和对比实施例 3 的情况下，HLMI 和 MI 没有评估，因为制备的聚乙烯的非常高的分子量。

【表 2】
<table>
<thead>
<tr>
<th>组</th>
<th>硼酸盐助催化剂</th>
<th>负载的茂金属催化剂</th>
<th>活性(KgPE/g催化剂)</th>
<th>HLMI(21.6kg) (g/10min)</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例8</td>
<td>TB</td>
<td>制备实施例1</td>
<td>78</td>
<td>1.8</td>
<td>18</td>
</tr>
<tr>
<td>实施例9</td>
<td>AB</td>
<td>制备实施例4</td>
<td>102</td>
<td>1.5</td>
<td>18</td>
</tr>
<tr>
<td>对比实施例7</td>
<td>-</td>
<td>制备对比实施例1</td>
<td>12</td>
<td>0.61</td>
<td>21</td>
</tr>
</tbody>
</table>

[0245] 如表1所示，与使用合成实施例1的Zr相比，在使用进一步负载摩尔比为0.2至1.3的硼酸盐(AB,TB)的实际例1至4的负载的催化剂聚合的情形下，与没有应用硼酸盐的对比实施例1的聚合的情形相比，其活性提高2至13倍的。与对比实施例6相比，其中，通过进一步处理MAO提高了其活性，实施例1中的活性提高了约4倍。

[0246] 与没有应用硼酸盐的对比实施例2相比，进一步负载有与使用合成实施例5的Zr相比摩尔比为1.3的TB的实施例1的活性提高了约4倍。然而，通过使用没有烷氧基烷基金配体的合成实施例3的负载的催化剂聚合的对比实施2的活性比对比实施例4的活性低。

[0247] 可以确认的是实施例7可以通过在聚合过程中注入硼酸盐而无需应用到催化剂上的方法制备，以及与对比实施例1相比，所述活性提高了约3倍。

[0248] 如图2所示，在负载的催化剂应用有硼酸盐的情形（例如实施例8和实施例9）的上述结果所示，可以确认的是与对比实施例7相比，高压聚合活性提高6至9倍。

[0249] 组备助催化剂1层+茂金属催化剂1层+茂金属催化剂2层+助催化剂2层组成的催化剂的制备实施例>

[0250] 制备实施例7

[0251] 将10ml的甲苯加入到3g的表面积为280m²/g和孔体积为1.47ml/g且被还原的二氧化硅(Sylopol 2212,Grace Davison)中，在70℃下与MAO 15ml(10wt％)的甲苯溶液反应2小时；然后通过用甲苯洗涤除去未反应的MAO溶液。然后用50℃以下的甲苯洗涤，然后在50℃下在真空下干燥制备固态的催化剂。

[0252] 制备对比实施例7

[0253] 除了使用0.72毫摩尔的仅由合成实施例1得到的包含叔丁氧基基团的茂金属化合物代替由合成实施例1得到的茂金属化合物和由合成实施例2得到的茂金属化合物之外，使用与制备实施例7相同的方法。

[0254] 制备对比实施例8

[0255] 除了使用0.72毫摩尔的仅由合成实施例2得到的包含叔丁氧基基团的茂金属化合物代替由合成实施例1得到的茂金属化合物和由合成实施例2得到的茂金属化合物之外，使用与制备实施例7相同的方法。

[0256] 制备对比实施例9

[0257] 除了不使用TB之外，使用与实施例7相同的方法。
将3L正己烷注入到体积为5L的高压反应器中，同时不与空气和氧气接触，注入三乙基铝使得正己烷的浓度为0.6mmol/L。然后注入30mg的由制备实施例7得到的固体态的催化剂。然后，在80℃下连续注入乙烯以聚合2小时，同时保持9巴的压力。然后，停止供给乙烯，除去压力完成反应。分离由上述方法得到的悬浮液，并干燥制备聚乙烯粒子。

【实施例9】

除了使用由制备实施例8得到的混合酸催化剂代替聚四氟乙烯催化剂之外，使用与实施例10相同的方法。

【实施例10】

除了使用由制备实施例9得到的混合酸催化剂代替聚四氟乙烯催化剂之外，使用与实施例10相同的方法。

【实施例11】

除了在40巴下聚合乙烯之外，使用与实施例10相同的方法。

【对比实施例11】

除了在40巴下聚合乙烯之外，使用与对比实施例8相同的方法。

【对比实施例12】

除了在40巴下聚合乙烯之外，使用与对比实施例10相同的方法。

表3为低压聚合性能，其中，在乙烯聚合过程中压力为9巴，以及表4为高压聚合性能，其中，在乙烯聚合过程中，压力为40巴。
<table>
<thead>
<tr>
<th>组</th>
<th>实施例 11</th>
<th>对比实施例 11</th>
<th>对比实施例 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>组分</td>
<td>1和2</td>
<td>TB</td>
<td>1和2</td>
</tr>
<tr>
<td>催化剂类型</td>
<td>茂金属催化剂 (合成实施例)</td>
<td>硼酸盐助催化剂</td>
<td>负载的茂金属催化剂</td>
</tr>
<tr>
<td>用途</td>
<td>制备实施例 7</td>
<td>制备实施例 8</td>
<td>制备实施例 10</td>
</tr>
<tr>
<td>活性 (KgPE/g催化剂)</td>
<td>87</td>
<td>78</td>
<td>10</td>
</tr>
<tr>
<td>HLM1 (21.6kg/g/10min)</td>
<td>1.2</td>
<td>1.8</td>
<td>0.35</td>
</tr>
<tr>
<td>MFR</td>
<td>22</td>
<td>18</td>
<td>23</td>
</tr>
</tbody>
</table>

[0277] 对于表 3，TB 为三苯基四 (五氟苯基) 硼酸盐。

[0278] 对于表 3，在对比实施例 9 中没有精确地评估 HLM1 和 MI，因为制备的聚乙烯的非常高的分子量。

[0279] 【表 4】

[0280] 根据表 3 和表 4，与仅使用 MAO (例如对比实施例 10 和对比实施例 12) 制备负载的茂金属催化剂的情形相比，在进一步负载了硼酸盐 (例如实施例 10 和实施例 11) 情形下的催化剂活性提高了。

[0282] 同时，其具有如下缺点：使用负载有单一的茂金属化合物 (例如对比实施例 8 和对比实施例 11) 的负载的催化剂的聚合物的 MFR 较小。然而，使用同时负载有两种以上的茂金属化合物的复合的负载的茂金属催化剂 (例如实施例 10 和实施例 11) 聚合乙烯的情形下，可以使得聚合物的 MFR 较大，以及在使用同时负载有不同的两种以上的茂金属化合物的负载的催化剂的情形下，还可以控制聚合物的 MFR。

[0283] 因此，通过调节在根据本发明的复合的负载的茂金属催化剂中各茂金属催化剂的组分比例可以控制催化剂的活性。可以制备具有不同的物理性能和分子量分布的聚合物，并且最终意味着在单一的反应器中可以制备能够控制分子量分布的负载茂金属的催化剂。

[0284] <制备由茂金属催化剂 1 层 + 助催化剂 1 层 + 茂金属催化剂 2 层 + 助催化剂 2 层组成的催化剂的制备实施例>

[0285] 制备实施例 8

[0286] 将 10ml 的甲苯加入到 3g 的表面积为 280m^2/g 和孔体积为 1.47ml/g 且被蒸馏的二氧化硅 (Sylopol 2212, Grace Davison) 中;加入并在 70°C 下与 0.36 毫摩尔的由合成实施例 1 得到的包含叔丁基助催化剂的茂金属化合物反应 1 小时;然后使用甲苯洗涤。在 70°C 下使其与 15ml 的 MAO (10wt% 的甲苯溶液) 反应 2 小时，然后通过用甲苯洗涤除去未反应的 MAO 溶液。在 50°C 下，在其与 0.36 毫摩尔的由合成实施例 2 得到的茂金属化合物反应 1 小
时之后，用甲苯洗涤。然后，在 50℃下使其与 1.2 毫摩尔的三苯甲基四（五氟苯基）硼酸盐（TB）反应 1 小时，然后在 50℃下在减压下干燥制备固态的催化剂。

[0287] 制备实施例 9

[0288] 除了使用由合成实施例 2 得到的茂金属化合物代替合成实施例 1 得到的茂金属化合物，并且使用由合成实施例 1 得到的茂金属化合物代替合成实施例 2 得到茂金属化合物之外，使用与制备实施例 8 相同的方法。

[0289] 制备实施例 10

[0290] 除了使用 0.18 毫摩尔的合成实施例 1 得到的茂金属化合物和 0.18 毫摩尔的由制备实施例 2 得到茂金属化合物代替 0.36 毫摩尔的合成实施例 1 得到的茂金属化合物，并且使用 0.18 毫摩尔的合成实施例 1 得到茂金属化合物和 0.18 毫摩尔的合成实施例 2 得到的茂金属化合物代替由实施例 2 得到的茂金属化合物之外，使用与制备实施例 8 相同的方法。

[0291] 制备对比实施例 10

[0292] 将 10ml 的甲苯加入到 3g 的表面积为 280m²/g 和孔体积为 1.47ml/g 且被改性的二氧化硅（Sylitol 2212, Grace Davison）中，在 70℃下与 MAO 15ml（10wt% 的甲苯溶液）反应 2 小时。然后通过用甲苯洗涤除去未反应的 MAO 溶液。在 50℃下，在其与 0.36 毫摩尔的合成实施例 1 得到的含有叔丁基氧基团的茂金属化合物反应 1 小时之后，用甲苯洗涤。然后，在 50℃下，在其与 0.36 毫摩尔的合成实施例 2 得到的茂金属化合物反应 1 小时之后，用甲苯洗涤。然后，在 50℃下使其与 1.2 毫摩尔的三苯甲基四（五氟苯基）硼酸盐（TB）反应 1 小时，然后在 50℃下在减压下干燥制备固态的催化剂。

[0293] 聚乙烯的制备和物理性能的评估

[0294] 实施例 12

[0295] 将 3L 正己烷注入到体积为 5L 的高压反应器中，同时不与空气和氧气接触，注入三乙基铝，浓硫酸 0.6mmol/L 的三乙基铝，然后注入 30mg 的由制备实施例 8 得到的固态的催化剂。然后，在 80℃下连续注入乙烯以聚合 2 小时，同时保持 9 巴的压力。然后，停止供给乙烯，除去压力完成反应。分离由上述方法得到的悬浮液，并干燥制备聚乙烯粒子。

[0296] 实施例 13

[0297] 除了使用由制备实施例 9 得到的催化剂之外，使用与制备实施例 12 相同的方法。

[0298] 实施例 14

[0299] 除了使用由制备实施例 10 得到的催化剂之外，使用与制备实施例 12 相同的方法。

[0300] 对比实施例 13

[0301] 除了使用由制备对比实施例 10 得到的催化剂之外，使用与制备实施例 12 相同的方法。

[0302] 【表 5】

[0303]
<table>
<thead>
<tr>
<th>组</th>
<th>组成</th>
<th>硼酸盐助催化剂</th>
<th>负载的茂金属催化剂</th>
<th>活性 (KgPE/g 催化剂)</th>
<th>MI(2.16Kg) (g/10 min)</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 12</td>
<td>1 和 2</td>
<td>TB</td>
<td>制备实施例 8</td>
<td>45</td>
<td>0.2</td>
<td>38</td>
</tr>
<tr>
<td>实施例 13</td>
<td>1 和 2</td>
<td>TB</td>
<td>制备实施例 9</td>
<td>40</td>
<td>0.6</td>
<td>27</td>
</tr>
<tr>
<td>实施例 14</td>
<td>1 和 2</td>
<td>TB</td>
<td>制备实施例 10</td>
<td>42</td>
<td>0.9</td>
<td>32</td>
</tr>
<tr>
<td>对比实施例 13</td>
<td>1 和 2</td>
<td>TB</td>
<td>制备对比实施例 10</td>
<td>25</td>
<td>1.1</td>
<td>23</td>
</tr>
</tbody>
</table>

[0304] 对于表 5，TB 为三苯基基四（五氟苯基）硼酸盐。

[0305] 参照表 5，对于使用两种包含醇化物 (alkoxide) 配体的茂金属化合物制备茂金属负载的催化剂，与通过首先负载 MAO，然后负载茂金属化合物制备催化剂的情形（例如对比实施例 10）相比，在通过如下步骤制备的茂金属负载的催化剂的情形可以制备具有高分子量和宽分子量分布的聚乙烯（例如实施例 12 至实施例 14）：首先负载一种茂金属化合物或部分的两种茂金属化合物，接着负载 MAO，然后负载剩余的茂金属化合物（例如制备实施例 8 至制备实施例 10）。此外，可以提高活性约 70% 至 80%。

[0306] 因此，使用根据本发明的用于制备所述负载的茂金属催化剂的方法，通过调节各茂金属催化剂的组分比可以制备可以控制催化剂活性、具有不同的物理性能和分子量分布、以及具有优异的催化剂活性的聚合物，其最终表明，在单反应器中可以制备可以控制分子量分布并且具有优异的活性的茂金属负载的催化剂。