
(12) United States Patent
Acicmez et al.

USOO9064111B2

(10) Patent No.: US 9,064,111 B2
(45) Date of Patent: *Jun. 23, 2015

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

SANDBOXING TECHNOLOGY FOR
WEBRUNTIME SYSTEM

Inventors: Onur Acicmez, Santa Clara, CA (US);
Andrew C. Blaich, Menlo Park, CA
(US)

Assignee: Samsung Electronics Co., Ltd.,
Suwon-si (KR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 13/412,496

Filed: Mar. 5, 2012

Prior Publication Data

US 2013/0036448A1 Feb. 7, 2013

Related U.S. Application Data

Provisional application No. 61/514.856, filed on Aug.
3, 2011.

Int. C.
G06F2L/00 (2013.01)
G06F 2/53 (2013.01)
G06F2L/62 (2013.01)
U.S. C.
CPC G06F 2 1/53 (2013.01); G06F 21/6218

(2013.01); G06F 21/629 (2013.01); G06F
21/6281 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,127,605
7,350,204
7,512,788
7,743,336
7,792,861
7,912,971
7,945,774
8,055,910
8, 104,077
8, 140,650

10, 2006
3, 2008
3, 2009
6, 2010
9, 2010
3, 2011
5, 2011

11, 2011

Montgomery et al.
Lambert et al. 717/172
Choi et al.
Louch et al.
Kudoh et al.
Dunn 709,229
Ganesan
Kocher et al. T26.21

1/2012 Gauvin et al. T26, 12
3/2012 Pulkkinen et al. TO9.220

(Continued)

FOREIGN PATENT DOCUMENTS

CN
KR

1.01131718 A * 2, 2008
1020090123.587 * 12/2009 HO4W 88.02

OTHER PUBLICATIONS

Bouganim, “Dynamic Access-Control Policies on XML Encrypted
Data”, AMC Trans. Inf. Syst. Secur, 10(4): 1-37, 2008.*

(Continued)

Primary Examiner — Andrew Nalven
Assistant Examiner — Walter Malinowski
(74) Attorney, Agent, or Firm — Sherman IP LLP; Kenneth
L. Sherman; Steven Laut
(57) ABSTRACT
In a first embodiment of the present invention, a method of
providing security enforcements of widgets in a computer
system having a processor and a memory is provided, com
prising: extracting access control information from a widget
process requesting a service, generating access control rules
customized for the widget process, and providing the access
control rules to a trusted portion of the computer system
outside of the user code space of a Web Runtime (WRT)
system; and for any static access control rule, delegating
security checking of the widget process from the WRT system
to the trusted portion of the computer system.

27 Claims, 12 Drawing Sheets

Begin

Ex
cont rol

ra

: from a widget
$: process requesting

200 a SeaWEcse

gene&te access
&Ontrol rules

202

Prowide the access
control rules a trusted

Static

1206 -Y

Delegate security
checking of the widget
process from the WRT
system to the trusled

partian of the
computer system

1288

computer
de of the

t RT)

Non-Static

US 9,064,111 B2
Page 2

(56) References Cited 2010, 0146620 A1* 6, 2010 Simeral et al. T26.21
2010/0223658 A1* 9, 2010 Narasimhan 726/4

U.S. PATENT DOCUMENTS 2010/0273486 A1* 10, 2010 Kharia et al. 455,436
2011/01 19737 A1* 5, 2011 Wen et al. T26/3

8,151,340 B2 4/2012 Nakata 2011/O138376 A1* 6, 2011 Kim et al. 717/173
8,272,065 B2 9, 2012 Persson et al. 2011/0173602 A1* 7/2011 Togami et al. 717/173
8,566,910 B2 10, 2013 Laitinen et al. 2011/0231378 A1* 9, 2011 Seo et al. TO7,694
8,850,573 B1* 9/2014 Cheneral. 726/22 2012/0136936 A1* 5/2012 Quintuna . TO9.204

2003/0233544 A1* 12/2003 Erlingsson . 713, 167 2012/0232973 Al 9, 2012 Robb et al. ... 705/14.17
2004/0024764 A1 2/2004 Hsu et al. 707/9 2012fO233560 A1* 9, 2012 Schneider et al. ... 715,765
2004/0187020 A1* 9, 2004 Leerssen et al. 713,200 2013/0030956 A1 1/2013 Kim 705/26.35
2004/0210833 A1* 10, 2004 Lerner et al. ... 715 512 2013/0097654 A1* 4/2013 Acicmez et al. T26.1
2004/0236747 A1* 11/2004 Swimmer et al. 707/9 2014/0032722 A1 1/2014 Snow TO9.220
2005, 01.05497 A1* 5, 2005 Bekinet al. 370,338
2005, 0120219 A1* 6, 2005 Munetoh et al. 713, 176 OTHER PUBLICATIONS
2005/019 1991 A1* 9, 2005 Owen et al. 455,411
2006/0137007 A1* 6/2006 Paatero et al. 726/22 & 888 's
2007/0203881 A1* 8, 2007 Schaad et al. 707/1 Goncalves, How about an App Store? Enablers and Constraints in
2007/0204333 A1* 8, 2007 Lear et al. 726.6 Platform Strategies for Mobile Network Operators'. Mobile Busi
2007/025611.6 A1* 11/2007 Kerschbaum et al. T26, 1 ness and 2010 Ninth Global Mobility Roundtable (ICMB-GMR),
2008.0009313 A1* 1/2008 Ishii 455,556.1 2010 Ninth International Conference on, Jun. 13-15, 2010, pp.
2008, 0046961 A1 2/2008 Pouliot 726/1 66-73.3
2008/0082627 A1* 4/2008 Allen et al. 709/217 .. & 8
20080086643 Ai: 4.2008 Balasubramanian ca. 73 is Mukhija, Arun, "CASAA Framework for Dynamically Adaptive
2008/O148283 A1* 6/2008 Allen et al. T19.316 Applications'. Doctoral Thesis, University of Zurich, Dec. 2007, 217
2008. O148298 A1 6/2008 Chatterjee et al. pages.
2008/0209535 A1* 8/2008 Athey et al...................... T26/11 Widgets 1.0 Requirements, W3C Working Draft, Feb. 9, 2007, W3C,
2008/0281798 Al 11/2008 Chatterjee et al. 707/3 2006, 22 pages.*
39.93. A. 1.3. 2. ... 79.22 Hassinen, Marja, “Trustworthy Widget Sharing”. HIIT Technical

ray et al. ck
2009 OO63691 A1* 3, 2009 Kalofonos etal "763, Reports 1903, 2010, 28 pages s
2009, O111448 A1* 4, 2009 Pala 455,418 Buecker, “IBM Tivoli Security Policy Manager'. IBM Corporation,
2009/0132949 A1* 5/2009 Bosarge 71.5/777 2009, IBM red book, pp. 1-30.*
2009/O138937 A1 5/2009 Erlingsson et al. International Search Report dated Jan. 29, 2013 for International
2009/0248883 A1* 10/2009 Suryanarayana et al. ... 709/229 Application No. PCT/KR2012/006097 from Korean Intellectual
2009/0254529 A1 * 10, 2009 Goldentouch 707/3 Property Office, 3 pages, Seo-gu, Daejeon, Republic of Korea.
2009 92.78 A 192999 Mandyam et al. 777 U.S. Non-Final Office Action for U.S. Appl. No. 13/274,061 mailed
2009/0282397 A1* 1 1/2009 Leporini et al. 717/174 Dec. 16, 2013

ck J. W.

38.999; A. ck 388 E. al 23. U.S. Notice of Allowance for U.S. Appl. No. 13/274,061 mailed Jul.
2010, 0100929 A1 4/2010 Bae et al. T26.1 17, 2014.
2010/0106977 A1 4/2010 Persson et al.
2010, 0138896 A1 6, 2010 Honda * cited by examiner

U.S. Patent Jun. 23, 2015 Sheet 1 of 12 US 9,064,111 B2

UI Layer

Widgets (e.g., Weather Widget, Clock
Widget, Photo Viewer) Web Runtime U.

Engine Layer

Widget Engine (e.g., Layout Widget Manger (e.g.,
Manager, Widget Context, Plug-in Web Runtime API and

Service,and Configuration) Installation Manager)

Core Layer
Webkit (e.g., WebCore

and JavaScriptCore Plug
Ins)

Platform Layer

Platform Layer (e.g., LIMO Platform)

FIG. 1
(Prior Art)

U.S. Patent Jun. 23, 2015 Sheet 2 of 12 US 9,064,111 B2

Website Widget

BrOWSer Widget User Agent

Web Engine (Webkit,
Gecko, etc.)

JavaScript Extension

JavaScript API Access Control

Device Capability Access Control Access Control

Operating System

FIG. 2
(Prior Art)

U.S. Patent Jun. 23, 2015 Sheet 3 of 12 US 9,064,111 B2

Benign Process Compromised Process

BrOWSer BrOWSer
Engine Legitimate Engine Corrupted

Access Flow Access Flow

8: ...

Security
Checks

TT WebKitMain
OS kernel

FIG. 3

U.S. Patent Jun. 23, 2015 Sheet 5 of 12 US 9,064,111 B2

N
NY

5. Request service with cookie

ma) ma) Db US
1e-a- daemon (e-ma

514
s-s- 9. Service responds 512

X SS

Application Process Service daemon

4. Response to app. 8. Return result
--S-

504

500

6. Ask privilege with given 1. Request cookie
COOkie

Security Server N
N.

508
7. Check privilege

2. Retrieve the access rights of
application process
3. Generate random Cookie and save it
along with the access rights

--S-

510

US 9,064,111 B2

cae ?a usantae uolunae a

reforma qounenNo.towane:

U.S. Patent

U.S. Patent

f
8

Manifest file

Other files

Jun. 23, 2015 Sheet 7 of 12

7O6
f

Af
//

708 f
?/ Web Runtime

//

710

Operating System/Kernel

US 9,064,111 B2

714

Non-static access
Control rules
for the widget

Static access
Control rules
for the widget

ACCess Control rules
for the entire system

FIG. 7

U.S. Patent Jun. 23, 2015 Sheet 8 of 12 US 9,064,111 B2

8O2
|

Process |

Widget Code 806

810

s 808

Web Runtime Code - y Access control rules
^ y W

800 814 \\ for the entire system
\\

ACCess
Control rules
for the widget

Kerne W

FIG. 8

U.S. Patent Jun. 23, 2015 Sheet 9 of 12 US 9,064,111 B2

900
g
f

?/
Widget package ?

Web Runtime
e Management Process

Manifest file

\ . Non-static access
Other files N Control rules

for the widget
906

Static access
Control rules
for the widget

Al
| Widget Code

.

Web Runtime
Code

ACCeSS Control rules
Operating System/Kernel for the entire system

FIG. 9

U.S. Patent Jun. 23, 2015 Sheet 10 of 12 US 9,064,111 B2

1004
1002

y

1OOO \ .
\ \ \

M \ .
Widget package t \

\ 8.
\

Manifest file \ Token
Ho: Generation

and
Web Runtime Verification

Other files

FIG 10

U.S. Patent Jun. 23, 2015 Sheet 11 of 12 US 9,064,111 B2

1102 1 104
s s 1 1 OO y

s \\ \
Security Securit w 1 106
mo as eCL y s

Widget Code Token TOK
GPS OKeh Token

Service Generation
Daemon and

Verification
Web Runtime K- Daemon

Code \
X

\
\ \

8.
8.
8

1108

FIG. 11

U.S. Patent Jun. 23, 2015 Sheet 12 of 12

Begin

w

Extract access
control information

from a widget
process requesting

a service & 1200
v

Generate access
control rules

Provide te 3CCESS
control rules to a trusted
portion of the computer
system outside of the
user code space of a
Web Runtime (WRT)

- the access N
Static control rule static X

r non-stati
-

v : 12O6
Delegate security

checking of the widget
process from the WRT
system to the trusted

portion of the
computer system

Non-Static

US 9,064,111 B2

Request a one-time
token from a security

server, wherein the one
time token expires after

the widget process
consues the

requested service

US 9,064,111 B2
1.

SANDBOXING TECHNOLOGY FOR
WEBRUNTIME SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority under 35
U.S.C. S 119(e) to U.S. Provisional Patent Application No.
61/514.856, filed on Aug. 3, 2011, which is incorporated
herein by reference in its entirety for all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to improving the

security of a webruntime system. More specifically, the
present invention relates to using Sandboxing technology to
improve the security of a webruntime system.

2. Description of the Related Art
A widget (also commonly referred to as a web widget) is an

interactive single purpose application for displaying and/or
updating local data or data on the Web, packaged in a way to
allow a single download and installation on a user's machine
or mobile device. Widgets are client-side applications that
may be authored using web standards and packaged for dis
tribution. They may be downloaded and installed on client
machines. A widget may run as a stand-alone application
(meaning it can run outside of a Web browser). Widgets are
downloadable applications commonly written using HTML,
JavaScript, and CSS and utilize web technologies and stan
dards.
The runtime environment in which a widget is run is

referred to as a widget user agent or the Web Runtime System
(WRT). The WRT is responsible for installation/de-installa
tion of widgets, and to provide functionality for invocation
and configuration of the widgets. The WRT is also respon
sible for the execution of widgets. For example, web widgets
are typically written in JavaScript, which is an independent
language. The WRT contains a Software module, known as a
JavaScript engine, to interpret the widget's JavaScript code
and perform the execution.

FIG. 1 illustrates an example of a simplified high level
architecture diagram of a WRT based on the LimoTM platform
(i.e., LinuxTM based mobile phone platforms). In this
example, at the User Interface (UI) layer, the widgets may
perform functions such as providing weather information, a
clock, or a photo viewer. There is a Web Runtime UI. At the
engine layer, there is a widget engine and a widget manager.
At the core layer, there is a Webkit. The Webkit is a library
used in Web engines. The WRT is the collection of all com
ponents, over and above the Web Engine at the core layer,
needed to Support installed widgets.
A widget package is a package, conforming to specific

standards (e.g. See “Widgets: Packaging and Configuration
specification’. W3C Proposed Recommendations, 11 Aug.
2011, published by W3C, the World WideWeb Consortium),
containing various files (including configuration documents,
icons, digital signatures, etc.) that constitute the implemen
tation of a widget. A widget package contains metadata,
which will be referred to in this patent application as the
manifest file, for the associated widget. A manifest file speci
fies a multitude of things of which include the access restric
tions for a widget. The access restrictions are used by the
WRT to control accesses by a widget to device capabilities,
network resources, file system, etc.

There are several different standards bodies that are setting
slightly different specifications and standardizations for wid

10

15

25

30

35

40

45

50

55

60

65

2
gets and JavaScript APIs for widgets. These bodies setting
specification for widgets include: W3C, WAC, JIL, BONDI,
and Opera among others. As a result, there are different types
of widgets and widget runtime systems. Although, the details
of the specifications (e.g., how to specify access rights and the
granularity of permissions) differ, the general security mod
els and access control enforcement principles of these widget
systems are very similar.
The access control enforcements in current WRT imple

mentations are handled by the user-space code of the WRT in
the same process that runs the widget itself. For example,
these controls and enforcements are handled in Web Engine
code as shown in FIG. 2 which shows an overall high level
architecture of a BONDI widget implementation having
access control features at the Web Engine level.

Referring to FIG. 3, the inventors of the present patent
application have recognized that a security Vulnerability in
conventional WRT arises because the access control enforce
ment in current WRT implementations is handled by the
user-space code of WRT, which is in the same process that
runs the widget itself. For example, these controls and
enforcements are handled in the Web Engine (e.g. Webkit)
code. As illustrated in FIG. 3, a benign process with a legiti
mate access flow will go through security checks. However, a
compromised process has a corrupted access flow that can
result in bypassing the mentioned security checks.

Security controls in conventional WRTs are inherently vul
nerable and can be bypassed via threats such as address space
corruption and code injection. For example, a web engine
may contain a bug that allows remote attackers or malicious
widgets to inject and run arbitrary code or change the legiti
mate control flow in that web engine. As a result, an attacker/
widget can bypass the security checks and access the
restricted resources.
As an illustrative example, SafariTM, the popular web

browser has several vulnerability types that can result in
bypassing security checks. SafariTM is based on the same web
engine, called WebKit, which is used in many mobile plat
forms including iPhoneTM and AndroidTMplatforms. These
Vulnerabilities include an execute code Vulnerability, an over
flow vulnerability, and a memory corruption vulnerability.
SafariTM is based on the same Webkit web engine used in
many mobile platforms. Thus, there are significant security
concerns associated with conventional WRT security con
trols.

Wholesale Application Community (WAC) defines JavaS
cript APIs for accessing the device capabilities. The WAC
specification is derived from and influenced by earlier speci
fication efforts, such as JIL, BONDI, and also W3C. The JIL
and BONDI groups are already joined with WAC and all these
efforts and operations are currently under the WAC umbrella
OW.

WAC APIs includes several methods and properties that are
grouped into different modules:
The accelerometer module API that allows using the device

accelerometer sensor.
The orientation module API that allows using the device

orientation sensor.
The camera module API that enables capturing media

through the device camera.
The devicestatus module API that provides access to the

device status information.
The filesystem module API that allows accessing the

device file system.
The messaging module API that allows message sending

and retrieval.

US 9,064,111 B2
3

The geolocation module API that exposes the device loca
tion (as specified in W3C).

The pim module API that exposes the different PIM (Per
Sonal Information Management) functionalities.

The contact module API that enables the management of 5
contact information.

The calendar module API that enables the management of
calendar information.

The task module API that enables the management of task
information. 10

The deviceinteraction module API that enables the inter
action with the end user through different device capa
bilities.

Accesses to the methods and properties of these modules
are subject to different policy rules. WAC identifies some of 15
these APIs as “restricted’, also called “sensitive” functions,
and accesses to these restricted APIs are controlled by WAC
security framework and require user consent.
WAC defines three security domains: “trusted’ (aka. WAC

domain), “un-trusted' and “operator' (aka. WAC operator) 20
domains. Applications are subject to different security rules
depending on which domain they run in. WAC also makes use
of a digital signature scheme and the domain of an application
is determined based on its digital signature chain. The “opera
tor” domain is intended for use by network service providers. 25
An application runs in operator domain if it has a digital
signature that originates from a WAC carrier, i.e., the root of
the certificate chain of this application is an operator root
certificate. An application runs intrusted domain if its certifi
cate chains to a known WAC root certificate. Otherwise, if the

4
application is not signed or the signature chain does not
extend to a WAC root certificate, it runs in an un-trusted
domain. FIG. 4 Summarizes which domain a widget belongs
to based on which conditions.

Accessing restricted APIs typically requires user confirma
tion due to security controls in place. For example, an appli
cation wishing to access a geolocation module API may
require that the user provide permission for the application to
access this API. This permission can be given on a temporary
or a permanent basis. For example, WAC defines 5 different
types of user confirmation requirements available for the
security controls to place on these APIs:

Allowed: the function can be executing without prompting
the user for confirmation

One Shot: the user must be prompted every time to confirm
that the function may be executed

Session: the user must be prompted once per session (i.e.,
when widget is first added to active page) to confirm that
the function may be executed

Blanket: the user must be prompted for confirmation the
first time that the API function is made by the widget, but
once confirmed prompting is never again required.

Deny: is used by operators to indicate that the API function
is never permitted.

Table 1 below depicts an example of restricted functions
and their corresponding policy rules for each security
domain. This table can be modified by operators to customize
the experience. Moreover, users can also configure the policy
and choose to use a policy that deviates from the default one
provided by the operators.

TABLE 1.

WAC
Device Capability Untrusted WAC operator Rationale ("textual interpretation')

accelerometer Blanket Permit Permit Abuse case: Privacy threat, as a widget
Prompt can know if a device is moving,

and expose that information though other
APIs.

pim.calendar One-Shot Blanket Permit Applications in untrusted domain shoul
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
prompts. If developers want to enhance the
user experience they can sign the widgets
hrough WAC.

pim.calendar.read One-Shot Blanket Permit Applications in untrusted domain shoul
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
prompts. If developers want to enhance the
user experience they can sign the widgets
hrough WAC.

pim.calendarwrite One-Shot Blanket Permit Applications in untrusted domain shoul
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
prompts. If developers want to enhance the
user experience they can sign the widgets
hrough WAC.

C868 One-Shot Blanket Permit Abuse case: audio and camera
Prompt Prompt Surveillance

camera.show Permit Permit Permit camera.show only adds the ability to attach
he viewfinder to a window object, thus is
not sensitive.

camera.capture One-Shot Blanket Permit Abuse case: audio and camera
Prompt Prompt Surveillance

pim.contact One-Shot Blanket Permit Applications in untrusted domain should
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
prompts. If developers want to enhance the
user experience they can sign the widgets
through WAC.

pim.calendar.read One-Shot Blanket Permit Applications in untrusted domain should
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
prompts. If developers want to enhance the

Device Capability

pim.calendarwrite

deviceinteraction

devicestatus

XMLHttpReguest

externalNetworkAccess

filesystem

filesystem.read

filesystem.write

messaging

messaging.write

messaging.send

messaging.find

messaging. Subscribe

orientation

pim.task

Untrusted

One-Shot
Prompt

Permit

Session
Prompt
Session
Prompt

Session
Prompt

Permit
conditionally
With Deny
fallback

Permit
conditionally
With Deny
fallback

Permit
conditionally
With Deny
fallback

One-Shot
Prompt
One-Shot
Prompt

One-Shot
Prompt

One-Shot
Prompt

One-Shot
Prompt

Blanket
Prompt

One-Shot
Prompt

US 9,064,111 B2

TABLE 1-continued

WAC

Blanket
Prompt

Permit

Blanket
Prompt
Blanket
Prompt

Blanket
Prompt

Permit
conditionally
with Blanket
Prompt
allback

Permit
conditionally
with Blanket
Prompt
allback

Permit
conditionally
with Blanket
Prompt
allback

Blanket
Prompt
Blanket
Prompt

Blanket
Prompt

Blanket
Prompt

Blanket
Prompt

Permit

Blanket
Prompt

WAC
operator Rationale ("textual interpretation')

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

Permit

user experience they can sign the widgets
through WAC.
Applications in untrusted domain should
not be offered with the opportunity to
access these features without appropriate
prompts. If developers want to enhance the
user experience they can sign the widgets
through WAC.
No significant abuse cases: at most an
annoyance could be created by
a widget that beeps the phone etc
continuously oratinopportune times.

Abuse case: Excessive network usage, or
WARP-declared domains acting
as a bridge to malware. Session
Prompt is necessary since WAC has no
control over the WARP declarations of
untrusted widgets.
Abuse case: Excessive network usage, or
WARP-declared domains acting
as a bridge to malware. Session
Prompt is necessary since WAC has
no control over the WARP declarations
of untrusted widgets.
Oncontrolled access to the device
filesystem can lead to a variety of abuse
cases. Widgets are always permitted to
access their private storage areas in the
filesystem. “Permit conditionally” means
hat if the widget is accessing its private

storage, access is permitted. Otherwise the
allback action applies, e.g. access to other
Oncontrolled access to the device
filesystem can lead to a variety of abuse
cases. Widgets are always permitted to
access their private storage areas in the
filesystem. “Permit conditionally” means
hat if the widget is accessing its private

storage, access is permitted. Otherwise the
allback action applies, e.g. access to other
Oncontrolled access to the device
filesystem can lead to a variety of abuse
cases. Widgets are always permitted to
access their private storage areas in the
filesystem. “Permit conditionally” means
hat if the widget is accessing its private

storage, access is permitted. Otherwise the
allback action applies, e.g. access to other
Provides access to all the messaging
unctionalities.
Abuse case: excessive messaging,
malware spreading, premium rate
raud
Abuse case: excessive messaging,
malware spreading, premium rate
raud
Applications in untrusted domain should
not be offered with the opportunity to
access these features without appropriate
Prompts. If developers want to enhance
he user experience they can sign the
widgets through WAC.
Applications in untrusted domain should
not be offered with the opportunity to
access these features without appropriate
Prompts. If developers want to enhance
the user experience they can sign the
widgets through WAC.
Abuse case: Privacy threat, as a wi
can know if a device is moving,
and expose that information though other
APIs.
Applications in untrusted domain should
not be offered with the opportunity to
access these features without appropriate

s

get

US 9,064,111 B2
7 8

TABLE 1-continued

WAC
Device Capability Untrusted WAC operator Rationale ("textual interpretation')

Prompts. If developers want to enhance
the user experience they can sign the
widgets through WAC.

pim.task.read One-Shot Blanket Permit Applications in untrusted domain should
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
Prompts. If developers want to enhance
the user experience they can sign the
widgets through WAC.

pim.task.write One-Shot Blanket Permit Applications in untrusted domain should
Prompt Prompt not be offered with the opportunity to

access these features without appropriate
Prompts. If developers want to enhance
the user experience they can sign the
widgets through WAC.

An application running within this framework is required
to specify and describe in its metadata files (e.g., manifest,
widget configuration document, etc.) which APIs and remote
network resources it needs to access. These are known as
dependencies. The feature and iriset attributes in metadata
files can be used for this purpose. A WAC-capable device can 25
display the statically expressed dependencies (e.g., APIs
related to <feature element statements in the widget configu
ration document) of a widget prior to granting permission for
the widget resource to be installed.

There are two main mechanisms in Linux to provide access 30
control: DAC and MAC mechanisms.

In computer security, mandatory access control (MAC)
refers to a type of access control by which the operating
system constrains the ability of a Subject or initiator to access
or generally perform some sort of operation on an object or
target. In practice, a Subject is usually a process or thread;
objects are constructs such as files, directories, TCP/UDP
ports, shared memory segments, etc. Subjects and objects
each have a set of security attributes. Whenever a subject
attempts to access an object, an authorization rule enforced by
the operating system kernel examines these security attributes
and decides whether the access can take place. Any operation
by any Subject on any object will be tested against the set of
authorization rules (aka policy) to determine if the operation 4s
is allowed.

With mandatory access control, this security policy is cen
trally controlled by a security policy administrator, users do
not have the ability to override the policy and, for example,
grant access to files that would otherwise be restricted. By 50
contrast, discretionary access control (DAC), which also gov
erns the ability of subjects to access objects, allows users the
ability to make policy decisions and/or assign security
attributes. (The traditional Unix System of users, groups, and
read-write-execute permissions is an example of DAC.) 55
MAC-enabled systems allow policy administrators to imple
ment organization-wide security policies. Unlike with DAC,
users cannot override or modify this policy, either acciden
tally or intentionally. This allows security administrators to
define a central policy that is guaranteed (in principle) to be 60
enforced for all users.
DAC mechanisms in current systems provide isolation for

the assets of different users. Traditionally, computer systems
are designed as multiuser systems. For example, a computer
in a company or university can store assets (e.g. files, pass- 65
words, programs etc.) of different individuals and serve mul
tiple users simultaneously (e.g. a file server). Traditional

35

40

DAC (i.e., user/group permissions) determine which users
can access which assets and thus provide user-level isolation.

In modern high-end mobile devices, which are indeed
single user devices, DAC is used to provide isolation and
sandboxing for applications. For example, in Android
phones, each application is assigned a user id and runs as if it
is a virtual user. That way, the files that belong to different
applications can have different DAC permissions and appli
cations cannot access each other's files due to DAC isolation.
Moreover, each application can be controlled to access a
particular set of resources it is allowed to access. In Android,
for example, when a new application is installed, the system
shows the user a list of permissions the app requires and asks
whether the user grants those permissions. If the permissions
are granted, the system configures this app’s DAC permis
sions in a way that allows the app to access only the resources
or services specified by the permissions.

Similarly, a MAC mechanism, for example SMACK, can
be used to provide app isolation and sandboxing in a mobile
device. SMACK and SELinux are label based MAC mecha
nisms. We can assign specific (and possible unique) labels to
applications and the resources in the system. SMACK and
SELinux also use access control policies (i.e., list of access
rules that specifies applications with which label can access
resources of which label).

Similar to the DAC mechanism described above, it is pos
sible to assign a different label to an application in a mobile
phone and pass appropriate policy rules to the MAC mecha
nism to control which resources and services that application
can access to. Based on the permissions granted by the user,
a mobile phone system can configure the MAC labels and
policy rules of a newly installed application.

In Linux, DAC and MAC are enforced on kernel space
objects like files, sockets, directories, and devices. But in a
complex system like a Smartphone, there can be many objects
that are defined in user space which cannot be controlled
through DAC or MAC. These objects are created and con
trolled by processes Such as system daemons, framework
daemons, etc. If an application needs to access a user space
object controlled by a daemon, it needs to send a request to
this daemon to retrieve the object. To protect Such user space
objects, there must be a kind of credential to enforce access
rights. A trusted entity should check if an application/process
has the rights to access a user space object. In some cases, the
daemon of a user space object can perform Such security
checks and enforcement. If an application and daemon use
standard Linux IPC to directly communicate with each other,
the daemon can check the credential and access rights of the

US 9,064,111 B2

requesting application, and thus there is no need to introduce
a 3" party process to perform security checks. However, in a
Smartphone, some services may use intermediary entities like
D-bus for communication, service requests, etc. In Such
cases, the peer's credential is not automatically propagated to
the other end of the communication channel and thus a 3"
party trusted entity, which we will call a “security server” in
this document, is needed for access control purposes. Such a
security server can hand out verifiable credentials to request
ing processes and later on can verify the credentials on behalf
of other processes that want to check the access rights of the
requesting process. Such a scheme can use different form of
credentials. In this document, for the sake of simplicity, we
will consider a credential to be a random cookie (i.e., a ran
dom number) generated by the security server. An example
operation flow is given in FIG. 5.

At 500, a cookie is requested by the application process. At
502, the security server retrieves the access rights of the
application process and generates a random cookie, saving it
along with the access rights. At 504, the security server sends
a response to the application process. At 506, the application
process requests service using the cookie from the service
daemon. At 508, the service daemon asks for a privilege with
the given cookie. At 510, the security server checks the privi
lege and at 512 the security server returns the result to the
service daemon. At 512, the service daemon responds to the
application process.

SUMMARY OF THE INVENTION

In a first embodiment of the present invention, a method of
providing security enforcements of widgets in a computer
system having a processor and a memory is provided, com
prising: extracting access control information from a widget
process requesting a service, generating access control rules
customized for the widget process, and providing the access
control rules to a trusted portion of the computer system
outside of the user code space of a Web Runtime (WRT)
system; and for any static access control rule, delegating
security checking of the widget process from the WRT system
to the trusted portion of the computer system.

In a second embodiment of the present invention, a method
of providing security enforcements of widgets in a computer
system having a processor and a memory is provided, com
prising: extracting access control information from a widget
process requesting a service, generating access control rules
customized for the widget process, and providing the access
control rules to a trusted portion of the computer system
outside of the user code space of a Web Runtime (WRT)
system; and for any static access control rule, delegating some
but not all security checking of the widget process from the
WRT system to the trusted portion of the computer system,
Such that two levels of security checking are performed, one
by the WRT system and one by the trusted portion of the
computer system.

In a third embodiment of the present invention, a computer
system having improved widget security is provided, com
prising: a processor, a memory; an operating system; and a
Web Runtime (WRT) system supporting installation and
invocation of widgets, the WRT system configured to receive
a widget manifest from each installed widget and determine
access control rules delegable from the WRT to a more secu
rity portion of the computer system associated with the oper
ating system, the WRT system further configured to pass a set
of delegable static access control rules to the more secure
portion to perform security checking.

10

15

25

30

35

40

45

50

55

60

65

10
In a fourth embodiment of the present invention, a system

is provided comprising: a plurality of widgets; a WRT man
agement process; a security server, and an operating system
kernel; wherein the WRT management process is configured
to: extract access control information from the widgets, gen
erate access control rules, and provide the access control rules
to the operating system kernel; and for any static access
control rule, delegate at least some security checking of the
static access control rule to the operating system kernel.

In a fifth embodiment of the present invention, a program
storage device readable by a machine tangibly embodying a
program of instructions executable by the machine to perform
a method providing security enforcements of widgets in a
computer system having a processor and a memory is pro
vided, the method comprising: extracting access control
information from a widget process requesting a service, gen
erating access control rules customized for the widget pro
cess, and providing the access control rules to a trusted por
tion of the computer system outside of the user code space of
a Web Runtime (WRT) system; and for any static access
control rule, delegating security checking of the widget pro
cess from the WRT system to the trusted portion of the com
puter system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a simplified high level
architecture diagram of a WRT based on the LimoTM platform
(i.e., LinuxTM based mobile phone platforms).

FIG. 2 is a high level a high level architecture diagram
illustrating portions of a prior art Web Runtime Architecture.

FIG.3 illustrates widget security vulnerabilities in prior art
systems.

FIG. 4 Summarizes which domain a widget belongs to
based on which conditions

FIG. 5 is an example operation flow in accordance with an
embodiment of the present invention.

FIG. 6 is a block diagram illustrating a WRT architecture in
accordance with an embodiment of the present invention.

FIG. 7 illustrates a modified Web Runtime system provid
ing widget access rules to a more secure portion of the system,
Such as an operating system kernel, in accordance with one
embodiment of the present invention.

FIG. 8 illustrates delegation of security checking from the
Web Runtime to the kernel in accordance with one embodi
ment of the present invention.

FIG. 9 illustrates a modified Web Runtime system provid
ing widget access rules to a more secure portion of the system,
Such as an operating system kernel, in accordance with one
embodiment of the present invention.

FIG. 10 illustrates using security tokens to enforce widget
security in accordance with an embodiment of the present
invention.

FIG. 11 illustrates an example of using security tokens to
perform a security check for a location service request of a
widget in accordance with one embodiment of the present
invention.

FIG. 12 is a flow diagram illustrating a method for provid
ing security enforcements of widgets in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Reference will now be made in detail to specific embodi
ments of the invention including the best modes contemplated
by the inventors for carrying out the invention. Examples of

US 9,064,111 B2
11

these specific embodiments are illustrated in the accompany
ing drawings. While the invention is described in conjunction
with these specific embodiments, it will be understood that it
is not intended to limit the invention to the described embodi
ments. On the contrary, it is intended to cover alternatives, 5
modifications, and equivalents as may be included within the
spirit and scope of the invention as defined by the appended
claims. In the following description, specific details are set
forth in order to provide a thorough understanding of the
present invention. The present invention may be practiced 10
without some or all of these specific details. In addition, well
known features may not have been described in detail to avoid
unnecessarily obscuring the invention.

In accordance with the present invention, the components,
process steps, and/or data structures may be implemented 15
using various types of operating systems, programming lan
guages, computing platforms, computer programs, and/or
general purpose machines. In addition, those of ordinary skill
in the art will recognize that devices of a less general purpose
nature. Such as hardwired devices, field programmable gate 20
arrays (FPGAs), application specific integrated circuits
(ASICs), or the like, may also be used without departing from
the scope and spirit of the inventive concepts disclosed herein.
The present invention may also be tangibly embodied as a set
of computer instructions stored on a computer readable 25
medium, Such as a memory device.
The present invention is generally directed at improving

the security of widget systems and providing protection to the
device and other applications from a compromised or mali
cious widget and/or the process that runs the widget. One 30
Solution may involve delegating a set of access control rules
from a Web Runtime (WRT) system to a more secure portion
of the computer system outside of the user space code of the
WRT, thus improving widget security. This solution, how
ever, needs also to address APIs that contain access control 35
enforcement rules, such as WAC APIs.

In an embodiment of the present invention, a multi-process
web runtime system with a sandbox mechanism is used to
securely run WAC widgets. If allowed and denied permis
sions were static for each widget, i.e., if all the access right 40
were known or could be determined at installation time, then
the Solution involving delegating the set of access control
rules from the WRT to a more secure portion of the computer
system would be enough. However, the added features of
session and one-shot prompts permitted by WAC specifica- 45
tions complicate the access control management and sand
boxing because the access rights of a widget can change at
runtime and there must be a trusted entity on the system to
monitor the execution of WAC widgets to detect such changes
in the context of their access rights, revise the access control 50
policies accordingly, and enforce the new context.

In the present invention, the WRT is rearchitected using a
multi-process model. A management process, called the
WRT process, is introduced to be in change of initializing
widget processes, adjusting some parts of security configu- 55
rations, and handling security critical requests from widget
processes. Each widget runs in a separate and isolated pro
cess. The accesses for this process are controlled by a security
server, WRT process, and by the kernel via a combination of
DAC and MAC rules, which are configured by the installation 60
manager at installation time and WRT process at launch time
and runtime.

During installation of a widget, an installation manager,
also known as the package manager, processes a widget's
package (including its certificate and manifest file) and then 65
identifies its accesses rights that can be granted at install-time.
The installation manager then crafts access control rules for

12
this widget based on the identified rights and passes these
rules to the operating system kernel and/or appropriate oper
ating system/framework daemons/services. When this widget
is invoked, the WRT process determines which access rights
can be granted to this widget at launch time, crafts access
control rules and passes them to the operating system kernel
and/or appropriate operating system/framework daemons/
services. The WRT process then creates or reserves a process
for this widget's execution. As a result, the widget executes in
a process separate and isolated for the other active widgets.
During execution of the widget, security checks and enforce
ments are delegated to the operating system kernel and other
related processes. The WRT process also plays an active role
in security controls and configurations at run-time. As such,
the system is able to dynamically change which entity is
performing the checking of the access control policies based
on the API.

FIG. 6 is a block diagram illustrating a WRT architecture in
accordance with an embodiment of the present invention. A
package manager 600 processes the widget package during
installation and identifies which domain the widget belongs
to by checking its certificate. The domain of the widget dic
tates which type of prompt needs to be used for which per
mission. For permissions that require a blanket prompt, the
installation manager prompts the user to get an approval on
the requested permissions. Based on the feedback from the
user, the installation manager configures the access rules for
those permissions that are granted to the widget.
At launch time, a widget is identified through a menu

screen 602, which relays the launch request to the AUL 604.
AUL 604 then relays the request to the WRT management
process 606. The WRT management process 606 identifies
whether and which permissions of this widget require session
and one-time prompts. For those that require session prompts,
the WRT process prompts the user to get the acknowledge
ment. Based on the feedback from the user, the WRT process
configures the access rules for those permissions that are
granted to the widget.
At runtime, when a WAC widget is running, the accesses

that correspond to all the prompt types, except one-shot, can
be handled by the kernel and the security server 608 based on
the access control configurations set up by the installation
manager and the WRT management process 606. The
accesses that correspond to one-shot prompts are handled
differently. A widget 610 that requires a one-shot prompt
permission sends a request to the WRT management process
606. The WRT management process 606 gets an acknowl
edgement from the user to identify if the permission is
granted. The access controlled by this permission may
involve direct accesses to kernel-level objects and/or access
to the objects/services from the daemons 612. For the
accesses, the security server 608 is involved in the control, the
WRT management process 606 communicates with the secu
rity server 608 and requests a “one-shot cookie', and then
passes it to the requester process. With this one-shot cookie,
the widget process 610 can request services from the dae
mons 612. A one-shot cookie is a special cookie which
expires after the widget process consumes the requested Ser
Vice that is controlled by the one-shot prompt permission
granted to that widget. For the accesses to the objects con
trolled by the kernel through MAC and DAC, widget pro
cesses send access requests to the WRT management process
606. The WRT management process 606 performs the secu
rity checks and if the required permission is granted to the
widget, the WRT management process 606 performs the
access on behalf of the widget and returns the results back to
the requester widget.

US 9,064,111 B2
13

As outlined above, the security enforcement and configu
rations are handled differently depending upon the type of
prompt a particular permission requires. For a blanket
prompt, the user may be asked for permission grant during
installation or the first time the widget is launched. The cor
responding access rules (DAC, MAC, etc.) are configured
once for this widget and kept using the same configuration for
the life-time of the widget. For a session prompt, the user may
be asked for permission grant before launching the widget.
The new process can then be configured accordingly (e.g.,
adding it to the corresponding DAC groups, load SMACK
rules, etc.) in a forked WRT process. The security server 608
can be contacted for a session token, which is a token that is
valid only for the duration of the session. The privileges are
then dropped and the widget is executed. The next time the
WRT launches the same widget, the dynamic access control
configuration is reset from the last session of the widget and
the security server is told to revoke the previous session token.

For one-shot prompts, for the resources that require direct
access, the widget process 610 sends a request to the WRT
management process 606 for the resource. The WRT man
agement process 606 then asks the user to grant the permis
sion. If it is granted then the WRT management process 606
performs the operation on behalf of the widget. For resources
that are controlled by the daemons, the widget requests the
WRT management process 606 to get a one-shot prompt for a
specific permission. The WRT management process 606 asks
the user. If the permission is granted, the WRT process gets a
one-time token from the security server. The security server
608 validates this token only once so that the widget can
consume the requested service of the daemons only once. The
next time it wants to access the same service/resource, it
needs to initiate another one-shot prompt.
As can be seen from this figure, a particular widget 614 can

access a local data store 616 corresponding to itself, but
cannot access either system files 618 or local data stores 620
corresponding to other widgets.

FIG. 7 illustrates an exemplary set of steps for generating
security rules during installation of a widget in accordance
with an embodiment of the present invention. There are dif
ferent types of widgets associated with different standards
bodies (e.g. W3C widgets, WAC widgets, etc.) and also dif
ferent widget runtime systems. However, the general security
models and access control enforcement principles are similar
such that it will be understood that the present invention is
applicable to different types of widgets and runtime systems.
A widget is distributed in a widget package 700, which

contains a manifest file 702 along with other files 704 like a
widgets HTML, CSS files, JavascriptTM code, etc. A mani
fest file contains metadata Such as widget's name, author
information, configuration information, etc. A manifest file
also contains metadata related to access rights required for its
widget to operate. For example, if a widget needs to access a
network resource, or a device resource like a camera, the
manifest file of this widget must specify these resources. As
an example of a manifest, consider the following simplified
manifest file:

<widget id="http://quirkSmoke.org/widget dockable="true' >
<widgetname> Test widget.<|widgetname>
<icon pix/myIcon.gifficon
<width-200<fwidth
<height-200<height
<security>

<acceSS
<host-quirksmode.org's host

10

15

25

30

35

40

45

50

55

60

65

-continued

</access.>
<security>

</widget

In the example of the simplified manifest file, the widget
manifest file 702 includes a name, identification information,
and specifies access rights to a network host. In this example,
the widget requires access to a network host "quirksmode
.org' as a resource. Then in this example, the access to the
specified network host resource is specified using the <Secu
rity) and <access.> tags. Similarly, manifest files may contain
access requests to other resources like a camera, personal
information Such as address book or contact list entries, loca
tion information, etc.
As described earlier, during installation of a widget, the

WRT module 706 has a management process that processes
708 the widget's package including its manifest file 702 and
then identifies and extracts its granted access rights associ
ated with valid access requests. (The WRT module 706
includes at least those components of the total WRT associ
ated with installation of a widget, although it will be under
stood that the WRT as a whole includes components for both
installation and execution of a widget.) Then, the WRT mod
ule 706 compiles the list of granted access right for the widget
and generates access control rules 710 for this widget based
on the identified rights. This can include making a distinction
between static access control rules 712 and non-static access
control rules 714. Static access control rules are ones that can
be determined or evaluated at installation time. Non-static
access control rules are then rules that cannot be determined
or evaluated until later, i.e. at runtime. The static access con
trol rules 712 for the widget are passed 716 to a more secure
portion of the computing system directly or indirectly, Such as
to the OS/kernel 720 and/or appropriate OS/framework dae
mons/services. In this example, the static widget access con
trol rules 712 are passed to a region storing access control
rules for the entire system 718.
When the widget is invoked, the WRT module 706 creates

or reserves a process for its execution. As a result, the widget
executes in a process separate and isolated from other active
widgets. During execution of the widget, security checks and
enforcements are delegated to the more secure portion 720 of
the OS kernel and other related processes. In one embodi
ment, the WRT module 706 does not have to perform the
security controls for the types of accesses that it delegated by
generating and passing rules to the more secure portion 720 of
the kernel and related processes. In another embodiment, the
WRT module 706 performs the regular (i.e., conventional)
security checks on the widget API calls. Then, another layer
of checks is performed by the kernel 720. When a widget
access passes the WRT module checks, the WRT module
code issues a system call to access the corresponding
resource. Then, the kernel 720 performs a check, e.g., a MAC
check, on the system call to see if that particular access is
allowed. Kernel checks are still based on the rules generated
by the WRT module 706 e.g. during installation. In this alter
native, the WRT module 706 does not delegate the security
checks.

In one implementation Mandatory Access Control (MAC)
is used as part of the security decision and enforcement
scheme. In general, the rules passed by the WRT module 706
to the kernel can be MAC rules and the kernel can enforce
these rules through its MAC mechanisms. This provides
greater security assurances compared to conventional widget
security approaches.

US 9,064,111 B2
15

Many minor variations of the steps illustrated in FIG. 7
may be included depending on implementation details
regarding the widget, the OS/kernel, and the security mecha
nisms used on the platform. As can be seen in FIG.7, the WRT
module 706 processes the widget package 700 during instal
lation and identifies the access requests/needs of the widget.
The WRT module 706 compiles the access rights granted to
this widget. This process may involve other steps such as
checking user preferences, system policies, or prompting the
user to get confirmation of the permission granting. Some
details of the granted permissions, the granularity of the per
missions, etc. differ between different widget systems and are
thus implementation-specific.

After the WRT module 706 compiles the list of (or a partial
list of) granted permissions for a widget, it generates security
rules according to this list. The WRT passes the generated
security rules to the kernel. This can happen in various means
depending on the specifics of the OS/kernel and the details of
the security mechanisms utilized on the platform. For
example, the WRT can update a general policy file on the
system or issue a system call to dynamically inform the kernel
of these security rules. In one embodiment, the WRT module
706 generates MAC rules (such as Security-Enhanced
LinuxTM (SELinux) or SMACK rules for LinuxTM systems, or
iptables/Netfilter rules to control network accesses on
LinuxTM) that can be enforced by the kernel while the widget
is running.

Referring back to FIG. 7, some differences between the
present invention and conventional WRT implementations
are now explained. Conventional WRT implementations pro
cess widget packages, extract access request from the mani
fest file, and compile the list of granted access rights for the
widget. But, then they store the permission lists in e.g. a
database file (as done in SLP WRT) or a file for the WRT to
retrieve them later for the WRT to enforce access rules. They
do not generate any MAC rules or pass any rules to the kernel.
They also fail to distinguish between static and non-static
rules, and also fail to handle non-static rules in the manner
prescribed by the present invention. At the invocation of a
widget, a conventional WRT would read its permission list
from the database and handle the security checks and enforce
ment by itself during the widget execution. In contrast, in the
embodiment of FIGS. 6 and 7, the WRT is modified to gen
erate static access control rules in a form that may be passed
on to the kernel for the kernel to perform at least some of the
security checking conventionally performed by the WRT, and
to handle non-static access control rules with the help of a
security server. This requires significant modification of con
ventional WRT system implementations. In the example of
having the kernel implement MAC rule to enforce the widget
security checks, this requires converting the static access
control rules into MAC rules. For example, in one implemen
tation the modifications to the WRT includes:

implementing an algorithm to generate MAC rules from
the permission list specific to the requirements of the OS and
MAC technology used, which is added to the WRT codebase
the algorithm along with code to pass the generated MAC
rules to the OS/kernel.

FIG. 8 illustrates an example of general steps for enforcing
security rules at runtime for rules that were passed on the
OS/kernel. When a widget is invoked, the WRT module 800
executes it in a separate process 802 isolated from other
applications and widgets. It would be understood by one of
ordinary skill in the art that while there is one WRT, there are
different components of the WRT. The WRT module 00 of
FIG. 8 includes at least the components of the WRT associ
ated with widget execution. The WRT system management

10

15

25

30

35

40

45

50

55

60

65

16
process also configures the security attributes (e.g. SELinux
or SMACK labels) of this process 802 accordingly so that the
kernel 804 can differentiate the widget that is being run in the
process. As illustrated by arrow 806, the widget then tries to
access a controlled resource—i.e., a resource is controlled by
the kernel via the static access control rules 808 previously
generated by the WRT and passed to the system. The WRT
module 800 then issues the related system calls to the kernel
without performing the security checks, as illustrated by
arrow 810. That is, the WRT delegates the security checking
of static rules to the OS/kernel 804. The kernel then inspects
the system call and checks the widget static access control
rules 808, as illustrated by arrow 812. The kernel then makes
a decision whether to deny or proceed with the operation. The
kernel then returns a result to the WRT module 800, as illus
trated by arrow 814. If access is denied, the kernel returns
with an error code. If access is allowed, the kernel performs
the operation and returns the result. Thus, when the kernel
receives a call from the process that executes this widget, it
checks the access rules for the widget and inspects the details
of the call (e.g., the parameters, the objects that will be
affected by the call, etc.) and then it either allows or denies the
call.
At invocation of a widget, conventional WRT implemen

tations read their respective permission lists e.g. from a data
base and handle the security checks and enforcement by
themselves during the widget execution. In contrast in the
present invention, these security checks and enforcements for
static rules are removed from the WRT and the responsibility
is delegated to the kernel, while non-static rules are handled
by the WRT management process in conjunction with a secu
rity server. The WRT does not performany checks related to
the MAC rules already passed to the kernel. Instead, it allows
related requests to always go through without blocking them.
The actual security controls for these rules are handled by the
kernel. This requires modifying an existing WRT to remove
these conventional security checks. Moreover, depending on
the OS and MAC technology, extra code may need to be
added to the WRT to configure the security contexts (e.g.
MAC subject labels) of the widget processes just before
executing the widgets.
As previously described, the kernel can control the widget

accesses through MAC mechanisms. Some exemplary
mechanisms will now be discussed, although it will be under
stood that other mechanisms may also be used. In one
embodiment, assume that a widget does not have network
access permissions, i.e., its manifest does not specify any
requirements to access a network or specifically requests that
no network access shall be given. The WRT is programmed to
understand when processing this widget's manifest that this
widget should be prohibited to access the network. In this
example, the WRT assigns a security context (e.g. a SMACK
or SELinux label) to this widget (i.e., to the process that will
execute the widget) and generates MAC rules to prohibit any
network access requests from this widget (or, depending on
the MAC system in use, the WRT will not generate any rules
to allow network access). The WRT passes this information
(the security context--MAC security rules) to the kernel. If the
widget tries to access a network resource at runtime, the
kernel will receive a system call from this widget's process
that requests to access the network. The kernel will check the
process's security context and realize that the access should
be denied. It will not perform the system call and return an
error message to the calling process.
Now assume that a widget does not have permissions to

access location information on a platform (e.g., Global Posi
tioning System (GPS) location information). Also, assume

US 9,064,111 B2
17

that there is a system daemon on this platform that handles the
distribution of GPS information. More specifically, only this
daemon has access to GPS hardware and all the other pro
cesses/applications need to send requests to this daemon to
get GPS data. The WRT understands when processing this
widget's manifest that this widget should be prohibited to
access GPS information. The WRT assigns a security context
(e.g. a SMACK or SELinux label) to this widget (i.e., to the
process that will execute the widget) and generates MAC
rules to prohibit (or, depending on the MAC system in use, the
WRT does not generate any rules to allow) this widget to
communicate with the GPS daemon (e.g., prohibits an Inter
Process Communication (IPC) between the widget process
and the daemon). The WRT passes the information (the secu
rity context--MAC security rules) to the kernel. If this widget
tries to communicate with the GPS daemon to get location
info at runtime, the kernel will receive a system call (e.g. an
IPC call) from this widget's process to communicate with the
daemon. The kernel will check the security contexts of the
widget process and GPS daemon and realize that the access
should be denied. It will not perform the system call and
return to the process an error message.
On the other hand, in this example if the widget is granted

permission to access GPS information, the WRT generates
rules to allow the IPC (or does not generate any rule to
prohibit it) between the widget process and the GPS daemon.
When this widget tries to access the GPS data at runtime, the
kernel will receive a system call (e.g. an IPC call) from this
widget's process to communicate with the daemon. The ker
nel will check the security contexts of the widget process and
the GPS daemon and realize that the access should be granted.
It will proceed with the system call.

In one preferred embodiment, a kernel level Mandatory
Access Control is used for security decision and enforcement.
In computer security, MAC refers to a type of access control
by which the operating system constrains the ability of a
Subject or initiator (e.g. a process that executes a widget) to
access or generally perform some sort of operation on an
object or target (e.g. a particular file, network resource, or a
hardware component). In practice, a Subject is usually a pro
cess or thread; objects are constructs such as files, directories,
TCP/UDP ports, shared memory segments, etc. Subjects and
objects each have a set of security attributes. Whenever a
Subject attempts to access an object, an authorization rule
enforced by the operating system kernel examines these secu
rity attributes and decides whether the access can take place.
Any operation by any subject on any object will be tested
against the set of authorization rules (e.g. a policy) to deter
mine if the operation is allowed.

There are various MAC technologies available in different
operating systems. LinuxTM has four different main MAC
mechanisms—SELinux, Smack, Tomoyo, and App Armor—
implemented in the mainline kernel. Although they are all
based on the same or similar principles, their architectures,
capabilities, and usage show significant differences.
As previously mentioned, there are many potential varia

tions in the WRT and the OS implementation at a fine level of
granularity. Thus, implementation details will determine how
much of the security checking can be offloaded to the kernel.
Depending on the widget system and OS combination, some
widget activities may not translate/map well to the kernel
system calls. In such cases, the kernel may not be able to
provide fine grained security controls as needed by the widget
system. To address this situation, the WRT may be pro
grammed to identify which widget activities can be controlled
by the kernel via inspecting system calls and then delegate
only that subset of controls to the kernel. If the kernel or OS

10

15

25

30

35

40

45

50

55

60

65

18
cannot provide Sufficient security controls for some widget
activities, then WRT needs to handle those controls that can
not be handled by the OS/kernel. Thus, in principle there are
situation where the WRT will provide security checks/con
trols at a fine level of granularity while the kernel provides
security checking at a coarser level of granularity based on
what checking can be delegated to the kernel. In Such sce
narios, several modification can be made to the WRT. This
includes having the WRT pass to the OS/kernel those access
control rules that correspond to the activities that can be
satisfactorily controlled by the OS/kernel. During runtime of
the widget, this corresponds to the WRT passing to the kernel/
OS, without performing any security checks, only those
requests that correspond to the security checking related
activities for the widget that can be satisfactorily controlled
by OS/kernel. The activities or requests that cannot be satis
factorily controlled by OS/kernel will be handled by WRT
itself.

Alternatively, the WRT performs the conventional security
checks on the widget API calls, while another layer of checks
is performed by the kernel. When a widget access passes the
WRT checks, the WRT code issues a system call to access the
corresponding resource. Then, the kernel performs a check,
e.g., a MAC check, on the system call to see if that particular
access is allowed. In this alternative, the WRT does not del
egate the security checks.
Many variations and various embodiments of the present

invention are contemplated. Referring to FIG. 9, in one
embodiment the generation of security rules occurs at invo
cation instead of during installation. For example, the WRT
system management process 900 can process the widget
package, extract access requests from the manifest file as
indicated by arrow 902. The WRT can then generate the rules
and pass them to the OS 904 just before starting to execute a
widget when the user wants to invoke it. The primary differ
ence over the example of FIG. 7 is illustrated by arrow 906,
which illustrates that the management process created a new
process to run the widget and also the widget code and data is
retrieved from the new process and widget execution starts.

In another embodiment, the WRT can delegate the rule
generation to another entity (e.g. an OS service or process). In
this embodiment the WRT can pass the manifest file and other
related information to this entity, which handles the rule gen
eration and updating the policies (i.e., passing the rules to the
kernel).
As previously described, in a preferred embodiment, the

security enforcement is handled via MAC mechanisms by the
kernel to eliminate the security weakness of the WRT per
forming security checks. However, other arrangements are
possible in which a more secure portion of the computer
system handles the security checking of the widget, such as
by using OS daemons and/or security tokens. Alternative
embodiments can realize this in various different ways as
illustrated in FIGS. 10 and 11. Security checks and enforce
ments can rely on security tokens. Each widget can have a
security token that shows its access rights.
As illustrated in FIG. 10, during installation or at invoca

tion, the WRT processes the widget package and extracts the
access request form the manifest file, as indicated by arrow
1000. The WRT then compiles the list of granted access rights
for the widget and also requests a security token for the
granted rights, as indicated by arrow 1002, form a token
generation and verification daemon 1004. The daemon gen
erates an appropriate security token and passes it back to the
WRT as indicated by arrow 1006. The WRT then stores the
security token for later use as indicated by arrow 1008.

US 9,064,111 B2
19

Such a token needs to be generated by a trusted party (e.g.
WRT or a system daemon), protected from tampering by
untrusted parties (e.g. widget), authentic and Verifiable, and
allows other entities (e.g. system services) to check the access
rights of the widget.

FIG. 11 is an illustrative use example where a security
token has been previously stored by a WRT. Assume that a
platform uses token-based security framework and also has
various system or OS framework daemons for accessing e.g.
GPS, sensors, etc. A widget running on this platform wants to
access GPS data. The WRT request access to GPS data and
attaches its security token to the request to a GPS service
daemon 1100, as illustrated by arrow 1102. The GPS daemon
1100 receives the request and checks the security token. This
may includes sending the token (arrow 1104) to the token
generation and verification daemon 1106 to check if the wid
get requires rights to access the requested data. The token
generation and verification daemon 1106 checks the received
token to determine if the widget can be granted access and
returns an allow? deny decision back to the GPS daemon 1100.
The GPS service daemon 1100 returns a message as indicated
by arrow 1108. If this widget has permission to access GPS
data (as indicated in its security token), the GPS service
daemon 1100 fulfills the request and returns the requested
result. Otherwise, the GPS service daemon refuses to perform
the request and sends back an error message.

FIG. 12 is a flow diagram illustrating a method for provid
ing security enforcements of widgets in accordance with an
embodiment of the present invention. At 1200, access control
information can be extracted from a widget process request
ing a service. At 1202, access control rules can be generated.
At 1204, the access control rules can be provided to a trusted
portion of the computer system outside of the user code space
ofa WRT system. Then, 1206-1210 can be run for each access
control rule as it is encountered. At 1206, it can be determined
if the access control rule is static or non-static. If it is static,
then at 1208 security checking of the widget process can be
delegated from the WRT system to the trusted portion of the
computer system. If it is non-static, then at 1210 a one-time
token can be requested for a security server, wherein the
one-time token expires after the widget process consumes the
requested service.
As will be appreciated to one of ordinary skill in the art, the

aforementioned example architectures can be implemented in
many ways, such as program instructions for execution by a
processor, as Software modules, microcode, as computer pro
gram product on computer readable media, as logic circuits,
as application specific integrated circuits, as firmware, as
consumer electronic device, etc. and may utilize wireless
devices, wireless transmitters/receivers, and other portions of
wireless networks. Furthermore, embodiment of the dis
closed method and system for displaying multimedia content
on multiple electronic display screens can take the form of an
entirely hardware embodiment, an entirely software embodi
ment, or an embodiment containing both software and hard
ware elements.

The term “computer readable medium is used generally to
refer to media Such as main memory, secondary memory,
removable storage, hard disks, flash memory, disk drive
memory, CD-ROM and other forms of persistent memory. It
should be noted that program storage devices, as may be used
to describe storage devices containing executable computer
code for operating various methods of the present invention,
shall not be construed to cover transitory Subject matter, Such
as carrier waves or signals. Program storage devices and
computer readable medium are terms used generally to refer

10

15

25

30

35

40

45

50

55

60

65

20
to media Such as main memory, secondary memory, remov
able storage disks, hard disk drives, and other tangible storage
devices or components.

Although only a few embodiments of the invention have
been described in detail, it should be appreciated that the
invention may be implemented in many other forms without
departing from the spirit or scope of the invention. Therefore,
the present embodiments should be considered illustrative
and not restrictive and the invention is not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

What is claimed is:
1. A method of providing security enforcements of widgets

in a computer system having a processor and a memory,
comprising:

extracting access control information from a widget pro
cess requesting a service, generating one or more access
control rules customized for the widget process, and
providing the access control rules to a trusted portion of
the computer system outside of a user code space of a
Web Runtime (WRT) system; and

for any static access control rule, delegating security
checking of the widget process from the WRT system to
the trusted portion of the computer system, wherein the
trusted portion of the computer system uses the access
control rules for security checking of the widget process,
and wherein the WRT system is modified to generate one
or more static access control rules and convert the static
access control rules into a form that is compatible with
the trusted portion of the computer system based on
system requirements and type of technology used by the
trusted portion of the computer system,

the WRT system is configured to dynamically adjust, based
on a particular access control rule, which one of the
WRT system and the trusted portion of the computer
system performs security checking of the widget pro
CCSS,

2. The method of claim 1, further comprising
for any non-static access control rule:

requesting a one-time token from a security server exter
nal to the WRT system, wherein the one-time token
expires after the widget process consumes the
requested service; and

wherein the one-time token is used by the widget process
to access the service.

3. The method of claim 2, wherein a non-static access
control rules includes one of the following:

a session prompt; and
a one-shot prompt.
4. The method of claim 2, wherein for any non-static access

control rule that is a session prompt, the method further
comprises:

requesting permission from a user prior to launching the
widget process;

dropping privileges of the WRT system; and
resetting dynamic access control configuration of the wid

get process and requesting that the security server
revoke the one-time token upon next launch of the wid
get process.

5. The method of claim 2, wherein for any non-static access
control rule that is a one-time prompt, the method further
comprises:

requesting permission from a user when the widget process
requests the service;

requesting that the security server honor the one-time token
only a single time.

US 9,064,111 B2
21

6. The method of claim 1, wherein a static access control
rule includes one of the following:

a blanket prompt:
a permit prompt; and
a deny prompt.
7. The method of claim 1, wherein the trusted portion of the

computer system is an operating system kernel.
8. The method of claim 7, wherein the static access control

rules are converted to mandatory access control rules
enforced by the operating system kernel.

9. The method of claim 7, wherein the extracting, generat
ing, and providing are performed by a WRT management
process.

10. The method of claim 7, wherein the operating system
kernel dynamically receives updated access control rules
from the WRT system.

11. The method of claim 1, wherein the security server is a
part of Service Location Protocol (SLP) Access Control.

12. The method of claim 1, wherein the access control
information comprises access restrictions for the widget pro
CCSS,

13. The method of claim 1, wherein the system require
ments comprises operating system requirements, and
wherein the type of technology used by the trusted portion
comprises mandatory access control (MAC) technology.

14. The method of claim 13, wherein modifying the WRT
system comprises:

generating one or more MAC rules from a permission list
specific to requirements of the operating system and
MAC technology used, and passing the generated MAC
rules to the trusted portion that comprises an operating
system kernel.

15. A method of providing security enforcements of wid
gets in a computer system having a processor and a memory,
comprising:

extracting access control information from a widget pro
cess requesting a service, generating one or more access
control rules customized for the widget process, and
providing the access control rules to a trusted portion of
the computer system outside of the user code space of a
Web Runtime (WRT) system; and

for any static access control rule, delegating some but not
all security checking of the widget process from the
WRT system to the trusted portion of the computer sys
tem, Such that two levels of security checking are per
formed, one by the WRT system and one by the trusted
portion of the computer system, wherein the trusted
portion of the computer system uses the access control
rules for security checking of the widget process, and
wherein the WRT system is modified to generate one or
more static access control rules and convert the static
access control rules into a form that is compatible with
the trusted portion of the computer system based on
system requirements and type oftechnology used by the
trusted portion of the computer system,

wherein the WRT system is configured to dynamically
adjust, based on a particular access control rule, which
one of the WRT system and the trusted portion of the
computer system performs security checking of the wid
get process.

16. The method of claim 15, wherein the trusted portion of
the computer system is an operating system kernel.

17. The method of claim 16, wherein the static access
control rules are converted to mandatory access control rules
enforced by the operating system kernel.

18. A computer system having improved widget security,
comprising:

10

15

25

30

35

40

45

50

55

60

65

22
a processor;
a memory;
an operating system; and
a Web Runtime (WRT) system supporting installation and

invocation of widgets, wherein the WRT system is con
figured to:
receive a widget manifest from each installed widget;
based on at least one widget manifest received, deter

mine one or more access control rules delegable from
the WRT system to a more secure portion of the com
puter system associated with the operating system;
and

pass a set of delegable static access control rules to the
more secure portion of the computer system to per
form security checking;

wherein each widget manifest comprises access restric
tions for an associated installed widget;

wherein the WRT system is modified to generate the set
of delegable static access control rules and convert the
set of delegable static access control rules into a form
compatible with the more secure portion of the com
puter system based on system requirements and type
of technology used by the more secure portion of the
computer system; and

wherein the WRT system is configured to dynamically
adjust, based on a particular access control rule,
which one of the WRT system and the more secure
portion of the computer system performs security
checking.

19. The computer system of claim 18, wherein:
the WRT system includes a WRT management process that

is configured to communicate with a security server to
obtain one-time tokens for any non-static access control
rule.

20. The computer system of claim 19, wherein the WRT
management process is further configured to communicate
with the security server when an installed widget is invoked
for any non-static access control rules that are session
prompts.

21. The computer system of claim 18, wherein the WRT
system is configured to pass the set of delegable static access
control rules to the more secure portion of the computer
system when an installed widget is invoked.

22. The computer system of claim 21, wherein the WRT
management process is further configured to communicate
with the security server when an installed widget requests a
particular service for any non-static access control rule that is
a one-time prompt linked to the particular service.

23. The computer system of claim 18, wherein the more
secure portion of the computer system comprises a trusted
portion, and wherein the trusted portion is an operating sys
tem kernel.

24. The system of claim 23, wherein upon an installed
widget being invoked, the WRT system determines access
restrictions grantable to the invoked widget at launch time,
generates one or more access control rules, and passes the
access control rules to the operating system kernel for Secu
rity checking of executing widgets.

25. The system of claim 18, wherein the access restrictions
for an associated installed widget are grantable at install-time.

26. A system comprising:
a plurality of widgets;
a WRT management process;
a security server, and
an operating system kernel;
wherein the WRT management process:

US 9,064,111 B2
23 24

extracts access control information from the widgets, ments of widgets in a computer system having a processor
generate one or more access control rules, and pro- and a memory, the method comprising:
vides the access control rules to the operating system extracting access control information from a widget pro
kernel; and cess requesting a service, generating one or more access

for any static access control rule, delegates at least some 5 control rules customized for the widget process, and
security checking of a widget process to the operating providing the access control rules to a trusted portion of

the computer system outside of a user code space of a
Web Runtime (WRT) system; and

for any static access control rule, delegating security
10 checking of the widget process from the WRT system to

the trusted portion of the computer system, wherein the
trusted portion of the computer system uses the access
control rules for security checking of the widget process,
and wherein the WRT system is modified to generate one

system kernel, wherein the operating system kernel
uses the access control rules for security checking of
the widget process, and wherein the WRT manage
ment process is modified to generate one or more
static access control rules and convert the static access
control rules into a form that is compatible with the
operating system kernel based on system require
ments and type of technology used by the operating
system kernel 15 or more static access control rules and convert the static

s

wherein the WRT management process is associated access control rules into a form that is compatible with
with a WRT system, and the WRT system is config- the trusted portion of the computer system based on

System requirements and type of technology used by the
trusted portion of the computer system,

20 wherein the WRT system is configured to dynamically
adjust, based on a particular access control rule, which
one of the WRT system and the trusted portion of the
computer system performs security checking.

ured to dynamically adjust, based on a particular
access control rule, which one of the WRT system and
the operating system kernel performs security check
1ng.

27. A program storage device readable by a machine tan
gibly embodying a program of instructions executable by the
machine to perform a method providing security enforce- ck k < *k sk

