Figures 1A
RECOMBINANT RSV REPORTER VIRUS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application No. 62/013,905, filed June 18, 2014, which is hereby incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government Support under Grant Nos. AI087798, AI095227, AI071002, and HD079327 awarded by the National Institutes of Health. The Government has certain rights in the invention.

BACKGROUND

Attempts to develop an effective RSV vaccine have been fruitless thus far, since the virus is poorly immunogenic overall and neutralizing antibody titers wane quickly post infection. Although ribavirin was approved for RSV treatment, clinical use is minimal due to efficacy and toxicity issues (Anderson LJ, et al. (1990) J Infect Dis 161(4):640-646; Hall CB, et al. (1993) Pediatrics 92(3):501-504). The humanized neutralizing antibody palivizumab is used for immunoprophylaxis of high-risk pediatric patients, but high costs prohibit broad scale implementation (Mahadevia PJ, et al. (2012) J Med Econ 15(5):987-996; Broor S, et al. (2007)

Clinical disease associated with infection by several paramyxoviruses such as mumps virus or measles virus (MeV) originate predominantly from immunopathogenic effects, which makes therapeutic treatment challenging, since viral replication is typically immune-controlled and titers decline when symptoms become manifest (de Vries RD, et al. (2012) Curr Opin Virol 2(3):248-255; Griffin DE (2010) Immunol Rev 236:176-189). In the case of RSV infection; however, several studies have suggested that pathogenesis is not the result of host immunopathology alone. Rather, higher viral loads were recognized as a predictor for severe lower respiratory infection in infants (DeVincenzo JP, et al. (2005) J Infect Dis 191(11):1861-1868), and RSV titers on day three of hospitalization were indicative for increased need for intensive care in hospitalized children less than two years old (El Saleeby CM, et al. (2011) J Infect Dis 204(7):996-1002). These observations suggest that efficacious therapeutics given early to hospitalized children may improve downstream morbidity and reduce immunopathology, opening a window for improved disease management and making RSV a premier target for drug discovery campaigns.

However, large scale screening campaigns to identify novel therapeutic candidates against RSV have been compromised thus far by the lack of appropriate reporter strains. Moreover, previous anti-RSV drug discovery campaigns have yielded several structurally distinct, highly potent, small-molecule entry inhibitor classes that often lead to drug resistant escape mutations.

SUMMARY

After treatment with entry inhibitors, escape mutations are shown to accumulate in fusion (F) protein microdomains that govern the structural stability of the prefusion complex. Refolding rates of these conformationally destabilized mutant F trimers are enhanced, resulting in a hyperfusogenic phenotype and, possibly, a narrowed window of opportunity for small-molecule docking and interference with F trimer rearrangements leading to fusion pore formation. Therefore, RSV entry inhibitors currently considered for clinical use are at risk to rapidly lose therapeutic benefit in the clinic due to preexisting viral resistance.

An RSV reporter strain containing escape mutations that can be used for high-throughput drug discovery is disclosed. The disclosed RSV reporter strain has one or more mutations in its
fusion (F) protein that allows it to escape from entry inhibitors, such as GPAR-3710. The disclosed RSV strain can therefore be used to identify drug candidates that either act post-entry or block viral entry without being compromised by pan-resistance. Also disclosed is a recombinant RSV vector that contains an RSV genome for the disclosed RSV strain operably linked to an expression control sequence. Also disclosed is an infectious RSV virion produced by expression of the disclosed recombinant RSV vector in a host cell. Also disclosed are methods of screening for antiviral agents using the disclosed RSV reporter strains.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

Figures 1A to 1C illustrate identification of a new small-molecule class of RSV inhibitors. Figure 1A shows the results of a test screen of recRSV A2-L19F-renilla against a 10,000-entry compound library. Data for each compound were normalized, scaled, and are plotted by screening scores (z-score). The dashed line marks the hit selection cut-off (10 assay-SD); circled hits maintained >90% RSV inhibition in 0.5 µM concentration counterscreens. Figure 1B shows structures of compounds GPAR-3710 and GPAR-6506, circled in Fig. 1A. Figure 1C shows dose-response curves for sourced hit GPAR-3710 against para- and orthomyxoviruses. In addition to the recRSV A2-L19F screening strain, RSV clinical isolate 2-20 was tested. Values are means of three experiments ± SD. Where applicable, ECso concentrations were determined through four-parameter variable slope regression modeling, values in parentheses denote 95%-confidence intervals. CCso concentrations are based on host metabolic activity after 24-hour exposure; highest concentration assessed 25 µM. SI: CC50/EC50; n.d. not determined.

Figures 2A to 2D demonstrate mechanistic characterization of GPAR-3710. Figure 2A shows a time-of-addition study of GPAR-3710 in comparison with the broad spectrum RdRp inhibitor JMN3-003. The compound was added at the indicated time points. The arrow marks the time of infection with recRSV A2-L19F-renilla. All samples were harvested 26 hours pi and progeny titers determined by TCID50 titration using renilla luciferase activity as readout. Values are means of three experiments ± SD. Figure 2B shows a quantitative dose-response cell-to-cell fusion assay using the DSP-chimeric reporter proteins and ViviRen renilla luciferase substrate. MeV F and H glycoprotein expression constructs are included for specificity control. Values
were normalized for vehicle (DMSO) treated samples and represent means of at least three experiments ± SD. Figure 2C shows transient RSV luciferase replicon reporter assay to determine viral RdRp activity in the presence of GPAR-3710. The RdRp inhibitor JMN3-003 was used for specificity control. Values were normalized for vehicle (DMSO) treated samples and represent means of three experiments ± SD; n.d. not determined. Figure 2D shows kinetic virus-to-cell fusion assay using the DSP reporter proteins and EnduRen live cell luciferase substrate. Cells were spin-inoculated with recRSV A2-L19F and shifted from 4°C to 37°C at 0 hours. Values represent means of three experiments ± SD. Mock denotes cell mixtures that remained uninfected.

Figures 3A to 3D provide a resistance profile for GPAR-3710. Figure 3A lists the resistance mutations identified in the RSV F protein through viral adaptation. Figure 3B is a bar graph showing resistance quantification using transiently expressed RSV L19-F mutants, the DSP-based quantitative cell-to-cell fusion assay and ViviRen luciferase substrate. Values represent means of six experiments ± SD. Datasets were subjected to one-way ANOVA and Bonferroni’s multiple comparison post-test; *: P < 0.05. Mock denotes cells transfected with vector DNA instead of F expression plasmid. Figure 3C is a series of fluorescence microphotographs of recovered RSV recombinants expressing mKate2 and harboring F mutants instead of standard F. Photographs were taken 44 hours p.i. after incubation in the presence of 10 μM GPAR-3710 or vehicle (DMSO). Figure 3D is a graph showing growth curves of the recovered RSV recombinants at 37°C. Cell-associated viral titers were determined through TCID50 titration using mKate2-derived fluorescence as readout. Values are means of three experiments ± SD.

Figures 4A to 4C demonstrate structural mapping of pan-resistance hot spots in pre- and postfusion RSV F. Figure 4A shows dose-response curves of the four recovered RSV recombinants against GPAR-3710 and, for comparison, the clinically advanced RSV entry inhibitor BMS-433771 and broad spectrum RdRp blocker JMN3-003. Values are mean cell-associated viral titers of three experiments ± SD. EC90 concentrations were calculated as in Fig. 1C when applicable. The highest concentration assessed was 100 μM. Figures 4B and 4C are ribbon representations of RSV F in the post- (Fig. 4B; pdb 3RRT) and prefusion (Fig. 4C; pdb 4JHW) conformation. Solid spheres represent for each monomer amino acid side chains at positions 401 and 489, respectively. Side views and, for prefusion F, a view from the viral envelope up are shown.
Figures 5A to 5E relate to resistance mutations that alter the F fusion kinetics. Figures 5A and 5C show results of kinetic cell-to-cell fusion assays with transiently expressed F mutants, DSP-based luciferase reporter, and EnduRen live cells substrate. Fusion was followed at 37°C (Fig. 5A) or 32°C (Fig. 5C) by monitoring reconstituted DSP renilla luciferase activity in 30-minute time intervals. Values are means of four replicates ± SD; *: P < 0.05, **: P < 0.01, ***: P < 0.001. Figure 5B shows results of straight-line non-linear fit regression modeling to calculate maximal F-induced fusion rates from datasets shown in Figures 5A and 5C. Models are based on time intervals showing in first approximation linear signal increases, and numbers show best-fit slopes ± SEM. Figure 5D is a blot showing cell surface expression (SF) and whole cell steady-state levels (WCL) of transiently expressed RSV F mutants after incubation of cells at 37°C.

Blots were probed with specific antibodies directed against RSV F (precursor F0 and cleaved F1 material is marked) or cellular transferrin receptor (TfR). Numbers denote mean densitometry quantitations of four experiments ± SD, all normalized for TfR and expressed relative to standard L19-F. Mock denotes cells transfected with vector DNA instead of F expression plasmid. Figure 5E is a blot showing cell surface expression of the L19-FD401E/D489E double mutant after incubation of cells at 32°C. Proteins were harvested after 20 hours and at steady state (44 hours) post-transfection. Blot development and densitometry quantifications as specified in Fig. 5D.

Figures 6A to 6D demonstrate stability and in vivo pathogenesis of resistant RSV recombinants. Figure 6A is a blot from a fusion core assay. F complexes were natively extracted from purified viral particles and fractionated through non-reducing TA-PAGE under mildly denaturing conditions. Immunoblots (IB) were probed with specific antibodies directed against the RSV F protein. The migration pattern of F monomers and fusion core-stabilized trimers is indicated; wt: standard L19F. Figure 6B shows thermal stability of resistant RSV virions. Recombinants were incubated at different temperatures for 24 hours in the absence of target cells, followed by TCID50 titration of remaining infectivity. Values were normalized for aliquots immediately stored at -80°C for 24 hours, and represent means of three experiments ± SD. Figure 6C shows viral titers from BALB/cJ mice infected intranasally with 1*10^5 PFU of the indicated virus, lungs harvested four days p.i. Viral titers were determined through immunoplaque assays. Symbols represent individual animals of each group (N = 5), lines show means ± SEM. Cross bars denote statistical analysis of differences between test groups and standard recRSV A2-L19F by one-way ANOVA and Bonferroni’s multiple comparison post-test; *: P < 0.05, NS: not significant. Figure 6D is a series of images from lungs of BALB/cJ mice infected
as in Figure 6C harvested eight days p.i. and processed for PAS staining. Representative airways
are shown, mock denotes lungs of uninfected animals and bars represent 100 μm.

Figure 7 shows inhibition of recRSV A2-L19F-mKate2 by GPAR-3710. Fluorescence
microphotographs of cells infected with recRSV A2-L19F-mKate2 in the presence of the
specified compound concentrations or vehicle (DMSO) were taken 44 hours p.i.

Figure 8 shows resistance testing of RSV F mutants harboring individual escape mutation
candidates. Cells were transfected with expression plasmids encoding the specified L19-F
mutants, and incubated in the presence of 10 μM GPAR-3710 or vehicle (DMSO).
Microphotographs were taken 44 hours p.i. Mock denotes cells that received vector DNA instead
of F expression plasmid.

Figure 9 shows a schematic of an influenza virus PB2 genome segment containing a
Nano luciferase (Nluc) reporter. Recovery of the corresponding influenza virus strain harboring
this modified PB2-Muc genome segment resulted in replication-competent recombinants stably
expressing Nano-luciferase. The cDNA of PB2 derived from IAV strain WSN-33 (H1N1) is
flanked by pol II (positive polarity transcripts) and pol I (negative polarity transcripts)
promoters. The natural packaging signal (PS) of PB2 cDNA was silenced and mirrored by a
newly constructed PS copy inserted downstream of the Nluc reading frame. An auto-cleavable
'2A-like' sequence from porcine teschovirus (PTV) inserted upstream of Nluc allows
posttranslational separation of PB2 (restoring bioactivity) and Nluc. A KDEL ER-retention
signal is fused to Nluc to prevent secretion of the luciferase protein.

Figure 10 shows that IAV WSN-Nluc grows efficiently and returns signal intensity
approximately one order of magnitude higher than the leading, currently available constructs.
Comparison of the IAV WSN-Nluc recombinant with a previously reported IAV WSN-gaussia
luc variant, harboring a copy of Gaussia luciferase in the PB2 genome segment in an equivalent
design to the approach detailed in Figure 9. After infection of A549 cells at different
multiplicities of infection ranging from 0.02 to 0.2 infectious particles/cell, IAV-WSN-Nluc
returns approximately 10-fold higher signal/background values than IAV-WSN-gaussia luc.
Values are means of three experiments ± SD.

Figure 11 shows that RSV L19FD489E-firefly luciferase and IAV WSN-Nluc are
suitable for dual-pathogen drug screening campaigns. Compatible growth kinetics of RSV
L19FD489E-firefly luciferase (MOI=0.1) and IAV WSN-Nluc (MOI=0.02) after co-infection of
A549 cells. Samples were harvested and detected at the indicated time post-infection. Values are
means of three experiments ± SD.
Figures 12A to 12E show generation of a recIAV WSN-NanoLuc reporter strain. Figure 12A is a schematic of the WSN PB2-NanoLuc or PB2-Gaussia genome segment (PS*: downstream packaging signal that was inactivated through silent mutagenesis; 2A PTV-derived cleavage site; NanoLuc or Gaussia: luciferase ORF; KDEL: ER retention signal; and PS: engineered packaging signal. Grey shading specifies the reading frame of the engineered segment. Individual segments are not drawn to scale. Figure 12B shows reporter expression profile of IAV WSN-Gaussia on A549 cells (N=3; means ± SD are shown). Instrument gain 250; RLU (relative luciferase unit). Figure 12 shows signal window of the recIAV WSN-Gaussia and analogous recIAV WSN-NanoLuc reporter strains. A549 cells were exposed at infection to the potent inhibitor 5-iodotubercidin at 10 μM or the vehicle (DMSO) volume equivalent. RLU values were determined 48 hours post-infection. Values were normalized for vehicle controls (N = 3; means ± SD are shown). Z’ and S/B values are specified below the graph. Figure 1D shows reporter expression profiles of recIAV WSN-NanoLuc as in (Fig. 12B) after infection of A549 cells at two different MOIs (N=3; means ± SD are shown). Instrument gain 135 for recIAV WSN-NanoLuc. The IAV WSN-Gaussia profile was added for comparison. Figure 12E shows recIAV WSN-NanoLuc and WSN-Gaussia are genetically stable over several passages. Progeny viral titers were determined by plaque assay (left panel) and luciferase activities determined (right panel) after each passage (N=3; means ± SD are shown).

Figures 13A to 13D show development of second-generation recRSV reporter strains. Figure 13A is a schematic of the recRSV-L19FD489E-firefly and renilla luciferase genomes. Figure 13B shows reporter expression profile after infection with recRSV-L19F-renilla or newly generated recRSV-L19FD489E-firefly or recRSV-L19FD489E-renilla (MOI 0.3 each; instrument gain 200). Values were normalized to the highest signal of each series (N>3; means ± SD are shown). Purification of recRSV-L19FD489E-firefly and recRSV-L19FD489E-renilla progeny virions through different techniques. Figure 13C shows background clearance (RLU before/RLU after) (N=3; means ± SD are shown; 2-tailed t-test, *: p < 0.05) calculated from virus stocks before and after purification. Figure 13D shows signal window of the recRSV reporter strains. A549 cells were exposed at infection to 10 μM KUC 109767, an inhibitor of RSV RdRp activity, or the vehicle (DMSO) volume equivalent. RLU values were determined 44 hours post-infection and values normalized for vehicle controls (N=3; means ± SD are shown).

Figures 14A to 14G show recRSV-L19FD489E-fireSMASH allows induced reporter degradation. Figure 14A shows schematic of the fireSMASH cassette inserted into the recRSV-L19FD489E genome (cleav: HCVNS3 cleavage site). Figure 14B shows immunodetection of
firefly luciferase after infection of cells with the specified recRSV-L19FD489E strain in the presence or absence of the NS3 inhibitor asunaprevir (ASV) and SDS-PAGE of cell lysates. Cellular GAPDH levels were determined as loading controls. Figure 14C shows peak recRSV-L19FD489E-fireSMASH progeny titers after incubation in the presence of 3 µM ASV or vehicle (DMSO). \(N = 3 \); means ± SD are shown. Figure 14D shows immunodetection of firefly luciferase after serial passaging of recRSV-L19FD489E-fireSMASH and reinfection of cells in the presence or absence of 3 µM ASV. Passage 2 (P2) and passage 5 (P5) are shown, GAPDH levels were determined as loading controls. Figure 14E shows firefly activity after growth of recRSV-L19FD489E-fireSMASH in the presence or absence of 3 µM ASV. Cells were infected at the specified MOIs and harvested 44 hours post-infection \((N = 3) \); means ± SD are shown; 2-tailed t-test, **: \(p < 0.01 \); ***: \(p < 0.001 \). Figure 14F shows fold-change of contaminating firefly luciferase after gradient purification of recRSV-L19FD489E-firefly and recRSV-L19FD489E-fireSMASH preparation to unpurified recRSV-L19FD489E-firefly \((N = 3) \); means ± SD are shown; 2-tailed t-test; **: \(p < 0.01 \). Figure 14G shows signal window of the recRSV-L19FD489E-fireSMASH reporter strain was calculated as described in Figure 13D \((N = 3) \); means ± SD are shown. \(Z' \) and S/B values are specified below the graph.

Figures 15A to 15E show infection conditions for synchronized RSV and IAV reporter expression. Figures 15A and 15B show luciferase activities in three different human respiratory host cell lines 44 hours post-infection at the specified MOIs with recRSV-L19FD489E-fireSMASH (Fig. 15A) or recIAV WSN-NanoLuc (Fig. 15B; \(N = 4 \); means ± SD are shown). Two-way ANOVA with Tukey's multiple comparison post-tests were carried out to assess statistical significance of sample divergence. Results are shown for MOI 0.1 (A) and 0.04 (B); * : \(p < 0.05 \); ***: \(p < 0.01 \). Figures 15C-15E show reporter activity profiles after infection of BEAS-2B cells singly with recRSV-L19F,489E-fireSMASH (Fig. 15C) or recIAV WSN-NanoLuc (Fig. 15D), or after co-infection with both strains at an MOI of 0.1 (RSV) and 0.02 (IAV), respectively (Fig. 15E). Values were normalized to the highest signal of each series \((N = 3) \); means ± SD are shown; grey shaded area in (Fig. 15D) marks the time window post-infection when signal intensities of both luciferase reporters are >80% of max.

Figures 16 to 16D show assay miniaturization and validation. Figure 16A shows results from co-infection of BEAS-2B cells with recRSV-L19F,489E-fireSMASH and recIAV WSN-NanoLuc as specified in Figure 15E in a 96-well plate format. Known RSV-specific (KUC109767 (10 µM), GPAR3710 (10 µM), and BMS-433771 (10 µM)) IAV-specific (5-iodotubercidin (10 µM)), and MeV-specific inhibitors (ERDRP-0519 (10 µM), AS-48 (40 µM)),
broad-spectrum antivirals (ribavirin (40 µM) and JMN3-003 (10 µM)), and cytotoxic cycloheximide (100 µg/ml) were used for assay validation (N= 5; means ± SD are shown). Figure 16B shows co-infection assay parameters obtained in 96-well (manual; one plate each; N = 5; means ± SD are shown) and 384-well (automated; four plates each; N = 128; means ± SD are shown) format. ND: not determined. Figure 16C shows Z-score profiles of automated dual-pathogen pilot screens in 384-well plate format in four replicates. Symbols mark Z-scores of individual replicate screens, solid black lines represent the assay Z-score mean, and dashed black lines show the hit cut-off (assay mean + 2.5 x (assay Z-score SD)). Final screening concentration was 5 µM. Figure 16D shows individual Z-scores of the replicate (repl. I-IV) screens shown in (Fig 16C) plotted as a function of the mean % inhibition for each compound. Dashed horizontal and vertical black lines show hit cut-offs based on Z-score (assay mean + 2.5 x (assay Z-score SD)) and biological effect (mean inhibition >75%), respectively.

Figures 17A and 17B show results of a test screen of a 1280-compound LOPAC library of known bioactives. Figure 17A shows Z-score profiles of the automated proof-of-concept screen of the LOPAC library in 384-well format. Solid lines show Z-score means, dashed lines hit cut-offs (assay mean + 2.0 x (assay Z-score SD) for recRSV A2-L19FD489E-fireSMASH, assay mean + 2.5 x (assay Z-score SD) for rec IAV WSN-NanoLuc). Final screening concentration was 5 µM. Figure 17B shows dose-response assays of hit candidates in a concentration (cone.) range of 10-0.078 or 10-0.0006 µM. Only hits with CC50 concentrations >10 µM and confirmed inhibition of at least one primary target virus are shown. Values were normalized (norm.) for vehicle (DMSO)-treated infections and represent mean % inhibition or % cell viability (viab.) of three replicates ± SD. Regressions curves for antiviral (solid) or cytotoxic (shaded) activities are based on four-parameter modeling where applicable.

Figure 18 is an overview of the replication-competent IAV and RSV reporter strain-based next-generation dual pathogen HTS protocol for the simultaneous identification of IAV-specific, RSV-specific, and broad spectrum inhibitors. The assay is validated for human respiratory BEAS-2B cells, but adaptable to all cell lines that are permissive for either virus strain. Infection at high MOI can predominantly identify inhibitors of viral entry and polymerase, while low MOI multi-cycle infections allow interrogation of all stages of the viral life cycle. Counterscreens can be used to distinguish between hit candidates or reporter interfering compounds (specific antiviral activity), and hit candidates, reporter interfering compounds, cytotoxic compounds, or promiscuous pan-assay interfering (PAI’N) compounds (broad spectrum activity).
DETAILED DESCRIPTION

An RSV reporter strain that can be used for high-throughput drug discovery is disclosed. The disclosed RSV reporter strain has a mutation in its fusion (F) protein that allows it to escape from entry inhibitors, such as GPAR-3710. The disclosed RSV strain can therefore be used to identify drug candidates that either act post-entry or block viral entry without being compromised by pan-resistance. Also disclosed is a recombinant RSV vector that contains an RSV genome for the disclosed RSV reporter strain operably linked to an expression control sequence. Also disclosed is an infectious RSV virion produce by expression of the disclosed recombinant RSV vector in a host cell.

Typically, an RSV virion/particle contains a viral genome within a helical nucleocapsid which is surrounded by matrix proteins and an envelope containing glycoproteins. The genome of human wild-type RSV encodes the proteins, NS1, NS2, N, P, M, SH, G, F, M2-1, M2-2, and L. NS1 and NS2 inhibit type I interferon activity. N encodes nucleocapsid protein that associates with the genomic RNA forming the nucleocapsid. M encodes the Matrix protein required for viral assembly. SH, G and F form the viral coat. The G protein is a surface protein that is heavily glycosylated. It functions as the attachment protein. The fusion (F) protein mediates fusion, allowing entry of the virus into the cell cytoplasm and also allowing the formation of syncytia. M2 is the second matrix protein also required for transcription and encodes M2-1 (elongation factor) and M2-2 (transcription regulation). L encodes the RNA polymerase. The phosphoprotein P is a cofactor for the L protein.

To produce infectious RSV virions, the RSV genome (or antigenome) expresses the RSV proteins necessary to (i) produce a nucleocapsid capable of RNA replication, and (ii) render progeny nucleocapsids competent for both RNA replication and transcription. Transcription by the genome nucleocapsid provides the other RSV proteins and initiates a productive infection. Alternatively, RSV proteins needed for a productive infection can be supplied by coexpression.

The term "RSV genome" as used herein refers to the genomic or antigenomic sequences for the RSV genes necessary to produce an RSV virion, along with optional heterologous genes, operably linked to an expression control sequences.

In some embodiments, the disclosed RSV genome comprises a nucleic acid encoding a fusion (F) protein having a mutation that allows an RSV virion produced by expression of the recombinant RSV vector to escape from GPAR-3710 inhibition. An example amino acid
sequence for a wild type F protein is set forth in GenBank accession number AC083297, SEQ ID NO: 1, shown below:

```
1 melpilkan i ttilaa avt cfassq nite ef ygtc sav skgy islart gwtv s v i 
6 lsnikkncn gtdakvklmk qeldkyknq telqlmqs pt panarrrer lprfmytln
121 ttkttntvts kkkrrrflgf llgvsaisaa giavkv hll egevniksa llstknavvs
181 lsnqsvlts rvlldknyid kqllpivnkq scrisnietv lefqqknrrl leitrefavn
241 agyttppvst yltnse lal indmpitndq kklmsnnvqi v rqqysims ikeevlayv
301 vqllygvld tp cwpkhtap lettntkegs niclitrtdrg wcndagsvsa ffpqaekcv
361 qsnrvfcdtm ys lltepsequ lcnvdfnpk y dckimtks dtvsssvitsl gaivcycgk
421 kctasankr ng ii k tf sncgd yvsn kgvdtv svgntlyyvn kqegkslyvk gepi in ydp
481 lvfpd e defda sias vne kin qslafirkad el hhv n agk attnimitti livivilv
541 liavglllyc kar satp itls kqdl s gini afn.
```

For example, the F protein can comprises a mutation that corresponds to residue 401 of SEQ ID NO: 1. 489 of SEQ ID NO: 1, or a combination thereof. Also disclosed is a recombinant nucleic acid that comprises an RSV F protein having a mutation that corresponds to residue 401 of SEQ ID NO: 1. 489 of SEQ ID NO: 1, or a combination thereof, operably linked to a heterologous expression control sequence. In some cases, the mutation is a D401E mutation, a D489E mutation, or a combination thereof.

The term "residue" as used herein refers to an amino acid that is incorporated into a polypeptide. The amino acid may be a naturally occurring amino acid and, unless otherwise limited, may encompass known analogs of natural amino acids that can function in a similar manner as naturally occurring amino acids.

A reference RSV genome (or antigenome) can be derived from any suitable native RSV strain. For example, RSV strains can be selected from the group consisting of RSV strain A2 (wild type) (ATCC VR-1540P), RSV strain A2cp248/404, RSV Strain 2-20, RSV strain 3-12, RSV strain 58-104, RSV strain Long (ATCC VR-26), RSV strain 9320 (ATCC VR-955), RSV strain B WV/14617/85 (ATCC VR-1400), RSV strain 18537 (ATCC VR-1580), RSV strain A2 cpts-248 (ATCC VR-2450), RSV strain A2 cpts-530/1009 (ATCC VR-2451), RSV strain A2 cpts-530 (ATCC VR-2452), RSV strain A2 cpts-248/955 (ATCC VR-2453), RSV strain A2 cpts-248/404 (ATCC VR-2454), RSV strain A2 cpts-530/1030 (ATCC VR-2455), RSV strain subgroup B cp23 Clone 1A2 (ATCC VR- 2579), RSV strain Subgroup B, Strain B1, and cp52 Clone 2B5 (ATCC VR-2542). In some cases, the RSV strain RSV strain L19 (ATCC HRSV-L19).

The genomic sequence for strain A2 is set forth in GenBank accession number M74568, SEQ ID NO:2. The genomic sequence for strain line 19 is set forth in GenBank accession number F1614813, SEQ ID NO:3. The genomic sequence for strain Long is set forth in GenBank accession number AY911262, SEQ ID NO:4.
A reference RSV genome can also be derived from a recombinant or chimeric strain. For example, the RSV genome can be derived from a chimeric A2 strain, wherein the nucleic acid encoding the F protein is derived from an RSV L19 strain. Any other chimeric combinations of NS1, NS2, N, P, M, SH, G, F, M2-1, M2-2, and L genes from two or more RSV strains are contemplated for use in the disclosed RSV constructs.

A variety of alterations in the RSV genome for incorporation into infectious recombinant RSV are possible. For example, foreign genes may be inserted, the order of genes changed, gene overlap removed, the RSV genome promoter replaced with its antigenome counterpart, portions of genes removed (e.g., the cytoplasmic tails of glycoprotein genes), and even entire genes deleted. Modifications in the sequence can be made to facilitate manipulations. Nontranslated gene sequences can be removed to increase capacity for inserting foreign sequences.

Therefore, variants of native or recombinant/chimeric RSV containing an F protein with the disclosed mutations may be used. The term "variant" refers to an amino acid or peptide sequence having conservative amino acid substitutions, non-conservative amino acid substitutions (i.e. a degenerate variant), substitutions within the wobble position of each codon (i.e. DNA and RNA) encoding an amino acid, amino acids added to the C-terminus of a peptide, or a peptide having 65%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to a reference sequence.

The term "percent (%) sequence identity" or "homology" is defined as the percentage of nucleotides or amino acids in a candidate sequence that are identical with the nucleotides or amino acids in a reference nucleic acid sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods.

The term "nucleic acid" refers to a natural or synthetic molecule comprising a single nucleotide or two or more nucleotides linked by a phosphate group at the 3' position of one nucleotide to the 5' end of another nucleotide. The nucleic acid is not limited by length, and thus the nucleic acid can include deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
The RSV genome can further comprise a nucleic acid encoding a reporter protein, such as a luciferase or fluorescent protein, operably linked to the expression control sequence. For example, the luciferase can be a firefly luciferase or a Renilla luciferase.

A nucleic acid sequence encoding firefly luciferase is set forth in GenBank accession number M15077, SEQ ID NO:5. A synthetic nucleic sequence encoding Renilla luciferase is set forth in GenBank accession number AY004213, SEQ ID NO:6. A synthetic nucleic acid sequence encoding eGFP is set forth in GenBank accession number JQ064508, SEQ ID NO:7.

The RSV genome can further comprise a nucleic acid encoding a tag for quickly shut off the production of the disclosed recombinant protein at a post-transcriptional step. In particular, the tag can involve small molecule-assisted shutoff (SMASh) technology. For example, the tag can include a degradation signal (i.e., degron) and a protease cleavage site that cleaves the degron from the recombinant protein. However, in the presence of a protease inhibitor, autoproteolysis can be blocked and the degron induce rapid degradation of the recombinant protein. In some embodiments, the SMASh can comprise a hepatitis C virus-derived NS3 protease flanked by a strong degron domain inducing proteasomal degradation. In these embodiments, the NS3 protease site can be positioned at the intersection of the SMASh tag and the target protein.

The recombinant RSV vector can have the backbone from any suitable expression vector. The term "vector" or "construct" refers to a nucleic acid sequence capable of transporting into a cell another nucleic acid to which the vector sequence has been linked. The term "expression vector" includes any vector, (e.g., a plasmid, cosmid or phage chromosome) containing a gene construct in a form suitable for expression by a cell (e.g., operably linked to a transcriptional control element).

For example, the RSV vector can have a bacterial artificial chromosome (BAC) backbone. The BAC system is based on Escherichia coli and its single-copy plasmid F factor which were described as useful for cloning large fragments of human DNA. The F factor encodes for genes that regulate its own replication including oriS, repE, parA, and parB. The oriS and repE genes mediate the unidirectional replication of the F factor while parA and parB typically maintain copy number at a level of one or two per E. coli genome. It is contemplated that the genes and the chromosome may contain mutations, deletions, or variants with desired functional attributes. The BAC vector (pBAC) typically contains these genes as well as a resistance marker and a cloning segment containing promoters for incorporating nucleic acid segments of interest by ligating into restriction enzyme sites.
Methods to construct expression vectors containing genetic sequences and appropriate transcriptional and translational control elements are well known in the art. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Press, Plainview, N.Y., 1989), and Ausubel et al, Current Protocols in Molecular Biology (John Wiley & Sons, New York, N.Y., 1989).

Expression vectors generally contain regulatory sequences necessary elements for the translation and/or transcription of the inserted coding sequence. For example, the coding sequence is preferably operably linked to an expression control sequence, such as a promoter and/or enhancer to control the expression of the desired gene product. Promoters used in biotechnology are of different types according to the intended type of control of gene expression. They can be generally divided into constitutive promoters, tissue-specific or development-stage-specific promoters, inducible promoters, and synthetic promoters.

The term "promoter" refers to a sequence or sequences of DNA that function when in a relatively fixed location in regard to the transcription start site. A "promoter" contains core elements required for basic interaction of RNA polymerase and transcription factors and can contain upstream elements and response elements.

The term "enhancer" generally refers to a sequence of DNA that functions at no fixed distance from the transcription start site and can be either 5’ or 3’ to the transcription unit. Furthermore, enhancers can be within an intron as well as within the coding sequence itself. They are usually between 10 and 300 bp in length, and they function in cis. Enhancers function to increase transcription from nearby promoters. Enhancers, like promoters, also often contain response elements that mediate the regulation of transcription. Enhancers often determine the regulation of expression.

An "endogenous" enhancer/promoter is one which is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one which is placed in juxtaposition to a gene that it does not control in nature by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of that gene is directed by the linked enhancer/promoter.

The term "operably linked to" refers to the functional relationship of a nucleic acid with another nucleic acid sequence. Promoters, enhancers, transcriptional and translational stop sites, and other signal sequences are examples of nucleic acid sequences operably linked to other sequences. For example, operable linkage of DNA to a transcriptional control element refers to
the physical and functional relationship between the DNA and promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA.

Screening Methods

Also disclosed are methods of screening for antiviral agents using the disclosed RSV reporter strains. The methods can involve contacting a culture comprising the disclosed RSV strains or infectious RSV virion with a candidate agent, and then assaying the culture for RSV levels or activity. In these embodiments, a decrease in RSV levels or activity is an indication that the candidate agent is an effective antiviral agent for RSV.

RSV levels or activity can be determined by assaying for reporter expression. Therefore, in some cases, the RSV genome comprises a nucleic acid encoding a first luciferase, and the method involves contacting the culture with a substrate for the first luciferase, and then assaying the culture for bioluminescence. In these embodiments, a decrease in bioluminescence from the first luciferase activity is an indication that the candidate agent is an effective antiviral agent for RSV.

The disclosed RSV strains and viral particles can also be used in combination with other viral strains to detect pan-inhibitors. For example, the culture can further comprise an influenza strain or infectious influenza virion encoded by a recombinant influenza vector that comprises an influenza genome encoding a second luciferase that has a substrate distinct from the first luciferase. For example, the first luciferase can be firefly luciferase, while the second luciferase can be selected from the group consisting of nano-luciferase, gaussia luciferase, and Renilla luciferase. The influenza genome can be derived from any suitable strain, such as strain WSN-33 (H1N1).

An example nucleic acid sequence for a pHW12PBII_Nanoluc-PS construct is set forth in SEQ ID NO:8, shown below:

```
acccgagactctgtctcgacctcggacagtgtggggcagccaaacaggggtgacaaagacatataagcgaagcggtcacaatttactattcgtatcctggaataaaaaagctctatgtcgccatatcgcgtctgcaattgtggccagtctacagagtatcttctttgaaaaagaatcagaatatactacagactttgcgctgtctgacagtttaataagggcaactacattcaccaccaagagagaagaagcaagcaactacctacattcaccaccaagagagaagaagcaag
```

Therefore, the disclosed methods of screening for antiviral agents using the disclosed RSV reporter strains involve contacting a culture comprising the disclosed RSV strains or infectious RSV virion with a candidate agent, and then assaying the culture for RSV levels or activity. In these embodiments, a decrease in RSV levels or activity is an indication that the candidate agent is an effective antiviral agent for RSV.

RSV levels or activity can be determined by assaying for reporter expression. Therefore, in some cases, the RSV genome comprises a nucleic acid encoding a first luciferase, and the method involves contacting the culture with a substrate for the first luciferase, and then assaying the culture for bioluminescence. In these embodiments, a decrease in bioluminescence from the first luciferase activity is an indication that the candidate agent is an effective antiviral agent for RSV.

The disclosed RSV strains and viral particles can also be used in combination with other viral strains to detect pan-inhibitors. For example, the culture can further comprise an influenza strain or infectious influenza virion encoded by a recombinant influenza vector that comprises an influenza genome encoding a second luciferase that has a substrate distinct from the first luciferase. For example, the first luciferase can be firefly luciferase, while the second luciferase can be selected from the group consisting of nano-luciferase, gaussia luciferase, and Renilla luciferase. The influenza genome can be derived from any suitable strain, such as strain WSN-33 (H1N1).

An example nucleic acid sequence for a pHW12PBII_Nanoluc-PS construct is set forth in SEQ ID NO:8, shown below:

```
acccgagactctgtctcgacctcggacagtgtggggcagccaaacaggggtgacaaagacatataagcgaagcggtcacaatttactattcgtatcctggaataaaaaagctctatgtcgccatatcgcgtctgcaattgtggccagtctacagagtatcttctttgaaaaagaatcagaatatactacagactttgcgctgtctgacagtttaataagggcaactacattcaccaccaagagagaagaagcaagcaactacctacattcaccaccaagagagaagaagcaag
```
In some embodiments, the infectious influenza virus particle and the infectious RSV virion have comparable growth kinetics. The method can therefore further comprise contacting the culture with a substrate for the second luciferase and assaying the culture for bioluminescence. In these embodiments, a decrease in bioluminescence from the second luciferase activity is an indication that the candidate agent is an effective antiviral agent for influenza. Moreover, a decrease in bioluminescence from both the first luciferase activity and second luciferase activity is an indication that the candidate agent is an effective pan-antiviral agent.

In general, candidate agents can be identified from large libraries of natural products or semi-synthetic extracts or chemical libraries according to methods known in the art. Those skilled in the field of drug discovery and development will understand that the source of test extracts or compounds does not affect the procedure(s) used.

Accordingly, virtually any chemical or extracts can be screened using such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds. Numerous methods
are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based compounds. Synthetic compound libraries are commercially available, e.g., from purveyors of chemical libraries including but not limited to ChemBridge Corporation (16981 Via Tazon, Suite G, San Diego, CA, 92127, USA, www.chembridge.com); ChemDiv (6605 Nancy Ridge Drive, San Diego, CA 92121, USA); Life Chemicals (1103 Orange Center Road, Orange, CT 06477); Maybridge (Trevillett, Tintagel, Cornwall PL34 0HW, UK).

Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including 02H, (Cambridge, UK), MerLion Pharmaceuticals Pte Ltd (Singapore Science Park II, Singapore 117528) and Galapagos NV (Generaal De Wittelaan L1 1A3, B-2800 Mechelen, Belgium).

In addition, natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods or by standard synthetic methods in combination with solid phase organic synthesis, micro-wave synthesis and other rapid throughput methods known in the art to be amenable to making large numbers of compounds for screening purposes. Furthermore, if desired, any library or compound, including sample format and dissolution is readily modified and adjusted using standard chemical, physical, or biochemical methods.

When a crude extract is found to have a desired activity, further fractionation of the positive lead extract is necessary to isolate chemical constituents responsible for the observed effect. The same assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogeneous extracts are known in the art. If desired, compounds shown to be useful agents for treatment are chemically modified according to methods known in the art. Compounds identified as being of therapeutic value may be subsequently analyzed using in vitro cell based models and animal models for diseases or conditions, such as those disclosed herein.

Candidate agents encompass numerous chemical classes, but are most often organic molecules, e.g., small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Candidate agents can include functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, for example, at least two of the functional
chemical groups. The candidate agents often contain cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups.

In some embodiments, the candidate agents are proteins. In some aspects, the candidate agents are naturally occurring proteins or fragments of naturally occurring proteins. Thus, for example, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, can be used. In this way libraries of procaryotic and eucaryotic proteins can be made for screening using the methods herein. The libraries can be bacterial, fungal, viral, and vertebrate proteins, and human proteins.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

EXAMPLES

Example 1: Pan-Resistance Mechanism of Respiratory Syncytial Virus Against Structurally Diverse Entry Inhibitors.

Materials and methods

Cell culture, transfection and virus stocks. All cell lines were maintained in Dulbecco's modified Eagle's medium supplemented with 7.5% fetal bovine serum at 37°C and 5% CO2. Baby hamster kidney (BHK21) cells stably expressing T7 polymerase (BSR-T7/5 cells) were incubated at every third passage in the presence of 500 μg/ml G-418 (Geneticin). Cell transfections were carried out using Lipofectamine 2000 (Invitrogen) or GeneJuice reagent (EMD Millipore). Standard RSV virus stocks were prepared by infecting HEp-2 cells (ATCC HB-8065) at a multiplicity of infection (MOI) of 0.01 pfu/cell at 37°C, followed by incubation at 32°C for 7-9 days. Cell-associated progeny virus was released through one freeze/thaw cycle and titers determined by TCID50 titration or immuno-plaque assay as described (Radecke F, et al. (1995) EMBO J 14(23):5773-5784). RecRSV-ren stocks were purified through ultracentrifugation through a 20%/60% one-step sucrose gradient (90 min at 100,000xg, 4°C). The virus-containing fraction was diluted in TNE buffer (1 mM Tris, pH 7.2, 100 mM NaCl, 10 mM EDTA), pelleted at 60,000xg for 30 min at 4°C, and resuspended in TNE buffer.

Generation and recovery of recombinant RSV. Point mutations were introduced through directed mutagenesis into a shuttle vector containing the RSV L19-F open reading frame, followed by transfer of the modified SacII/Sall line 19 F fragment into pSynkRSV A2-L19F-
renilla or pSynkRSV A2-L19F-mKate2 (Hotard AL, et al. (2012) Virology 434(1): 129-136). Recombinants were recovered as previously described (Hotard AL, et al. (2012) Virology 434(1): 129-136) and subjected to RT-PCR and cDNA sequencing for confirmation of specific point mutations.

Compounds. All compounds were dissolved in dimethyl sulfoxide (DMSO) and stored at -80°C. Sourced compounds were obtained from Ambienter (previously described panelixovirus inhibitor 09167 (Moore TW, et al. (2013) ACS Med Chem Lett 4(8):762-767)) and Vitas-M Laboratory or MolPort (GPAR-3710 stocks). The screening library was obtained from ChemDiv. For screening, 2*10^4 (96-well format) or 6*10^3 (384-well format) HEp-2 cells/well were seeded into solid-wall microtiter plates. Test articles dissolved in DMSO were added at 5 μM final concentration (final DMSO content was below 0.1% vol/vol). As internal reference, four wells on each plate were treated with the pan-ixovirus inhibitor JMN3-003 (final concentration 1μM) or vehicle (DMSO) only. Cells were infected with recRSV A2-L19F-ren (MOI=0.2 pfu/cell) and renilla luciferase activities quantified in a Synergy H1 (BioTek) multimode microplate reader after 44-48-hour incubation.

HTS data analysis. Raw data sets were automatically reformatted and imported into the cellHTS2 application package (Boutros M, et al. (2006) Genome Biol 7(7):R66; Pelz O, et al. (2010) BMC Bioinformatics 11:185). Data were analyzed according to the plate median method; each value was normalized to the median value for all compound wells of the plate, and normalized values were scaled to the median absolute deviation of the plate. The SciFinder database package (American Chemical Society) was used to query chemical databases with hit candidate structures to evaluate known bioactivities of analogs, commercial availability, and free intellectual property (IP) space.

Dose-response curves, efficacy and cytotoxicity. Cells infected (MOI=0.05 pfu/cell) with recRSV A2-L19F, recRSV A2-L19F-ren, recRSV A2-L19F-mKate2, or GPAR-3710-resistant variants thereof were incubated in the presence of serial dilutions of compound for 44 hours, followed by titration of cell-associated progeny particles or quantification of reporter expression as specified. If possible, fifty or ninety percent effective concentrations (EC50 or EC90 values, respectively) were calculated based on four-parameter variable-slope nonlinear regression modeling of mean values of at least three experiments. To quantify the effect of compound on cell metabolic activity, cells were incubated in the presence of serial compound dilutions (30 μM highest) for 44-hours, then subjected to a nonradioactive cytotoxicity assay (CytoTox 96;
Promega) according to the manufacturer's instructions. Assay values were normalized to vehicle (DMSO) controls according to % toxicity = 100 - 100x(sample - reference)/(vehicle - reference).

Time-of-addition assays. HEp-2 cells were spin-inoculated (1,000xg; 30 minutes; 4°C; MOI=10 pfu/ml) with purified recRSV A2-L19F-ren. Compound was added at the specified times pre- or post-infection, and luciferase activities determined 26 hours post-infection. Reference samples received volume equivalents of vehicle (DMSO).

Minireplicon reporter assay. Based on a previously described pT7-RSV-luciferase minigenome reporter (Dochow M, et al. (2012) J Biol Chem 287(9):6878-6891), an RSV minigenome construct was generated under the control of the constitutive RNA pol I promoter (pHH-RSV-repl-firefly). Huh-7 cells were co-transfected with this plasmid and plasmids pRSV-L, pRSV-M2-L, pRSV-N and pRSV-P, respectively, under CMV promoter control. Compounds GPAR-3710 or JMN3-003 were added in serial dilutions, luciferase reporter activities determined 40 hours post-transfection, and ECso concentrations calculated as above if possible.

End-point cell-to-cell fusion assay. A dual split-protein cell content mixing assay was employed to quantify the extent of cell-to-cell fusion mediated by RSV F. 293T cells were transfected with plasmid DNA encoding eGFP-renilla luciferase dual-split fusion proteins DSP1-7 or DSPs-ii (Kondo N, et al. (201 I) Curr Protoc Cell Biol Chapter 26:Unit 26 29), respectively. One cell population received in addition plasmid DNA encoding RSV L19F or, for control, MeV F and H proteins (Brindley MA, et al. (2012) Proc Natl Acad Sci U S A 109(44):E301 8-3027). Cell populations were mixed at equal ratio four hours post-transfection and incubated in the presence of the specified amounts of GPAR-3710 for 26 hours. The activity of the reconstituted luciferase was quantified after loading of cells with 10 µM ViviRen (Promega) for 30 minutes.

Virus entry kinetics assay. 293T cells transfected with the plasmids encoding the DSP1-7 or DSPs-ii (Kondo N, et al. (201 I) Curr Protoc Cell Biol Chapter 26:Unit 26 29), respectively, were mixed at equal ratio, pre-loaded with EnduRen life cell substrate as described (Brindley MA, et al. (2013) J Virol 87(21):11693-1 1703), and spin-inoculated with recRSV A2-L19F (1,000xg; 30 minutes; 4°C; MOI=6 pfu/cell) in the presence of GPAR-3710 or DMSO. Activity of reconstituted luciferase was recorded at the specified time points.

Kinetic cell-to-cell fusion assay. 293T cells were transfected with the DSP1-7 or DSPs-ii expression plasmids, transfected cells detached and reseeded at equal ratio. Cells were then transfected with standard or mutant RSV L19-F-encoding plasmids, loaded with EnduRen luciferase substrate as above and incubated at 32°C or 37°C. Luciferase activity was recorded at the specified time points.
Microscopy. Fluorescence microphotographs were taken on a Zeiss Axio Observer D.1 inverted microscope at a magnification of x200. For phase-contrast microphotographs, a Nikon Diaphot 200 inverted microscope was used at a magnification of x200.

Virus adaptation. HEp-2 cells were infected with recRSV A2-L19F-mKate2 at an MOI of 0.1 pfu/cell and incubated in the presence 0.1 μM GPAR-3710. When extensive red fluorescence emerged, fresh cell monolayers were re-infected with 10-fold diluted cell-associated virions in the presence of increasing compound concentrations. Total RNA was extracted (RNeasy purification kit; Qiagen) from individually adapted clones when GPAR-3710 concentrations of 30 μM were tolerated, cDNAs generated using random hexamer primers, the F-encoding open reading frame amplified and subjected to DNA sequencing. Candidate mutations were rebuilt in RSV-L19F expression plasmids and subjected to cell-to-cell fusion assays in the presence of the compound. Selected confirmed mutations were rebuilt in the pSynkRSV A2-L19F-mKate2 plasmid background and the corresponding recombinants recovered.

Surface biotinylation, SDS-PAGE, and immunobiotting. Protein surface expression was determined as described before (Plemper RK, et al. (2003) J Virol 77(7):4181-4190) with the following modifications. 293T cells (8 x 10^5 per well in a 6-well plate format) were transfected with 2 μg of plasmid DNA encoding the specified RSV F construct. Washed cells were biotinylated with 0.5 mg/ml sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate (Pierce), quenched, and subjected to precipitation using immobilized streptavidin (GE Healthcare) after lysis in RIPA buffer (1% sodium deoxycholate, 1% NP-40, 150 mM NaCl, 50 mM Tris-Cl (pH 7.2), 10 mM EDTA, 50 mM sodiumfluoride and protease inhibitors). Washed precipitates were fractioned by SDS-PAGE, blotted onto polyvinylidene difluoride (PVDF) membranes (GE Healthcare), and F protein material immunostained using the motavizumab monoclonal antibody. Immunoblots were developed using a ChemiDoc digital imaging system (Bio-Rad), and subjected to densitometry quantification using the Image Lab software package (Bio-Rad).

Fusion core assay. Standard and mutant recRSV A2-L19F were grown at 32°C. Cell associated viral particles were harvested, purified by ultracentrifugation through a 20%/60% one-step sucrose gradient, and subjected to cold extraction of native plasma membrane proteins using Native Sample Buffer (100 mM Tris-Cl (pH 8.6), 10% glycerol, 0.0025% Bromophenol Blue, 0.1% digitonin, 25 mM iodoacetamide), and clearance centrifugation (20,000xg; 15 minutes; 4°C). Extracts were mixed with Laemmli sample buffer with 0.5% SDS and...
fractionated on 3-8% wt/vol NuPAGE Tris-Acetate gradient gels (Life Technologies), followed by immunoblotting as above.

Temperature sensitivity assay. Standard and resistant recRSV A2-L19F strains as specified were divided into equal aliquots, aliquots either frozen at -80°C or incubated at the indicated temperature for 24 hours followed by freezing, and remaining virus titers determined by TCID50 titration.

In vivo infection. BALB/cJ mice (Jackson Laboratories) were anesthetized by intramuscular injection of a ketamine-xylazine solution and infected intranasally with 1*10^5 pfu of recRSV A2-L19F, recRSV A2-L19FD40IE, or recRSV A2-L19FD489E, respectively. All animal procedures were performed according to the guidelines of the Emory University Institutional Animal Care and Use Committee.

Lung titers. Mice were euthanized day 4 p.i., the left lung lobe extracted, weighed, and homogenized using a BeadBeater (Biospec Products). Homogenates were serially diluted, transferred to HEp-2 cells, and cells overlaid one hour p.i. with minimum essential medium (MEM) containing 10% FBS, penicillin G, streptomycin sulfate, amphotericin B solution, and 0.75% methylcellulose. Six days p.i., cells were fixed with methanol and plaques visualized by immunodetection as described (Stokes KL, et al. (2011) J Virol 85(12):5782-5793; Lee S, et al. (2012) J Virol 86(23): 13016-13024).

Mucin expression. Mice were euthanized with fatal-plus eight days p.i. (Stokes KL, et al. (2011) J Virol 85(12):5782-5793; Lee S, et al. (2012) J Virol 86(23):13016-13024), heart-lung tissue was harvested and fixed in 10% formalin. Lung tissue sections embedded in paraffin blocks were stained with periodic acid-Schiff (PAS) stain to visualize mucin expression. PAS-stained slides were digitally scanned using a Zeiss Mirax Midi microscope (Carl Zeiss Microimaging).

Statistical analysis. To determine active concentrations from dose-response curves, four parameter variable slope regression modeling was performed using the Prism (GraphPad) software package. Results were expressed as 50% or 90% inhibitory concentrations with 95% asymmetrical confidence intervals. Statistical significance of differences between sample groups were assessed by one-way or two-way analysis of variance (ANOVA) in combination with Bonferroni multiple comparison post-tests as specified in the figure legends. Experimental uncertainties are identified by error bars, representing standard deviation (SD) or standard error of the mean (SEM), as specified.

Results
To identify anti-RSV drug candidates, a 10,000-entry small-molecule diversity set was screened against a recombinant (rec) RSV strain harboring an additional transcription unit encoding for renilla luciferase (Hotard AL, et al. (2012) Virology 434(1): 129-136; Yan D, et al. (2013) J Virol 87(20): 11076-1 1087). Applying recently established assay conditions for automated anti-paramyxovirus drug screens (Yan D, et al. (2013) J Virol 87(20): 11076-1 1087), this exercise returned a hit candidate pool of 17 compounds, each with a primary screening score exceeding 10 assay-SD (Figure 1A).

Two-concentration counter-screens and cytotoxicity testing yielded 2 candidates that showed >90% RSV inhibition at a tenth (0.5 μM) of the original screening concentration (Figure IB). Based on structural considerations and cytotoxicity profiles, of these GPAR-3710 was sourced for structure-integrity verification. The sourced compound combined low cytotoxicity with target-specific and dose-dependent inhibition of different RSV strains with active concentrations in the nano- to low micromolar range (Figure 1C and Figure 7).

Chemical class of small-molecule RSV entry inhibitors

For mechanistic characterization, GPAR-3710 was first subjected to a time-of-compound addition study to narrow the step in the viral life cycle blocked by the article. Maximal inhibition of virus replication was observed only when the compound was added at the time of infection, while essentially all antiviral activity was lost when GPAR-3710 was administered later than four hours post-infection (Figure 2A). By comparison, a pan-inhibitor of myxovirus polymerase function, JMN3-003 (Krumm SA, et al. (2011) PLoS One 6(5):e20069), remained potently inhibitory even when added eight hours post-infection. This time-of-addition profile points towards inhibition of virus attachment or cell entry by the compound. For cross-examination, GPAR-3710 was tested in two plasmid-based reporter assays that specifically measure bioactivity of the viral entry (Brindley MA, et al. (2012) Proc Natl Acad Sci U S A 109(44):E3018-3027) and polymerase (Dochow M, et al. (2012) J Biol Chem 287(9):6878-6891) machinery, respectively. RSV F protein-mediated membrane fusion activity was specifically and potently inhibited by the compound in these assays (Figure 2B), while activity of the viral RNA-dependent RNA-polymerase (RdRp) complex remained unaffected (Figure 2C). To directly monitor the effect of the inhibitor on the rate of viral entry, a quantitative RSV entry assay was established that monitors virus-to-cell fusion in near real-time (Figure 2D). RSV particles were spin-inoculated on a monolayer of cells expressing either the amino- or carboxy-terminal halves of an eGFP-renilla luciferase chimeric protein (Kondo N, et al. (2011) Curr Protoc Cell Biol Chapter 26:Unit 26 29). Simultaneous fusion of the incoming viral particles with two adjacent
target cells results in cell content mixing, restoring eGFP fluorescence and renilla luciferase activity. When executed in the presence of increasing GPAR-3710 concentrations, this assay revealed a significant, dose-dependent reduction of the RSV entry rate by the compound (Figure 2D). Taken together, these observations characterize the GPAR-3710 scaffold as a novel class of small-molecule RSV entry inhibitors.

Escape mutations locate to the RSV F protein

As a hallmark for pathogen-directed antiviral compounds, the experimental induction of viral escape from inhibition is typically straightforward, and resistance mutations usually locate to the viral protein physically targeted by the compound. RSV escape from GPAR-3710 inhibition was provoked through gradual adaptation to growth in the presence of increasing compound concentrations. Robust resistance - defined by viral growth in the presence of 30 µM (>200xEC50 concentration) of the compound - reliably appeared within a 30-day adaptation period. Efforts were concentrated on the viral entry machinery in search for the molecular basis for escape and determined the F protein sequences of six independently adapted RSV strains. Candidate mutations were rebuilt in an expression plasmid encoding the RSV line19 (L19) F protein (Moore ML, et al. (2009) J Virol 83(9):4185-4194) through directed mutagenesis, followed by first-pass resistance testing in transient cell-to-cell fusion assays carried out in the presence of the compound (Figure 8).

In each of the six strains, a single point mutation was identified in the F protein that contributed to the phenotype (Figure 3A). The mutations clustered in two linear microdomains (400 and 489) of RSV F, spanning residues 400-401 and 486-489, respectively. Mutations D401E and D489E were selected for transient cell-to-cell fusion assays in the presence and absence of compound. In addition, an FD401E/D489E double mutant construct was generated and analyzed. All mutant F were hyperfusogenic compared to the standard L19-F protein (Figure 3B). Particularly robust resistance was observed when the D489E mutation was present.

To verify the role in escape in the context of viral infection, the mutant F constructs was transferred into the genetically-controlled cDNA background of a recombinant RSV A2, harboring the L19-F protein (Hotard AL, et al. (2012) Virology 434(1): 129-136). In addition, a cDNA construct containing the FD401E/D489E double-mutant was generated in the place of parental L19-F. All three mutant recRSVs were recovered successfully and showed resistance to GPAR-3710, based on efficient spread through cell monolayers in the presence of the compound (Figure 3C). They all also showed accelerated growth rates compared to standard recRSV A2-L19F (Figure 3D).
Structural basis for pan-resistance against diverse RSVF inhibitors

Previous anti-RSV drug discovery campaigns have yielded several structurally distinct, highly potent, small-molecule entry inhibitor classes that reportedly likewise induced escape mutations in the F 400 and/or 480 microdomains (Table 1). Lead analogs of several of these inhibitor classes are currently at different stages of pre-clinical and clinical development. To quantify viral resistance, dose-response curves were generated for GPAR-3710 and BMS-433771, a clinically advanced RSV entry inhibitor, against the three RSV recombinants. Mutations in either microdomain resulted in over 30-fold increased EC90 concentrations for either compound (Figure 4A), confirming robust resistance.

Based on a biochemical target analysis, it was proposed that BMS-433771 populates a hydrophobic pocket in the HR-A triple helix that contains residue 489, preventing assembly of the 6HB fusion core during F refolding into its postfusion conformation (Cianci C, et al. (2004) Proc Natl Acad Sci U S A 101(42): 15046-15051). Surprisingly, however, both resistance domains map to opposing ends of the rod-like postfusion F structure, separated by approximately 100A from each other (Figure 4B). Recently, the structure of RSV F was solved also in the metastable prefusion state (McLellan JS, et al. (2013) Science 342(6158):592-598). When the hot-spots were localized in this structure, residues 401 and 489 were found to be positioned in close proximity of each other (<10A) at the base of head domain in prefusion F (Figure 4C).

Resistance mutations alter the rate of F-mediated membranefusion

Prompted by proximity of both resistance hot-spots in prefusion F and the accelerated growth rates of the RSV recombinants, the question arose whether mutations in either microdomain affect prefusion F refolding rates. Employing the kinetic cell-to-cell fusion assay, the rates of fusion pore formation mediated by the different F mutants were assessed. At physiological temperature, maximal fusion rates of all three F mutants were increased compared to that of standard F (Figures 5A and 5B). To fully appreciate the altered refolding kinetics of the mutated F variants, fusion rates were determined under reduced energy conditions (32°C incubation temperature). Then, none of the individual mutations showed a statistically significant accelerating effect on fusion kinetics. In contrast, the FD401E/D489E double mutation significantly boosted the fusion rate at 32°C, indicating a temperature-sensitive phenotype (Figure 5B and 5C).

A densitometric analysis of whole cell lysates and cell surface expressed F material and immunoblotting demonstrated enhanced cell surface steady state levels of the FD489E mutant compared to standard RSV L19-F (Figure 5D). However, levels of the FD401E/D489E double mutant
were slightly lower than those of FD489E and intracellular transport rates of the double mutant and
standard F remained essentially identical when cells were incubated at 32°C (Figures 5E). These
results suggest that higher bioactivity of the double mutant does not result from increased surface
expression, but indicate a synergistic effect of changes in each resistance hot-spot on F
bioactivity.

Effect of resistance mutations on viral pathogenicity

To test whether a reduced structural stability of the mutated prefusion F constitutes the
underlying mechanism for resistance, a fusion-core assay was applied to RSV F that
biochemically monitors the formation of the thermodynamically stable 6HB fusion core, which
is indicative of F trimer refolding into the postfusion conformation. Intact F trimers were
natively extracted from gradient-purified viral particles cells, followed by gel-fractionation under
mildly denaturing, non-reducing conditions. Presence of the stable 6HB core in postfusion F
complexes should be reflected by predominant migration of the extracted material as homo-
trimers, whereas metastable prefusion F trimers should have a higher propensity to disintegrate.

When standard F and the three drug resistant mutants were examined in this assay, the mutant
trimers predominantly migrated as stable trimers, while standard F was mostly monomeric
(Figure 6A).

These findings spotlight that the resistance mutations reduce the structural stability of
prefusion F complexes. To test whether this phenotype is mirrored by increased sensitivity of the
recombinant virions to thermal inactivation, virus preparations were subjected to a 24-hour
incubation step at different temperatures in the absence of target cells. The individual mutant
strains showed an intermediate but significant reduction in titers compared to standard recRSV
after incubation at 32°C-39°C (recRSV A2-L19FD40IE) or 39°C (recRSV A2-L19FD489E),
respectively (Figure 6B). Moreover, temperature sensitivity was most pronounced in the case of
the recRSV A2-L19FD40IE/D489E double mutant, since titers of this strain were significantly lower
over the whole temperature range assessed.

Heightened thermo-sensitivity may coincide with lowered viral fitness in vivo, which
could render drug-resistant variants clinically insignificant. An established mouse model was
pathogenicity of the mutant viruses. Only the two recombinants expressing single-mutant F
variants that had emerged spontaneously during adaptation were subjected to this study. Lung
titers of BALB/cJ mice infected with recRSV A2-L19FD489E were slightly reduced compared to
animals exposed to standard recRSV (Figure 6C). However, viral loads of animals infected with recRSV A2-L19FD4OIE remained unchanged. The induction of extensive mucus production is one of the key features associated with RSV pathogenesis (Johnson JE, et al. (2007) Mod Pathol 20(1): 108-1 19) and serves as an indicator for the severity of RSV disease in the mouse model (Moore ML, et al. (2009) J Virol 83(9):4185-4194; Lee S, et al. (2012) J Virol 86(23):13016-13024). When animals were infected with the two mutant recombinants and standard recRSV, the recRSV A2-L9FD489E mutant was only slightly mucogenic compared to mock-infected mice (Figure 6D). In contrast, the recRSV A2-L19FD4OIE recombinant showed strong mucus induction at a level at least equivalent to that seen in lungs of animals infected with parental recRSV A2-L19F. Taken together, these results demonstrate that the individual F mutations, which each mediate robust resistance to diverse entry inhibitors, are not mandatorily associated with reduced viral pathogenesis in vivo.

Discussion

Large scale screening campaigns to identify novel therapeutic candidates against RSV were compromised thus far by the lack of appropriate reporter strains that were developed for robust automated drug discovery assays. The disclosed study demonstrates the value of the recombinant RSV strain expressing renilla luciferase. Major advantages over conventional RSV-based assays explored for high-throughput campaigns are the broad dynamic range of the luciferase reporter; the availability of a full set of subinfection assays for MOA characterization that are genetically matched to the screening strain; the option to readily assess resistance in
genetically controlled viral recombinants using an efficient reverse genetics system; and the high pathogenicity of the reporter strain in the mouse model compared to standard laboratory RSV strains (Stokes KL, et al. (2011) J Virol 85(12):5782-5793), opening a straight-forward path towards small-animal efficacy testing of lead candidates.

By design, the HT assay developed for the disclosed screen has a higher propensity to identify early and intermediate stage inhibitors of the viral life cycle (i.e. inhibitors of viral attachment, fusion, and viral polymerase activity) than blockers of viral assembly and egress, since the latter would act downstream of luciferase reporter expression. Consistent with this assumption, the protocol yielded as the most prominent hit candidate a novel RSV-specific virus entry inhibitor class when tested in a 10,000-compound proof-of-concept campaign.

However, this hypothesis was developed before the prefusion RSV F structure was solved and previous work did not consider possible effects of resistance mutations on the conformational stability of prefusion F or the kinetics of viral entry.

Whereas direct binding to the hydrophobic pocket in the RSV 6HB is biochemically supported for two inhibitor classes (Roymans D, et al. (2010) Proc Natl Acad Sci U S A 107(1):308-313; Cianci C, et al. (2004) Proc Natl Acad Sci U S A 101(42):15046-15051), it is proposed based on three major lines of evidence - structural insight, biochemical characterization, and functional data - that unprecedented pan-resistance of RSV against multiple structurally diverse entry inhibitors is based on indirect escape. Firstly, compounds docking into post-fusion RSV F structures failed to provide a mechanistic explanation for the hot-spot around F residue 400 in resistance (Cianci C, et al. (2004) Proc Natl Acad Sci U S A 101(42):15046-15051). It was demonstrated that the 400- and 489-microdomains are located at opposing ends of the postfusion F structure, but are posited in close proximity to each other at the intersection of stalk and head domain in prefusion F. Interestingly, several studies investigating related paramyxovirus F proteins have identified this network of non-covalent interactions between prefusion F stalk and head as a major determinant for controlling the conformational stability of the trimer (Lee JK, et al. (2007) J Virol 81(16):8821-8826; Yin HS, et al. (2006) Nature 439(7072):38-44). It was furthermore demonstrated that point mutations in this region confer resistance against a small-molecule entry inhibitor of MeV (Doyle J, et al. (2006) J
Virol 80(3): 1524-1536). Secondly, point mutations in either of the two resistance hot-spots reduced the structural stability of the prefusion RSV F trimer in biochemical assays and resulted in enhanced spontaneous viral inactivation rates in the absence of target cells. Thirdly, membrane fusion rates of resistant F proteins were enhanced compared to those of the parent trimer, indicating accelerated refolding of the complex from the pre- into the stable postfusion conformation.

Taken together, these observations spotlight an effective mechanism of secondary RSV resistance, in which escape mutations accumulate in F microdomains that govern the structural stability of the prefusion complex. Refolding rates of these conformationally destabilized mutant F trimers are enhanced, resulting in a hyperfusogenic phenotype and, possibly, a narrowed window of opportunity for small-molecule docking and interference with F trimer rearrangements leading to fusion pore formation. Different escape pathways were also identified for HIV resistance to the peptidic entry inhibitor Fuzeon (Eggink D, et al. (2009) J Biol Chem 284(39):26941-26950; Baldwin CE, et al. (2004) J Virol 78(22): 12428-12437). However, Fuzeon escape did not coincide with resistance to other entry inhibitors (Reeves JD, et al. (2005) J Virol 79(8):4991-4999). Pan-resistance against a structurally highly diverse panel of entry inhibitors appears unique to RSV F and may amount to a substantial obstacle in the clinic.

The disclosed data thus indicate that RSV entry inhibitors currently considered for clinical use are at risk to rapidly lose therapeutic benefit in the clinic due to preexisting viral resistance. Future RSV drug discovery campaigns should either be directed at inhibiting post-entry steps of viral replication or be proactively designed to conceptually circumvent pan-
resistance against entry inhibitors. For instance, using the resistant recRSV A2-L19FD489E-renilla or RSV-L19FD489E-firefly luciferase virus described in this study as the screening agent should have a high propensity to yield hit candidates that either act post-entry or, if mechanistically possible, block viral entry without being compromised by pan-resistance.

Table 1. Overview of different chemical classes of highly potent RSV entry inhibitors for which resistance hot-spots have been mapped.

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>aEC₅₀</th>
<th>breported resistance sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPAR-3710</td>
<td></td>
<td>0.13 µM</td>
<td>F₁₄₀₀A, F₁₄₀₁E, F₁₄₈₆E, F₁₄₈₈₁, F₁₄₈₈₈, F₁₄₈₉E</td>
</tr>
<tr>
<td>TMC353121</td>
<td></td>
<td>0.13 nM</td>
<td>F₃₉₉₄R, F₃₉₈₁₇, F₁₄₈₆N</td>
</tr>
<tr>
<td>JNJ2408068</td>
<td></td>
<td>2.1 nM</td>
<td>F₃₉₉₄₁, F₁₄₈₆N, F₄₈₇D</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Concentration</td>
<td>Mutations</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>VP-14637</td>
<td></td>
<td>1.4 nM</td>
<td>F_{T400A}, F_{E488Y}</td>
</tr>
<tr>
<td>BMS-433771</td>
<td></td>
<td>10 nM</td>
<td>F_{H140I}, F_{V144A}, F_{D592G}, F_{K394R}, F_{D489Y}</td>
</tr>
<tr>
<td>R170591</td>
<td></td>
<td>2 nM</td>
<td>F_{E488I}, F_{E488L}, F_{D489Y}</td>
</tr>
</tbody>
</table>

a active concentrations are based on *in vitro* assays; numbers refer, when available, to the RSV A2 strain

b resistance sites in the RSV F protein; mutations highlighted in red map to the F 400 microdomain, changes in blue affect the F 489 region
Example 2: Influenza virus reporter and coinfection with F-modified RSV.

A replication-competent recombinant influenza virus (IAV) Nano-luciferase reporter strain (Figure 9) was generated. The IAV nano-luciferase virus is suitable for large scale single-well, double-infection drug screening campaigns in combination with a recombinant respiratory syncytial virus (RSV) reporter strain.

The IAV nano-luciferase virus is genetically stable and returns superior reporter signals compared to currently available IAV reporter constructs (signal-to-background is increased by approximately one order of magnitude; Figure 10).

The substrate of nano-luciferase is chemically related to those of gaussia luciferase and renilla luciferase, but distinct from that of firefly luciferase. Consequently, nano-luciferase and firefly luciferase concentrations can be determined independently in lysates of co-infected cells, allowing discrete monitoring of either pathogen (figure 3).

The growth kinetics of IAV nano-luciferase is comparable to that of modified RSV-L19FD489E-firefly luciferase, allowing for its use in automated drug screening campaigns (Figure 11).

Material and Methods:

Cell culture, transfection and virus stock. All cell lines were maintained in Dulbecco’s modified Eagle’s medium supplemented with 7.5% fetal bovine serum at 37°C and 5% CO2. Baby hamster kidney (BHK21) cells stably expressing T7 polymerase (BSR-T7/5 cells) were incubated at every third passage in the presence of 500 µg/ml G-418 (Geneticin). Cell transfections were carried out using Lipofectamine 2000 (Invitrogen). RSV L19FD489E-firefly luciferase virus stocks were purified through a 20%/60% sucrose gradient (90 minutes at 100,000xg, 4°C) followed by virus pelleting at 60,000xg for 30 minutes at 4°C after dilution in TNE buffer. IAV WSN-Nluc virus stocks were pelleted two times at 60,000xg for 30 minutes at 4°C. All purified virions were re-suspended in TNE buffer.

Generation and recovery of recombinant RSV. Point mutations were introduced through directed mutagenesis into a shuttle vector containing the RSV L19F open reading frame, followed by transfer of the modified SacII/Sall L19F fragment into RSV L19F. The firefly luciferase gene was amplified by PCR, digested with restriction enzymes BstBI and AvrII, and ligated into an RSV L19F genomic plasmid opened with BstBI and AvrII. Recovered recombinants were subjected to RT-PCR and sequencing for confirmation of the luciferase
insertion and point mutation. RSV L19FD489E-firefly luciferase virions were amplified and titered on HEp-2 cells.

Generation and recovery of recombinant IAV. The PB2-PS*-PTV-Muc (or Gaussia)-KDEL-PS segments were generated by recombineering PCR using appropriate oligonucleotide primers. All final constructs were sequence confirmed, digested with Sail and Apal, and ligated into an equally opened pHW12 plasmid vector. All IAV WSN-encoding genomic plasmids were co-transfected into 293T cells with lipofectamine 2000. Twenty-eight hours post-transfection, culture supernatants were harvested and overlaid onto MDCK cells, followed by an additional two-day incubation. Culture supernatants were harvested and stocked at -80°C. Recovered IAV WSN-Nluc virions were regrown and titered by plaque assay on MDCK cells.

Viral growth profiles. A549 cells were infected at the indicated MOIs with RSV L19FD489E-firefly luciferase and/or IAV WSN-Nluc in a 96-well microtiter plate format. At the specified time points post-infection, cells were lysed with Glo-lysis buffer (Promega), and luciferase activities determined sequentially using renilla (Nano luciferase) and firefly luciferase substrates and a Synergy H1 (BioTek) multimode-microplate reader in top-count mode.

Example 3: Replication-Competent Influenza Virus and Respiratory Syncytial Virus

Luciferase Reporter Strains for Co-Infection High-Throughput Screening

Materials and Methods

Cell lines and transfections

Human larynx epidermoid carcinoma (HEp-2, ATCC CCL-23), human lung carcinoma (A549, ATCC CCL-185), human bronchial epithelial (BEAS-2B, ATCC CRL-9609), human embryonic kidney (293T, ATCC CRL-3216), and Madin Darby canine kidney (MDCK, ATCC CCL-34) cells were maintained at 37°C and 5% CO2 in Dulbecco's modified Eagle's medium (DMEM) supplemented with 7.5% fetal bovine serum. Baby hamster kidney (BHK-21) cells stably expressing T7 polymerase (BSR-T7/5 cells) (Buchholz, U. J., et al. (1999) J Virol 73:251-259) were incubated at every third passage in the presence of 500 µg/ml G-418 (Geneticin). Lipofectamine 2000 (Invitrogen) was used for all transient transfection reactions.

Generation of recIAV reporter strains

Recombinant IAV containing renilla and gaussia luciferase reporters in the NS1 and PB2 segments were generated as previously described (Heaton, N. S., et al. (2013) J Virol 87:8272-8281; Manicassamy, B., et al. (2010) Proc Natl Acad Sci U S A 107: 1153 1-1 1536). recIAV-WSN harboring nano luciferase in the PB2 segment was constructed analogous to recIAV-WSN gaussia. Briefly, the PB2 3’ packaging signal was inactivated through silent mutagenesis and a nano luciferase-encoding open reading frame (ORF) harboring a 3’ KDEL-encoding endoplasmic reticulum retention signal fused to the mutant PB2 ORF through recombineering PCR. Nano and gaussia luciferase genes were amplified from plasmids pNL1ICMV[Nluc/CMV] (Promega) and pTK-Gaussia (ThermoFisher), respectively. A 2A cleavage sequence from porcine teschovirus (Donnelly, M. L., et al. (2001) The Journal of general virology 82:1027-1041) was inserted between the PB2 and luciferase ORFs, and a copy of the original PB2 packaging signal inserted downstream of the coding cassette. All plasmids were sequence confirmed.

IAV recovery, amplification, and stability testing

All recIAV strains were recovered through rescue plasmid transfection into 293T cells and overlay of transfected cells onto MDCK cells after 28 hours of incubation. Recovered recombinants were amplified and released virions titered through plaque assay on MDCK cells. For genetic stability testing, recombinant virions were passaged consecutively four times and virus titers determined through plaque assays after each passage. In parallel, reporter titers were determined after each passage through 50% tissue culture infective dose (TCID50) titration with bioluminescence as the readout, using a Synergy H1 (BioTek) multimode microplate reader equipped with substrate injectors.

Generation of recRSV reporter strains

Backbone for all recombinant RSV strains was a plasmid containing a full-length cDNA copy of a chimeric RSV-A2 genome, in which the F-encoding open reading frame was replaced with that of the line 19 (L19) RSV isolate and an additional renilla luciferase ORF was added (Hotard, A. L., et al. (2012) Virology 434:129-136). The D489E substitution was introduced into L19 F through directed mutagenesis of a helper vector harboring a SacII/SalI fragment of the genome, followed by transfer into the full-length plasmid and sequence confirmation, creating recRSV A2-L19FD489E-renilla. Recombineering PCR was employed to add RSV intergenic junctions and flanking regions to firefly luciferase ORF, followed by substitution of a renilla luciferase-containing BstBI/AvrII fragment in recRSV A2-L19FD489E-renilla with the equivalent fragment harboring firefly luciferase. To generate the fireSMASh ORF, the SMASH tag was
fused in frame to the 3’ end of the firefly luciferase ORF through recombineering PCR, followed by addition of the RSV flanking regions and BstBI/AvrII transfer into the full length cDNA genome copy as before. recRSV were recovered through co-transfection with RSV L, N, P, and M2-encoding helper plasmids into BSR-T7/5 cells as previously described (Hotard, A. L., et al. 2012) Virology 434:129-136), and subjected to RT-PCR and cDNA sequencing.

RSV recovery, amplification, and stability testing

recRSV stocks were grown on HEp-2 cells inoculated at a multiplicity of infection (MOI) of 0.01 pfu/cell. Infected cells were kept for 16 hours at 37°C, followed by incubation at 32°C for five to seven days. Cell-associated progeny virus was released through one freeze/thaw cycle and titers determined by TCID50 titration on HEp-2 cells. For genetic stability testing of the SMASH tagged virus, recovered recRSV A2-L19F-fireSMASH virions were consecutively passaged five times on HEp-2 cells. Progeny virions of the second and fifth passage were incubated in the presence or absence of 3 μM asunaprevir (ASV) and infected cell lysates subjected to SDS-PAGE and immunoblotting.

SDS-PAGE and antibodies

Infected cells (6 x 10^5 per well in a 6-well plate format) were lysed 40 hours post-infection in RIPA buffer (1% sodium deoxycholate, 1% NP-40, 150 mM NaCl, 50 mM Tris-Cl, pH 7.2, 10 mM EDTA, 50 mM sodiumfluoride, protease inhibitors [Roche], 1 mM phenylmethylsulfonyl fluoride), subjected to clearance centrifugation (20,000xg for 30 minutes at 4°C) and cleared lysates diluted with UREA buffer (200 mM Tris, pH 6.8; 8 M urea; 5% sodium dodecyl sulfate (SDS); 0.1 mM EDTA; 0.03% bromphenolblue; 1.5% dithiothreitol) at a 1:2-ratio. Denatured (30 minutes at 50°C) lysates were fractioned through gel electrophoresis on 10% Tris/Glycine gels, transferred to polyvinylidene difluoride (PVDF) membranes (GE Healthcare), and protein material detected through decoration with specific antibodies directed against firefly luciferase (PA5-32209, ThermoFisher) or glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH, Calbiochem). Immunoblots were developed using mouse IgG light chain-specific HRP-conjugated secondary antibodies (Jackson) and a ChemiDoc digital imaging system (Bio-Rad).

Purification of virus stock

Two alternative strategies were explored to remove contaminating luciferase proteins from virus stocks. Progeny virions in culture supernatants (IAV stocks) or released through one freeze/thaw cycle from infected cells (RSV stocks) were cleared (4,000xg for 20 minutes at 4°C), then pelleted (60,000xg for 30 minutes at 4°C). Pelleted material was resuspended in TNE
buffer (50 mM Tris/Cl pH 7.2, 10 mM EDTA) and purified through a 20/60% one-step sucrose
gradient in TNE buffer (100,000xg for 2h at 4°C). Virions were harvested from the gradient
intersection. Alternatively, cleared RSV stocks were purified and polished through size
exclusion and binding chromatography by passage through dual functionality Capto Core 700
resin (GE Healthcare) using an AKTA avant chromatography system (GE Healthcare). After
purification through either method, virus stocks were stored in aliquots at -80°C.

Reporter expression profiles
Cells (1.5 x 10^4 per well in a 96-well plate format) were infected with purified virus
stocks at different MOIs as specified or co-infected. At the specified time points, cells were
lysed in situ with 50 µl Glo-lysis buffer (Promega) for five minutes at 37°C and samples
transferred into solid white 96-well plates. Lysates were kept frozen until the time course was
completed, then equilibrated to ambient temperature simultaneously and relative luciferase
activities determined using the Synergy HI reader and injectors to add renilla-Glo, bright-Glo or
dual-Glo substrates (all Promega), respectively (lag time before reading three minutes for each
well). Values are expressed for each reporter strain relative to the highest reading recorded for
this strain, and represent averages of at least three independent repeats.

Compounds
All compounds were dissolved in DMSO to 10 mM concentration and stored at -80°C.
The MScreen software package (Jacob, R. T., et al. (2012) J Biomol Screen 17:1080-1087) was
used for electronic compound management, HTS data storage and data analysis. Compounds of
the NIH Clinical Collection (NCC) were received from the NIH Small Molecule Repository in
96-well plates, inventoried in MScreen, and reformatted into barcoded 384-well daughter plates
using a Nimbus liquid handler (Hamilton Robotics) with multichannel pipetting head. In
addition, known anti-myxovirus bioactives identified in previous drug discovery campaigns were
included in empty wells in the NCC daughter plates. Thirty-two wells on each 384-well plate
received compound JMN3-003 (Krumm, S. A., et al. (2011) PLoS ONE 6:e20069) for positive
control, and another 32 wells received volume equivalents of vehicle (DMSO) only.

Assay validation in 96-well format
BEAS-2B cells (1 x 10^4/well, seeded in 40 µl in white wall/clear bottom 96-well plates)
were treated manually (1 µl/well) with a set of known bioactives (diluted in growth media to 5%
DMSO, final concentration as specified), then infected or co-infected with 10 µl of the IAV and
RSV reporter viruses at different MOIs as specified. Final DMSO concentrations were 0.1%, at
which no vehicle-induced cytotoxic effect was detected. After a 40-hour incubation period at
37°C, luciferase substrates (20 µl/well) were injected as before directly into the assay plates and relative bioluminescence intensities determined. Each compound was assessed in five replicates. For quantitative assay validation, Z’ values (Zhang, J. H., et al. (1999) J Biomol Screen 4:67-73) were calculated according to the formula $Z' = 1 - \frac{(3SD(C) + 3SD(B))}{(\text{Mean}(c) - \text{Mean}(B))}$, with C = control and B = background.

Automated HTS protocol in 384-well plate format

BEAS-2B cells (8 x 10^3/well) were injected in 30 µl/well into barcoded white wall/clear bottom 384-well plates using a MultiFlo automated dispenser (BioTek) equipped with dual 10-µl peristaltic pump manifolds, collected (150xg for 60 seconds at 25°C), and incubated for 3 hours at 37°C and 5% CO2. Compound was added to a final concentration of 5 µM (20 nl/well) using a high-density pin tool (V&P Scientific) attached to the pipetting head of the Nimbus liquid handler, followed by co-infection with recRSV A2-L19F\textsubscript{489E}-fireSMASh (MOI = 0.1) and recIAV WSN-NanoLuc (MOI = 0.02) in 10 µl/well using the MultiFlo dispenser unit, spin collection (150xg for 60 seconds at 25°C), and incubation for 40 hours at 37°C and 5% CO2. Final vehicle (DMSO) concentration was 0.05%. Barcodes of source and assay plates were automatically detected and recorded by the Nimbus unit at the time of stamping. Using a stacker unit with integrated barcode reader (Biotek) attached to the H1 synergy plate reader, plates were automatically loaded, dual-Glo substrates (15 µl/well each) injected, and bioluminescence recorded after a three minute lag time for each well and substrate. Readouts were automatically saved by plate barcode. For manual calculation of Z’ values, luciferase activities in positive and vehicle wells were processed as detailed above.

Dose-response counterscreens

Two-fold serial dilutions of hit candidates were prepared in 384-well plates in three replicates each using the Nimbus liquid handler. BEAS-2B cells (8 x 10^3/well) were then plated as before, serial dilutions transferred using the pin-tool, and cells infected with recRSV A2-L19F\textsubscript{489E}-fireSMASh (MOI = 0.1), recRSV A2-L19F-renilla (MOI = 0.1), or recIAV WSN-NanoLuc (MOI = 0.02), or left uninfected for cell viability assessment. Reporter signals were recorded as outlined above. To determine cell viability, PrestoBlue substrate (life technologies) was added after 40-hour incubation of cells at 37°C (5 µl/well) and top-read fluorescence (excitation 560 nm; emission 590 nm) at gain 80 recorded after 45 minutes of incubation at 37°C. Four-parameter variable slope regression modeling was applied to determine 50% active (EC50) and toxic (CC50) concentrations.

Data normalization and analysis
The MScreen package was employed for automated data analysis. Plate reader raw data files together with source and assay plate barcode maps generated by the Nimbus system were directly imported into the package, and Z' values automatically calculated based on the designated control wells. Since the NCC plates contained a high density of known bioactives, the normalized percent inhibition method was applied for data analysis. Normalized relative inhibition values were calculated for each compound by subtracting each value from the average of the plate vehicle controls, followed by dividing the results by the difference between the means of plate vehicle and positive controls. Hits candidates were defined as compounds showing >80% inhibition of normalized signal intensity against either or both viral targets. For analysis of plates, the cellHTS2 package (Boutros, M., et al. (2006) Genome Biol 7:R66) was employed to calculate percent inhibition as described above, followed by scaling of plates by dividing the normalized value of each well by the median absolute deviation of the plate. The SciFinder database package (American Chemical Society) was used to query chemical databases with hit candidate structures to evaluate known bioactivities.

Statistical analysis

The Excel and Prism 6 (GraphPad) software packages were used for data analysis. Statistical significance of differences between two sample groups were assessed by unpaired two-tailed t tests (two sample groups; Excel), or two-way analysis of variance (ANOVA; Prism 6) in combination with Tukey's multiple comparison post-tests (multiple sample groups) as specified in the figure legends. Experimental uncertainties are identified by error bars, representing standard deviations (SD).

Results

Generation of a replication-competent IAV-WSN PB2-NanoLuc reporter strain

Most laboratory IAV strains require the addition of exogenous trypsin for proteolytic maturation of the HA protein for priming of the viral entry machinery. To gain independence of trypsin activation in all screening plates, the analogous PB2-Gaussia recombinant in the trypsin-independent IAV-WSN genetic background was generated (Figure 12A) (Lazarowitz, S. G., et
al. (1973) Virology 56:172-180). The resulting recIAV-WSN Gaussia showed efficient replication and reporter expression in the absence of exogenous trypsin (Figure 12B). However, the signal window of Gaussia remained below 10 (Figure 12C). Towards extending the assay range, Gaussia luciferase was substituted for the recently developed Nano luciferase (NanoLuc, Figure 12A), which uses the same basic substrate chemistry as Gaussia and Renilla luciferases but combines a small protein size with high signal intensities. Recovered recIAV-WSN NanoLuc indeed returned an over six-fold improved signal window and showed superior absolute luciferase signal intensities compared to recIAV-WSN Gaussia (Figures 12C and 12D). Z’ values in either case far exceeded 0.5, suggesting that the assay is suitable for automation. Serial passaging of this recombinant confirmed equivalent genetic stability of recIAV-WSN Gaussia and recIAV-WSN NanoLuc. By comparison, luciferase activity rapidly disappeared when a recIAV-WSN NS-Gaussia was subjected to passaging, which harbors the luciferase open reading frame in the NS genome segment (Figure 12E). The design of this recombinant followed the strategy outlined in a recent report (Manicassamy, B., et al. (2010) Proc Natl Acad Sci U S A 107:11531-1 1536).

An IAV-compatible recombinant RSV-firefly reporter strain

In the original evaluation of a dual-myxovirus HTS protocol, IAV and MeV-based reporter expression overlapped, whereas the original recRSV-L19F-renilla reporter strain showed a substantial delay in luciferase expression over a range of different inoculum multiplicities of infection (MOIs). When comparing RSV and MeV in cell culture, most notably is the divergence in cell-to-cell fusion (syncytia formation) after infection, which represents the hallmark of MeV cytopathicity but is much less pronounced in the case of RSV. The lower rate of lateral RSV spread may therefore cause the slower reporter expression kinetics. Experiments were therefore conducted to determine whether a hyperfusogenic RSV variant would alleviate the problem. An RSV recombinant was generated with a D to E substitution of fusion (F) protein residue 489 that renders it hyperfusogenic (Yan, D., et al. (2014) Proc Natl Acad Sci U S A 111, E3441-3449).

To test the effect of hyperfusogenicity on reporter expression kinetics, a recRSV-L19FD489E -firefly strain (Figure 13A) analogous to the previously described recRSV-L1 9F-renilla, was generated since firefly and nano luciferase activities are based on distinct substrate chemistry and can be independently quantified. Independent of the nature of the luciferase reporter included, time to peak reporter activity of FD489E mutant strains was less than half that of a strain harboring standard F (Figure 13B). These results suggest that the hyperfusogenic
recRSV-L1 9FD489E-firefly strain should be suitable for co-infection screens with recIAV WSN-NanoLuc. When attempting to purify recRSV-L1 9FD489E-firefly preparations from contaminating firefly protein that was synthesized during stock growth, however, both gradient ultracentrifugation and layered bead chromatography purification strategies successfully reduced renilla luciferase contaminations, but by comparison remained inefficient against firefly luciferase (Figure 13C). As a consequence, the signal window of assays based on the recRSV-L19FD489E-firefly strain was approximately 8-fold lower than that achievable with recRSV-L19FD489E-renilla (Figure 13D), excluding its use in high-density HTS applications.

SMASh technology to eliminate contaminating firefly protein

In search of an innovative approach to suppress the build-up of contaminating firefly protein during growth of virus stocks, the use of small molecule-assisted shutoff (SMASh) technology was explored for induced protein degradation. Unlike other systems designed to induce protein turnover, only SMASh functions as a single-chain system and in the stabilized state returns near-native proteins. Added as a genetic tag, SMASh consists of a hepatitis C virus-derived NS3 protease flanked by a strong degron domain inducing proteasomal degradation. An NS3 protease site is positioned at the intersection of the SMASh tag and the target protein (Figure 14A). Under normal conditions, NS3 autoproteolysis separates the tag, returning the near-native target protein. In the presence of a strong NS3 inhibitor such as the clinical candidate ASV (Scola, P. M., et al. (2014) J Med Chem 57:1730-1752), however, autoproteolysis is blocked and the degron domain induces rapid degradation of the tag and affixed target protein.

A SMASh tag was added to the firefly open reading frame and the corresponding recRSV-L1 9FD489E-fireSMASh recombinant was successfully recovered. Immunoblotting with antibodies directed against firefly luciferase confirmed efficient degradation of the tagged protein after incubation in the presence of ASV, while steady state levels closely matched those of untagged firefly luciferase in the absence of the drug (Figure 14B). ASV had no effect on progeny virus titers (Figure 14C) and the SMASh tag remained stable over multiple passages of this virus strain (Figure 14D). However, growth of recRSV-L1 9FD489E-fireSMASh in the presence of ASV reduced firefly luciferase activity by approximately 90% (Figure 14E), which paved the path for an over 23-fold increased signal window of recRSV-L1 9FD489E-fireSMASh compared to recRSV-L1 9FD489E-firefly (Figure 14F). These results suggest that recIAV WSN-NanoLuc and recRSV-L19FD489E-fireSMASh may represent a suitable pair for dual-pathogen drug discovery campaigns.

Co-infection conditions
To establish suitable assay conditions, three human respiratory cell lines, HEp2, BEAS-2B, and A549, were first independently infected with recRSV-L1_{9FD489E}-fireSMASh and recIAV WSN-NanoLuc at different multiplicities of infection and measured relative luciferase activities at 40 hours post-infection. At each MOI, RSV-based reporter expression was reduced in A549 cells by over 90% compared to each of the other two cell lines (Figure 15A), and a comparable reduction was observed with IAV-based NanoLuc expression in HEp2 cells (Figure 4B).

BEAS-2B cells were therefore selected as best suited for RSV/IAV co-infection experiments and reporter expression profiles generated after infection with either virus individually (Figures 15C and 15D) or in combination (Figure 15E). Peak luciferase activities (RLUs >80% of max) overlapped in an approximately 7-hour time window (37-44 hours post-infection) when cells where co-infected with recRSV-L19FD489E-fireSMASh at an MOI of 0.1 and recIAV WSN-NanoLuc at an MOI of 0.02. All subsequent experiments followed these assay conditions, and reporter signals were measured 38-42 hours post-infection.

Assay miniaturization and validation

Towards validating the assay for screening campaigns, the protocol was initially applied in 96-well plate format to a panel of known bioactives with discrete anti-myxovirus activity and cytotoxic compounds for comparison (Figure 16A). Relative inhibition was calculated through normalization of raw data for control wells that received vehicle (DMSO) only. In all cases, known myxovirus inhibitors with different antiviral profiles were correctly identified, and Z’ values (Figure 16B) exceeded 0.5, defining a robust assay (Zhang, J. H., et al. (1999) J Biomol Screen 4: 67-73). The previously characterized RSV fusion blockers GPAR3710 and BMS-433771 (Yan, D., et al. (2014) Proc Natl Acad Sci U S A 111, E3441-3449; Cianci, C., et al. (2004) Antimicrob Agents Chemother 48:413-422) did not emerge as hits, confirming that the use of the pan-resistant RSV-FD489E mutant can reliable suppress the discovery of additional, undesirable RSV entry inhibitors that are also sensitive to the pan-resistance escape mechanism (Yan, D., et al. (2014) Proc Natl Acad Sci U S A 111, E3441-3449).

Based on this proof-of-concept data, the assay was miniaturized to 384-well plate format and a 2-plate pilot set of the National Compound Collection (NCC) was screened in quadruplicate to quantify assay suitability for automated hit discovery and determine plate-to-plate and day-to-day reproducibility. Executed under HTS conditions, this validation campaign returned robust Z’ values exceeding 0.5 and a signal window greater than 50 (RSV) and 20 (IAV), respectively (Figure 16B).
Of the NCC test library, 11 hit candidates were identified that inhibited primary reporter activities by 80% or greater of either or both target viruses (Table 2). The majority of these hit candidates were previously associated with diverse antiviral and/or cytotoxic activities. Graphic representation of all assay validation replicates in Z-score profiles revealed that the dual myxovirus protocol shows high plate-to-plate reproducibility (Figure 16C). Plotting of individual z-scores of each replicate as a function of mean %-inhibition values for each compound and viral target furthermore revealed a strong correlation between normalized scores and effect sizes for all hit candidates (Figure 16D).

<table>
<thead>
<tr>
<th>Name</th>
<th>% Inhibition (anti-RSV)</th>
<th>% Inhibition (anti-IAV)</th>
<th>Bioactivity/ Biological target</th>
<th>Known Antiviral Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV predominant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temozolomide</td>
<td>96 ± 1.3</td>
<td>55 ± 3.2</td>
<td>DNA replication</td>
<td>None</td>
</tr>
<tr>
<td>Raltitrexed</td>
<td>91 ± 1.0</td>
<td>60 ± 6.5</td>
<td>Thymidylate synthase</td>
<td>Cytomegaloviruses</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>85 ± 5.8</td>
<td>35 ± 5</td>
<td>Adenomatosis polyposis coli 2</td>
<td>Rotaviruses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eukaryotic translation initiation factor 5A-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peroxisome proliferator-activated receptor-gamma</td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td>80 ± 6.6</td>
<td>56 ± 5.6</td>
<td>DNA topoisomerase II</td>
<td>Cytomegaloviruses</td>
</tr>
<tr>
<td>Vincristine</td>
<td>79 ± 6.9</td>
<td>50 ± 2.9</td>
<td>Microtubule assembly</td>
<td>None</td>
</tr>
<tr>
<td>IAV predominant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinomycin D</td>
<td>52 ± 9.6</td>
<td>104 ± 1.5</td>
<td>RNA synthesis</td>
<td>Reovirus type 2</td>
</tr>
<tr>
<td>Triptolide</td>
<td>1.5 ± 21</td>
<td>103 ± 1.2</td>
<td>XPB (a subunit of TFIIH)</td>
<td>HIV-1</td>
</tr>
<tr>
<td>Epirubicin</td>
<td>62 ± 6.3</td>
<td>75 ± 3.1</td>
<td>DNA intercalator 104</td>
<td>Hepatitis C</td>
</tr>
</tbody>
</table>

Table 2: Primary screening hit candidates of the NCC collection, based on automated screening of the library in four replicates in 384-well format. Results are grouped by RSV-specific hit candidates, IAV-specific hit candidates, and inhibitors of both target viruses.
Inhibition of both reporter strains

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Inhibition ± SD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methotrexate</td>
<td>99 ± 0.5</td>
<td>Dihydrofolate reductase, Deoxycytidine kinase, Murine and human cytomegalovirus</td>
</tr>
<tr>
<td>Homoharringtonine</td>
<td>98 ± 0.5</td>
<td>60S ribosome inhibitor, Recombinant murine coronavirus</td>
</tr>
<tr>
<td>Idarubicin</td>
<td>95 ± 1.3</td>
<td>DNA topoisomerase II, Encephalomyocarditis virus (EMCV)</td>
</tr>
</tbody>
</table>

1°, 2b based on four independent replicate screens; mean % inhibition ± SD are shown.
3° previously proposed activity, target, and antiviral spectrum, if known.

Test screen of a 1280-compound library

For proof-of-concept of hit identification under single-replicate screening conditions, the validated assay was applied to the LOPAC1280 library of pharmacologically active compounds (Figure 17A). This campaign yielded 24 primary hit candidates (1.875% hit rate). Primary positives included, amongst others, licensed anti-influenza virus and anti-RSV therapeutics (Zanamivir and Ribavirin, respectively), protein biosynthesis blockers (i.e. Emetine), and DNA/RNA synthesis inhibitors (i.e. PMEG and Idarubicin) (Table 3).

Table 2: Dose-response counterscreening of hit candidates identified through automated screening of the LOPAC1280 library in single replicate in 384-well format.

<table>
<thead>
<tr>
<th>Name</th>
<th>EC50° IAV (μM)</th>
<th>EC50° RSV (μM)</th>
<th>EC50° RSV A2-L19F (μM)</th>
<th>CC50° (PrestoBlue cell viability) [μM]</th>
<th>Proposed target/ bioactivity</th>
<th>SI [CC50°/EC50°]</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminopterin</td>
<td>0.09 (0.07-0.11)</td>
<td>0.05 (0.03-0.07)</td>
<td>0.07</td>
<td>10</td>
<td>dihydrofolate reductase/purine synthesis</td>
<td></td>
<td>SIAV 111, SIRSV 143 conf. broad spectrum 79, 80</td>
</tr>
<tr>
<td>Brequinar</td>
<td>2.6 (2.3-2.9)</td>
<td>1.8</td>
<td>1.6 (1.3-2.1)</td>
<td>>10b</td>
<td>DHODH/pyrimidine synthesis</td>
<td></td>
<td>SIAV >3.8, SIRSV >6.3 conf. broad spectrum 81, 82</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>0.1 (0.09-0.14)</td>
<td>0.05 (0.04-0.06)</td>
<td>0.09 (0.07-0.12)</td>
<td>>10</td>
<td>nucleoside analog</td>
<td></td>
<td>SIAV >100, SIRSV >111 HIV, IAV 49, 50</td>
</tr>
<tr>
<td>Compounds</td>
<td>Potency (IC50)</td>
<td>Activity</td>
<td>Potency</td>
<td>Function/Assay/Activity</td>
<td>Remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanamivir</td>
<td>0.02 (0.01-0.04)</td>
<td>Inactive</td>
<td>>10^b</td>
<td>Neuraminidase</td>
<td>SIAV >500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IAV inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcimycin</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>Cation ionophore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tox discarded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emetine</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>Ribosome</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tox discarded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-18-OCH3</td>
<td>inactive^e</td>
<td>Inactive</td>
<td>>10^b</td>
<td>PIPLC/PKC</td>
<td>Failed conf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunitinib</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>RTKs</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idarubicin</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>Topoisomerase</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenretinide</td>
<td>inactive^e</td>
<td>inactive^c</td>
<td>>10^b</td>
<td>Activation of stress kinases; induces autophagy</td>
<td>S1RSV >2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dengue^62,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIV^67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNTX-7</td>
<td>inactive^e</td>
<td>inactive^c</td>
<td>>10^b</td>
<td>DOR1</td>
<td>S1RSV >4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lometrexol</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>Purine synthesis</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMEG</td>
<td>0.2 (0.1-0.4)</td>
<td>inactive^c</td>
<td>0.1 (0.07-0.15)</td>
<td>10 acyclic nucleotide analog</td>
<td>SIAV 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1RSV 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrendipine</td>
<td>inactive^e</td>
<td>inactive^c</td>
<td>>10^b</td>
<td>Dihydropyridine calcium channel</td>
<td>Failed conf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD173952</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>Src kinase</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K114</td>
<td>inactive^e</td>
<td>inactive^c</td>
<td>>10^b</td>
<td>Amyloid-specific dye</td>
<td>Failed conf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenanthrolinel</td>
<td>n.d.</td>
<td>Inactive</td>
<td>2.4^d</td>
<td>Metalloproteases</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auranofin</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>TLR signaling</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanguinarine</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>Na+/K+ ATPase</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stattic</td>
<td>3.3 (2.2-5.1)</td>
<td>15.1</td>
<td>5.9</td>
<td>10 STAT3</td>
<td>SIAV 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD-166285</td>
<td>n.d.</td>
<td>Inactive</td>
<td>tox^d</td>
<td>RTKs</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribavirin</td>
<td>4.5 (2.9-5.3)</td>
<td>2.9 (1.6-5.4)</td>
<td>2.6 (2.1-3.2)</td>
<td>Nucleoside analog</td>
<td>SIAV >2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1RSV >3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triamterene</td>
<td>inactive^e</td>
<td>inactive^c</td>
<td>>10^b</td>
<td>Epithelial Na+ channel</td>
<td>Failed conf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIX 01294</td>
<td>inactive^e</td>
<td>inactive^c</td>
<td>>10^b</td>
<td>Histone methyltransferase</td>
<td>Failed conf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triptolide</td>
<td>0.15 (0.11-0.15)</td>
<td>0.4 (0.3-0.5)</td>
<td>0.3 (0.22-0.4)</td>
<td>XPB (a subunit of TFIIH)</td>
<td>tox discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ^c calculated through four-parameter variable slope regression modeling. Raw values are based on luciferase reporter expression and represent means of three independent replicates calculated EC50 concentrations and 95% confidence intervals are shown
| ^d highest concentration assessed 10 µM
| ^e not determined based on initial cell viability testing
| ^f less than 50% cell viability after exposure of cells for 44 hours at ≤10 µM
| ^g less than 50% reduction of mean reporter signal

All compounds were picked (Table 3) and subjected to cytotoxicity testing. Only candidates that reduced cell viability by less than 50% at twice the screening concentration (10 µM) were admitted to automated dose-response testing (14 compounds; Table 3) against the primary screening strains. Interference with luciferase reporter or the NS3 protease activity of the SMASH tag was addressed in parallel by testing against a standard recRSV A2-L19F reporter strain lacking the FD489E resistance mutations and expressing renilla luciferase that does not share substrate chemistry with firefly luciferase (Hotard, A. L., et al. (2012) Virology 434:129-136). Compound interference with nano-Luciferase is addressed by testing against cells transiently transfected with a nano-luciferase expression plasmid in our confirmation pipeline, but we did not implement this counterscreen in this exercise since only the licensed influenza drug Zanamivir selectively inhibited the IAV reporter. Whenever possible, 50% active and cytotoxic concentrations of the selected hit candidates were calculated for all assay targets through four-parameter variable slope regression modeling (Table 3).

Triptolide of the NCC test-set originally demonstrated preferential activity against the IAV reporter strain and was likewise selected for dose-response testing and sourced. Of the resulting 15 candidates, five showed only a marginal inhibitory effect against the primary screening strains or were inactive, and Triptolide returned an SI (CC50/EC50) value below two at dose-response testing. The remaining nine viable primary hits either blocked preferentially RSV (2 compounds) or IAV (2 compounds) reporter expression, or suppressed both reporter strains (5 compounds) (Figure 17B).

First inspection reveals that these confirmed hits can be classified into three distinct groups: i) licensed antiviral therapeutics such as Zanamivir and Ribavirin; ii) compounds with documented broad-spectrum antiviral activity such as the nucleoside analog Gemcitabine (Denisova, O. V., et al. (2012) J Biol Chem 287:35324-35332; Clouser, C. L., et al. (2012) Antimicrob Agents Chemother 56:1942-1948) and inhibitors of the purine or pyrimidine biosynthesis pathways such as Aminopterin and Brequinar, respectively (Arteaga, C. L., et al. (1989) Cancer Res 49:4648-4653; Nichol, C. A., et al. (1950) Proc Soc Exp Biol Med 74:403-
411); and iii) compounds not yet extensively associated with anti-ortho- or paramyxovirus activity (Fenretinide, BNTX-7, and PMEG hydrate (Table 3)). Of these, Fenretinide and BNTX-7 selectively inhibited RSV, while the IAV reporter strain was unaffected at the highest concentration tested. PMEG hydrate blocked both reporter strains, although potency against RSV was approximately 2-fold higher than against IAV.

These results demonstrate that the new generations of recombinant RSV and IAV reporter strains generated in this study can be combined in a robust screening protocol miniaturized to 384-well format. The assay successfully identifies licensed therapeutics and compounds with known anti-myxovirus activity. A set of RSV inhibitors merits further mechanistic evaluation.

In this study, a dual pathogen myxovirus HTS protocol was developed and validated that uses innovative protein engineering technology for the simultaneous discovery of pathogen-specific and broad spectrum hit candidates (Figure 18). There are several major advantages of this protocol over traditional single pathogen screens: i) compared to consecutive screening of a library against individual viral targets, the dual pathogen protocol using replication-competent recombinant viruses shows superior cost and resource effectiveness; ii) the screening agents used in the new approach, IAV and RSV, are clinically the most significant members of the myxovirus families; iii) in addition to identifying broad-spectrum blockers, the dual readout strategy creates a bona fide "internal standard" for each well, excluding cytotoxic and undesirable promiscuous compounds effectively from the pool of virus-specific hit candidates at the stage of primary screening; iv) the new assay is applicable to a broad range of host cell lines including human respiratory epithelial cells; and v), the current assay is suitable for both single cycle and multiple cycle infections, providing flexibility in the choice of inoculum MOI and allowing the interrogation of all stages of the viral life cycle.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
WHAT IS CLAIMED IS:

1. A recombinant respiratory syncytial virus (RSV) vector, comprising an RSV genome encoding an infectious RSV virion operably linked to an expression control sequence, wherein the RSV genome comprises a nucleic acid encoding a fusion (F) protein having a mutation that allows a RSV virus produced by expression of the RSV vector to escape from GPAR-3710 inhibition.

2. The recombinant RSV vector of claim 1, wherein the F protein comprises a mutation that corresponds to residue 401 of SEQ ID NOT, 489 of SEQ ID NO: 1, or a combination thereof.

3. The recombinant RSV vector of claim 2, wherein the mutation is a D401E mutation.

4. The recombinant RSV vector of claim 2 or 3, wherein the mutation is a D489E mutation.

5. The recombinant RSV vector of any one of claims 1 to 4, wherein the RSV genome is derived from an RSV line 19 (LI 9) strain or an RSV A2 strain.

6. The recombinant RSV vector of any one of claims 1 to 4, wherein the RSV genome is derived from a chimeric A2 strain, wherein the nucleic acid encoding the F protein is derived from an RSV L19 strain.

7. The recombinant RSV vector of any one of claims 1 to 6, wherein the RSV genome further comprises a nucleic acid encoding a luciferase.

8. The recombinant RSV vector of claim 7, wherein the luciferase is a firefly luciferase.

9. The recombinant RSV vector of claim 7, wherein the luciferase is a Renilla luciferase.

10. The recombinant RSV vector of any one of claims 1 or 9, wherein the vector comprises a bacterial artificial chromosome backbone.

11. An infectious RSV virion produced by expression of the recombinant RSV vector of any one of claims 1 to 10 in a host cell.

12. A method of screening for antiviral agents, comprising
 (a) contacting a culture comprising the infectious RSV virion of claim 11 with a candidate agent; and
 (b) assaying the culture for RSV levels or activity;
wherein a decrease in RSV levels or activity is an indication that the candidate agent is an effective antiviral agent for RSV.

13. The method of claim 12, wherein the RSV genome comprises a nucleic acid encoding a first luciferase, wherein step (b) comprises contacting the culture with a substrate for the first luciferase, and assaying the culture for bioluminescence, wherein a decrease in bioluminescence from the first luciferase activity is an indication that the candidate agent is an effective antiviral agent for RSV.

14. The method of claim 13, wherein the culture further comprises an infectious influenza virion encoded by a recombinant influenza vector comprising an influenza genome encoding a second luciferase that has a substrate distinct from the first luciferase,

wherein the infectious influenza virus virion and the infectious RSV virion have comparable growth kinetics,

wherein the method further comprises contacting the culture with a substrate for the second luciferase and assaying the culture for bioluminescence,

wherein a decrease in bioluminescence from the second luciferase activity is an indication that the candidate agent is an effective antiviral agent for influenza,

wherein a decrease in bioluminescence from both the first luciferase activity and second luciferase activity is an indication that the candidate agent is an effective pan-antiviral agent.

15. The method of claim 13 or 14, wherein the F protein comprises a mutation that corresponds to residue 489 of SEQ ID NO: 1.

16. The method of claim 15, wherein the mutation is a D489E mutation.

17. The method of any one of claims 13 to 16, wherein the first luciferase comprises firefly luciferase, wherein the second luciferase comprises nano-luciferase, gaussia luciferase, or Renilla luciferase.

18. The method of any one of claims 13 to 17, wherein the influenza genome is derived from strain WSN-33 (H1N1).

19. A recombinant nucleic acid, comprising a respiratory syncytial virus (RSV) fusion (F) protein having a mutation that corresponds to residue 401 of SEQ ID NO: 1, 489 of SEQ ID NO: 1, or a combination thereof, operably linked to a heterologous expression control sequence.
20. The recombinant nucleic acid of claim 19, wherein the mutation is a D401E mutation, a D489E mutation, or a combination thereof.
Figures 1A to 1C

- **A**
 - X-axis: time of addition post-infection [hours]
 - Y-axis: virus yield [norm. RLU %]
 - Data points for GPAR-3710 (10 μM) and JMN3-003 (10 μM)

- **B**
 - X-axis: concentration of GPAR-3710 [μM]
 - Y-axis: virus yield [norm. RLU %]
 - Data points for MeV F + H (EC_{50} ≥ 10 μM), RSV L19-F (EC_{50} = 0.18 μM (0.13-0.25))

- **C**
 - X-axis: concentration [μM]
 - Y-axis: reverse transcriptase activity [norm. RLU %]
 - Data points for GPAR-3710 (EC_{50} n.d.), JMN3-003 (EC_{50} = 0.05 μM)

Figures 2A to 2D

- **A**
 - X-axis: time [hours]
 - Y-axis: viral titer [norm. RLU %]
 - Data points for DMSO, GPAR-3710 (1 μM), GPAR-3710 (10 μM), mock
Figures 3A to 3D

Figure 4A
Figures 4B to 4C
Figure 5A

Figure 5C

<table>
<thead>
<tr>
<th>F construct</th>
<th>37°C (0-3 hour interval)</th>
<th>32°C (2-6 hour interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV L19-F</td>
<td>4 ± 1.3</td>
<td>2.9 ± 0.66</td>
</tr>
<tr>
<td>RSV L19-F<sub>Δ401E</sub></td>
<td>5.6 ± 1.4</td>
<td>5.3 ± 0.9</td>
</tr>
<tr>
<td>RSV L19-F<sub>Δ495E</sub></td>
<td>7.5 ± 1.3</td>
<td>4.4 ± 1</td>
</tr>
<tr>
<td>RSV L19-F<sub>Δ401E/Δ495E</sub></td>
<td>6.3 ± 1.6</td>
<td>29.3 ± 4.1</td>
</tr>
</tbody>
</table>

Figure 5B
Figure 5D

<table>
<thead>
<tr>
<th></th>
<th>norm. SF fraction [%]</th>
<th>83</th>
<th>207</th>
<th>174</th>
</tr>
</thead>
<tbody>
<tr>
<td>mock</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV L19 F</td>
<td>100</td>
<td>±22</td>
<td>±34</td>
<td>±69</td>
</tr>
<tr>
<td>RSV L19 F, 30°C, mock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV L19 F, 30°C, RSV L19 F, mock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV L19 F, 30°C, RSV L19 F, 30°C, mock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5E

<table>
<thead>
<tr>
<th></th>
<th>norm. SF fraction 44 hours [%]</th>
<th>118</th>
<th>±17</th>
</tr>
</thead>
<tbody>
<tr>
<td>mock</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV L19 F</td>
<td>100</td>
<td>±22</td>
<td></td>
</tr>
<tr>
<td>RSV L19 F, 30°C, mock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV L19 F, 30°C, RSV L19 F, mock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV L19 F, 30°C, RSV L19 F, 30°C, mock</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figures 6A to 6C

Figure 6D
Figure 7

Figure 8
Figure 12B

Figure 12C
Figure 13B

Figure 13C
Figure 13D

Figure 14A

Figure 14B
Figure 14C

Figure 14D
Figure 14E

Figure 14F
Figure 14G

Figure 15A

Figure 15B
Figure 15C

Figure 15D

Figure 15E
Figure 16A

<table>
<thead>
<tr>
<th>format</th>
<th>approach</th>
<th>reporter virus strain</th>
<th>S/B</th>
<th>Z'</th>
<th>AVR dynamic range</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well</td>
<td>manual:</td>
<td>recRSV A2-L19F<sub>D489E</sub>-fireSMASH</td>
<td>20.0 ± 5.6</td>
<td>0.67</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>recIAV WSN-NanoLuc</td>
<td>41.0 ± 8.0</td>
<td>0.68</td>
<td>ND</td>
</tr>
<tr>
<td>384-well</td>
<td>automated</td>
<td>recRSV A2-L19F<sub>D489E</sub>-fireSMASH</td>
<td>53.9 ± 3.4</td>
<td>0.54</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>recIAV WSN-NanoLuc</td>
<td>22.5 ± 4.8</td>
<td>0.63</td>
<td>6.03</td>
</tr>
</tbody>
</table>

Figure 16B
Figures 16C - 16D

Figure 17A
Figure 17B
Figure 18
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US20 15/036499

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC(8)</th>
<th>C07K 14/135 (2015.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>C12N 2760/1851 1 (2015.09)</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC(8) | A61K 2039/5256; C07K 14/005, 16/1027; C12N 7/00, 15/86, 2710/10341, 2710/10343, 2760/1851 1, 2760/18522, 2760/18534; G01N 2333/135 (2015.09) |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

| CPC | A61K 2039/5256; C07K 14/005, 16/1027; C12N 7/00, 15/86, 2710/10341, 2710/10343, 2760/1851 1, 2760/18522, 2760/18534; G01N 2333/135 (2015.09) (keyword delimited); USPC - 424/21 1.1; 435/320.1; 536/23.72 |

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Patents, Google, Google Scholar, Pro Quest, PubMed

Search terms used: respiratory syncytial virus RSV vector fusion protein F protein mutation GPAR-3710

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "V" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "W" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "X" document member of the same patent family

Date of the actual completion of the international search
03 September 2015

Date of mailing of the international search report
29 SEP 2015

Name and mailing address of the ISA:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer
Blaine Copenhaver
PCT Helpdesk: 571-273-4300
PCT OSP: 571-273-7774

Form PCT/ISA/210 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

Box No. II
Observations where certain claims were found unsearchable
(Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **☐** Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. **☐** Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **☒** Claims Nos.: 5-18
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III
Observations where unity of invention is lacking
(Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **☐** As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. **☐** As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. **☐** As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. **☐** No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- **☒** The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

- **☐** The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

- **☐** No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)