woO 2009/017712 A1 |00 0 OO0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO OO

International Bureau

(43) International Publication Date
5 February 2009 (05.02.2009)

(10) International Publication Number

WO 2009/017712 Al

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2008/009130

(22) International Filing Date: 29 July 2008 (29.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/935,182
12/180,649

30 July 2007 (30.07.2007)
28 July 2008 (28.07.2008)

Us
Us

(71) Applicant (for all designated States except US): SYBASE,
INC. [US/US]; One Sybase Drive, Building A., Sixth
Floor, Dublin, CA 94568 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HO, Michael, M.
[US/US]; One Sybase Drive, Building A, Sixth Floor,
Dublin, CA 94568 (US).

(74)

(81)

(34)

Agents: LEE, Michael, Q. et al.; Sterne, Kessler, Gold-
stein & Fox P.ll.c., 1100 New York Avenue, N.w., Wash-
ington, DC 20005-3934 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(54) Title: CONTEXT-BASED DATA PRE-FETCHING AND NOTIFICATION FOR MOBILE APPLICATIONS

NETWCRK
ACCESS
SERVER

100

102

FIG. 1

(57) Abstract: Methods, systems, and computer program products for context-based data pre-fetching and notification for appli-
cations are described herein. In an embodiment, the method operates by creating a context model that includes context variables
and events. The method populates context variables based upon the context of an application and instantiates a context based upon
the context model. The method determines whether the context is active or inactive and infers a likely set of data needed by the
application. The method executes a data selection function to generate a dataset for the application. In an embodiment, the system
includes a module to create and maintain a context model. The system includes modules to: populate context variables within the
context model; calculate a dataset for the application; maintain an inference engine; subscribe to changes in the context variables;
and generate notifications including a dataset with associated metadata that assists with display of the dataset.

-1-
WO 2009/017712 PCT/US2008/009130

CONTEXT-BASED DATA PRE-FETCHING AND NOTIFICATION FOR
MOBILE APPLICATIONS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention generally relates to mobile computing
and, more particularly, to optimization of delivery of data to mobile

applications.

Background

[0002] As mobile computing platforms become increasingly
ubiquitous, and with the availability of network access for the mobile
computing platforms, it becomes desirable to provide users with as
close an approximation to the experience of a full-featured computing
platform as possible. In order to conserve space and battery power,
mobile computing platforms, such as personal digital assistants
(PDAs), frequently have small display screens, limited memory,
limited processing power, and limited communications bandwidth.
Such resource restrictions of mobile computing platforms are often
incompatible with the goal of providing users with data needed by the
users to enjoy a full-featured experience.

[0003] Mobile applications require data to be mobilized from the
enterprise and stored on a mobile device for occasionally disconnected
computing while the device is not connected to the enterprise network.
However, as the mobile devices are often resource restricted, the set of
data downloaded to the devices is limited to a subset of what is
available on enterprise servers and devices. In addition, the subset of
enterprise data needed on mobile devices must be determined a priori.
At times, the pre-determined subset of data is insufficient to meet the
mobile user’s needs. Necessary data is unavailable on mobile devices
when unplanned and planned changes are not accounted for. Without

necessary data available at the mobile devices, corresponding mobile

SUBSTITUTE SHEET (RULE 26)

WO 2009/017712 PCT/US2008/009130

-2

applications can be rendered difficult to use or inoperable, depending
on network connectivity.

[0004] In traditional enterprise computing environments, users are able
to request data (i.e., fetch data and query databases) when it is needed
and receive a timely response with the subset of data they have
requested. In the mobile environment, this traditional request/response
paradigm does not always work due to potential connectivity problems
of 'roaming' mobile devices. The attention of a mobile user using a
particular mobile application is on the task currently being performed
so it is unreasonable to expect mobile users or applications to
determine what data is necessary to complete the task. Hence,
pertinent information should be ‘'pushed' to the mobile user's
applications rather than requiring mobile devices to 'pull’ the
information from enterprise servers. Relevant data and notifications
must be provided at the appropriate time to mobile devices enabling
mobile users to make time sensitive business decisions. This is
because mobile users oftentimes do not know when and what subset of
data is needed as they are not aware of the situation or 'context' they
are currently in.

[0005] Accordingly, what is desired is a system, method, and computer
program product to dynamically determine the likely set of data needed
on a mobile computing platform based on the context of the mobile
applications on the platform and the user using the platform.

[0006] What is further needed is a system, method, and computer
program product to provide relevant data and notifications at the
appropriate time to a mobile computing platform based on the context

of the mobile applications on the platform.

WO 2009/017712 PCT/US2008/009130

-3-

BRIEF SUMMARY OF THE INVENTION

[0007] An embodiment of the invention includes a computer-
implemented method for determining the likely set of data needed on a
mobile computing device based on the context of the mobile device,
wherein the context reflects the context of the device's user within an
enterprise as well as that of the device. Besides a human user who
needs data on a mobile computing device, a software application or
agent sometimes needs data. Accordingly, unless specifically stated,
the "user" as used herein is not necessarily limited to and does not
necessarily pertain to a human being. In accordance with an
embodiment of the present invention, the context of a mobile device
takes into account one or more of device-specific variables such as the
device's GPS location, current data contents, network connectivity, and
battery status. It should, however, be understood that the invention is
not limited to these device-specific variables and other variables
related to the mobile platform's status may be used. The context of a
mobile device is also affected by the status of a user using the device.
A mobile user's status or context takes into account one or more user-
specific variables such as the user's schedule, access privileges,
security role(s), group memberships, database roles, and data
privileges granted, in accordance with an embodiment of the present
invention. It should, however, be understood that the invention is not
limited to these user-specific variables and other variables related to
the mobile user's status may be used. According to an embodiment of
the invention, the method includes the steps of creating a context
model wherein the context model represents the situational information
of a mobile user; updating context variables within the context model
that can be used by the mobile application wherein multiple
applications can share a single context model as well as having a

specific context model for each application; determining the set of data

WO 2009/017712 PCT/US2008/009130

“for the mobile application through the use of the context variables from
the context model; maintaining inference engines used by the data
selection functions to arrive at the likely set of data needed by a mobile
application; maintaining the context models; subscribing to changes in
context variables for mobile user/device combinations; and executing
data selection functions to calculate a dataset for applications,
including applications running on mobile devices.

[0008] The invention further includes a computer program product
embodiment comprising a computer usable medium having computer
program logic recorded thereon for enabling a processor to perform
context-based data pre-fetching and notification for mobile
applications, in accordance with an embodiment of the present
invention. The computer program logic includes a first context
modeling means for creating a context model wherein the context
model represents the combined situational information of a mobile
device and its user. The computer program logic includes a means for
updating and maintaining context variables within the context model
that can be utilized by mobile applications executing on the mobile
device wherein multiple applications can share a single context model.
In an alternative embodiment, each mobile application can have its
own respective, specific context model. The computer program logic
further includes a means for determining the set of data for the mobile
application that will leverage the context variables from the context
model. The computer program logic also includes a means for
maintaining inference engines used by the data selection functions to
arrive at the likely set of data needed by a mobile application. The
computer program logic includes a subscribing means for subscribing
to changes in context variables for mobile user/device combinations.
The computer program logic includes a data selection means for
executing data selection functions to calculate a dataset for mobile

applications.

WO 2009/017712 PCT/US2008/009130

-5-

[0009] The invention additionally includes a system capable of
context-based data pre-fetching and notification for mobile
applications, in accordance with an embodiment of the present
invention. The system includes a first context modeling module
configured to create a context model wherein the context model
represents the combined situational information of a mobile device and
its user. The system includes a context variable module configured to
update and maintain context variables within the context model,
wherein the context model can be used by the mobile application and
multiple applications can share a single context model as well as
having a specific context model for each application. The system
further includes a data selection module configured to determine the
set of data for the mobile application that will leverage the context
variables from the context model. The system includes an inference
module configured to maintain an inference engine used by the data
selection function to arrive at the likely set of data needed by a mobile
application. The system also includes a context server module
configured to maintain the context models. The system further
includes an event engine module configured to subscribe to changes in
context variables for mobile user/device combinations and executes
data selection functions to calculate a dataset for mobile applications.

[0010] Further features and advantages of the invention, as well as the
structure and operation of various embodiments of the invention, are
described in detail below with reference to the accompanying
drawings. It is noted that the invention is not limited to the specific
embodiments described herein. Such embodiments are presented
herein for illustrative purposes only. Additional embodiments will be
apparent to persons skilled in the relevant art(s) based on the teachings

contained herein.

WO 2009/017712 PCT/US2008/009130

-6-

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0011] The accompanying drawings, which are incorporated herein
and form part of the specification, illustrate the present invention and,
together with the description, further serve to explain the principles of
the invention and to enable a person skilled in the relevant art(s) to
make and use the invention.

[0012] FIG. 1 illustrates a network environment for context-based data
pre-fetching and notification for mobile computing devices, in
accordance with an embodiment of the present invention.

[0013] FIG. 2 illustrates the operation of context-based data pre-
fetching and notification for mobile applications, in accordance with an
embodiment of the present invention.

[0014] FIG. 3 depicts the life cycle of a context model within a context
server, in accordance with an embodiment of the present invention.

[0015] - FIG. 4 illustrates a process for context model development, in
accordance with an embodiment of the present invention.

[0016] FIG. 5 illustrates a context data selection function implemented
as a download cursor within a database, in accordance with an
embodiment of the present invention.

[0017] FIG. 6 illustrates a data selection function implemented within
a subscriber, in accordance with an embodiment of the present
invention.

[0018] FIG. 7 illustrates data pre-fetching for mobile applications, in
accordance with an embodiment of the present invention.

[0019] FIG. 8 notification generation for mobile applications, in
accordance with an embodiment of the present invention.

[0020] FIG. 9 is a flowchart representing a method for context-based
data pre-fetching and notification for mobile applications, according to

an embodiment of the invention.

WO 2009/017712 PCT/US2008/009130

-7-

[0021] FIG. 10 depicts an example computer system in which the
present invention may be implemented.

[0022] The features and advantages of the present invention will
become more apparent from the detailed description set forth below
when taken in conjunction with the drawings, in which like reference
characters identify corresponding elements throughout. In the
drawings, like reference numbers generally indicate identical,
functionally similar, and/or structurally similar elements. The drawing
in which an element first appears is indicated by the leftmost digit(s) in

the corresponding reference number.

DETAILED DESCRIPTION OF THE INVENTION

Overview

[0023] The increasing availability of wireless access to the Internet has
created a significant market for mobile computing devices with
wireless access capabilities. Traditionally, such compact portable
computing devices, commonly termed hand-held devices or PDAs,
have had less computational power than larger computing platforms,
such as laptops or personal computers (PCs). Due to this limited
computing power, as well as other features inherent to a mobile
computing platform such as smaller display screens, custom mobile
applications have been developed for purposes such as optimizing the
display of web pages, reducing CPU usage, reducing local data
storage, reducing the quantity of network accesses, and increasing
battery life.

[0024] Of particular concern to the present invention is the reduction
of network accesses by decreasing the amount and frequency of data
fetching by mobile applications, among other features. One skilled in

the relevant arts will appreciate that, accordingly, the techniques

WO 2009/017712 PCT/US2008/009130

-8-

described herein need not be limited to a portable computing device,
but can in fact be used in any computing situation where similar

resource utilization problems are posed.

1.0 Example Network Implementation

[0025] FIG. 1 illustrates a wireless network environment 100 for
delivering pre-fetched data to applications executing on mobile devices
160a-d, in accordance with an embodiment of the present invention.
Mobile devices 160a-d may be one of many devices commonly
designated as mobile computing platforms or personal digital assistants
(PDASs), such as but not limited to, devices operating according to the
Microsoft Pocket PC specification with the Microsoft Windows® CE
operating system (OS), devices running the Symbian OS, devices
running the Palm® OS, iPhones®, mobile phones, BlackBerry®
devices, smart phones, hand held computers, palmtop computers,
laptop computers, ultra-mobile PCs, and other wireless mobile devices
capable of running mobile applications. Mobile devices 160a-d may
further encompass other wireless mobile computational devices or
other data processing devices with any similar resource limitations as
PDA:s.

[0026] Mobile device 160a is connected to the Internet 102 through a
gateway network access server 112a. Mobile device 160a connects to
enterprise server 122 via network 172. One skilled in the relevant
art(s) will appreciate that any network, such as, but not limited to a
corporate intranet, may be used instead of the Internet 102.
Furthermore, gateway network access server 112a is operable to
support connections from multiple mobile devices such as mobile
devices 160a and 160b. Additional mobile devices 160c and 160d may
connect to network 172 via another network access server 112b to

receive data from an enterprise via enterprise server 122. In

WO 2009/017712 PCT/US2008/009130

-9.

accordance with an embodiment of the present invention, pre-fetched
data from enterprise server 122 is delivered to mobile devices 160a-d
via network 172 based upon one or more context models stored on
context server 110. The context models may be shared amongst
multiple mobile devices 160 or each device may have their own
respective context models. In an embodiment, context server 110
maintains context models by polling for updates from physical sensors
in wireless network environment 100. Context server 110 also
maintains context models by receiving updates to context variables
residing on context server 110. The values of context variables on
context server 110 vary depending on the respective applications
running on mobile devices 160 and the characteristics of users using

mobile devices 160.

2.0 Context-based Pre-Fetching

[0027] FIG. 2 illustrates context-based data pre-fetching and
notification 200 for applications running on mobile devices, in
accordance with an embodiment of the present invention.

[0028] Context model 205 represents the situational information of the
mobile user. According to an embodiment, context model 205 may be
defined using ontology. The ontology can be as simple as key-value
pairs. Ontology can be leveraged in context model 205. Each context
model 205 has a set of concepts as well as the relationships between
them, expressed in context variables 215. Context model 205 is a
template used to enable context-based data pre-fetching.

[0029] Context variables 215 can be simple, derived, or contextual.
Derived variables are by obtained by aggregating through inferences of
simple variables. Context variables 215 may include simple context
variables which in turn may contain a single value or a collection of

values.

WO 2009/017712 PCT/US2008/009130

-10-

[0030] In order to facilitate delta-based data updating (i.e., sending out
only information and data that a mobile device 160 does not already
have), context model 205 stores a representation of what is already on
mobile device 160 in one or more context variables 215. Context
variables 215 are part of context model 205.

[0031] There can be many context models 205 within context server
110. Context server 110 maintains context models 205 by polling or
receiving updates from physical sensors or software-based information
for simple variables. Changes in the simple variables trigger inference
to update corresponding derived variables.

[0032] Context server 110 provides a context query API to access
context variables 215 within context model 205. According to an
embodiment, a context is identified by a globally unique identifier
(GUID). Context Server 110 is responsible for the lifecycle of all
contexts within it. According to embodiments of the present invention,
context server 110 may be a software module, computer hardware, or a
combination of hardware and software. A context is created based on
a context model. In other words, a context model can be compared to a
Java class whereas the context itself is akin to a Java object
corresponding to the Java class or an instance of the Java class.

[0033] Data selection functions 270 are functions that calculate the
pre-fetch data for applications running on mobile devices 160. Data
selection functions 270 may leverage context variables 215 within
context model 205. For each mobile user/device combination 295,
there can be a set of data selection functions 270. The output of each
function is combined to form new dataset 290. Data selection
functions 270 may use inference (e.g. rules or Bayesian network) to
perform calculate the dataset 290 required by each mobile user/device
combination 295. Data selection functions 270 also access context

model 205 from context server 110.

WO 2009/017712 PCT/US2008/009130

-11-

[0034] In accordance with an embodiment of the invention, Data
selection functions 270 access context model 205 that represents the
mobile user’s context to determine the new dataset 290 required by
each mobile user/device combination 295.

[0035] Each user/device combination 295 may subscribe to a set of
context variables 215 within context model 205. Whenever context
variables 215 within subscription 220 changes, event engine 250 will
determine and execute the affected sets of data selection functions 270.
The new dataset 290 created by the functions will be compared with
what is already on the device, stored as context variables 215, to create
a 'delta’ set of data 280 that the mobile user/device combination 295
does not already have.

[0036] Event engine 250 is also responsible for receiving
notifications/updates 220 from sensors and software event mediator
and forwards them to context server 110 to maintain context models
205. |

[0037] FIG. 2 also illustrates a method for delivering relevant data and
notification at the appropriate times to applications running on mobile
devices 160 using context-based pre-fetching method described above,
in accordance with an embodiment of the present invention.

[0038] According to one embodiment of the present invention,
notifications and data 280 delivered to mobile user/device combination
295 have the following characteristics.

[0039] Dataset 290 is packaged with metadata into a 'metadata driven
container' to assist in displaying the data at the mobile device and the
metadata contains a description of data 280.

[0040] Dataset 290 has an identifier with a timestamp, thus dataset 290
is named and versioned.

[0041] All versions of dataset 290 with the same identifier are unique.

[0042] Policies on mobile device 160 support having only one or

multiple versions of dataset 290 per identifier.

WO 2009/017712 PCT/US2008/009130

-12-

[0043] No modification of dataset 290 is allowed, and data 280 is
provided to mobile user/device combination 295 only for reference.

[0044] Dataset 290 includes both structured and unstructured data.

[0045] Dataset 290 requires a client side container to interpret the

dataset 'package' and display it appropriately at mobile device 160.

[0046] Dataset 290 can be acknowledged and discarded by mobile
device 160 or after a predetermined time (i.e., a 'timeout period’)
according to a policy on mobile device 160.

[0047] Data 280 is generated from mobile device/user combination
295 specified data selection functions 270 that are subscribed to
context variables 215 within context model 205.

[0048] The metadata driven dataset/container 290 uses the metadata
within the dataset 290 to determine how best to display the data 280.
Data container 290 is context aware (i.e., aware of the environment
that it is executed under such as the characteristics of mobile
device/user combination 295). Hence, data container 290 can render
data 280 in a fashion that is most suitable for the device.

[0049] When data 280 is reviewed by user 295, it can be deleted from
the mobile device 160. In addition, if dataset 290 has an expiration
date set, it will be discarded when appropriate.

[0050] Relevant data 280 can be pushed to mobile device/user
combination 295 based upon changes in the context 260 that the data
selection functions 270 subscribed to.

[0051] Changes in a context are expressed as change events 230
(context variables 215 within context model 205) and can be caused by
changes occurring within the enterprise such as changes in data on
enterprise server 122, execution of business processes, or other change
events 230. Change events 230 are reported to event engine 250 which
notifies context Server 110 to update the corresponding context model

205.

WO 2009/017712 PCT/US2008/009130

-13 -

[0052] Change events 230 can also be caused by a mobile device/user
combination 295 triggering a change in context through user actions
within applications running on mobile device 160, natural language
commands/queries through messaging or short messaging service
(SMYS), and device sensor readings.

[0053] Context model 205 may also contain a constructor and the set
of parameters required to create a context based on it. At a minimum,
the identifier of the to-be created context must be specified. This is
because all created contexts must have a globally unique identifier for
us to unambiguously refer to it. For example, a GUID may be used to
uniquely identify a context. Additional parameters to the constructor
can be used to set some of the context variables within the newly
created context.

[0054] Context model 205 defines a type of context for a particular
usage. For example, a context model can be tailored and populated for
a Customer Relationship Management (CRM) application for
pharmaceutical sales personnel using mobile devices 160. Each
context model 205 consists of a set of context variables that define the
domain of interest or set of situations that the context can express. For
example, a work context model can have two variables: at-office, on-
vacation. According to one embodiment of the present invention, the
valid states of context model 205 can include, but are not limited to,

the permutations listed and described in Table 1 below.

Table 1 - Example Context Model States

At Office | On Vacation Description

True False In the office and not on vacation

False False Away from the office and not on
vacation (i.e., on business travel,
attending off-site meetings,
conferences, et al).

WO 2009/017712 PCT/US2008/009130

-14 -
False True Away from the office and on vacation.
True True The employee is in the office and at
work even though he is on vacation.

2.1 Context Lifecycle

[0055] FIG. 3 illustrates the steps of life cycle 300 of context model
205 within context server 110, in accordance with an embodiment of
the present invention. The lifecycle of a context includes the following
states: created, active, inactive, and deleted. When in 'Inactive’ state,
the context will not be updated.

[0056] A context is created during runtime using the metadata within
context model 205. In an embodiment, all contexts reside within
context server 110 which serves as their container. Context server 110
is responsible for managing the lifecycle 300 of the contexts within it.
All contexts within context server 110 have unique identifiers
associated with them. Using these identifiers, they can be looked up
by a client, subscriber, or user. In an embodiment, once a context is
located, a client can use an application programming interface (API) in
order to interact with the context to perform work.

[0057] In an embodiment, a context must be in one of its four states
(created, active, inactive, or deleted) and a context transitions from
state to state as it moves through context lifecycle 300. The states of
the context lifecycle and relationships between the states, according to
an embodiment of the invention, are described in the following

sections.

2.1.1 Created State

[0058] The lifecycle 300 of a context begins in step 340 when a

context is created. After a context is created in step 340, it enters the

WO 2009/017712 PCT/US2008/009130

-15 -

Created state. Context model 205 defines the number of parameter(s)
that are passed to the constructor. The minimum parameters passed to
step 354 include at least a unique identifier that will identify the newly
created context. Other parameters can be used to set context variables
215. All context variables 215, except contextual context variables,
are defined with initial values so it is not necessary to initialize them
through parameters.

[0059] If the contextual variable has an association relationship, it is
initialized in step 341 by looking up the designated context. This
lookup of the designated context is accomplished by using an
appropriate identifier for the lookup. This identifier can be passed as a
parameter to constructor of the referring context. It can also be from
the initial value of a context variable 215. The contextual variable is
only initialized in step 341 if the referred to context is located.

[0060] In step 354, an evaluation is made regarding whether the
initialization in step 341 was successful. If it is determined that the
context is initialized (i.e., the context is in the initialized state), control
is passed to step 342. If it is determined in step 354 that the context is
not initialized, control is passed to step 356.

[0061] If the context cannot be located, it is considered to be an error
and the creation will fail in step 356. However, it is not treated as an
error condition if no identifier is specified to use for locating the
context. The contextual variable will have a null reference and it can
be subsequently set up by an administrator.

[0062] In step 356, an error is reported when the context is not
initialized. In an embodiment, step 356 may include reporting a
context creation error to an administrator or user who has subscribed to
the context. For example, the error may be reported via a message or
display on a graphical user interface.

[0063] If the contextual variable has a composition relationship, the

owning context’s constructor automatically creates the dependent

WO 2009/017712 PCT/US2008/009130

-16 -

context by invoking its constructor and passing in a GUID as identifier
and other necessary parameters. The GUID is known to the parent
context as it ‘owns’ the child or created context and controls the child
context's lifecycle. The failure to create the child context will cause a
creation error in step 356.

[0064] If the contextual variable is initialized successfully in step 341,
it will have a reference to a context. For a vector of references, it is
possible to initialize from zero to n references. A referring context will
register a relationship with this initialized context. Registration allows
for change events 230 to be propagated. Similarly, de-registration is
be done to remove the relationship so that the referred to context can
halt propagation of change events 230.

[0065] If the context is created and initialized in step 341, it will
automatically transition to the Active state in step 342.

[0066] At this point, change events 230 and state events 358 are set for
the active context. In this step, input events 362 are also processed for
the active context. Context events such as change events 230 and state
events 358 and input events 362 are described in greater detail in
section 3 below. The active state is the normal operating state of the
context. In this state, the context will receive and process input events
362 to update its context variables 215. In addition, the context will
raise change events 230 and state events 358 to trigger subscribed
consumers to perform their action. Through administrative or user
actions 348, a context in the active state can be moved to the inactive
state in step 344.

[0067] In step 344, the context is set to the inactive state if an
administrator or user action 348 triggers a state transition from active
to inactive. A context in the inactive state can be considered disabled.
An inactive context will ignore all input events and as a result will not
raise any change events 230. Through administrative or user action

348, a context in the inactive state can be activated, back to the Active

WO 2009/017712 PCT/US2008/009130

-17 -

state in step 342. Deactivating the context and putting it into the
inactive state in step 344 may cause the context to be out of sync with
the sources. For example, if a notification event associated with a
simple variable is reporting an edge transition of some sort rather than
the actual state. An inactive context will ignore many of such
notification events and lose count. In an embodiment, an administrator
may synchronize an inactive context in this scenario when the context
is transitioned back to the active state in step 342.

[0068] A context can be destroyed or deleted from either the active or
inactive state and enter into the Deleted state in step 352. According to
one embodiment, context server 110 may retain or cache a deleted
context for an undetermined period of time. In another embodiment,
the amount of time a deleted context is retained is a tunable parameter
entered by an administrator. Alternatively, context server 110 may
also remove a destroyed context immediately at its discretion. A

context in the Deleted state cannot be looked up.

2.2 Context Model Development

[0069] FIG. 4 illustrates the process 400 for development of a context
model according to an embodiment of the invention.

[0070] Context modeling refers to the development of context models
205. The relationship between context model 205 and a context is
similar to the relationship between a Java class and a Java object.
Context model 205 is the blueprint for a context and a context is
created based upon context model 205. The first step in context-based
data pre-fetching and notification is the development of an appropriate
context model 205. Many different context models 205 may be
required in a typical system. Context model 205 may depend on other
context models. For example, the context for mobile sales personnel

may refers to the context of the mobile device being used by the sales

WO 2009/017712 PCT/US2008/009130

-18 -

personnel combined with the context of the personnel's respective
departments and the personnel's personal information manager (PIM).
A mobile device's 160 context is determined by one of more of the
following factors: mobile device network connectivity (voice and data
network), battery level, and GPS location. A PIM context is
determined by evaluating one or more of calendar, address book and
other factors. A department context may be determined by evaluating
sales figures, the department's commission policy, the department's
sales goals, and other department-level factors. This list of variables
used to determine a context is not exhaustive, but is provided as an
example of variables that can be used in context model 205.

[0071] Context modeling tool 434 depicted in FIG. 4 may include a
graphical user interface (GUI) module configured to accept input of
modeling parameters. Context model 205 is described by appropriate
metadata. Once a context model 205 is developed, context generator
432 reads in the metadata representing context model 205 and
generates various support artifacts and code. The resulting output is
packaged into a deployment unit and deployed into context Server 110.
Once deployed, administrator and/or user can create contexts based on
the deployed context model 205. Context model 205 created in step
340 described above resides within context server 110. Context server
110 is responsible for maintaining the state of context model 205.
Context model maintenance includes updates to context variables 215

depicted in FIG. 2.
2.3 Context Variables

[0072] Context model 205 is the blueprint for a certain kind of context.
Context model 205 includes a set of context variables 215 that define
the scope of the context. The scope determines the set of situations or

scenarios that the context can express. For example, a work context

WO 2009/017712 PCT/US2008/009130

-19 -

model can have two Boolean type variables: at-office, on-vacation.
State variable contains a single value or vector of values of a particular
type. Unlike simple variable, it receives no external input that may
change its value(s).

[0073] Context variables 215, by default, raise a change event
whenever its value/vector of values changes. There is an option,
propagate-change, to control this behavior. When set to false, the
variable will not raise a change event. When any one of the context
variables raises a change event, the context model will also raise a
change event. In order to allow the context model to control this
behavior, the context model also has a propagate-change option. State
variable does not raise change event, instead it raises a state event.

[0074] In addition to the set of situations of the context represented in
Table 1, there are multiple types of context variables 215. Context
variables 215 can have, but are not limited to, the types listed and

described in Table 2 below.

Table 2 - Context Variable Types

Variable Type | Description

Simple Contains a single value or a vector of values of a
particular type. For example can include integer
values. The value(s) comes from external sources
such as sensors, application states, environmental
values based on location, time, speed, and other
factors.

Derived Contains a single value or vector of values of a
particular type derived through the processing of
other simple variables or derived variables within
the context

Contextual Contains a reference or vector of references to
another context model. This allows a context
model to be developed based on other context
models. For example, the contextual variable is for
a device context model. By allowing a vector of
references, can refer at runtime to multiple device
contexts. Contextual variables allow a context

WO 2009/017712 PCT/US2008/009130

-20-

model to be composed of other context models
(composability)

Aggregate A collection of context variables of multiple types.
A combination of simple, derived, and/or
contextual variables.

[0075] According to an embodiment, a Simple context variable is
required to have a default or initial value. For a vector or array of
values, the initial state can be an empty vector. A user can define a
source for updating a simple context variable. In an embodiment, a
user or administrator defines how context variables are to be updated.
For example, a management graphical user interface (GUI) can be used
by users or administrators to define how simple and aggregate context
variables are to be updated.

[0076] In accordance with an embodiment of the present invention, a
simple context variable must be associated with either a polling or
notification event for it to be valid. The polling or notification event is
the source for a simple context variable. A procedure may be defined
to process or transform the information from the polling or notification
event and update the variable.

[0077] In an embodiment, a simple context variable also has associated
with it an update-frequency option. The update frequency option is a
positive integer value. For example a value of 0 or 1 means that we the
output of the polling/notification event reported will be examined
every time to determine if a change has occurred, and a value of 4
means that the output of the event once will only be examined every
four times. This mechanism allows users and administrators to use
simple context variable to control how frequently changes will be
reported. For example, a polling event may occur each second
whereas a simple context variable may be set to a value such that a

user is only interested in a resolution of 30 second increments, while

WO 2009/017712 PCT/US2008/009130

221 -

other users may require much higher resolution such as each 10
seconds.

[0078] In an embodiment, simple context variables 215 can be updated
through one of the methods described in Table 3 below. The supported
simple context variable update methods include, but are not limited to,

those listed and described in Table 3.

Table 3 - Simple Context Variable Update Methods

Update Method Description

Polling Requires the specification of the polling event.

Notification Requires the specification of a notification event.
[0079] In an embodiment, derived context variables are also required

to have default or initial values. Once again, for a vector value, an
empty vector can be the initial state. According to an embodiment, in
order to update derived context variables, a specification of a
procedure operating on a set of simple variables or derived variables is
required. The output of the procedure returns a value or vector of
values. In an embodiment, the procedure can be triggered by one of
the mechanisms listed in Table 4 below, depending on the settings
made by a user in a context variable 215 within the context model 205.
The derived context variable procedure triggers include, but are not

limited to, those listed and described in Table 4.

Table 4 - Derived Context Variable Procedure Triggers

Trigger Type Description
On Change Procedure is executed whenever anyone of the

set of specified variables is changed (triggered
by a change event, see below) This method gives
the most current status of the variable

Periodic Procedure is executed as determined by a
schedule and frequency. This periodic method is
used to avoid excessive processing load or when

WO 2009/017712 PCT/US2008/009130

-22-

| | there is no requirement for instantaneous update |

[0080] Contextual context variables require the specification of
another context model. If the variable is defined to be a vector of
references, it means that more than one contexts of the specified
context model 205 can be referenced. The relationship between the
context models 205 involved can be of association or composition (a
specialized form of association with ownership and lifecycle
implications). Association or shared relationships work well in the
context system because updating contexts is resource intensive.
Hence, an advantage of an embodiment of the invention is that
contexts can be shared.

[0081] Contexts can also be composed. Composition means there is a
parent context (owner) and a child context. The child context is not
shared, but is owned by the parent context. The parent context is
responsible for the lifecycle of the child context.

[0082] The use of contextual variable allows a context model to be re-
usable by other context models. Reusability is important for building

increasingly complex models 205 using what is already developed.

2.4 State Variables

[0083] According to an embodiment of the invention, state variables
are internal variables and do not have a source. Polling or notification
events are not specified for state variables. However, a procedure may
be defined that can change its own value or even values of other state
variables as well as issuing state events such as the state events
described below. A procedure can be triggered by change events 230
and state events. State variables also have initial values associated

with them.

WO 2009/017712 PCT/US2008/009130

-23.

2.5 Context Model and Context

[0084] A context is an instantiation or runtime representation of
context model 205 that it is created from. For example, context model
205 describes the context and is used as a template to create the actual
object hosted within context server 110. A context is created with an
identity or unique identifier that another context or user can use to

reference or lookup the context.

3.0 Events

[0085] The context system is event-driven. According to an
embodiment of the invention, there are two primary types of events:
context events such as change events 230, input events 362 depicted in
FIG. 3; and state events 358.

[0086] A change event triggers data selection functions and
notifications. Input events are events triggered by sensors, enterprise
applications, user actions, and other events that update variables within
the context. Change events 230 are described in greater detail in
section 3.1.1 below. A state event is raised by the specified procedure
of a state variable when the context detects actionable circumstances.
Thus, an event is the base upon which the context system is built.

State events are discussed in section 3.2 below.
3.1 Context Events
[0087] Context events depicted in FIGs. 3 and 4 include change events

230 and state events 358 as well as input events 362. Input events 362

include polling and notification events.

WO 2009/017712 PCT/US2008/009130

-24 -

3.1.1 Change Events

[0088] Change events 230 are events raised by context variables 215.
Whenever a context variable changes its value or vector of values
based on output of the associated input event, it raises a change event.
According to an embodiment of the present invention, a change event
always contains the name of the variable that raises it. The change
event is propagated to the context containing the corresponding context
variable and in turn, will raise a change event of its own. The change
event raised will have within it the name of the variable whose change
event caused the context’s change event and the current value. Users
can subscribe to a change to a context variable to derive useful

operations and behavior from them.

3.1.2 Input Events

[0089] Input events 362 are the source of updates to simple variables
and indirectly to derived variables. Output of input event is expressed
in a canonical format with an associated entity that describes it. An
embodiment of the invention uses XML and the XML schema to
describe the output. FIG. 7 depicts the role of simple variables 778 in
the pre-fetching process 700, in accordance with an embodiment of the
invention. In most cases, simple variable 778 references an input event
points which points to an appropriate element within the output to be
the source of that variable.

{0090] Input events 362 are shared by many simple variables 778. For
example, five simple variables 778 from different context models 205
can reference a single input event 362 such as a polling event. In this
example, the output of the polling event upon execution is used by all
five simple variables 778 to determine if their values or vectors of

values need to be updated. Similarly, when a notification event is

WO 2009/017712 PCT/US2008/009130

-25-

received, all simple variables 778 referencing it will examine its output

for update of their values.
3.1.2.1 Polling Events

[0091] A polling event contains the instruction to poll or acquire the
status of a certain entity. For example, a polling event can contain an
instruction to poll for the status of a purchase order from an enterprise
application. A polling event is also has schedule and polling frequency
attributes. The schedule defines when the polling is to take place.
According to embodiments of the invention, the schedule attribute can
be configured by an administrator and can be one or more of a time of
day (i.e., 9AM-6PM), days of the week (i.c., Monday-Friday), months
of the year, or other ranges of time. The frequency attribute specifies
how often the polling should occur. In accordance with embodiments
of the present invention, the frequency attribute can be configured by
an administrator and can be one or more of seconds (i.e., each 5
seconds), minutes, hours, days (i.e., daily or every other day), weeks
(i.e., weekly or bi-weekly), or months. When the poll event is
executed at the specified time, the polling results in an output. The
output is expressed in a canonical format for use by simple context
variables. Information acquired from data sources during polling may
require some transformation to the canonical format. Polling events
are executed by context server 110 according to their associated

schedule.
3.1.2.2 Notification Events
[0092] Notification event 782 depicted in FIG. 7 can result from

receiving a message. For example, notification event 782 can be a

message from an Enterprise System Bus (ESB), a device reporting its

WO 2009/017712 PCT/US2008/009130

=26 -

status or other data sources capable of generating a message. The
format of these messages can vary depending on the source. Hence,
notification event 782 has associated with it transformation procedure
783 to help transform the received message and express the message in
a canonical format. The processing procedure 784 associated with
simple variable 778 takes the canonical form and performs processing
to filter out and calculate what matters to it.

[0093] Transformation procedure 783 is added to notification event
782. The Processing procedure 783 associated with notification event
782 is where input of notification event 782 is transformed into a
canonical form. When the message is received and transformed,
notification event 782 is generated.

[0094] In accordance with an embodiment of the present invention, a
method is invoked in a Web Service interface provided by the context
system. The published Web Services Description Language (WSDL)
will define the input message type. The entity that provides the input
for context variable(s) 215 can simply call a web service interface to
push it. They do not need to generate a message and send it. This is
an alternate method to receive inputs for context variables 215. The
output of the event is used to update simple variables 778 associated

with context variables 215.
3.2 State Events

[0095] While a change event 230 notifies external listeners of changes
in non-state variables, a state event 358 indicates a condition or
circumstance detected by the context. State variable 776 is the
container of the value for the state variable, which in turn generates
stat event 358. State variable 776 is not simply a passive container to
collect information that constitutes a particular type of context. Rather,

state variable 776 allows context 564 to play an active role in

WO 2009/017712 PCT/US2008/009130

-27-

determining actionable items based on its state. State variable 776

contains its name and its current value.

4.0 Relationships Between Contexts

[0096] In accordance with an embodiment of the present invention,
contexts can have two types of relationships between them, association
and composition relationships. These two relationship types are

described in the sections below.

4.1 Association

[0097] Two contexts 564 based on context models 205 that have an
association among them are aware of each other. It is important that a
referred-to context has knowledge of a referring context so that events
can be propagated to the referred to context. The act of initializing a
contextual variable with an association relationship at creation time
involves the referring context looking up the referred-to context and
registering with the referred-to context. If the referring context is
deleted or otherwise goes away, it deregisters with the referred to
context so that the relationship can be severed. The referring context
does not own the referred-to context. For example, a many-to-one
relationship can exist between referring contexts and a referred-to
context. When a context 564 based on a context model 205 with a
contextual variable is created, it will attempt to look up the referred-to
context. If the referred-to cannot be found, the context 564 is
considered not initialized and creation will fail as a result as depicted
in step 356 of FIG. 3. The creation of the referred-to context should

occur independently.

WO 2009/017712 PCT/US2008/009130

.28 -

4.2 Composition

[0098] Composition implies ownership or a parent-child relationship.
The lifecycle of a child context is the responsibility of the parent
context. A contextual variable with a composition relationship usually
means that the child context is not to be shared and private to the
parent context. This is usually done to allow the parent context to
'fine-tune' the behavior of the child context for the parent’s own use.
For a shared context in an association relationship, each context in the
relationship sees the same events. In this way, there are implications

when updating many contexts based on a similar set of input events.

4.3 Context Application Programming Interface (API)

[0099] In accordance with an embodiment, a set of APIs for
manipulation of contexts is defined as part of a system. In
embodiments, the context API can be generic or dynamic. The context
API can be used to work on contexts from any context model 205. As
a result, it is not as efficient as model specific API. A client can use
the API to look up any context based on a unique context identifier.
The API can also be used to obtain information about the context
model 205 that the context is based upon. By using the API and the
information obtained via calls to the API, any context can be

manipulated.
5.0 Context Model Development
[00100] Context 564 is a first class citizen within the system. Thus, a

rigorous approach for context development is employed through

context modeling. In an embodiment of the invention, a context

WO 2009/017712 PCT/US2008/009130
-29.

modeling tool is used as part of a system to create and maintain context

models.
5.1 Context Modeling

[00101] FIG. 4 depicts the steps and components involved in the
context modeling process 400, in accordance with an embodiment of
the invention. According to an embodiment of the invention, context
modeling tool 434 is used during the development of context model
205. Context modeling tool 434 expresses context model 205 using
metadata. The developed context model 205 is stored within metadata
repository 436. In embodiments, metadata repository 436 may be a
relational database or a data store. The use of metadata repository 436
allows developers to store and maintain multiple versions of context
models 205 and perform impact analysis if a particular context is to be
modified or removed. This is important as context models 205 are
often based on other context models 205. Without the ability to
understand how a change to a particular context model 205 can impact
other context models, maintenance of these context models is very
difficult.

[00102] Metadata repository 436 allows developers to support source
control and configuration management for context models 205. Source
control and configuration management enables collaboration among
developers, including teams of developers who are not collocated.
Metadata repository 436 also allows developers to search for suitable
context models 205 for reuse with a powerful query language. In an
embodiment of the invention, the query language is fashioned after and
similar to the structured query language (SQL).

[00103] The context modeling process 400 includes developing input
events 362 that feed context models 205 with updates. Development

of these input events requires knowledge of data sources, including

WO 2009/017712 PCT/US2008/009130

-30 -

both hardware and software data sources. The acquisition of input
events 362 involves interfacing with data sources to retrieve/receive
information. It may require transformation of information to a
canonical representation. Input events 362 are developed once and
shared by all context variables 215 interested in the events. In other
words, input events 362 are reused in the development of new context
models 205. Hence, in an embodiment, all developed input events 362
are also stored within metadata repository 436. The benefits of impact
analysis, source control, and collaboration also apply to input events

362.

6.0 Data Pre-Fetching Using a Context

[00104] FIGs. 5 and 6 illustrate how data pre-fetching is performed by a
data selection function 270, in accordance with embodiments of the

invention. These embodiments are described in the sections below.

6.1 Data Pre-Fetching Mechanism

[00105] The method used by data selection function 270 to indicate the
set of data to be pre-fetched for a particular mobile user/device
combination 295 depends on the synchronization mechanism between
the mobile device 160 and the enterprise server 122 depicted in FIG. 1.
Data selection function 270 is triggered by either a change or state
event such as change events 230 and state events 358. Change events
230 and state events 358 are generated from context 564 through a
subscription. In other words, context 564 drives data selection
function 270 which then interrogates context 564 to determine the
situation and to come up the proper dataset. In the embodiment
illustrated in FIG. 5, data selection function 270 within a data selection

subscriber writes arguments to database 572 for use by a download

WO 2009/017712 PCT/US2008/009130

-31-

cursor. In one embodiment, data selection function 270 within a data
selection subscriber writes arguments to database 572 for use by a
MobiLink download cursor. As would be appreciated by those skilled
in the relevant art(s), database 572 can be a relational database or a
staging database for a data repository, a data store, a data warehouse,

or any other structured collection of records or data.

6.2 Context Driven by Subscription

[00106] FIG. 6 depicts data selection function 270 implemented within
a subscriber, in accordance with an embodiment of the present
invention. As shown in FIG. 6, context 564 is an independent entity;
which can constantly change based on input events which trigger
context 564 to emit change events 230 and state events 358. Context
564 does not maintain a tight coupling with its consumers. Instead, it
is the consumers that take action and indicate an interest in a particular
set of context variables 215 within context 554. In an embodiment,
consumers accomplish this by registering a subscription 220 with a
particular context model 205 specifying the set of context variables
215 and state variables within context model 564 to subscribe to.
Context variables 215 can be conceptualized as change events and state
variables are related to state events. State events and state variables
are described in greater detail below with reference to FIG. 7. Events
raised by the set of context variables 215 will trigger the consumers.
Subscriptions allow the consumers to 'fine-tune' their interest in a
particular context model 205. At runtime, this means that all contexts
564 based on a particular context model 205 are eligible for triggering
their respective subscribers via subscriptions 220. For example, if data
selection function 270 is subscribed to a mobile device 160 context

model 205 and there are five mobile device contexts 564 in the active

WO 2009/017712 PCT/US2008/009130

-32-

state within context server 110, any one of the five contexts 564 can

trigger data selection function 270.

6.3 Data Selection Functions

[00107] Data selection functions 270 are more than consumers of
context events 230. They also take advantage of context 554°s set of
context variables 215. In an embodiment, once triggered, data
selection function 270 will use a context API as well as generated code
for context model 205 that data selection function 270 is subscribed to.
Data selection function 270 retrieves information from the triggering
event to look up context 554 within context server 110. Data selection
function 270 can then use generated code to determine that 'state’ of
context 554 in addition to the state that fires the change/state event.
Besides the information in context 554, data selection function 270
may use other state information elsewhere to arrive at the appropriate
dataset.

[00108] What data selection function 270 takes advantage of once
triggered is dependent on the function itself and the mobile application
running on mobile devices 160 that the function may be associated
with. In some cases, the event is the most important element, while in
other situations; it is the event and the rest of context 554 that matters.
The following sections describe methods to determine what data

selection function 270 takes advantage when the function is triggered.

6.3.1 Trigger Only Method for Data Selection

[00109] In the trigger-only method, data selection function 270 does not
access the firing context 564. According to this method, data selection
function 270 has access to a triggering event that contains a current

value of a context variable 215, which is the contributor to the event.

WO 2009/017712 PCT/US2008/009130

-33-

In an embodiment, a current value of context Qariable 215 can be a
Global Positioning System (GPS) location to calculate what the set of
pre-fetch data is comprised of. In more complicated cases, data
selection function 270 subscribes to a state event which is more than
just a change, but is the output of a state machine. This means that the
triggering condition for the function can be non-trivial and yet data
selection function 270 does not require a lot of contextual information

to arrive at the set of pre-fetch data.
6.3.2 Context-Based Method for Data Selection

[00110] Data selection function 270 has access to the firing context 564.
In this manner, data selection function 270 is able to examine context
564 and based on the values of all the context's context variables 215
to determine the set of pre-fetch data. The 'trigger only' method
described in the previous section is a subset of the context-based
method. According to an embodiment, data selection function 270
accesses context 564 through its API rather than being given a copy.
This ensures that data selection function 270 will always see the latest

context variables 215 within context 564.
6.3.3 Other Information Selected by Data Selection Functions

[00111} Data selection function 270 may also refer to external
information stored within an enterprise such as information stored on
enterprise server 122 in order to arrive at the set of pre-fetch data. For
various reasons, whether it is difficult to develop an input event or
other technical issues, this information may be determined to be

inappropriate for inclusion in context 564.

WO 2009/017712 PCT/US2008/009130

-34-

[00112] According to an embodiment, it is possible to have data
selection functions 270 using the 'trigger only' and 'context based'

methods to leverage other information.

6.3.4 Types of Data Selection Functions

[00113] Data selection function 270 can be implemented as required by
the application. Data selection function 270 can be procedural or
inferential. In an embodiment of this invention, there are two ways of
implementing data selection function 270. The first example
embodiment is depicted in FIG. 5 and uses a download cursor within a
relational database synchronization occurring on synchronization
server 566. In one embodiment, the download cursor may occur as
part of a MobiLink relational database synchronization occurring on a
MobiLink server. In the embodiment depicted in FIG. 5, the download
cursor is defined as a structured query language (SQL) procedure or
statement executed on synchronization server 566. The information
from the triggering event and/or context 564 is used as parameters or
arguments to the download cursor. In this embodiment, data selection
function 270 is the combination of the data selection subscriber that
writes the arguments to database 572 and a download cursor that
selects the appropriate set of data using the arguments written by the
subscriber. For more complicated scenario, a data selection subscriber
can be a procedure, a set of rules that obtain information from the
triggering event, and/or context 564 that generates a new set of values
for use by the download cursor as arguments.

[00114] The data selection subscriber subscribes to the events 230 and
state events 358 of context 564. The data selection subscriber is paired
with a download cursor to select the set of pre-fetch data. The

subscriber knows what arguments the download cursor expects and

WO 2009/017712 PCT/US2008/009130

-35-

takes advantage of information in the triggering event and/or context
564 to come up with the set of values.

[00115] A second example embodiment of how data selection function
270 can be implemented is depicted in FIG. 6. In this embodiment,
data selection function 270 is within the subscriber and uses
information from the triggering event as well as the firing context 564
(or other information) to calculate the set of pre-fetch data. Data
selection function 270 then writes the pre-fetch data either in the form
of a set of primary keys or the actual data to database 572. The pre-
defined download cursor will pick up the pre-fetch data from database
572 and download it to mobile device 160. This embodiment is a more
flexible method to calculate the pre-fetch data as data selection
function can 270 employ more than a SQL statement/procedure that
executes against synchronization server 566.

[00116] In both of these example embodiments of data selection
function 270; the pre-fetch data is delivered to mobile device 160 via a
pull mechanism. For example, a trigger is sent to mobile device 160
which causes the device to perform database synchronization. In an
embodiment, this method works best under the following three
scenarios.

[00117] 1. The pre-fetch dataset is relatively large and it is
therefore more efficient to do a relational database synchronization.

[00118] 2. There is a need to avoid overwriting modified data on
mobile device 160 by giving the device an opportunity to upload its
modified information back to enterprise server 122 before receiving
the pre-fetch data. This is because in relational database
synchronization, there is usually an option to perform an upload of
changes from mobile device 160 before doing a download to the
device. In this scenario, data selection function 270 will create a set of
primary Kkeys that refer to the data to be pre-fetched. After the upload,

the download cursor uses the set of primary keys to assemble the data

WO 2009/017712 PCT/US2008/009130

-36 -

for download. By now, it will include records modified during the
upload.

[00119] 3. A relational data store is the appropriate storage
container on mobile device 160. This scenario may exist when mobile
device 160 has sufficient processing capacity, memory, and storagé
capacity to enable a relational data store to reside on the device.

[00120] Despite the three scenarios described above, alternative
embodiments of the invention may perform a true data push to mobile
device 160 instead of a poke-pull or push-pull method. A data push
method is most appropriate when the amount of pre-fetch data is
relatively small and the database synchronization workload for
database 572 is relatively large or heavy. In order to implement the
data push method, an agent is needed on mobile device 160 to take the
pre-fetch data and update the local database resident on the device. In
addition, if the local data store on mobile device 160 is not a relational
database, it will make more sense to actually push the pre-fetch data to

the device.
7.0 Data Pre-Fetching Process

[00121] FIG. 7 illustrates the data pre-fetching process 700, according
to an embodiment of the invention. In data pre-fetching, there can also
be a data store (not depicted in FIG. 7) on the platform where the pre-
fetched data is received. In an embodiment, the platform where the
pre-fetched data is received is a mobile device 160 belonging to a user.
The mobile device and user combination 295 depicted in FIG. 2 is
what determines the set of pre-fetched data selected by data selection
functions 270. Mobile device 160 may not be able store all the data
that is required by the user due to security reasons or resource
constraints of the device. The data pre-fetching process 700 attempts

to remedy this situation by using context 564 to determine what data is

WO 2009/017712 PCT/US2008/009130

-37-

likely to be required ahead of time. This determination is not an open
ended prediction, but it is likely that the context 564 required in order
to make the determination can be extremely large and may involve
complex calculations. Therefore, it is important that the use case be
constrained through use of context model 205 and an appropriately
defined data selection function 270. In an embodiment, data selection
functions 270 and the context model 205 the function subscribes to is
the implementation of the solution to the problem of predicting the
data need for a particular mobile device/user combination 295.

[00122] In accordance with embodiments of the present invention, two
methods for data pre-fetching are supported: stateful and stateless.

These methods are described below.

7.1 Stateless Context Based Data Pre-Fetching

[00123] The stateless method is performed without requiring that
context 564 or data selection function 270 maintain a state regarding
what a given mobile device 160 has in its data store. As a result, some
portion of the pre-fetch data may overlap with what is already stored
on mobile device 160. This data redundancy results in lower
efficiency due to performing a pre-fetch of data that mobile device 160
already has. Usually, the stateless model is employed for use cases
where chances of data overlap or duplication are relatively low. For
example, if pre-fetching is performed for customer data based on the
calendar (i.e., date, day of week) and time, it is unlikely that pre-fetch
process 700 will push the same customer over to the same mobile
device 160 within the same day. It is very possible that the process
will purge the record on mobile device 160 after each work day due to
security concerns (i.e., data privacy, database rights) or resource

limitation of the device.

WO 2009/017712 PCT/US2008/009130

-38-

7.2 Stateful Context Based Data Pre-Fetching

[00124] The stateful method is performed by keeping information
regarding the set of data, the state, on mobile device 160 either within
context 564 or in some state container elsewhere. According to an
embodiment, the state container may be a database table such as a
relational database table in database 572. This state is used to trim the
dataset to avoid sending data that already exists on mobile device 160.
If the state is kept within context 564, an input event is needed to keep
the state up to date. In an embodiment, notification event 782 is used

to accomplish this.

7.2.1 Maintaining a Client’s Dataset Status Within a Context

[00125] In accordance with embodiments of the invention, are two ways
that a client's dataset status can be maintained or kept in context 564.
This can be accomplished by use of state variable 776 combined with
receiving change event 230 from simple variable 778. In an alternative
embodiment, this can be accomplished solely through use of simple
variable 778. In either of these embodiments, an input event for simple
variable 778 is used to notify context 564 of changes in the client’s
dataset status. In an embodiment, if the client side data store is non-
relational, data pre-fetch process 700 is accomplished by sending
explicit Create, Update, and Delete commands from the client, and in
situations where data inconsistencies are possible, a Replace command
is sent with the complete state to synchronize again. The Update
command’s purpose is to let data selection function 270 to either
override or skip notification of modified data on mobile device 160.

[00126] There is additional flexibility when state variable 776 is used to
maintain the state. Compared with simple variable 778, state variable

776 can receive other events such as state events 358 and change

WO 2009/017712 PCT/US2008/009130

-39-

events 230. State variable 776 can also offer multiple update streams

as needed.

7.2.2 Maintaining a Client’s Dataset Status Outside of a Context

[00127] If the client has relational data store resident on it and relational
database synchronization is being used, it is oftentimes easier to keep
the state in a database table on the server side. According to an
embodiment of the invention, a synchronization server 566 as depicted
in FIGs. 5 and 6 may be used for the relational database
synchronization. SYBASE™ MobiLink is an example of a currently
available synchronization server. In one embodiment, synchronization
server 566 may be a MobiLink server. In an embodiment, the database
table on the server side may also be part of database 572. The
relational synchronization engine can directly update the table without
going through context 564. However, data selection function 270 must
access the state from the table rather than context 564. For relational
synchronization, this is an advantageous way to implement data
selection functions 270.

[00128] This method of keeping a client's dataset status can also be used
in non-relational database synchronization scenarios. In general, if
data synchronization can take advantage of the state in an efficient
way, it is better to maintain a client’s dataset status using the most
suitable method (i.e., either within or outside of context 564,

depending on the factors described above).
8.0 Notification Using a Context
[00129] FIG. 8 illustrates the notification generation process 800,

according to an embodiment of the present invention. The steps of

notification generation process 800 are described in the sections below.

WO 2009/017712 PCT/US2008/009130

- 40 -

8.1 Notification Types

[00130] In aécordance with an embodiment of the present invention,
there are two types of notifications: actionable 887 and informational
888. Actionable notifications 887 gives users the ability to take actions
defined within the notification. In addition, actionable notification 887
includes data to support the action. For example, if actionable
notification 887 is for an urgent purchase order approval request, the
notification carries with it data needed to approve the purchase order.
The action in this example is to either approve or deny the purchase
order and the data comprises the actual purchase order. An
information notification 888 is just for reference and the recipient of
the notification cannot act upon it. An example of an information
notification 888 is an approved purchase order notification. In this
example, there is no action to be carried out as the purchase order was
previously approved.

[00131] In both types of notification, the data within the notification is
read only and cannot be modified. Instead, for actionable notifications
887, a service call can be invoked with appropriate parameters. The
service call clearly defines the granularity and interface for interaction
with an actionable notification 887. |

[00132] The medium of executing an actionable context 564 can vary.
According to an embodiment of the invention, there are two
mechanisms to execute an actionable context 564. The mechanisms
include, but are not limited to, those listed and described in Table 5

below.

WO 2009/017712 PCT/US2008/009130

-4] -

Table 5 - Actionable Context Mechanisms

Mechanism Description

Email Use an email container such as the Sybase Mobile Office
Email container on the client side to interpret an XML
document that represents the notification.

Offline web | Use a server application such as the Sybase Mobile
page Business Anywhere server to push web page(s) to the
mobile device. The data is contained within the web
page(s). The web pages contain controls needed to
execute a service invocation.

8.2 Notification Generation

[00133] Notifications are triggered by events from contexts 564.
However, context 564 does not generate the notification. Instead,
context 564 signals that a condition has been met and a subscriber
should determine if it is appropriate to generate a notification such as
an actionable notification 887 or an informational notification 888.

[00134] Within the event engine 250, notification generation function
886 subscribes to change events 230 and state events 358 in context
564. Notification generation function 886 is triggered when the
change events 230 and state events 358 are fired and notification
generation function 886 then determines whether a notification such as
an actionable notification 887 or an informational notification 888

needs to be generated.

8.2.1 Stateless Notification Generation

[00135] The stateless class of notifications is generated based on current
conditions, information from the triggering change event 230 or state
event 358 and the firing context 564. Additionally, the notification can

use other information available in the enterprise (i.e., available from

WO 2009/017712 PCT/US2008/009130

-42 -

enterprise server 122). A state does not need to be kept for this type of
generated notification. As a result, the notification generation function
886 can be comprised of a set of rules using the information mentioned
above to determine whether a notification is appropriate. In an
alternative embodiment, a notification generation function 886 can be
implemented as a procedure written in a particular programming

language such as Java or C#.
8.2.2 Stateful Notification Generation

[00136] A simple stateful case involves the use of state information kept
and maintained by an external entity. In this case, the notification
generation function 886 simply accesses the external state and in
conjunction with the information from the change event 230 or state
event 358 and context 564 determines whether to generate a
notification such as actionable notification 887 or informational
notification 888. In accordance with an embodiment of the invention,
a different method using context 564 itself is employed. This method
essentially calls for using context 564 to implement a state machine.
This is done through state variables 776 and their processing
procedures 784. The context variables 215 serve as inputs to the state
machine, triggering state transition. State events 358 serve as the
output of the state machine and are used to trigger a notification
generation function 886 to execute. Since context 564 can be
associated with another context, there is the ability to link up multiple
state machines to help determine if a notification should be generated.
This is a very powerful concept as multiple types of contexts 564 can
cooperate together to arrive at a very sophisticated condition and
thereby increase the accuracy of the notification. The state machine
within the context 564 takes advantage of the event driven

environment to perform state transition and generate outputs. Given

WO 2009/017712 PCT/US2008/009130

-43 -

the context variables 215 within context 564 have input events 362; the

creation of the state machine is greatly simplified.
9. Context Modeling Flow

[00137] FIG. 9 is a flowchart 900 illustrating steps by which context
modeling is performed, in accordance with an embodiment of the
present invention.

[00138] More particularly, flowchart 900 illustrates the steps involved
in the development of a context model 205 using context modeling tool
434 described above and depicted in FIG. 4. Flowchart 900 is
described with reference to the embodiments of FIGs. 1-5 and 7.
However, flowchart 900 is not limited to those example embodiments.
Note that the steps in the flowchart do not necessarily have to occur in
the order shown.

[00139] The method begins at step 937 wherein the scope of the context
model 205 to be developed is determined. In this step, the scope of a
context model 205 is determined by answering a series of questions.
In an embodiment, prior to developing context model 205, a series of
determinations are made, including determining: what situation that the
context model will describe; what context variables 215 represent the
situation to be represented by context model 205; what input events
362 will be the source of context variables 205; what changes to
context variables 215 are of interest for consumers of context 554;
what, if any, are the possible state events 358 for context 554; what, if
any, context models 205 may be re-used; and what are the relationships
between reused context models. After the scope of context model 205
is determined, control is passed to step 939.

[00140] In step 939, context modeling tool 434 is opened and input
events 362 are created. In this step, polling events are defined by

specifying the polling procedure that will retrieve/acquire status from

WO 2009/017712 PCT/US2008/009130

_44 -

one or more data sources. The schedule and frequency of the polling
are also configured in step 939. In this step, context modeling tool 434
is also used to specify the transformation procedure, if needed, to
convert the output of the polling procedure to a canonical form. This
conversion may be done by the processing procedure 784 associated
with the event. The event provides information needed to convert the
output of the polling procedure to a canonical form so the
transformation procedure does not need to be specified for each
consumer. However, each consumer can determine how to take
advantage of the notification presented to them in canonical form. The
consumers may do further transformation and processing to create a
form that is useful to them. After input events 362 are created, control
is passed to step 941.

[00141] In step 941, notification events 782 are defined. In this step,
the message format that will be received is specified along with the
transformation procedure, if needed. The transformation procedure is
a processing procedure 784 that converts notification events 782 from:
received messages to canonical form; and from input messages of a
Web Service call invoked by a data source to a canonical form. After
notification events 782 are defined, control is passed to step 947.

[00142] In step 947, context modeling tool 434 is used to test input
events 362 to ensure that input events 362 yield the data expected.
During this step, context modeling tool 434 deploys the developed
input events to a test context server 110 as depicted in FIG. 4. In this
step, polling events can be tested by triggering a corresponding poll
procedure. For notification events 782, the context modeling tool 434
will provide a way to generate notification messages for testing. In an
embodiment, context modeling tool 434 also provides a way to receive
actual messages if they are available.

[00143] In step 949, an evaluation is made regarding whether input
events 362 yield the expected data based on the testing in step 947. If

WO 2009/017712 PCT/US2008/009130

- 45 -

it is determined that input events 362 yielded the expected data, control
is passed to step 340. If it is determined in step 949 that input events
362 did not yield the expected data, control is passed back to step 941
in order to modify input events 362 until they generate expected data.

[00144] In step 340, a new context model 205 is created. As described
above with reference to FIG. 3, creation of context model 205 involves
adding context variables 215 to context 554 in step 951. Context
variables 215 created in step 951 are not sharable and cannot be reused
across multiple context models 205. After context model 205 is
created, control is passed to step 951.

[00145] In step 951, simple variables are established and added to
context model 205 that was created in step 340. In this step, it is
determined if a single value or a vector of values is needed for simple
variables. In step 951, a search for input events 362 is conducted and
the appropriate input events 362, including polling and notification
events 782, are selected to associate with context model 205. If no
suitable input events 362 are found, a new input event 362 is created in
this step and associated with context model 205. In step 951, initial
value(s) for simple variables are also set in addition to specifying
whether a 230 change event should be raised by a given simple
variable. In this step, the update-frequency option, if needed, is also
established for simple variables. According to an embodiment, by a
default of value of zero is set for simple variables.

[00146] In step 951, derived variables are also established for the
context model 205 created in step 340. This is accomplished by
determining if a single value or a vector of values is needed, specifying
initial value(s) for the derived variables, and specifying the set of
simple or derived variables that will be used by the derived variables.
If it determined in this step that a new simple variable is needed and
not available, the simple variable establishment process described in

the preceding paragraph is repeated. In this step, a processing

WO 2009/017712 PCT/US2008/009130

- 46 -

procedure 784 is specified that takes advantage of all selected context
variables 215 to calculate the value or vector of values for the derived
variables. In an embodiment of the invention, this is accomplished by
specifying if processing procedure 784 is to be executed an 'On
Change' or 'Periodic’ basis. For the Periodic' basis or setting, schedule
and frequency values are set using context modeling tool 434. In this
step, context modeling tool 434 is also used to specify whether a
change event 230 should be raised by derived variables.

[0014.7] In step 951, contextual variables are also established for context
model 205 created in step 340. Contextual variables are established by
searching for a suitable context model using context modeling tool
434, determining if a single reference or a vector of references for
context model 205 is needed, specifying if an association or
composition relationship is needed, and specifying whether change
event 230 should be raised by the contextual variable. If an association
relationship is needed and the reference to the relationship is to be
resolved during creation, step 951 includes specifying the source of the
identifier used to perform the association lookup. In an embodiment,
the source of the identifier is either a constructor parameter or a
variable. If a composition relationship is needed and the reference to
the relationship is to be resolved during creation, this step includes
indicating the parameters to use for calling the constructor of the child
context. In accordance with an embodiment, this may require the
specification of a constructor other than the default constructor. If
needed, a custom constructor is specified to take care of creating child
contexts and other initializations.

[00148] In step 951, state variables 776 are also established for the
context model. State variables 776 are established in this step by
determining if a value or vector of values is required, specifying initial
value(s), and specifying processing procedure 784 that may update

state variables 776. According to an embodiment of the present

WO 2009/017712 PCT/US2008/009130

-47 -

invention, processing procedure 784 may raise state events 358 also.
Establishment of state variables 776 further includes specifying a set of
simple, derived or state variables that will trigger processing procedure
784 to execute, if there is a processing procedure 784 configured to
update state variable 776. For simple and derived variables, a change
event 230 is the trigger, but for a state variable 776, it is state event
358. After context variables are established and added to context
model 205, control is passed to step 953.

[00149] In step 953, a constructor is defined for context model 205. In
an embodiment, a default constructor is generated by context modeling
tool 434 if there is no requirement for a default constructor. In this
step a minimum of one parameter is specified for defined constructor
defined that serves as the identifier for the created context. In step
953, parameter(s) are added to the constructor as required. These
parameters can be used to initialize context variables 215 such as the
simple, derived, and state variables 776 established in step 951 by
using context modeling tool 434 to link the parameters to the variables.
For example, a parameter can be used in the following ways by using
context modeling tool 434 to link the parameter to the contextual
variable. If there is an association relationship, the parameter can be
used as the identifier to lookup the referred-to context. If there is a
composition relationship the parameter is a parameter for the
constructor of the child context.

[00150] In step 953, context modeling tool 434 can also generate a
default constructor. However, if custom initialization is subsequently
required, this must be specified using the default constructor generated
in this step as a template. After constructor is defined, control is
passed to step 955.

[00151] In step 955, the options for the context model 205 are specified.
This is accomplished by determining if context model 205 should raise

a change event 230, and then the process continues in step 957.

WO 2009/017712 PCT/US2008/009130

- 48 -

[00152] In step 957, context model 205 is tested by using context
modeling tool 434 to generate input events 362. Input events 362 were
already tested in step 947, so the goal in step 957 is to ascertain how
input events 362 will affect the behavior of context 554. As with input
event testing in step 947, in this step modeling tool 434 deploys
context model 205 to a test context server 110 and the process
continues in step 959.

[00153] In step 959, after context model 205 has been developed,
context generator 432 reads in metadata representing context model
205 and generates support artifacts and code. In an embodiment of the
invention, the support artifacts and code are output as a generated
deployment package as depicted in FIG. 4. For example, the resulting
output can be packaged into a deployment unit. In an embodiment, the
deployment unit can be dataset 290 depicted in FIG. 2. Generated
code allows a client written in various programming languages to
access and manipulate context 554. According to embodiments of the
invention, the generated code is written in Java or C#.

[00154] Code generated in step 959 is based on context model 205 and
is specific to that model. This code allows the client to efficiently
manipulate the associated context. The client does not have to make
an initial determination as to what set of context variables 215 and
their types are. In an embodiment, there are procedures that set and
retrieve each variable that the client can invoke. In this embodiment, it
is assumed that the client knows context model 205 and what context
variables 215 are within the context model. According to an
embodiment, a context API similar to Java’s Reflection API is used to
execute code generated in step 959. In an alternative embodiment, a
Java object is generated in step 959 that has all of its methods defined
by the Java class. The client will use the code generated in step 959

for context model 205 to perform its work.

WO 2009/017712 PCT/US2008/009130

-49 -
10. Example Computer System Implementation

[00155] Various aspects of the present invention can be implemented by
software, firmware, hardware, or a combination thereof. FIG. 10
illustrates an example computer system 1000 in which the present
invention, or portions thereof, can be implemented as computer-
readable code. For example, the method illustrated by flowchart 900
of FIG. 9 can be implemented in system 1000. Various embodiments
of the invention are described in terms of this example computer
system 1000. After reading this description, it will become apparent to
a person skilled in the relevant art how to implement the invention
using other computer systems and/or computer architectures.

[00156] Computer system 1000 includes one or more processors, such
as processbr 1004. Processor 1004 can be a special purpose or a
general purpose processor. Processor 1004 is connected to a
communication infrastructure 1006 (for example, a bus, or network).

[00157] Computer system 1000 also includes a main memory 1008,
preferably random access memory (RAM), and may also include a
secondary memory 1010. Secondary memory 1010 may include, for
example, a hard disk drive 1012, a removable storage drive 1014, flash
memory, a memory stick, and/or any similar non-volatile storage
mechanism. Removable storage drive 1014 may comprise a floppy
disk drive, a magnetic tape drive, an optical disk drive, a flash
memory, or the like. The removable storage drive 1014 reads from
and/or writes to a removable storage unit 1015 in a well known
manner. Removable storage unit 1015 may comprise a floppy disk,
magnetic tape, optical disk, etc. which is read by and written to by
removable storage drive 1014. As will be appreciated by persons
skilled in the relevant art(s), removable storage unit 1015 includes a
computer usable storage medium having stored therein computer

software and/or data.

WO 2009/017712 PCT/US2008/009130

-50-

[00158] In alternative implementations, secondary memory 1010 may
include other similar means for allowing computer programs or other
instructions to be loaded into computer system 1000. Such means may
include, for example, a removable storage unit 1022 and an interface
1020. Examples of such means may include a program cartridge and
cartridge interface (such as that found in video game devices), a
removable memory chip (such as an EPROM, or PROM) and
associated socket, and other removable storage units 1022 and
interfaces 1020 which allow software and data to be transferred from
the removable storage unit 1022 to computer system 1000.

[00159] Computer system 1000 may also include a communications
interface 1024. Communications interface 1024 allows software and
data to be transferred between computer system 1000 and external
devices. Communications interface 1024 may include a modem, a
network interface (such as an Ethernet card), a communications port, a
PCMCIA slot and card, or the like. Software and data transferred via
communications interface 1024 are in the form of signals which may
be electronic, electromagnetic, optical, or other signals capable of
being received by communications interface 1024. These signals are
provided to communications interface 1024 via a communications path
1026. Communications path 1026 carries signals and may be
implemented using wire or cable, fiber optics, a phone line, a cellular
phone link, an RF link or other communications channels.

[00160] In this document, the terms 'computer program medium' and
'computer usable medium' are used to generally refer to media such as
removable storage unit 1015, removable storage unit 1022, and a hard
disk installed in hard disk drive 1012. Signals carried over
communications path 1026 can also embody the logic described herein.
Computer program medium and computer usable medium can also
refer to memories, such as main memory 1008 and secondary memory

1010, which can be memory semiconductors (e.g. DRAMs, etc.).

WO 2009/017712 PCT/US2008/009130

-51-

These computer program products are means for providing software to
computer system 1000.

[00161] Computer programs (also called computer control logic) are
stored in main memory 1008 and/or secondary memory 1010.
Computer programs may also be received via communications
interface 1024. Such computer programs, when executed, enable
computer system 1000 to implement the present invention as discussed
herein. In particular, the computer programs, when executed, enable
processor 1004 to implement the processes of the present invention,
such as the steps in the methods illustrated by flowchart 900 of FIG. 9
discussed above. Accordingly, such computer programs represent
controllers of the computer system 1000. Where the invention is
implemented using software, the software may be stored in a computer
program product and loaded into computer system 1000 using
removable storage drive 1014, interface 1020, hard drive 1012, or
communications interface 1024.

[00162] The invention is also directed to computer program products
comprising software stored on any computer useable medium. Such
software, when executed in one or more data processing device, causes
a data processing device(s) to operate as described herein.
Embodiments of the invention employ any computer useable or
readable medium, known now or in the future. Examples of computer
useable mediums include, but are not limited to, primary storage
devices (e.g., any type of random access memory), secondary storage
devices (e.g., hard drives, floppy disks, CD ROMS, ZIP disks, tapes,
magnetic storage devices, optical storage devices, MEMS,
nanotechnological storage device, etc.), and communication mediums
(e.g., wired and wireless communications networks, local area

networks, wide area networks, intranets, etc.).

WO 2009/017712 PCT/US2008/009130

-5

11. Conclusion

[00163] While various embodiments of the present invention have been
described above, it should be understood that they have been presented
by way of example only, and not limitation. It will be understood by
those skilled in the relevant art(s) that various changes in form and
details may be made therein without departing from the spirit and
scope of the invention as defined in the appended claims. For
example, in the above embodiments and description, the invention has
been described with reference to particular examples, such as PDAs,
Pocket PCs, Blackberry® devices, mobile phones, laptop computers,
etc. It should be understood that the invention is not limited to these
examples. The invention is applicable to any elements operating as
described herein. Accordingly, the breadth and scope of the present
invention should not be limited by any of the above-described
exemplary embodiments, but should be defined only in accordance

with the following claims and their equivalents.

WO 2009/017712 PCT/US2008/009130

-53-

WHAT IS CLAIMED I8S:

1. A method for context-based data pre-fetching for an application,

the method comprising:

creating a context model, wherein the context model comprises at least
context variables and events;

populating the context variables based upon a context of the
application;

instantiating the context based upon the context model;

determining whether the context is active or inactive;

when the determining step determines that the context is active,
inferring a likely set of data needed by the application based upon values of
the context variables; and

executing a data selection function to generate a dataset for the

application.

2. The method of claim 1, wherein the events comprise notification

events, input events, and state events.

3. The method of claim 1, further comprising:

executing a notification creation function to generate a notification for
the application, wherein the notification comprises at least a non-modifiable
dataset and associated metadata describing data contained within the non-

modifiable dataset.

4. The method of claim 3, wherein the notification further comprises

a variable indicating whether the notification is actionable or informational.

5. The method of claim 3, wherein executing the notification creation

further comprises packaging the notification with metadata that assists with

WO 2009/017712 PCT/US2008/009130

-54 -

display, by the application, of data contained within the non-modifiable

dataset.

6. The method of claim 1, wherein the populating step further
comprises populating context variables with values representing situational

information of the application.

7. The method of claim 6, wherein the situational information

includes information about user(s) running the application.

8. The method of claim 1, wherein the context model is shared by -

multiple applications running on one or more computational devices.

9. The method of claim 8, wherein the computational devices include

one or more mobile devices.

10. The method of claim 9, wherein the situational information
includes information about the mobile devices where the application 1is

executing.

11. The method of claim 1, wherein the executing step further
comprises packaging the dataset with metadata describing data contained

within the dataset.

12. The method of claim 11, wherein the executing step further
comprises packaging the dataset with metadata that assists with display, by the

application, of data contained within the dataset.

13. The method of claim 1, wherein the executing step further

comprises including at least a unique identifier in the dataset.

WO 2009/017712 PCT/US2008/009130

-55-

14. The method of claim 13, wherein the executing step further
comprises including at least a timestamp, a dataset name, and dataset version

in the unique identifier in the dataset.

15. The method of claim 1, wherein the dataset cannot be modified by

the application.

16. The method of claim 1, wherein the executing step further

comprises including structured and unstructured data in the dataset.

17. The method of claim 9, wherein each mobile device includes at
least a client side container, wherein the client side container interprets the

dataset.

18. The method of claim 17, wherein the client side container displays

the dataset in a manner appropriate for the application.

19. The method of claim 17, wherein the client side container is aware

of an environment that the application is executing within.

20. The method of claim 19, wherein the environment includes

characteristics of said each mobile device where the application is executing.

21. The method of claim 19, wherein the client side container can

render the data in a fashion that is most suitable for said each mobile device.
22. The method of claim 8, further comprising:
acknowledging, on the computational devices, the dataset generated

during the executing step.

23. The method of claim 8, further comprising:

WO 2009/017712 PCT/US2008/009130

- 56 -

discarding the dataset, on the computational devices after a

predetermined time.

24. The method of claim 23, wherein the predetermined time is based

on a policy on the computational devices.

25. The method of claim 8, wherein users of the computational devices

subscribe to the context variables.

26. The method of claim 1, wherein the dataset can be reviewed and

deleted by a user of the application.

27. A system capable of context-based data pre-fetching and
notification for an application, comprising:

a context modeling module configured to create and maintain a
context model;

a context variable module configured to populate and update
context variables within the context model;

a data selection module configured to calculate a dataset for the
application, wherein the dataset calculation is based upon values of the
context variables;

an inference module configured to maintain an inference engine
used by the data selection module to arrive at the likely set of data
needed by the application;

an event engine module configured to subscribe to changes in
the context variables; and

a notification module configured to generate a notification for
the application, wherein the notification comprises at least a non-
modifiable dataset and associated metadata describing data contained

within the non-modifiable dataset.

WO 2009/017712 PCT/US2008/009130

-57-

28. The system of claim 27, wherein the notification module is further
configured to populate a variable indicating whether the notification is

actionable or informational.

29. The system of claim 27, wherein the notification module is further
configured to package the notification with metadata that assists with display,

by the application, of data contained within the notification.

30. A computer program product comprising a computer useable
medium having computer program logic recorded thereon for enabling a
processor to perform context-based data pre-fetching and notification for an
application, the computer program logic comprising:

modeling means for enabling a processor to create and maintain
a context model;

variable populating means for enabling a processor to populate
and update context variables within the context model created by the
modeling means;

data selection means for enabling a processor to calculate a
dataset for the application, wherein the dataset calculation is based
upon values of the context variables;

inference means for enabling a processor to maintain an
inference engine used by the data selection means to arrive at the likely
set of data needed by the application; and

subscription means for enabling a processor to subscribe to

changes in the context variables.

PCT/US2008/009130

WO 2009/017712

I E

00l
0Ll
[@zt
dINY3S HIAYIS SSTOOV HHOMLIN — \
1X3LINOD \ N— .
209})
- SHOMLIN o9} j
ezLi) ﬁ%ﬁp ;
YIAMIS W
¥3IAMIS $S300V
3SIMdYILINT SHOMLAN | ,

lllllllllllllllllllll
llllllllllllllllllllll

1/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

¢ 'Ol

oLl

N

) , G6¢
N JAAJISS IX8JU0)

[8poW Jxaju0) : 7

SO|GELIEA JX8)U0D) uoljeuIquod 1asn/adIAap
) sjiqow Joj sjeudosdde pswasp
] | Jauiejuoojeselep maN

S o

S0¢

Sle

Sjuana abueyo 58z 082
022 /V
S9|gelIeA IX8Ju0) 2% |lopo
L < 1X9JU0D) SS90y
Gle a
| | (s)uonouny
aulbu3g jusag L ——| uonoajes eyeq

L 09¢ L
ose uonew.ojul uonduosgns 0Le
UO Paske(SuolouN} 8)0AU|

2/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

€ 'Old

J9AIBG 1X8JU0D) BY] UIYIM [SPOJA 1X81U0D) JO 904D 8)I7

oLl \/\

G0¢e

pajglaQ sl Ixajuo)
Nmm\/\
29¢e
. SJUBA® Jndu|
N 214
oAljoeU| < W IAIRY — SJuUaAng
~ /V aje)g/ebueyn
1423 Zve 4V L
8G¢ 0ez
Joli3 toamm p ¢ pazijenul \/\me
pajie} uonealn N/ X8JU0)
NJ
9g€ 1 Vi
[SPON IX3IU0D aZijeniu]
\/\ovm
[9PON IX8JU0D) 81eal)

3/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

¥ Old

9eY

Aloyisodoay
ejepelsi

yoseas
sisA|euy Joedw|
j011U0D 82IN0g

21013

Juswdol|aAa(] [9POIA 1X8JU0D

1S9} pue |apo

|00 | Bulapopy x81uo)

JuswAoldap pue apoo ajesauan)

obeyoed

S[aPOJy IX8IU0D

momg\

Jojelauan) xajuo)

1457

g8se Oge

W 4 29¢
SJuang a1eIg A
pue abueyn SjuaAg Indu)

AAA

vy Aﬁ

n

(454

A

Aoideq

~7L 04

JaAI8g IX8Ju0)

sjxajuod BunsoH

4/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

G 'Oid

asegele(e UlylMm J0SInT) pPeojumo(:Uuoijoun4 uonos|as ejeq

2.5

peojuUMOp

SN

MI aseqele(

f

asn 0} J0sIno
o} aseqejep

0} syuawinBie ajlIpA

N

L

aseqejep ayj 0} UsjIM
sjuswnBie sy} sasn Yaym
JOSIND PEOJUMOP S9IN09X]

JanIeg
UONBZIUOIYOUAS

Y96

N

(0]504
N
SjuaA] a)e)s pue abuey)

N

0l¢

j

C

99G

IXaluon

Jaquosqn

S/uonouny

uonaleg eled

auibug juang

|M 0S¢

~L Ok

JOAIag 1X81U0D

5/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

9 Old

(@]
©

18quIosgns e ulylim uoljoun4 uoioses eleq

¥96

Xajuon

Y

Ml aseqejeq
e

fﬂ\\

aseqe)ep ay) 0} (21ep |enjoe 1o sAay
Atewid) 19s Bjep yoja)-aid a)lum {}x8ju0d
pue uoljeuiojul JuaAs Buisn ajenoen

¢S

a2IAep
9y} 0} aseqelep ay; ul ejep

paJedaud ay; peojumop 0}
JOSIND PBOJUMOP S$8JN238XJ

Janiag
UO)BZIUOIYDUAS

oge
86¢
ay 4 042
SJuaAg ajels pue sbuey) _\/

»

-

99§

JaAIag Jx8juo)

18quosqgns uiyim
— UoiOUN4 UoID9IeS Ble(

J

aulbug juaag

Im 062

-~ 01

6/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

L 'Old

€84

3Inpadold
juang

uoneuwojsuel |
T

'

21npascold Buissanold

N

|

JUSAT UONESYNON

n/

c8L

8.2

P a|qeuea sidwuig

\
\

- e e e e e e e e r E e e . E E . EE———————————— = = —

Buiyosle4-aid

¥8.

juaag abueyd

~J

a|geuea aje)s Jayio ajepdn

9/. =2 __gjqeuen sjgig

]

P
aInpad0l4 Buissor01d

[¢— 1en3g sbuey)

—2.0¢€¢

t— ergerg — +85¢€

e

- . - - - -

ueAl 9IS — g¢)

4

’

]
s|qelLeA 3)e)S M
9//

7/10

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/009130

WO 2009/017712

8 'Old

uOoIjBIaUSL) UOIEJINON

¥95

NG Ilo]g)

/ \/w\mm

0ee

)

sjuang abueyo/eiels

888

N

188

oy

SUOHEDIHION [BUOHEWLIO|/8|qeLOoNdY

A

1BAI8S 1X8JU0D)

"L 0kl

A 4

988

aN

uonouny

UOIJBIBUSS) UOHEIIIION

auibug yjuang

IM 0S¢

8/10

SUBSTITUTE SHEET (RULE 26)

WO 2009/017712

PCT/US2008/009130

951

N

Vs 937
Determine scope of the context model
A/939
Open the tool and create input events
l 941
Define notification events [¢
947
test input events <
% 949
input events yield
data expected?
Yes
¢/V 340
Create new context model <
Add context variables
to the context model
End

A 4
Define a constructor for
the context model

v
Specify the options
955 ~Z~ | for the context model

v

Test context model by
generating input events

959

W,

Read metadata representing the context model
and generate support artifacts and code

9/10

SUBSTITUTE SHEET (RULE 26)

900

/?/No

963

FIG. 9

WO 2009/017712

1006

Communications
Infrastructure

1024

PCT/US2008/009130
1000
ﬂ/1004
< > Processor 1030
11002 {\/
> Display Interface D > Display
1008
“—> Main Memory |
1010
Secondary Memory
1012
Hard Disk 1
1015
Drive 1014 /L
Removable
Removable e _4| Storage
Storage Unit
Drive 1020
D Interface €« -»| Removable
Storage
Unit
\$\1 022
< » Communications | ____._.__.__.
Interface =~ fo--ocemoo--] \1 -

Communications
Path

FIG. 10

10/10

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2008/009130

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/16 (2008.04)
USPC - 709/203

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) - GO6F 15/16 (2008.04)
USPC - 709/203, 455/456.3, 707/104.1

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Patbase

Electronic data base consulted during the international search (nzime of data base and, where practicable, search terms used)

context*, mobile, metadata, application, subscri*, notif*, alert*, fetch*, prefetch”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2003/0187984 A1 (BANAVAR et al) 02 October 2003 (02.10.2003) entire document 1,2,6,7,13, 14, 16, 30
Y 3-5, 8-12, 15, 17-29
Y . US 2006/0026168 A1 (BOSWORTH et al) 02 February 2006 (02.02.2008) entire document 3-5, 8-12, 15, 17-29

I_—_] Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the-claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art ~

“&” document member of the same patent family

Date of the actual completion of the international search

15 October 2008

Date of mailing of the international search report

0 4 NOV 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/Z]O (second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - wo-search-report

