

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/138307 A1

(43) International Publication Date

19 September 2013 (19.09.2013)

(51) International Patent Classification:

A61H 9/00 (2006.01)

(21) International Application Number:

PCT/US2013/030451

(22) International Filing Date:

12 March 2013 (12.03.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/609,493 12 March 2012 (12.03.2012) US

(71) Applicant: WRIGHT THERAPY PRODUCTS, INC. [US/US]; 103-B International Drive, Oakdsle, PA 15071 (US).

(72) Inventors: WRIGHT, Carol, L.; 357 Woodcrest Drive, Pittsburgh, PA 15205 (US). YURKO, Gregory; 8007 Brendina Court, Murrysville, PA 15668 (US).

(74) Agent: LEVIN, Paul, D.; Pepper Hamilton LLP, 500 Grant Street, Suite 5000, Pittsburgh, PA 15219 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: COMPRESSION THERAPY DEVICE WITH MULTIPLE SIMULTANEOUSLY ACTIVE CHAMBERS

FIG 4a

FIG 4b

FIG 4c

FIG 4d

FIG 4e

FIG 4f

FIG 4g

FIG. 4

(57) Abstract: Pneumatic and therapeutic compression systems are disclosed including treatment protocols that may be used with such systems. A pneumatic compression system may include a source and sink of a pressurizing fluid. The pressurizing fluid may be sourced to a number of valves, each valve controllable by a control device including a computing device. The computing device may control each valve separately to allow any one or more of the valves to connect to the fluid source or the fluid sink. The computing device may include one or more therapeutic protocols that may direct one, two, or more valves to switch between fluid sourcing and fluid sinking, substantially simultaneously or in a sequence. A therapeutic compression system may include the pneumatic system in fluid communication with an inflation sleeve composed of multiple cells. Each cell may be inflated or deflated by a valve according to the therapeutic protocol.

WO 2013/138307 A1

TITLE: COMPRESSION THERAPY DEVICE WITH MULTIPLE SIMULTANEOUSLY ACTIVE CHAMBERS

CLAIM OF PRIORITY

[0001] This application claims the benefit of U.S. Provisional Application No. 61/609,493 filed March 12, 2012, the disclosure of which is incorporated by reference herein in its entirety.

BACKGROUND

[0002] Diseases such as venous insufficiency and lymphedema can often result in the pooling of bodily fluids in areas of the body distal from the heart. Venous insufficiency can result when the superficial veins of an extremity empty into the deep veins of the lower leg. Normally, the contractions of the calf muscles act as a pump, moving blood into the popliteal vein, the outflow vessel. Failure of this pumping action can occur as a result of muscle weakness, overall chamber size reduction, valvular incompetence and/or outflow obstruction. Each of these conditions can lead to venous stasis and hypertension in the affected area. Lymphedema, which is swelling due to a blockage of the lymph passages, may be caused by lymphatic obstruction, a blockage of the lymph vessels that drain fluid from tissues throughout the body. This is most commonly due to cancer surgery, general surgery, tumors, radiation treatments, trauma and congenital anomalies. Lymphedema is a chronic condition that currently has no cure.

[0003] Fluid accumulation can be painful and debilitating if not treated. Fluid accumulation can reduce oxygen transport, interfere with wound healing, provide a medium that support infections, or even result in the loss of a limb if left untreated.

[0004] Compression pumps are often used in the treatment of venous insufficiency by moving the accumulated bodily fluids. Such pumps typically include an air compressor that may blow air through tubes to an appliance such as a sleeve or boot containing a number

of separately inflatable cells that is fitted over a problem area (such as an extremity or torso). Such pumps may also include pneumatic components adapted to inflate and exhaust the cells, and control circuitry governing the pneumatic components. A therapeutic cycle typically involves sequential inflation of the cells to a pre-set pressure in a distal to a proximal order, followed by exhausting all the cells in concert.

[0005] While such a compression device may be used in therapy for lymphedema, other pathologies, including venous stasis ulcers, soft tissue injuries, and peripheral arterial disease, and the prevention of deep vein thrombosis may be improved by the use of such a compressor device. However, a therapeutic protocol that may be useful for lymphedema may not be appropriate for other pathologies. Improved systems and methods for implementing and controlling a pneumatic compression device to assist in a variety of therapeutic protocols would be desirable.

SUMMARY

[0006] Before the present methods, systems and materials are described, it is to be understood that this disclosure is not limited to the particular methodologies, systems and materials described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.

[0007] It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to a “valve” is a reference to one or more valves and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods, materials, and devices similar or equivalent to those described herein can be used in the practice or

testing of embodiments, the preferred methods, materials, and devices are now described. All publications mentioned herein are incorporated by reference. Nothing herein is to be construed as an admission that the embodiments described herein are not entitled to antedate such disclosure by virtue of prior invention.

[0008] For the purpose of this disclosure, the term “open”, when referring to a valve or valve system, may be defined as a state of the valve or valve system in which a structure associated with a first side of the valve is placed in fluid communication with a structure associated with a second side of the valve.

[0009] For the purpose of this disclosure, the term “closed”, when referring to a valve or valve system, may be defined as a state of the valve or valve system in which a structure associated with a first side of the valve is not placed in fluid communication with a structure associated with a second side of the valve.

[0010] In one embodiment, a pneumatic compression system may include a source of a pressurized fluid via a source output, a sink for the pressurized fluid via a sink input, at least one manifold in fluid communication with one or more of the source output and the sink input, multiple valves, each valve having a cell side and a manifold side, one or more cell sensors, in which each cell sensor is associated with the cell side of at least one of the multiple valves, and a computing device capable of communicating with each of the cell sensors and valves. The manifold side of each of the valves may be in fluid communication with one or more manifolds. Further, each valve may assume one of three states: a first state in which the cell side of the valve is in fluid communication with the source output; a second state in which the cell side of the valve is in fluid communication with the sink input; and a third state in which the cell side of the valve is not in fluid communication with either the source output or the sink input. Additionally, a non-transitory, computer-readable storage medium may be in communication with the computing device, along with an input device

and an output device. The computer-readable storage medium may contain one or more programming instructions that, when executed, cause the computing device to receive, from the input device, an input related to one or more therapeutic protocols, place at least two of the valves into the first state for a period of time based at least in part on the one or more therapeutic protocols, receive cell sensor data from at least one of the cell sensors, and transmit, to the output device, an output related to the data from at least one of the cell sensors. The one or more therapeutic protocols may include one or more valve activation times, wherein each of the valve activation times is directed toward the activation of at least two valves.

[0011] In one embodiment, a therapeutic compression system may include a compression sleeve having a number of inflatable cells, each cell having a cell input, and a pneumatic compression system substantially as disclosed above in which the cell side of each of the valves may be in fluid communication with the input of one of the inflatable cells.

[0012] In one embodiment, a therapeutic protocol provided by a therapeutic compression system may include causing at least two inflatable cells to inflate, stopping the inflation of the at least two cells and retaining fluid within each of them, and causing the at least two cells to deflate. The therapeutic compression system may include a compression sleeve having multiple cells, each cell configured to be inflated, deflated, or retain a fluid, and a pneumatic compression system in fluid communication with the cells of the compression sleeve.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Aspects, features, benefits and advantages of the embodiments described herein will be apparent with regard to the following description, appended claims and accompanying drawings where:

[0014] FIGS. 1a, b illustrate embodiments of a pneumatic compression device in accordance with the present disclosure.

[0015] FIGS. 2a-d illustrate various embodiments of cells used in a pneumatic compression device in accordance with the present disclosure.

[0016] FIG. 3 is a block diagram of an embodiment of hardware that may be used to contain or implement program instructions in accordance with the present disclosure.

[0017] FIGS. 4-9 illustrate a variety of embodiments of therapeutic protocols in accordance with the present disclosure.

DETAILED DESCRIPTION

[0018] FIGS. 1a, b depict embodiments of a pneumatic compression device. As shown in FIG. 1a, the pneumatic compression device may include one or more compression pumps 105, a fill valve 120, a vacuum source 110, an exhaust valve 130, a transducer 115, a controller 145 and a plurality of cell valves, such as 125a-N. The compression pump 105 may be used as a source of a pressurized fluid, including, without limitation, air, nitrogen, or water. The fill valve 120 may be in fluid connection with the compression pump 105 through a pressure pump output to receive the pressurized fluid. During an inflation period, the fill valve 120 may open to connect the output of the compression pump 105 to a common node or manifold 140. During a deflation period, exhaust valve 130 may open to connect the common manifold 140 to, for example, a vacuum source 110 to depressurize the cells. Alternatively, exhaust valve 130 may be connected to atmosphere 135. It may be understood that the vacuum source and/or atmosphere may serve as a sink of the pressurizing fluid. One or more inputs to the vacuum or to the atmosphere may be provided. Typically, fill valve 120 and exhaust valve 130 may not be open at the same time. However, some modes of use of the compression device may benefit from the fill valve and exhaust valve being open together. Although FIG. 1a illustrates a single exhaust valve 130 capable of connecting to

either a vacuum source **110** or the atmosphere **135**, it may be appreciated that one exhaust valve may be used to connect the manifold **140** to the vacuum source **110**, while a second exhaust valve may be used to connect the manifold **140** to atmosphere **135**. Fill valve **120** and exhaust valve **130** may be manually operated, or may be automatically operated by controller **145**. Additional fill and/or exhaust valves may be associated with the manifold **140**. Each of the cell valves **125a-N** may be connected to the common manifold **140** on a first side and a corresponding cell on a second side. Additionally, one or more sensors, such as pressure sensors or flow rate sensors, may be on the cell side of the valves. Each cell valve **125a-N** may be used to selectively connect (in an open configuration) or disconnect (in a closed configuration) the corresponding cell to the common manifold **140**. Cell valves **125a-N** may also be manually operated or automatically operated by controller **145**.

[0019] The transducer **115** may be connected to and used to monitor the pressure of the common manifold **140**. The controller **145** may receive information regarding the pressure detected by the transducer **115** or by any other sensor associated with the cell valves. Based on at least the received pressure information, the controller **145** may determine whether to open or close the fill valve **120**, the exhaust valve **130**, and/or one or more of the cell valves **125a-N**.

[0020] In an embodiment, illustrated in **FIG. 1a**, the transducer **115** may have a transfer function associated with it which is used to determine the input pressure monitored at the common manifold **140**. For example, the transfer function for an MPX5050 transducer manufactured by Motorola may be $V_O = V_S * (0.018 * P + 0.04) + \text{Offset Error}$, where V_O is the output voltage, V_S is the supply voltage (which may be, for example, approximately 5 Volts), P is the input pressure as measured in kPa, and Offset Error is a static voltage value that is dependent on the process, voltage and temperature of the transducer. Solving for the pressure and combining the Offset Error and $0.04V_S$ term results in the following equation:

$$(1) \quad P(kPa) = \frac{55.6 * (V_o - V_{offset})}{V_s}$$

Equation (1) may also be represented in terms of mm Hg by converting 1 kPa to 7.5 mm Hg.

The resulting equation is the following:

$$(2) \quad P(mmHg) = \frac{417 * (V_o - V_{offset})}{V_s}$$

[0021] The transducer **115** may then be calibrated to determine the pressure based on the output voltage. Initially, V_{offset} may be determined by closing all of the cell valves **125a-N** and venting the common manifold **140** to the atmosphere **135** via the exhaust valve **130**. A value determined by an analog-to-digital (A/D) converter that may either be in communication with or integral to the transducer **115** may be read when the transducer is under atmospheric pressure. The value output by the A/D converter may be an offset value (OFFSET). For a 12-bit A/D converter, OFFSET may be between 0 and 4095.

[0022] A scale value (SCALE) may also be determined that corresponds to a scaled source voltage. For example, a precision resistor divide-by-two circuit may be used to divide V_s by 2. The A/D converter may output SCALE based on the $V_s / 2$ input value. For a 12-bit A/D converter, SCALE may be a value between 0 and 4095.

[0023] Substituting OFFSET and SCALE into Equation (2) results in the following equation:

$$(3) \quad P(mmHg) = \frac{208.5 * (TRANSDUCER_OUTPUT - OFFSET)}{SCALE}.$$

As such, the offset error and the scale error of the transducer **115** and any errors in the transducer supply voltage may be accounted for by measuring the OFFSET and SCALE values once (for example, at power up).

[0024] Alternative transducers potentially having different transfer functions may also be used within the scope of the present disclosure as will be apparent to one of ordinary

skill in the art. In addition, one of ordinary skill in the art will recognize that alternate methods of calibrating a transducer may be performed based on the teachings of the present disclosure.

[0025] An additional embodiment is illustrated in **FIG. 1b**. In this embodiment, a fill manifold **141** may be associated with the fill valve **120** and compression pump **105**. A separate exhaust manifold **142** may be associated with the vacuum source **110** and exhaust valve **130**. Cell valves **125a-N** may be associated with both the fill manifold **141** and exhaust manifold **142**. It is understood that cell valves **125a-N** in this embodiment may have a 3-way function: open to fill, open to exhaust, and closed. In an alternative embodiment, each cell may have a first valve to connect to the fill manifold **141** and a second valve to connect to the exhaust manifold **142**. In the dual manifold embodiment in **FIG. 1b**, transducer **115**, associated with fill manifold **141**, may be calibrated with respect to atmosphere in a manner as disclosed above by means of a separate shunt valve (not shown) associated either directly with transducer **115** or with the fill manifold **141**. It may be understood that during the calibration process, fill valve **120** and cell valves **125a-N** may be closed. Exhaust manifold **142** may also be in communication with its own transducer **115'** to monitor the pressure within the exhaust manifold. Transducer **115'** may be calibrated with respect to atmosphere in a manner similar to that disclosed above with regards to transducer **115** in **FIG. 1a**. Transducers **115** and **115'** may provide sensor data as well to controller **145**.

[0026] In addition, each valve **125a-N** may be in fluid connection with a flow sensor **150a-N** in-line with the connection to its respective cell. Each flow sensor **150a-N** may be associated with a valve **125a-N** or with an inflatable cell. Flow sensors **150a-N** may provide sensor data as well to controller **145**. For example, a flow sensor **150a-N** may be used to monitor that its respective valve **125a-N** is completely open. If a valve is blocked or otherwise impeded, the fluid flow through it may not match an expected flow profile as

determined by controller **145**. A flow sensor could provide the controller with data to indicate a fault with the associated valve. The controller may then be programmed to notify a user of the valve flow fault condition. Additionally, the flow sensors may be used to accurately determine the fill/exhaust time for a cell. Based on the data from the flow sensor, the fill/exhaust rate for a cell may be adjusted by controller **145** to control the amount of time required for a fill or exhaust step. A clinician developing a particular therapy protocol may then be able to program a fill or exhaust time as part of the protocol. Such time-based programming may be easier for a clinician to use instead of flow rates and volumes. In addition, the volume of a cell and the fill rate from the flow sensor may allow the controller **145** to detect the presence or absence of a limb in a sleeve or boot incorporating the pressure cells, and may allow the controller the ability to calculate the volume or size of the limb. In one embodiment, a measurement of limb or foot size may be used by the controller for compliance monitoring. In another embodiment, such data may also be used as input to an algorithm for making the compression device more adaptive for different limb sizes

[0027] Additionally, a pressure sensor **155a-N** may be associated with each cell to measure the fluid pressure within the cell during its operation. Alternatively, each pressure sensor **155a-N** may be associated with a respective cell valve **125a-N**. The pressure sensors **155a-N** may also provide data to controller **145** so that the controller may be able to control the operation of the compression device. A pressure sensor **155a-N** associated with its respective cell, may provide direct indication of a pressurization or depressurization profile of the cell. Controller **145** may compare an individual cell pressure against a pre-programmed cell pressure profile. If a cell is unable to sustain an expected pressure, a leak condition may be determined. The controller **145** may then be programmed to notify a user of the leak condition.

[0028] Although FIG. 1a does not explicitly illustrate the use of either flow or pressure sensors between the valves 125a-N and their respective cells, it may be appreciated that either flow sensors, pressure sensors, or both types of sensors may be included in alternative embodiments. Similarly, although FIG. 1b illustrates the use of such sensors, it should be understood that other embodiments may lack either one or both types of sensors.

[0029] Additional features may be associated with the cells, including, without limitation, volume sensors, inflation sensors, and additional valves. FIGS. 2a-d illustrate a number of embodiments of the inflation cells that may be used with the pneumatic compression device. In one embodiment, illustrated in FIG. 2a, an inflatable cell 210a may be in fluid connection with its cell valve 225a. Cell valve 225a may be in fluid communication with the manifold 140 as in FIG. 1a, or both fill manifold 141 and exhaust manifold 142 as in FIG. 1b.

[0030] In another embodiment, illustrated in FIG. 2b, cell 210b may have a cell valve 225b also in fluid communication with the manifold 140 as in FIG. 1a, or manifolds 141 and 142 as in FIG. 1b. In addition, cell 210b may have a shunt valve 215 which may be vented to the atmosphere. For example, valve 215 may be used as an emergency release valve in the event that a cell is unable to be exhausted by valve 125 and/or exhaust valve 130. Valve 215 may be manually operated or automatically operated under control of controller 145.

[0031] As illustrated in FIG. 2c, a cell 210c may have a cell valve 225c and may also have a strain gage 220 associated with the cell material. Strain gage 220 may be glued or otherwise affixed to the cell, or fabricated as part of the cell, and may be associated with either the inner or outer surface of the cell. The strain gage 220 may be used to measure the deformation of the cell material as it is inflated or deflated, and thereby provide a measure of the volume of fluid within the cell. Although a single strain gage 220 is illustrated, it may be

appreciated that multiple strain gages may be associated with each cell to provide accurate data regarding the change in volume or shape of the cell during a therapeutic cycle.

[0032] In another embodiment, illustrated in **FIG. 2d**, cell **210d** may be in fluid communication with valve **225d**, permitting the cell to have fluid access to the fill and/or exhaust manifold. Cell **210d** may be fitted with a plethysmograph sensor **230** that may also be used to detect changes in cell shape or volume during a therapeutic cycle. Multiple plethysmograph sensors may be associated with each cell for improved data collection.

[0033] Strain gage **220** and plethysmograph sensor **230** may be in data communication with controller **145**, thereby providing a point of control feedback to the controller. Although strain gage **220** and plethysmograph sensor **230** are illustrated in **FIG. 2**, it may be understood that they represent non-limiting examples of sensor systems capable of determining the change in cell shape and/or volume.

[0034] The pneumatic compression device may be operated to provide a variety of therapeutic protocols. A therapeutic protocol may be defined as a specific sequence of operations to inflate (fill) and deflate (exhaust) one or more cells while they are in contact with a patient. Therapeutic protocols may include, in a non-limiting example, a list of an ordered sequence of cells to be activated, an inflation or deflation pressure threshold value for each cell, an amount of time during cell inflation or deflation, and a phase or lag time between sequential cell activation. In one non-limiting example, the therapeutic protocol may result in the inflation of a plurality of cells substantially simultaneously. In an alternative non-limiting embodiment, the therapeutic protocol may result in the inflation of a plurality of cells in an ordered sequence. It may be understood that an ordered sequence of cells is a sequence of cell inflation over time. In one non-limiting example, the sequentially inflated cells may be physically contiguous in the compression sleeve. In another non-limiting example, the sequentially inflated cells may not be physically contiguous, but may

be located in physically separated parts of the compression sleeve. In an additional non-limiting example, the therapeutic protocol may result in stopping the inflation of a plurality of cells substantially simultaneously. In an additional non-limiting example, the therapeutic protocol may result in stopping the inflation of a plurality of cells in an ordered sequence. In some non-limiting examples of a therapeutic protocol, each of a plurality of cells may retain fluid at about the same cell pressure. In some non-limiting examples of a therapeutic protocol, each of a plurality of cells may retain fluid at different pressures. A further non-limiting example of the therapeutic protocol may include deflating a plurality of cells substantially simultaneously. A further non-limiting example of the therapeutic protocol may include deflating a plurality of cells in an ordered sequence. It may be understood that an ordered sequence of cells is a sequence of cell deflation over time. In one non-limiting example, the sequentially deflated cells may be physically contiguous in the compression sleeve. In another non-limiting example, the sequentially deflated cells may not be physically contiguous, but may be located in physically separated parts of the compression sleeve. In yet another non-limiting example of a therapeutic protocol, one of the cells may be inflated and a second cell may be deflated during at least some period of time. As one non-limiting example, one or more cells may be inflated simultaneously as one or more cells are deflated. In another non-limiting example, a first one or more cells may begin inflation and a second one or more cells may begin deflation after the first one or more cells have started inflating. In an alternative non-limiting example, a first one or more cells may begin deflation and a second one or more cells may begin inflation after the first one or more cells have started deflating.

[0035] Prior to the start of a therapeutic protocol, an initialization sequence may occur. In one example of an initialization sequence, fill valve **120** may be closed, thereby isolating the compression pump **105** from a manifold (either **140** or **141**), and exhaust valve

130 may be opened to atmosphere **135**. The cell valves **125a-N** may then be opened thereby placing each cell in fluid communication with either the common manifold **140** or exhaust manifold **142** thereby allowing all the cells to be vented to atmosphere. Alternatively, exhaust valve **130** may be opened to vacuum source **110** to permit rapid evacuation of the cells. The controller **145** may determine whether a minimum pressure threshold has been reached based on information received from the transducer **115** (for a common manifold configuration) or from transducer **115'** (for a dual manifold configuration). The controller **145** may also receive sensor data from the cell specific pressure sensors **155a-N**. In one embodiment, when the minimum pressure threshold is reached, the controller **145** may send operation commands to exhaust valve **130** to close. In another embodiment, the controller **145** may also provide operation commands to the cell valves **125a-N** to close. In yet another embodiment, the controller may initiate a therapeutic protocol. It may be appreciated that the initialization sequence may occur while the cells are in contact with the patient, before the cells are affixed onto the patient, or after a protocol has been completed.

[0036] A protocol may incorporate one or more cell fill phases. As a non-limiting example of such a fill phase, the following operating sequence may occur. One or more cell valves **125a-N** may be opened along with the fill valve **120** thereby allowing the one or more cells to be in fluid communication with the compression pump **105**. In an embodiment incorporating a common manifold **140**, one or more of the cell valves **125a-N** may open to the common manifold. In an embodiment having independent fill **141** and exhaust **142** manifolds, one or more of the cell valves **125a-N** may be configured to open the cells to communicate with the fill manifold **141** only. In an embodiment, a cell valve, such as **125a**, connected to a cell affixed to a distal portion of the patient, may be opened or remain open to the fill **141** or common **140** manifold for inflation while cell valves associated with more proximal cells are closed to that manifold. The cell (e.g. cell A) connected to the open cell

valve (e.g. **125a**) may inflate as a result of being connected to the pressurized fluid from the compression pump **105**. The cell pressure may be monitored by the controller **145** via the transducer **115**, a pressure sensor **155a** associated specifically with that cell, or by both.

[0037] In an embodiment, the amount of pressure sensed by the transducer **115** may differ from the cell pressure at a particular cell. For example, pressure losses may occur between the transducer **115** and a cell. Accordingly, the controller **145** may access a lookup table to determine the threshold at which the pressure sensed by the transducer **115** is appropriate to close the cell valve **125a-N** corresponding to the cell.

[0038] In another embodiment of a fill phase, an opened cell valve, such as **125a**, may be modulated to control the fill rate of the corresponding cell. The opened cell valve may be modulated based on time and/or pressure. For example, a cell valve that is being modulated on a time basis may be opened for a first period of time and closed for a second period of time as the cell is inflating. Alternately, a cell valve that is being modulated on a pressure basis may be opened while the cell pressure increases and closed for a period of time during the inflation cycle. The pressure increase may be determined by measuring an initial cell pressure before opening the cell valve and the cell pressure as the cell valve is open. When the difference between the initial cell pressure and the inflating cell pressure is substantially equal to a specific value, the cell valve may be closed. The duty cycle at which the cell valve is modulated may be any value and may be specifically programmed by a user or clinician. The controller **145** may determine when to open and close the cell valve. For pressure-based modulation, any one or more of transducer **115** or cell specific pressure sensors **155** may provide pressure data to the controller **145** to assist in determining when to open and/or close the cell valve during modulation.

[0039] Modulation may be performed to ensure that the cell pressure does not increase too quickly for a given protocol. For example, a lymphedema patient may be treated

with a protocol requiring slowly inflating and deflating cells. Alternatively, an arterial patient may require a protocol capable of rapid inflation and deflation cycles. Moreover, cells may be of varying size. For example, cells in a device designed for a child may be smaller than cells in a device designed for an adult. However, the compression pump **105** may have a relatively fixed flow rate. As such, modulation may be used to ensure that cell inflation is performed at a proper rate.

[0040] In an alternate embodiment, a cell valve, such as **125a**, may include a variable aperture, which may be used to restrict the rate at which the pressure increases in the corresponding cell. A flow sensor such as **150a** may monitor the fluid flow rate into the cell. The data from the flow sensor may be provided to controller **145** so that the controller may be able to adjust the aperture in the cell valve. In another embodiment, a cell valve such as **125a** may incorporate a one-way valve. For example, if valve **125a** is opened to allow cell A to be filled by common manifold **140** or fill manifold **141**, and then valve **125b** is opened to allow cell B to be pressurized, a one-way valve incorporated in valve **125a** will prevent transient depressurization of cell A when valve **125b** is opened to initially evacuated cell B. In another alternate embodiment, a compression pump **105** that operates with a variable flow rate may be used. Additional methods of modulating pressure may also be performed and will be apparent to one of ordinary skill in the art based on this disclosure.

[0041] When the cell reaches an appropriate pressure threshold value incorporated as a part of a therapeutic protocol, the controller **145** may close the cell valve **125a** corresponding to the cell.

[0042] A protocol may also incorporate one or more cell exhaust phases. As a non-limiting example of such an exhaust phase, the following operating sequence may occur. One or more cell valves **125a-N** may be opened along with the exhaust valve **130** thereby allowing the one or more cells to be in fluid communication with either the vacuum source

110, or the atmosphere **135**. In an embodiment incorporating a common manifold **140**, one or more of the cell valves **125a-N** may open to the common manifold. In an embodiment having independent fill **141** and exhaust **142** manifolds, the one or more cell valves **125a-N** may be configured to open the cells to communicate with the exhaust manifold **142** only. In an embodiment, a cell valve, such as **125a**, connected to a cell affixed to a distal portion of the patient, may be opened or remain open to the exhaust **142** or common **140** manifold for deflation while cell valves associated with more proximal cells are closed to that manifold. The cell (e.g. cell A) connected to the open cell valve (e.g. **125a**) may deflate as a result of being connected to the vacuum source **110** or atmosphere **135**. The cell pressure may be monitored by the controller **145** *via* transducer **115** for a common manifold configurations or transducer **115'** for independent manifold configurations, a pressure sensor **155a** associated specifically with that cell, or by both.

[0043] In an embodiment, the amount of pressure sensed by the transducer **115** or transducer **115'** may differ from the cell pressure at a particular cell. For example, pressure losses may occur between the transducer **115** (or **115'**) and a cell. Accordingly, the controller **145** may access a lookup table to determine the threshold at which the pressure sensed by the transducer **115** (or **115'**) is appropriate to close the cell valve **125a-N** corresponding to the cell.

[0044] In another embodiment of an exhaust phase, an opened cell valve, such as **125a**, may be modulated to control the exhaust rate of the corresponding cell. The opened cell valve may be modulated based on time and/or pressure. For example, a cell valve that is being modulated on a time basis may be opened for a first period of time and closed for a second period of time as the cell is deflating. Alternately, a cell valve that is being modulated on a pressure basis may be opened while the cell pressure decreases and closed for a period of time during the exhaust cycle. The pressure decrease may be determined by measuring an

initial cell pressure before opening the cell valve and the deflated cell pressure as the cell valve is open. When the difference between the initial cell pressure and the cell pressure is substantially equal to a specific value, the cell valve may be closed. The duty cycle at which the cell valve is modulated may be any value and may be specifically programmed by a user or clinician. The controller **145** may determine when to open and close the cell valve. For pressure-based modulation, any one or more of transducers **115**, **115'**, or cell specific pressure sensors **155** may provide pressure data to the controller **145** to assist in determining when to open and/or close the cell valve during modulation.

[0045] Modulation may be performed to ensure that the cell pressure does not decrease too quickly, which could cause a reverse gradient. While a typical pressure gradient may result in distal cells having a greater pressure than proximal cells, a reverse gradient may result in proximal cells having a greater pressure than distal cells. Reverse gradients are frequently considered undesirable, although some therapeutic protocols may make use of them. Moreover, cells may be of varying size. For example, cells in a device designed for a child may be smaller than cells in a device designed for an adult. However, the vacuum source **110** may have a relatively fixed flow rate, and venting to atmosphere **135** may occur due to unregulated, passive exhaust. As such, modulation may be used to ensure that cell deflation is performed at a proper rate.

[0046] In an alternate embodiment, a cell valve, such as **125a**, may include a variable aperture, which may be used to restrict the rate at which the pressure decreases in the corresponding cell. A flow sensor such as **150a** may monitor the fluid flow rate into the cell. The data from the flow sensor may be provided to controller **145** so that the controller may be able to adjust the aperture in the cell valve. In another embodiment, a cell valve such as **125a** may incorporate a one-way valve. For example, if valve **125a** is opened to allow cell A to be evacuated by exhaust manifold **142**, and then valve **125b** is opened to allow cell B to be

evacuated, a one-way valve incorporated in valve **125a** will prevent transient re-pressurization of cell A when valve **125b** is opened to previously pressurized cell B. In another alternate embodiment, a vacuum source **110** that operates with a variable flow rate may be used. Additional methods of modulating pressure may also be performed and will be apparent to one of ordinary skill in the art based on this disclosure.

[0047] When the cell reaches an appropriate pressure threshold incorporated as a part of a therapeutic protocol, the controller **145** may close the cell valve **125a** corresponding to the cell.

[0048] It may be appreciated that a therapeutic protocol may be composed of any variety of sequences of cell inflation and deflation steps. Cells may be inflated and deflated in a specific order, and multiple cells may be inflated or deflated either in synchrony or in a staggered fashion. The cells may be held at a particular inflation or deflation pressure for a specific amount of time. In addition, a specific protocol may be repeated with some lag time between repeats. Alternatively, a first protocol may be followed by a second and different protocol.

[0049] In one embodiment of a protocol, a plurality of cell valves **125a-N** may be opened simultaneously to inflate the plurality of respective cells simultaneously. As the pressure in each cell surpasses a corresponding threshold, the controller **145** may close the cell valve **125a-N** for the cell. The pressure thresholds for all the cells may be identical or they may differ. For example, the pressure threshold for a cell at a distal position on a patient may be higher than a cell more proximally located. As a result, a pressure gradient may be developed by the cells from a greater pressure at the distal point, to a lesser pressure at the proximal point. The cells may then be deflated simultaneously until they all reach an ambient pressure. Alternatively, only selected cells may be deflated.

[0050] In an another embodiment of a protocol, the cell valves **125a-N** may not be opened simultaneously when the cells are deflated, but rather may be opened in a staggered fashion. In an embodiment based on the common manifold configuration, fill valve **120** may be closed, and exhaust valve **130** may be opened to either the vacuum source **110** or to atmosphere **135**. A first cell valve, such as **125a**, may be opened to release the pressure in the corresponding cell. After a short period of time elapses, a second cell valve, such as **125b**, may be opened to release the pressure in the corresponding cell. Such a delay time between the deflation of successive cells, may be about 1 second long or longer. In an alternative non-limiting example, the controller **145** may cause a cell valve, such as **125a** or **125b**, to release the pressure in the corresponding cell in response to the controller receiving data from a corresponding cell sensor, such as a pressure sensor **155a** or **155b**. The controller **145** may cause the pressure in a cell to be released then the sensor data has achieved a therapeutic protocol defined threshold value, such as a maximum pressure. The process may be repeated until each cell valve **125a-N** has been opened.

[0051] In an embodiment of a protocol using modulation, a plurality of cell valves **125a-N** may be modulated simultaneously. At any given time, one or more cell valves may be opened and/or closed according to a modulation schedule. For example, for a time-based modulation scheme having a 50% duty cycle, half of the cell valves **125a-N** may be open and half of the cell valves may be closed at any time.

[0052] **FIG. 3** is a block diagram of an embodiment of hardware that may be used to contain or implement program instructions for controller **145**. Some or all of the below-described hardware may be incorporated in the controller **145**. Referring to **FIG. 3**, a bus **328** may serve as the main information highway interconnecting the other illustrated components of the hardware. CPU **302** or other computing device is the central processing unit of the system, performing calculations and logic operations required to execute a

program. Read only memory (ROM) **318** is one embodiment of a static memory device and random access memory (RAM) **320** is one embodiment of a dynamic memory device.

[0053] A controller **304** may interface the system bus **328** with one or more optional disk drives **308**. These disk drives may include, for example, external or internal DVD drives, CD ROM drives, or hard drives. Such drives may also be used as non-transitory computer-readable storage devices.

[0054] Program instructions may be stored in the ROM **318** and/or the RAM **320**. Optionally, program instructions may be stored on a computer readable medium such as a compact disk or a digital disk or other recording medium, a communications signal or a carrier wave. Such program instructions may include a library of pre-loaded therapeutic protocols. Non-limiting examples of such program instructions may cause the controller to receive an input related to one or more therapeutic protocols from an input device, place at least two of the plurality of valves into the first state for a period of time based at least in part on the one or more therapeutic protocols, receive cell sensor data from at least one cell sensor, and transmit, to the output device, an output related to the data from at least one cell sensor. Additional instructions may cause the computing device to place at least two of the plurality of valves in one of the first state and the third state for a period of time based at least in part on data received from at least one cell sensor in operable communication with each of the at least two valves. Additional instructions may cause the computing device to place at least two of the plurality of valves in the first state substantially simultaneously or in an ordered sequence. Further instructions may cause the computing device to place the at least two of the plurality of valves in the third state, either substantially simultaneously or in an ordered sequence. Various instructions may be directed towards receiving sensor data, for example from pressure or flow sensors associated with the valves, and comparing them against appropriate threshold values as included in the therapeutic protocol. Similar

instructions may be directed towards placing any of the valves into any of the possible cell states based on the sensor data values and threshold values according the therapeutic protocol.

[0055] An optional display interface **322** may permit information from the bus **328** to be displayed on the display **324** in audio, graphic or alphanumeric format. Communication with external devices may occur using various communication ports **326**. For example, communication with the fill valve **120**, exhaust valve **130**, and/or the cell valves **125a-N** may occur via one or more communication ports **326**. Controller **145** may also provide command data over communication ports **326** to valves **120**, **130**, and **125a-N** to direct their respective operations.

[0056] In addition to the components disclosed above, the hardware may also include an interface **312** which allows for receipt of data from input devices such as a keyboard **314** or other input device **316** such as a mouse, remote control, pointing device and/or joystick. Such input devices may allow a user to choose a pre-programmed therapeutic protocol from a library of such protocols maintained by the controller, enter parameters into a preprogrammed protocol, or enter a new therapeutic protocol into the controller. In addition, transducers **115** and **115'**, pressure sensors **155a-N**, flow sensors **150a-N**, as well as sensors communicating data related to the change in shape or volume of the cells, such as a strain gage **220** and/or a plethysmograph **230**, may communicate sensor input **315** through interface **312** to bus **328**.

[0057] In an embodiment, the controller **145** may store and/or determine settings specific to each cell. For example, the controller **145** may determine one or more pressure thresholds for each cell. Moreover, the controller **145** may prevent the pneumatic compression device from being used improperly by enforcing requirements upon the system. For example, the controller **145** may be programmed so that distal cells in a therapeutic

protocol are required to have higher pressure thresholds than proximal cells. The controller may override instructions received from a user via the user interface that do not conform to such pressure threshold requirements. In an embodiment, the pressure thresholds of one or more cells may be adjusted to meet the pressure threshold constraints.

[0058] In a further embodiment, controller **145** may provide a compression device user with an interface to permit the user to program the control to provide a variety of therapeutic protocols for patients. The interface may be displayed on the control display, such as a flat panel display. Input devices such as a mouse, keypad, or stylus may be used by the user to provide data to define a particular therapeutic protocol. The controller may record the protocols on a memory or disk device for future use. In one embodiment of the controller, a user may be presented with a list of previously stored therapeutic protocols from which to choose for a particular patient. In another embodiment, a user may define a therapeutic protocol for a patient on an as-needed basis. In another embodiment, a user may choose a stored protocol and modify it. It may be appreciated that such programming may be accomplished through any of a variety of methods. In one non-limiting example, a therapist or other health care professional may enter commands and/or parameters via a keyboard. In another non-limiting example, the therapist or other health care professional may use a mouse or touch screen to select one or more pre-programmed therapeutic protocols or parameters from a menu. In yet another non-limiting example, the therapist or other health care professional may program a protocol with help of a graphical interface presenting therapeutic protocol “primitives.” The user may define a therapeutic protocol by selecting a group of graphical primitives representing cells, valves, sensors, and the like, and link them together to form a complete protocol. As one non-limiting example, a final graphical presentation of a therapeutic protocol may be presented on an output device as a flow-chart listing steps, cell

inflation order, time between cell inflations/deflations, cell pressure hold parameters, and/or fluid flow rate or pressure thresholds.

[0059] In addition to storing protocols, the controller **145** may also record sensor readings obtained during a particular therapy session. Sensor readings may include, without limitation, cell pressures, cell volumes, cell inflation data, and/or air or vacuum air flow values. The controller may also record patient related data such as blood pressure or blood oxygen saturation levels measured during a therapeutic session, as well as a date and time for the session. The controller may also record therapy notes entered by the user.

[0060] Although not illustrated in **FIG. 3**, controller **145** may also include a number of communications interfaces to either a network or a wireless device such as a cell phone, an iPad, a local area network device, and a wide area network device. Such communication interfaces may permit the controller to be monitored remotely by a clinician to obtain performance data or patient compliance data. Such communication interfaces may also permit a remote clinician to program the controller. As one non-limiting example, a physician or technologist may program a new therapeutic protocol in the controller. Alternatively, the care provider may transmit parameter data for a preprogrammed therapeutic protocol, or select a pre-programed therapeutic protocol in the controller. In one embodiment, a cell phone may have an application that may bring up a user-friendly programming interface to permit ease of reprogramming. Alternatively, a remote computer may display a web-enabled display for programming, data assessment, and/or analysis.

[0061] A number of possible examples of therapeutic protocols are illustrated schematically in **FIGS. 4-9**.

[0062] An embodiment of a sequential gradient protocol is illustrated in **FIG 4**, in which the cells A-E may be arranged distally to proximally on a limb, such as a leg. Initially, all cells A-E may be deflated, **FIG 4a**. Subsequently, each cell in an ordered sequence may

be inflated to a set pressure in an inflation cycle. Thus, cell A may be inflated to a first pressure such as to 60 mmHg, as in **FIG 4b**, cell B may be inflated to a second pressure (e.g. 50 mmHg) in **FIG. 4c**, cell C may be subsequently inflated to a lower pressure, such as to 40 mmHg, (**FIG. 4d**) followed by cell D (to 30 mmHg, **FIG. 4e**) and cell E (to 20 mmHg, **FIG 4f**). It may be understood that a successive cell may begin inflation immediately after its preceding cell has been inflated, or there may be a phase delay after a preceding cell has been inflated before the successive cell begins to inflate. In the inflation sequence, the phase delays for each cell may be the same, or different cells may have different phase delays associated with them. The therapeutic protocol may include such phase delay information as part of its parameters. After the entire set of cells has been inflated, they may be simultaneously deflated as illustrated in **FIG 4g**. The protocol may be repeated as necessary with some rest period between inflation cycles. The cell pressures may be essentially repeated from one cycle to another. Alternatively, a cycle may cause the cells to inflate to a different pressure gradient, such as 70, 60, 50, 40, and 30 mmHg for cells A-E, respectively. It may be appreciated that the final inflation pressure of each cell may differ from all the remaining cells, or all cells may reach essentially the same pressure.

[0063] Another embodiment of a sequential inflation cycle is illustrated in **FIG. 5**. **FIG 5a** may represent the inflation state of a group of cells after a gradient inflation protocol, as illustrated in **FIG 4f**. Thereafter, the pressure in all the cells may be reduced by some amount; the resulting cell pressure in each cell may be less than at the start of the protocol, but all the cells may retain some pressure, as in **FIG 5b**. Thereafter, each cell in succession may be re-pressurized (**FIGS. 5c-5f**) until all the cells are re-pressurized to their initial state at the beginning of the protocol, **FIG 5g**. Cells may be deflated simultaneously or in an ordered sequence. In the case of sequential deflation, It may be understood that a successive cell may begin deflation immediately after its preceding cell has been deflated, or there may

be a phase delay after a preceding cell has been deflated before the successive cell begins to deflate. In the deflation sequence, the phase delays for each cell may be the same, or different cells may have different phase delays associated with them. The therapeutic protocol may include such phase delay information as part of its parameters.

[0064] **FIG. 6** illustrates another embodiment of a rapid toggle protocol. Initially, all the cells may be deflated in as **FIG. 6a**. Thereafter, cell A may begin inflating to some pressure, **FIG. 6b**. Cell A may continue to inflate, but cell B may begin to inflate after cell A reaches a threshold pressure (**FIG. 6c**). As illustrated in **FIG. 6d**, cell A may continue pressurizing to some final value. Meanwhile, as cell B pressurizes past a threshold value, cell C may then begin to inflate. The sequence may continue (**FIGS. 6e-6g**), in which a cell begins to inflate when a preceding cell inflates to a particular pressure threshold. It is understood that the thresholds for all the cells may be essentially the same. Alternatively, one or more cells may have different thresholds. In one embodiment, the thresholds may be programmed by a therapist operating the compression therapy device. In another embodiment, a user or patient receiving the compression therapy may program the thresholds. In addition, although **FIG. 6** illustrates that the final pressures attained by all the cells are effectively identical, it may be appreciated that the final pressures attained by the cells may form a pressure gradient as illustrated in **FIG. 4f**.

[0065] **FIG. 7** illustrates yet another therapeutic protocol. In this protocol, an even number of cells may be employed. When the protocol begins, all the cells may be in a deflated state (**FIG. 7a**). Thereafter, a pair of cells, such as cells A and D may inflate simultaneously (**FIG. 7b**) until they reach their final pressures. The next cells, B and E, may then be inflated (**FIG. 7c**) until they reach their final pressures. Thereafter, the final cells, D and F may be inflated (**FIG. 7d**). It may be appreciated that cells B and E may begin to inflate before cells A and D finish inflating, and similarly cells C and F may begin their

inflation cycle before cells B and E attain their final pressures. After the protocol is completed (**FIG 7d**) all the cells may deflate simultaneously, or in some other order as required.

[0066] In another example of a therapeutic protocol, **FIG. 8** illustrates what may be termed a “milking” protocol. **FIGS. 8a-8e** illustrate a gradient inflation protocol similar to that illustrated in **FIGS. 4b-4f**. Instead of deflating all cells as in **FIG. 4g**, the protocol may allow cells A, B, and C to retain their pressures, while only cells D and E partially deflate to lower pressures (**FIG 8f**). Thereafter, in sequence, cell D (**FIG. 8g**) and E (**FIG. 8h**) may reinflate to their previous pressures (**FIG. 8h**). The protocol may then repeat the steps illustrated in **FIGS 8f-h**.

[0067] In yet another example of a therapeutic protocol, the cells may inflate in a “wave” motion (**FIG. 9**). In one simple protocol, the cells may be partially inflated to some pressure (**FIG 9a**). Although all cells are represented as having about the same pressure, it may be appreciated that the cells may be initially inflated into a gradient as illustrated in **FIG. 8e**. Thereafter, one cell at a time may be increased in pressure, Cell A (distal) through cell E (proximal) according to the sequence in **FIGS. 9b-9f**. Although the protocol illustrated in **FIG 9** illustrates a single cell inflating at a time, it is understood that a more effective therapy may include inflating a more proximal cell while its neighboring more distal cell is inflated, and then deflating the distal neighbor after the proximal cell is fully inflated. As an example, after cell A is fully inflated (**FIG. 9b**), cell B may be inflated. Thereafter, after cell B has been inflated, cell A may be deflated back to its prior pressure resulting in the state illustrated in **FIG. 9c**.

[0068] It may be understood that the protocols illustrated in FIGS. 4-9 represent a few examples of possible inflation/deflation protocols. Other protocols may include more or fewer cells, and a variety of sequences of inflation and deflation.

[0069] More complex therapeutic protocols may include feedback from the individual cells to the controller **145** before, during, and/or after inflation or deflation. In one non-limiting example, the controller **145** may monitor the pressure of a cell after it has stopped inflating or deflating to assure the cell pressure is maintained while the cell is in a hold state (neither inflating nor deflating). Thus, the pressure measured by a pressure sensor **155a** associated with a first cell may change due to effects on the tissue brought about by the inflation of a neighboring cell. The controller **145** may respond to the change in pressure in the first cell by activating its associated valve **125a** to adjust the first cell pressure to a desired value.

[0070] In another protocol, the controller **145** may retain or have access to logs associated with the patient's medical history over time. Such historical data may be used by the controller **145** or a health care professional to modify a protocol to account for a change in the patient's status. As one non-limiting example, the controller **145** may alter a patient's usual therapeutic protocol if the long term patient status – as recorded in the patient logs – indicates an improvement over time. Alternatively, if the patient does not improve, the controller **145** may alter the usual patient's protocol in an attempt to improve its effectiveness. A health care provider may also be presented with such long term status information along with a recommendation for a protocol change by the controller **145**. The health care provider may then accept the recommendation by the controller **145**, or may make additional modifications.

[0071] In one non-limiting embodiment, the pneumatic compression device may be portable. In an embodiment, the pneumatic compression device may include a user interface that enables the user to interact with the controller **145**. For example, the user interface may include a display and one or more input devices, such as a keypad, a keyboard, a mouse, a trackball, a light source and light sensor, a touch screen interface and/or the like. The one or

more input devices may be used to provide information to the controller 145, which may use the information to determine how to control the fill valve 120, exhaust valve 130, and/or the cell valves 125a-N.

[0072] The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

[0073] With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.

[0074] It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim

recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., "a" and/or "an" should be interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations," without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to "at least one of A, B, and C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., "a system having at least one of A, B, and C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to "at least one of A, B, or C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., "a system having at least one of A, B, or C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings,

should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”

[0075] As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

[0076] Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.

CLAIMS

What is claimed is:

1. A pneumatic compression system comprising:
 - a source of a pressurized fluid via a source output;
 - a sink for the pressurized fluid via a sink input;
 - one or more manifolds, configured to be in fluid communication with one or more of the source output and the sink input;
 - a plurality of valves, wherein each valve has a cell side and a manifold side, wherein the manifold side of each of the plurality of valves is in fluid communication with at least one manifold, wherein each of the plurality of valves is in a first state when the cell side of the valve is in fluid communication with the source output, wherein each of the plurality of valves is in a second state when the cell side of the valve is in fluid communication with the sink input, and wherein each of the plurality of valves is in a third state when the cell side of the valve is not in fluid communication with either the source output or the sink input;
 - a plurality of cell sensors, wherein each cell sensor is in operable communication with the cell side of at least one of the plurality of valves;
 - a computing device in operable communication with each of the plurality of cell sensors and each of the plurality of valves;
 - a non-transitory, computer-readable storage medium in operable communication with the computing device;
 - an input device in operable communication with the computing device; and
 - an output device in operable communication with the computing device,
- wherein the computer-readable storage medium contains one or more programming instructions that, when executed, cause the computing device to:
 - receive, from the input device, an input related to a therapeutic protocol,

place at least two of the plurality of valves into the first state for a period of time based at least in part on the therapeutic protocol, receive cell sensor data from at least one cell sensor, and transmit, to the output device, an output related to the data from the at least one cell sensor, wherein the therapeutic protocol comprises one or more valve activation times, wherein each of the valve activation times is directed toward the activation of at least two valves.

2. The pneumatic compression system of claim 1, wherein:

the therapeutic protocol further comprises one or more cell sensor data threshold values, and the computer-readable storage medium further contains one or more programming instructions that, when executed, cause the computing device to place the at least two of the plurality of valves in the third state for a period of time based at least in part on the one or more cell sensor data threshold values and data received from at least one cell sensor in operable communication with each of the at least two valves.

3. The pneumatic compression system of claim 1, wherein the source of a pressurized fluid comprises a compression pump.

4. The pneumatic compression system of claim 1, wherein the sink for a pressurized fluid comprises one or more of a vacuum pump and a conduit vented to atmosphere.

5. The pneumatic compression system of claim 1, wherein the plurality of cell sensors comprise one or more of a pressure sensor and a fluid flow sensor.
6. The pneumatic compression system of claim 1, wherein the one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the first state comprises one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the first state substantially simultaneously.
7. The pneumatic compression system of claim 1, wherein the one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the first state comprises one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the first state in an ordered sequence of valves.
8. The pneumatic compression system of claim 7, wherein the ordered sequence of valves comprises at least one phase one delay time between successive valves.
9. The pneumatic compression system of claim 7, wherein the therapeutic protocol comprises the ordered sequence.
10. The pneumatic compression system of claim 1, wherein the one or more programming instructions further comprise one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state.

11. The pneumatic compression system of claim 10, wherein the one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state comprises one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state substantially simultaneously.

12. The pneumatic compression system of claim 10, wherein the one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state comprises one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state in an ordered sequence of valves.

13. The pneumatic compression system of claim 12, wherein the ordered sequence of valves comprises at least one third state delay time between successive valves.

14. The pneumatic compression system of claim 10, wherein the therapeutic protocol comprises the ordered sequence.

15. The pneumatic compression system of claim 10, wherein the one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state comprises one or more programming instructions, that when executed, cause the computing device to place the at least two of the plurality of valves in the third state after receiving sensor data from the at least one cell sensor in operable communication with each of the at least two of the plurality of valves, and

wherein the at least one sensor data has a value substantially equal to a first cell sensor data threshold value.

16. The pneumatic compression system of claim 15, wherein the first cell sensor data threshold value comprises a pressure value.

17. The pneumatic compression system of claim 15, wherein:

the sensor data received from the at least one cell sensor in operable communication with a first of the at least two of the plurality of valves has a value substantially equal to the first cell sensor data threshold value; and

the sensor data received from the at least one cell sensor in operable communication with a second of the at least two of the plurality of valves has a value substantially equal to the first cell sensor data threshold value.

18. The pneumatic compression system of claim 15, wherein:

the sensor data received from the at least one cell sensor in operable communication with a first of the at least two of the plurality of valves has a value substantially equal to the first cell sensor data threshold value; and

the sensor data received from the at least one cell sensor in operable communication with a second of the at least two of the plurality of valves has a value substantially equal to a second cell sensor data threshold value.

19. The pneumatic compression system of claim 1, wherein the computer-readable storage medium comprises information associated with the one or more therapeutic protocols.

20. The pneumatic compression system of claim 1, wherein the one or more manifolds comprise a single manifold configured to be in fluid communication with the source output via a fill valve and the sink input via an exhaust valve.
21. The pneumatic compression system of claim 1, wherein the one or more manifolds comprise a first manifold configured to be in fluid communication with the source output and a second manifold configured to be in fluid communication with the sink input.
22. The pneumatic compression system of claim 1, wherein the input device is configured to receive information associated with the therapeutic protocol.
23. A therapeutic compression system comprising:
 - a compression sleeve comprising a plurality of inflatable cells, each inflatable cell having a cell input; and
 - a pneumatic compression system comprising:
 - a source of a pressurized fluid via a source output;
 - a sink for the pressurized fluid via a sink input;
 - one or more manifolds, configured to be in fluid communication with one or more of the source output and the sink input,
 - a plurality of valves, wherein each valve has a cell side and a manifold side, wherein the manifold side of each of the plurality of valves is in fluid communication with at least one manifold, wherein the cell side of each of the plurality of valves is in fluid communication with the input of one of the plurality of cells, wherein each of the plurality of valves is in a first state when the cell side of the valve is in fluid communication with the source output, wherein each of the plurality of valves is in a

second state when the cell side of the valve is in fluid communication with the sink input, and wherein each of the plurality of valves is in a third state when the cell side of the valve is not in fluid communication with either the source output or the sink input;

a plurality of valve sensors, wherein each valve sensor is in operable communication with the cell side of at least one of the plurality of valves;

a computing device in operable communication with each of the plurality of valve sensors and each of the plurality of valves;

a non-transitory, computer-readable storage medium in operable communication with the computing device;

an input device in operable communication with the computing device; and

an output device in operable communication with the computing device,

wherein the computer-readable storage medium contains one or more

programming instructions that, when executed, cause the computing device to:

receive, from the input device, an input related to a therapeutic protocol,

place at least two of the plurality of valves into the first state for a

period of time based at least in part on the therapeutic protocol,

receive valve sensor data from at least one of the plurality of valve sensors, and

transmit, to the output device, an output related to the data from at least one valve sensor,

wherein the therapeutic protocol comprises one or more valve activation times, wherein each of the valve activation times is directed toward the activation of at least two valves.

24. The therapeutic compression system of claim 23, wherein each of the plurality of cells comprises one or more cell devices.
25. The therapeutic compression system of claim 24, wherein the one or more cell devices comprise one or more of the following: a shunt valve, a strain gauge, a plethysmograph sensor, a pressure sensor, and a deformation sensor.
26. The therapeutic compression system of claim 24, wherein the one or more cell devices are in operable communication with the computing device.
27. The therapeutic compression system of claim 24, wherein the therapeutic protocol further comprises one or more cell sensor data threshold values, and the computer-readable storage medium further contains one or more programming instructions that, when executed, cause the computing device to place the at least two of the plurality of valves in the third state for a period of time based at least in part on the one or more cell sensor data threshold values and data received from at least one cell sensor in operable communication with each of the at least two valves.
28. The pneumatic compression system of claim 24, wherein the one or more programming instructions, when executed, further cause the computing device to place the at least two of the plurality of valves in the third state after receiving device data from the at least one cell device in operable communication with each of the at least two of the plurality of valves, and

wherein the at least one device data has a value substantially equal to a first cell device data threshold value.

29. The pneumatic compression system of claim 28, wherein the first cell device data threshold values comprises a pressure value.

30. The pneumatic compression system of claim 28, wherein:

the device data received from the at least one cell device of a cell in fluid communication with a first of the at least two of the plurality of valves has a value substantially equal to the first cell device data threshold value; and

the device data received from the at least one cell device of a cell in fluid communication with a second of the at least two of the plurality of valves has a value substantially equal to the first cell device data threshold value.

31. The pneumatic compression system of claim 28, wherein:

the device data received from the at least one cell device of a cell in fluid communication with a first of the at least two of the plurality of valves has a value substantially equal to the first cell device data threshold value; and

the device data received from the at least one cell device of a cell in fluid communication with a second of the at least two of the plurality of valves has a value substantially equal to a second cell device data threshold value.

32. A therapeutic protocol provided by a therapeutic compression system comprising a compression sleeve having a plurality of cells, each cell configured to be inflated, deflated, or

retain a fluid, and a pneumatic compression system in fluid communication with the plurality of cells of the compression sleeve, the therapeutic protocol comprising:

causing at least two of the plurality of cells to inflate;

stopping the inflation of the at least two of the plurality of cells and retaining fluid within each of the at least two of the plurality of cells; and

causing the at least two of the plurality of cells to deflate.

33. The therapeutic protocol of claim 32, wherein causing the at least two of the plurality of cells to inflate comprises inflating the at least two of the plurality of cells substantially simultaneously.

34. The therapeutic protocol of claim 32, wherein causing the at least two of the plurality of cells to inflate comprises inflating the at least two of the plurality of cells in an ordered sequence.

35. The therapeutic protocol of claim 32, wherein stopping the inflation of the at least two of the plurality of cells comprises stopping the inflation of the at least two of the plurality of cells substantially simultaneously.

36. The therapeutic protocol of claim 32, wherein stopping the inflation of the at least two of the plurality of cells comprises stopping the inflation of the at least two of the plurality of cells in an ordered sequence.

37. The therapeutic protocol of claim 32, wherein each of the at least two of the plurality of cells retains fluid at a first cell pressure.

38. The therapeutic protocol of claim 32, wherein the first cell of the at least two cells retains fluid at a first cell pressure, and wherein a second cell of the at least two cells retains fluid at a second cell pressure.

39. The therapeutic protocol of claim 32, wherein causing the at least two of the plurality of cells to deflate comprises deflating the at least two of the plurality of cells substantially simultaneously.

40. The therapeutic protocol of claim 32, wherein causing the at least two of the plurality of cells to deflate comprises deflating the at least two of the plurality of cells in an ordered sequence.

41. The therapeutic protocol of claim 32, further comprising causing at least a first of the at least two of the plurality of cells to inflate and causing at least a second of the at least two of the plurality of cells to deflate during a period of time.

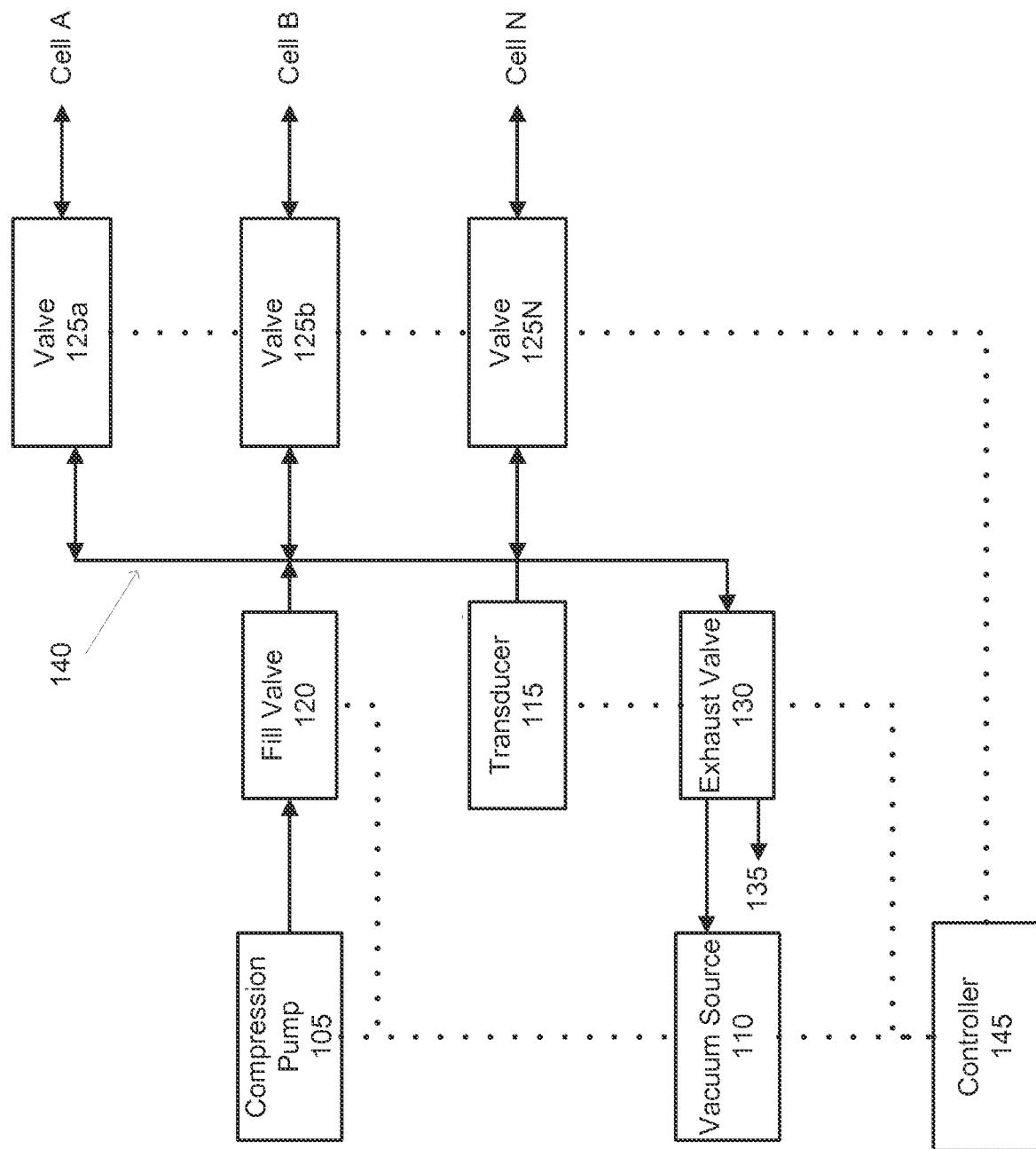


FIG. 1a

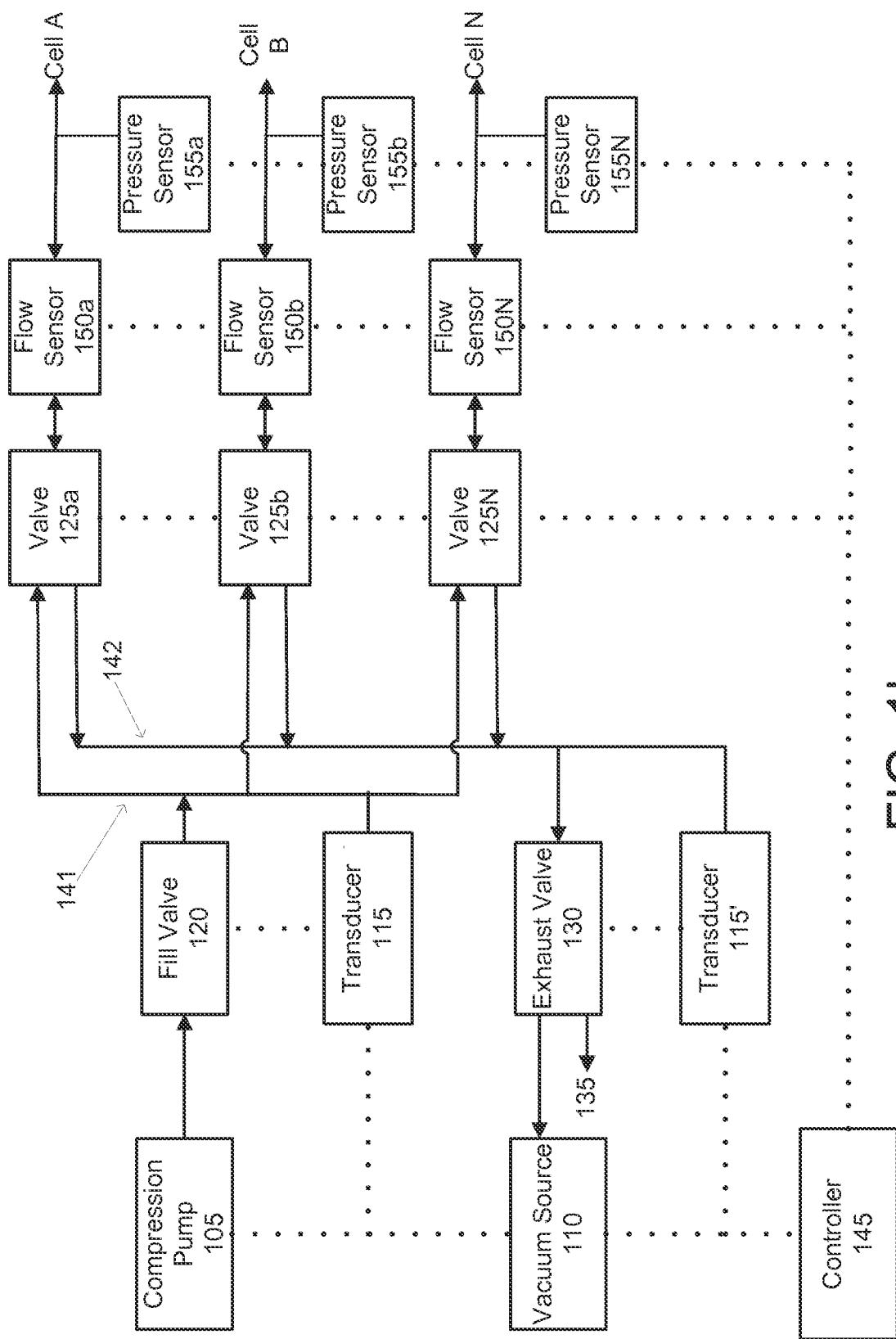


FIG. 1b

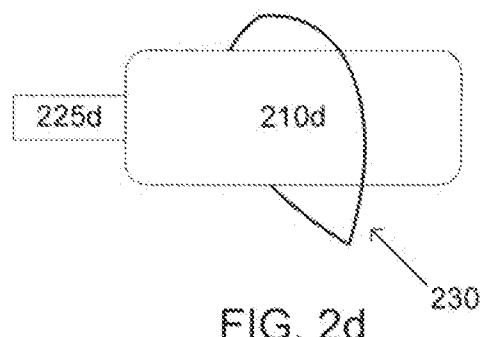
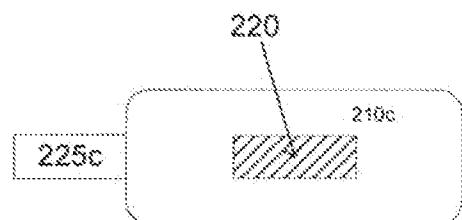
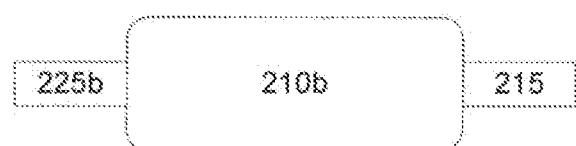
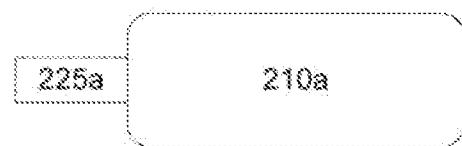





FIG. 2

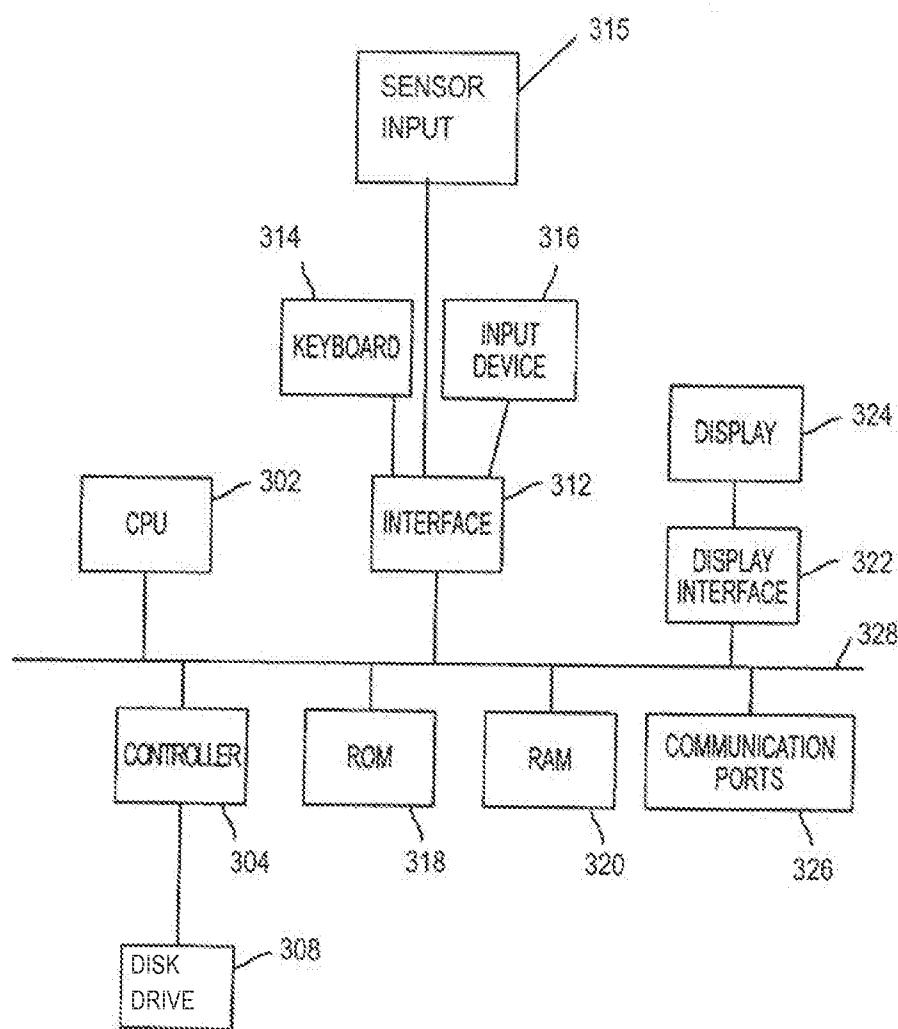


FIG. 3

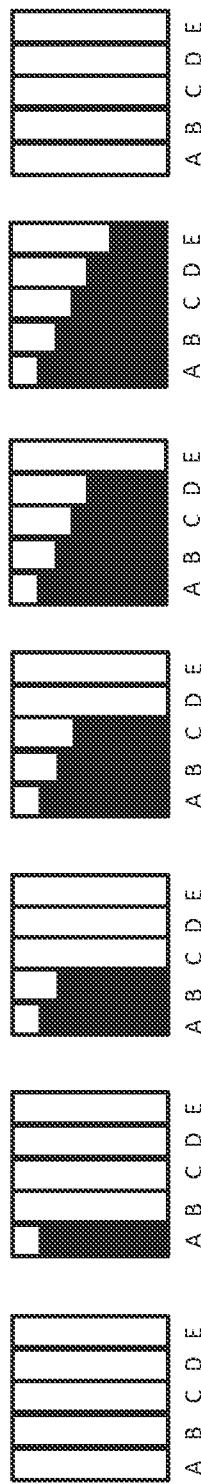


FIG. 4b FIG. 4c FIG. 4d FIG. 4e FIG. 4f FIG. 4g

FIG. 4

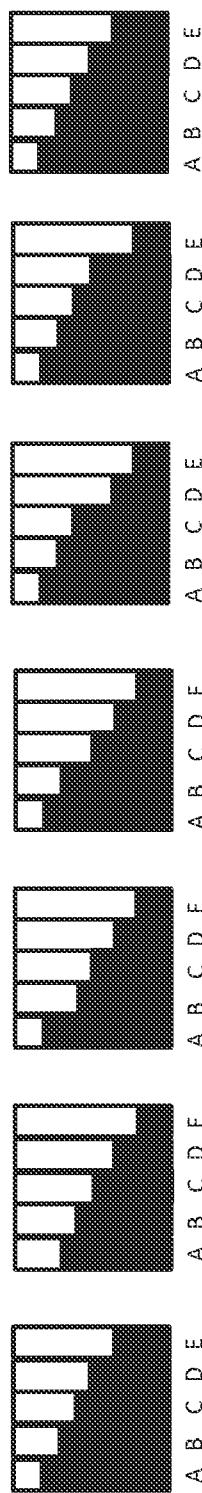


FIG. 4c FIG. 4d FIG. 4e FIG. 4f FIG. 4g

FIG. 5

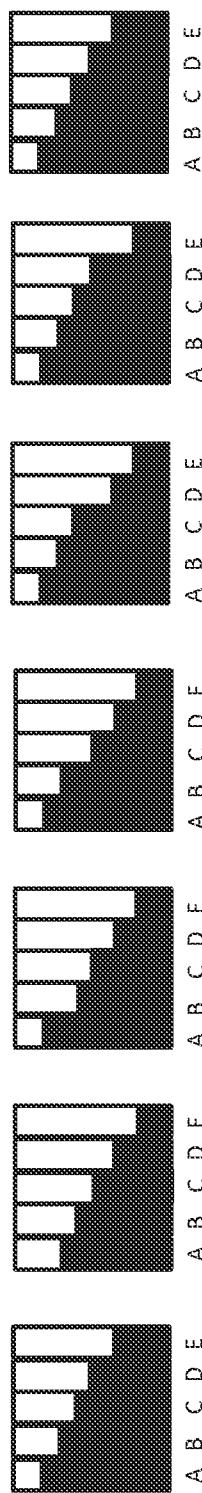


FIG. 4d FIG. 4e FIG. 4f FIG. 4g

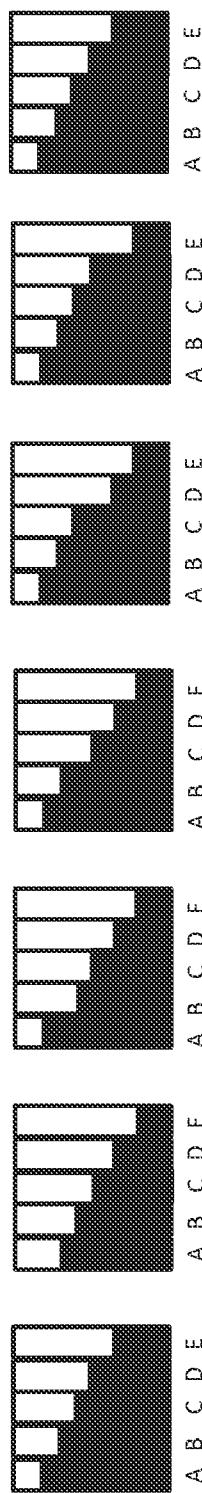


FIG. 4e FIG. 4f FIG. 4g

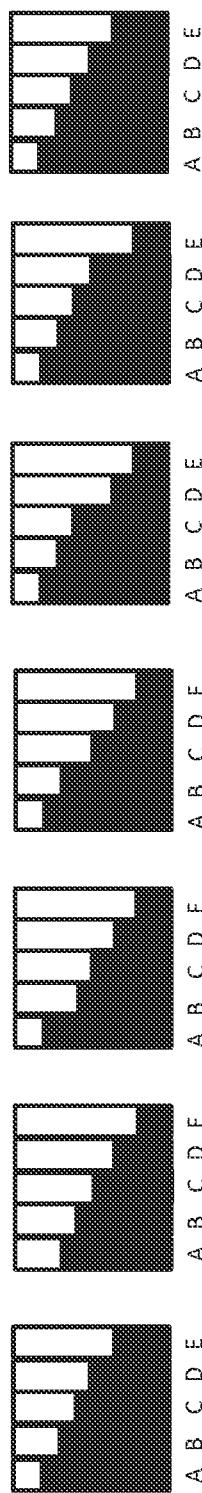


FIG. 4f FIG. 4g

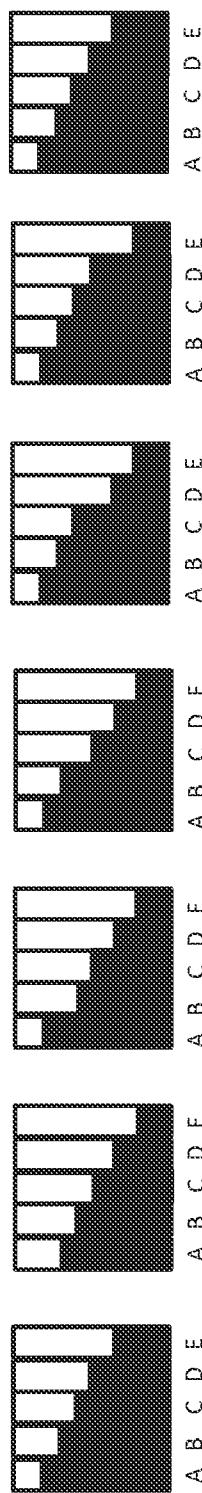


FIG. 4g

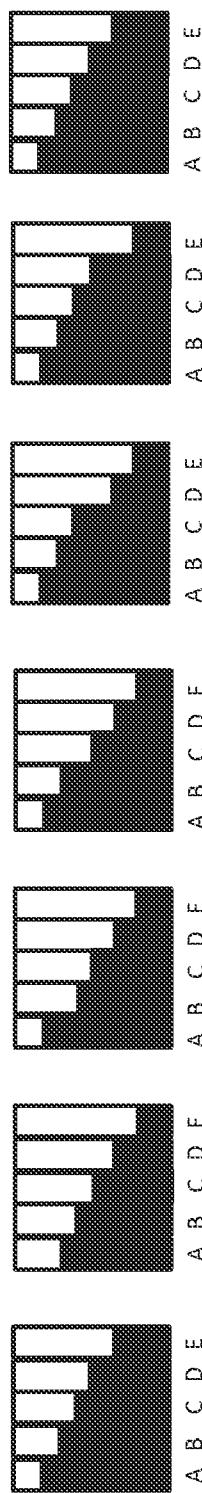
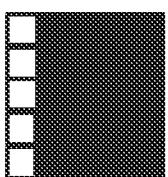
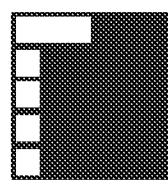
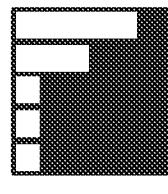
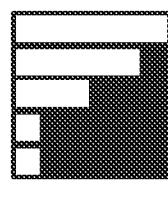
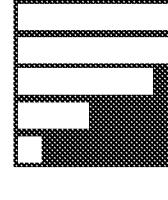
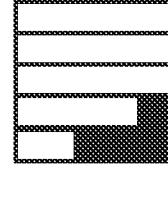




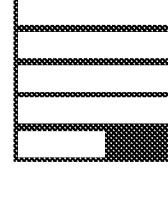
FIG. 4e FIG. 4f FIG. 4g

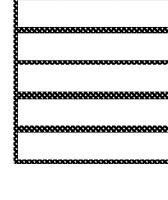

6/7


A B C D E

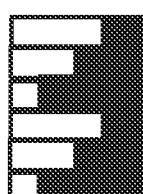

A B C D E


A B C D E


A B C D E


A B C D E

A B C D E


A B C D E

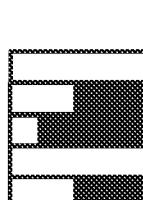
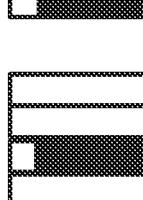
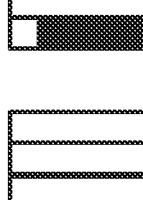
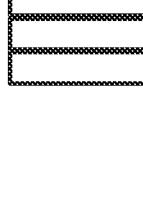

A B C D E

FIG. 6


6/7


A B C D E


A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

FIG. 6

6/7

FIG. 7

FIG 6h

FIG 6g

FIG 6f

FIG 7a

FIG 7b

FIG 7c

FIG 7d

FIG. 7

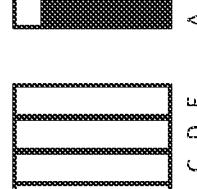
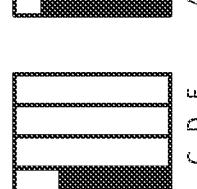
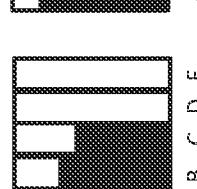
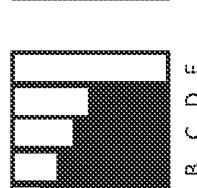
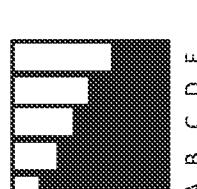
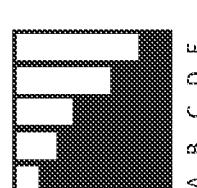
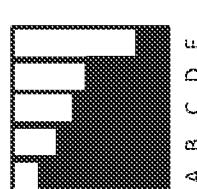
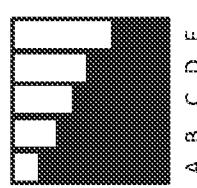









FIG. 8a

FIG. 8b

FIG. 8c

FIG. 8d

FIG. 8e

FIG. 8f

FIG. 8

7/7

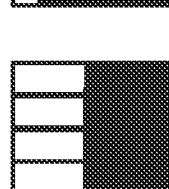
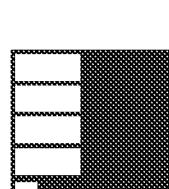
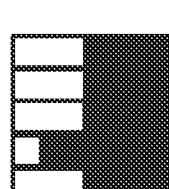
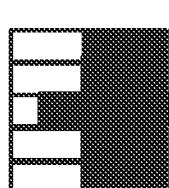
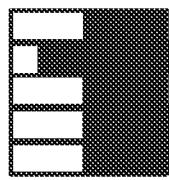
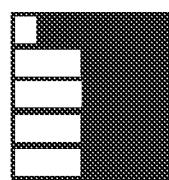







FIG. 8g

FIG. 8h

FIG. 8e

FIG. 8f

FIG. 8d

FIG. 8c

FIG. 9

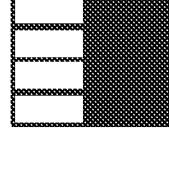
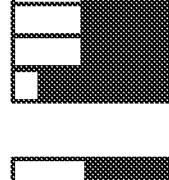



FIG. 9a

FIG. 9b

FIG. 9c

FIG. 9d

FIG. 9e

FIG. 9f

FIG. 9g

FIG. 9h

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2013/030451

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61H 9/00 (2013.01)

USPC - 601/152

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - A61H 1/00, 1/02, 9/00; A61M 16/00 (2013.01)

USPC - 128/28, 205.25; 601/148, 151, 152; 606/201

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
CPC - A61H 9/00, 9/0007, 9/005, 9/0078, 9/0085 (2013.01)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Patents, Google Scholar

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2006/0161081 A1 (BARAK et al) 20 July 2006 (20.07.2006) entire document	32-41
A	US 2008/0281240 A1 (WRIGHT et al) 13 November 2008 (13.11.2008) entire document	1-41
A	US 6,736,787 B1 (MCEWEN et al) 18 May 2004 (18.05.2004) entire document	1-41
A	US 4,424,806 A (NEWMAN et al) 10 January 1984 (10.01.1984) entire document	1-41

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 07 May 2013	Date of mailing of the international search report 07 JUN 2013
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-3201	Authorized officer: Blaine R. Copenheaver PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774