
US 20210367868A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0367868 A1

Chen (43) Pub . Date : Nov. 25 , 2021

(54) INTELLIGENT SERVERLESS FUNCTION
SCALING

(71) Applicant : RED HAT , INC . , Raleigh , NC (US)

(52) U.S. CI .
CPC H04L 43/0817 (2013.01) ; H04L 43/0852

(2013.01) ; H04L 43/16 (2013.01) ; G06F
2009/45595 (2013.01) ; H04L 47/762

(2013.01) ; G06F 9/45558 (2013.01) ; G06F
9/542 (2013.01) ; H04L 41/5003 (2013.01) (72) Inventor : Huamin Chen , Westford , MA (US)

(21) Appl . No .: 16 / 877,642
(57) ABSTRACT

(22) Filed : May 19 , 2020

Publication Classification
(51) Int . Cl .

H04L 12/26 (2006.01)
H04L 12/24 (2006.01)
H04L 12/923 (2006.01)
G06F 9/455 (2006.01)
GOOF 9/54 (2006.01)

A plurality of serverless function invocations are received . A
quantity of serverless function invocations of the plurality of
serverless function invocations that corresponds to a par
ticular type of serverless function invocation are determined .
A number of serverless functions are scaled at a determined
rate in view of the quantity of serverless function invoca
tions corresponding to the particular type of serverless
function invocation .

100

HOST SYSTEM 110a

VIRTUAL
MACHINE

130

CONTAINER
136

w SIMP Www H .. ww

HOST OS 120
1
1
1 HYPERVISOR 125 1

Set

PROCESSING
DEVICE
160a

MEMORY
170

STORAGE
DEVICE DEVICE

190

NETWORK
105

SCALING SYSTEM 140 HOST
SYSTEM
110b

PROCESSING DEVICE 160b
SERVERLESS
FUNCTION
1NER

142

Patent Application Publication Nov. 25 , 2021 Sheet 1 of 8 1 US 2021/0367868 A1

100

HOST SYSTEM 110a

VIRTUAL
MACHINE

130

CONTAINER
136
ulainthini

W *

HOST OS 120

HYPERVISOR 125

3 . 090 odab 44 , LAR Dadoo dia

PROCESSING
DEVICE
160a

MEMORY
170

STORAGE
DEVICE

180

DEVICE
190

wwwwwwwwwwwwwwwwwwwww

NETWORK
105 www

SCALING SYSTEM 140
PROCESSING DEVICE 160b

HOST
SYSTEM
110b SERVERLESS

FUNCTION
VNUKER

142

ugove

FIG . 1

200

SERVERLESS FUNCTION 202a

Patent Application Publication

SCALING SYSTEM 140 TRIGGER FUNCTION
REQUEST ROUTER 204

SERVERLESS FUNCTION INVOKER 142

DEPLOY / REMOVE SERVERLESS FUNCTIONS

REQUEST 206

Www

SCALING COMMAND

SERVERLESS FUNCTION 202n

Nov. 25 , 2021 Sheet 2 of 8

AUTOMATIC SCALING COMPONENT 210

METRIC COLLECTION COMPONENT 208
SCALING HEURISTICS

SERVERLESS FUNCTION METRICS

MX + 444444444444444444444444444444444444444

US 2021/0367868 A1

FIG . 2

Patent Application Publication Nov. 25 , 2021 Sheet 3 of 8 US 2021/0367868 A1

300

RECEIVE A PLURALITY OF SERVERLESS
FUNCTION INVOCATIONS

310 .

DETERMINE A QUANTITY OF SERVERLESS
FUNCTION INVOCATIONS OF THE PLURALITY
OF SERVERLESS FUNCTION INVOCATIONS

THAT CORRESPONDS TO A PARTICULAR TYPE
OF SERVERLESS FUNCTION INVOCATION

320
gogogoCO

100 Www

SCALE A NUMBER OF SERVERLESS FUNCTIONS
AT A DETERMINED RATE IN VIEW OF THE
QUANTITY OF SERVERLESS FUNCTION
INVOCATIONS CORRESPONDING TO THE

PARTICULAR TYPE OF SERVERLESS FUNCTION
INVOCATION

330 wwwwww

FIG . 3

Patent Application Publication Nov. 25 , 2021 Sheet 4 of 8 US 2021/0367868 A1

400

RECEIVE A PLURALITY OF SERVERLESS
FUNCTION INVOCATIONS

ANALYZE METRICS ASSOCIATED WITH A
PARTICULAR TYPE OF SERVERLESS FUNCTION

INVOCATION OF THE PLURALITY OF
SERVERLESS FUNCTION INVOCATIONS

420

IDENTIFY A QUALITY - OF - SERVICE (QoS)
PARAMETER ASSOCIATED WITH THE
PLURALITY OF SERVICE FUNCTION

INVOCATIONS
430

DETERMINE A RATE FOR SCALING A NUMBER
OF SERVERLESS FUNCTIONS IN VIEW OF AT
LEAST ONE OF THE ANALYZED METRICS OR

THE QOS PARAMETER
440

FIG . 4

Patent Application Publication Nov. 25 , 2021 Sheet 5 of 8 US 2021/0367868 A1

500

RECEIVE ONE OR MORE TYPES OF
SERVERLESS FUNCTION INVOCATIONS

510

IN RESPONSE TO RECEMNG THE ONE OR
MORE TYPES OF SERVERLESS FUNCTION
INVOCATIONS , INVOKE ONE OR MORE

SERVERLESS FUNCTIONS
520 www .

RECEIVE METRICS FROM THE ONE OR MORE
SERVERLESS FUNCTIONS

530

GENERATE SCALING HEURISTICS FOR SCALING
OF A NUMBER OF SERVERLESS FUNCTIONS IN

VIEW OF THE RECEIVED METRICS
540

FIG . 5

Patent Application Publication Nov. 25 , 2021 Sheet 6 of 8 US 2021/0367868 A1

600

DETERMINE CORRESPONDING QUANTITIES OF
ONE OR MORE TYPES OF SERVERLESS

FUNCTION INVOCATIONS
610

www MWYM M

DETERMINE WHETHER THE CORRESPONDING
QUANTITIES OF AT LEAST ONE OF THE ONE OR
MORE TYPES OF SERVERLESS FUNCTION
INVOCATIONS SATISFIES A THRESHOLD

620
WWWWWWWWWWWW wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

IN RESPONSE TO DETERMINING THAT THE
CORRESPONDING QUANTITIES OF THE AT

LEAST ONE OF THE ONE OR MORE TYPES OF
SERVERLESS FUNCTION INVOCATIONS

SATISFIES THE THRESHOLD , IDENTIFY A RATE
TO SCALE A NUMBER OF SERVERLESS

FUNCTIONS
630

SCALE THE NUMBER OF SERVERLESS
FUNCTIONS IN VIEW OF THE RATE

640

FIG . 6

Patent Application Publication Nov. 25 , 2021 Sheet 7 of 8 US 2021/0367868 A1

700

RECEIVE METRICS ASSOCIATED WITH
EXECUTION OF ONE OR MORE TYPES OF
OPERATIONS BY SERVERLESS FUNCTIONS

710
WWW

DETERMINE HEURISTICS FOR THE ONE OR
MORE TYPES OF OPERATIONS IN VIEW OF THE

METRICS
720

RECEIVING A PLURALITY OF SERVERLESS
FUNCTION INVOCATIONS COMPRISING THE
ONE OR MORE TYPES OF OPERATIONS

730

DETERMINE A MAXIMUM IDLE TIME FOR THE
SERVERLESS FUNCTIONS IN VIEW OF THE

HEURISTICS AND THE PLURALITY OF
SERVERLESS FUNCTION INVOCATIONS

740

FIG . 7

Patent Application Publication Nov. 25 , 2021 Sheet 8 of 8 US 2021/0367868 A1

800

Processing Device 802

Instructions
825

SERVERLESS
FUNCTION
ANKER

142

Static Memory
806

Main Memory 804

830 Instructions
825

Data Storage Device 818
SERVERLESS
FUNCTION
BÁNH KER

142

Machine - Readable
Storage Medium 828 w

Instructions
825

Network Interface
Device
808

SERVERLESS
FUNCTION
NOK - R

142

Network
820

FIG . 8

US 2021/0367868 A1 Nov. 25 , 2021
1

INTELLIGENT SERVERLESS FUNCTION
SCALING

TECHNICAL FIELD

[0001] Aspects of the present disclosure relate to a server
less function system , and more particularly , to intelligently
scaling serverless functions .

BACKGROUND

[0002] A serverless function system may be executed by a
cloud computing system . The cloud computing system may
dynamically manage the allocation and provisioning of
serverless functions on servers of the cloud computing
system . The serverless functions may be execution environ
ments for the performance of various functions .

BRIEF DESCRIPTION OF THE DRAWINGS

a
[0003] The described embodiments and the advantages
thereof may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings . These drawings in no way limit any changes in
form and detail that may be made to the described embodi
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments .
[0004] FIG . 1 is a block diagram that illustrates an
example computer architecture , in accordance with some
embodiments .
[0005] FIG . 2 is an illustration of an example of a scaling
system intelligently scaling a number of serverless func
tions , in accordance with embodiments of the disclosure .
[0006] FIG . 3 is a flow diagram of a method of intelli
gently scaling a number of serverless functions , in accor
dance with some embodiments .
[0007] FIG . 4 is a flow diagram of a method of determin
ing a rate for scaling a number of serverless functions , in
accordance with some embodiments .
[0008] FIG . 5 is a flow diagram of a method of generating
scaling heuristics for scaling serverless functions , in accor
dance with some embodiments .
[0009] FIG . 6 is a flow diagram of a method of utilizing a
threshold to identify a rate of scaling serverless functions , in
accordance with some embodiments .
[0010] FIG . 7 is a flow diagram of a method of determin
ing maximum idle times for serverless functions , in accor
dance with some embodiments .
[0011] FIG . 8 is a block diagram of an example apparatus
that may perform one or more of the operations described
herein , in accordance with some embodiments of the present
disclosure .

number of requests received by the conventional serverless
framework to reduce serverless function deployment latency
(also referred to as “ cold start latency ” hereafter) and to
manage computing overhead being dedicated to the server
less functions . For example , if there are no requests for
functions to be executed by the serverless framework , exist
ing serverless functions may be removed / shut down to
conserve computing overhead . In another example , if there
are large number of requests , the conventional serverless
framework may invoke a large number of serverless func
tions and / or extend the lifecycle of existing serverless func
tions (e.g. , increase the amount of time before serverless
functions are shut down) for execution of the various
functions associated with the requests .
[0014] Using a simplistic request driven scaling method ,
however , may result in an inefficient use of computing
resources of the cloud computing system . For example , such
a method may result in the extension of the lifecycle of a
serverless function that should have been shut down earlier .
In another example , such a method may introduce cold start
latency when new serverless functions must be invoked due
to a lack of existing serverless functions to execute the
different functions associated with the requests .
[0015] Aspects of the disclosure address the above - noted
and other deficiencies by intelligently scaling the number of
serverless functions based on identifying different types of
serverless function invocations being received by the server
less framework . Processing logic of a processing device
executing the serverless framework may receive the server
less function invocations and determine quantities of the
different types of serverless function invocations being
received . In embodiments , a type of serverless function
invocation may correspond to a request to perform a func
tion . For example , the serverless function invocation may
correspond to a request received by the serverless frame
work to perform a function of a web application . In an
embodiment , a type of serverless function invocation may
correspond to a scaling command that causes the serverless
framework to invoke / remove serverless functions .
[0016] The processing logic may use the quantities of the
types of service function invocations to determine a rate for
scaling the number of serverless functions . In embodiments ,
if there are a large number of serverless function invocations
associated with requests to execute functions and a large
number of serverless function invocations associated with
scaling commands , then the processing logic may scale up
the number of serverless functions at a higher rate to reduce
cold start latency for executing the functions associated with
the requests . In an embodiment , if there are a low number of
serverless function invocations associated with requests to
execute functions and a large number of serverless function
invocations associated with scaling commands , then the
processing logic may scale up the number of serverless
functions at a lower rate to conserve computing overhead .
[0017] In embodiments , the processing logic may receive
and analyze metrics associated with the serverless functions
to improve the performance of the serverless framework . In
embodiments , the metrics may correspond to latencies of the
serverless functions , runtimes of functions executed by the
serverless functions , idle times of the serverless functions ,
and / or any other metric associated with the serverless func
tions . The metrics may be used to generate scaling heuris
tics , which may be used by the processing logic to determine
the rate for scaling the number of serverless functions .

a

DETAILED DESCRIPTION

[0012] In embodiments , a cloud computing system may
provide a serverless framework for the performance of client
functions / operations (also referred to as “ functions ” hereaf
ter) . For example , the serverless framework may execute
functions of a client web application . The serverless frame
work may invoke one or more serverless functions to
execute the functions for the client . In embodiments , the
serverless functions may be execution environments for the
execution of the functions . For example , the serverless
functions may be virtual machines (VMs) and / or containers .
[0013] A conventional serverless framework may scale the
number of serverless functions available for use based on a

US 2021/0367868 A1 Nov. 25 , 2021
2

a

[0018] Having the processing logic identify quantities of
types of serverless function invocations results in an
improved serverless function system . By determining quan
tities of different types of serverless function invocations ,
the rate of scaling the number of serverless functions can be
optimized to reduce latencies of executing various functions ,
while avoiding excessive consumption of computing over
head by deploying too many serverless functions or over
extending lifecycles of existing serverless functions .
[0019] FIG . 1 depicts a high - level component diagram of
an illustrative example of a computer system architecture
100 , in accordance with one or more aspects of the present
disclosure . One skilled in the art will appreciate that other
computer system architectures 100 are possible , and that the
implementation of a computer system utilizing examples of
the invention are not necessarily limited to the specific
architecture depicted by FIG . 1 .
[0020] As shown in FIG . 1 , computer system architecture
100 includes host systems 110a , b and scaling system 140 .
The host systems 110a , b and scaling system 140 include
one or more processing devices 160a , b , memory 170 , which
may include volatile memory devices (e.g. , random access
memory (RAM)) , non - volatile memory devices (e.g. , flash
memory) and / or other types of memory devices , a storage
device 180 (e.g. , one or more magnetic hard disk drives , a
Peripheral Component Interconnect [PCI] solid state drive ,
a Redundant Array of Independent Disks [RAID] system , a
network attached storage [NAS] array , etc.) , and one or more
devices 190 (e.g. , a Peripheral Component Interconnect
[PCI] device , network interface controller (NIC) , a video
card , an 1/0 device , etc.) . In certain implementations ,
memory 170 may be non - uniform access (NUMA) , such
that memory access time depends on the memory location
relative to processing device 160a , b . It should be noted that
although , for simplicity , a single processing device 160a , b ,
storage device 180 , and device 190 are depicted in FIG . 1 ,
other embodiments of host systems 110a , b and scaling
system 140 may include a plurality of processing devices ,
storage devices , and devices . The host systems 110a , b and
scaling system 140 may be a server , a mainframe , a work
station , a personal computer (PC) , a mobile phone , a palm
sized computing device , etc. In embodiments , host systems
110a , b and scaling system 140 may be separate computing
devices . In some embodiments , host systems 110a , b and / or
scaling system 140 may be implemented by a single com
puting device . For clarity , some components of scaling
system 140 and host system 110b are not shown . Further
more , although computer system architecture 100 is illus
trated as having two host systems , embodiments of the
disclosure may utilize any number of host systems .
[0021] Host system 110a , b may additionally include one
or more virtual machines (VMs) 130 , containers 136 , and
host operating system (OS) 120. VM 130 is software
implementation of a machine that executes programs as
though it was an actual physical machine . Container 136 acts
as isolated execution environments for different functions of
applications , as previously described . The VM 130 and / or
container 136 may be a serverless function for executing one
or more functions of a serverless framework , as previously
described . Host OS 120 manages the hardware resources of
the computer system and provides functions such as inter
process communication , scheduling , memory management ,
and so forth .

[0022] Host OS 120 may include a hypervisor 125 (which
may also be known as a virtual machine monitor (VMM)) ,
which provides a virtual operating platform for VMs 130
and manages their execution . Hypervisor 125 may manage
system resources , including access to physical processing
devices (e.g. , processors , CPUs , etc.) , physical memory
(e.g. , RAM) , storage device (e.g. , HDDs , SSDs) , and / or
other devices (e.g. , sound cards , video cards , etc.) . The
hypervisor 125 , though typically implemented in software ,
may emulate and export a bare machine interface to higher
level software in the form of virtual processors and guest
memory . Higher level software may comprise a standard or
real - time OS , may be a highly stripped down operating
environment with limited operating system functionality ,
and / or may not include traditional OS facilities , etc. Hyper
visor 125 may present other software (i.e. , “ guest ” software)
the abstraction of one or more VMs that provide the same or
different abstractions to various guest software (e.g. , guest
operating system , guest applications) . It should be noted that
in some alternative implementations , hypervisor 125 may be
external to host OS 120 , rather than embedded within host
OS 120 , or may replace host OS 120 .
[0023] The host systems 110a , b , and scaling system 140
are coupled to each other (e.g. , may be operatively coupled ,
communicatively coupled , may communicate data / messages
with each other) via network 105. Network 105 may be a
public network (e.g. , the internet) , a private network (e.g. , a
local area network (LAN) or wide area network (WAN)) , or
a combination thereof . In one embodiment , network 105
may include a wired or a wireless infrastructure , which may
be provided by one or more wireless communications sys
tems , such as a WiFiTM hotspot connected with the network
105 and / or a wireless carrier system that can be imple
mented using various data processing equipment , commu
nication towers (e.g. , cell towers) , etc. The network 105 may
carry communications (e.g. , data , message , packets , frames ,
etc.) between the various components of host systems 110a ,
b and / or scaling system 140 .
[0024] In embodiments , processing device 160b may
execute a serverless function invoker 142. The serverless
function invoker 142 may control the scaling of serverless
functions at a determined rate . For example , the serverless
function invoker 142 may invoke or remove serverless
functions , such as VMs or containers , for executing appli
cation functions . The serverless function invoker 142 may
determine the rate for scaling the serverless functions based
on quantities of one or more types of serverless function
invocations . The serverless function invoker 142 may fur
ther determine the rate for scaling the serverless functions
based on one or more scaling heuristics . Further details
regarding serverless function invoker 142 will be discussed
at FIGS . 2-7 below .
[0025] FIG . 2 is an illustration 200 of an example of a
scaling system intelligently scaling a number of serverless
functions , in accordance with embodiments of the disclo
sure . In illustration 200 , scaling system 140 may control the
scaling of serverless functions 202a - n on host systems (not
shown) . Serverless functions 202a - n may correspond to any
number of serverless functions on the host systems . In
embodiments , serverless functions 202a - n may be any com
bination of VMs and / or containers (e.g. , VM 130 and / or
container 136 of FIG . 1) .
[0026] The scaling system 140 includes a processing logic
of a processing device (not shown) that may execute a

US 2021/0367868 A1 Nov. 25 , 2021
3

a

a

a

serverless function invoker 142 , a request router 204 ,
metric collection component 208 and / or an automatic scal
ing component 210. The request router 204 may receive a
request 206 for the serverless framework to perform a
function . For example , the request router 204 may receive a
request for the serverless framework to perform a function
of a web application . Upon receiving the request 206 , the
request router 204 may provide a trigger function to the
serverless function invoker 142. The trigger function may be
a type of serverless function invocation that causes the
serverless function invoker 142 to invoke a serverless func
tion to execute the function associated with request 206 or
provide an existing serverless function to execute the func
tion associated with the request 206. In embodiments , the
request router 204 may maintain a routing data structure ,
such as a routing table , that maps requests to corresponding
serverless functions 202a - n that are to execute the functions
associated with the requests .
[0027] The metric collection component 208 may receive
serverless function metrics from the serverless functions
202a - n . In some embodiments , the serverless function met
rics may include latencies associated with serverless func
tions 202a - n . For example , the serverless metric functions
may include cold - start latencies (e.g. , how long it takes for
a serverless function to be invoked and begin executing a
function) , a total latency (e.g. , total time it takes for a
serverless function to execute a requested function) , or any
other type of latency . In embodiments , the serverless func
tion metrics may include idle times associated with the
serverless functions 202a - n . An idle time may correspond to
an amount of time that a serverless function exists while not
executing a function . In some embodiments , the serverless
function metrics may be information , such as run times ,
associated with the functions that are executed by serverless
functions 202a - n . In an embodiment , the serverless function
metrics may be any other type of metric associated with
serverless functions 202a - n .

[0028] In embodiments , the serverless function metrics
may correspond to different types of serverless function
invocations . For example , for a serverless function invoca
tion based on a request (e.g. , request 206) received by
scaling system 140 , the serverless function metrics may
correspond to the cost of starting up a serverless function
and waiting for the code to execute the function associated
with the request to start . In another example , for a serverless
function invocation based on a scaling command , the server
less function metrics may correspond to the cost of starting
up a serverless function , waiting for the code to execute a
function , and the amount of time taken for the request router
204 to update a routing data structure to include the new
serverless function .
[0029] The metric collection component 208 may generate
scaling heuristics based on the serverless function metrics
received from serverless functions 202a - n , which are pro
vided to an automatic scaling component 210. The scaling
heuristics may be used to determine different rates for the
scaling of the number of serverless functions 202a - n based
on the serverless function metrics received by the metric
collection component 208. For example , the scaling heuris
tics may be used to determine rates for scaling the number
of serverless functions 202a - n based on a number of
requests (e.g. , request 206) received by the scaling system
140 , the types of requests received by the scaling system

140 , a number of different types of serverless function
invocations received by the scaling system 140 , or any
combination thereof .

[0030] Upon receiving the scaling heuristics , the auto
matic scaling component 210 may transmit one or more
scaling commands to the serverless function invoker 142
based on the scaling heuristics . The scaling command may
correspond to a type of service function invocation . In
embodiments , the automatic scaling component 210 may
generate the scaling command upon the scaling heuristics
indicating that more serverless functions 202a - n are needed
to execute functions associated with requests received by
206. For example , the scaling heuristics may indicate that
latencies for processing requests have exceeded a threshold
value and more serverless functions 202a - n are needed to
execute the functions associated with the requests in a timely
manner . In an embodiment , the automatic scaling compo
nent 210 may generate the scaling command upon the
scaling heuristics indicating that one or more serverless
functions 202a - n are to be removed / shut down to conserve
computing overhead . For example , the scaling heuristics
may indicate that idle times of one or more of the serverless
functions 202a - n have exceeded a threshold .
[0031] The serverless function invoker 142 may scale the
number of serverless functions 202a - n by deploying / invok
ing new serverless functions and / or removing / shutting down
existing serverless functions . In embodiments , the serverless
function invoker 142 may scale the number of serverless
functions based on quantities of different serverless function
invocations received by the serverless function invoker 142 .
For example , the serverless function invoker 142 may scale
the number of serverless functions 202a - n based on the
quantity of trigger functions (e.g. , a type of serverless
function invocation) and / or the quantity of scaling com
mands (e.g. , another type of serverless function invocation) .
In embodiments , the serverless function invoker 142 may
scale the number of serverless functions 202a - n at deter
mined rate (s) based on the quantities of one or more types
of serverless function invocations . For example , the server
less function invoker 142 may deploy a number of serverless
functions at a determined rate and / or remove a number of
serverless functions at a determined rate based on the
quantity of one or more types of serverless function invo
cations .

[0032] FIG . 3 is a flow diagram of a method 300 of
intelligently scaling a number of serverless functions , in
accordance with some embodiments . Method 300 may be
performed by processing logic that may comprise hardware
(e.g. , circuitry , dedicated logic , programmable logic , a pro
cessor , a processing device , a central processing unit (CPU) ,
a system - on - chip (SOC) , etc.) , software (e.g. , instructions
running / executing on a processing device) , firmware (e.g. ,
microcode) , or a combination thereof . In some embodi
ments , at least a portion of method 300 may be performed
by serverless function invoker 142 of scaling system 140 of
FIG . 1 .

[0033] With reference to FIG . 3 , method 300 illustrates
example functions used by various embodiments . Although
specific function blocks (“ blocks ”) are disclosed in method
300 , such blocks are examples . That is , embodiments are
well suited to performing various other blocks or variations
of the blocks recited in method 300. It is appreciated that the

a

US 2021/0367868 A1 Nov. 25 , 2021
4

blocks in method 300 may be performed in an order different
than presented , and that not all of the blocks in method 300
may be performed .
[0034] Method 300 begins at block 310 , where the pro
cessing logic receives a plurality of serverless function
invocations . The plurality of serverless function invocations
may include different types of serverless function invoca
tions . In some embodiments , a type of the plurality of
serverless function invocations may correspond to a trigger
function received from a request router (e.g. , request router
204 of FIG . 2) . In embodiments , a type of the plurality of
serverless function invocations may correspond to a scaling
command received from an automatic scaling component
(e.g. , automatic scaling component 210 of FIG . 2) . In an
embodiment , a type of the plurality of serverless function
invocations may correspond to any command that causes the
processing logic to scale a number of serverless functions .
[0035] At block 320 , the processing logic determines a
quantity of serverless function invocations of the plurality of
serverless function invocations that corresponds to a par
ticular type of serverless function invocation . In embodi
ments , the processing logic may determine a quantity of
serverless function invocations that correspond to trigger
functions received from a request router . In an embodiment ,
the processing logic may determine a quantity of serverless
function invocations that correspond to scaling commands
received from an automatic scaling component . In some
embodiments , the processing logic may determine a quantity
of another type of serverless function invocation . In embodi
ments , the processing logic may determine quantities of
multiple types of serverless function invocations . For
example , the processing logic may determine a first quantity
of serverless function invocations that correspond to trigger
functions and a second quantity of serverless function invo
cations that correspond to scaling commands .
[0036] At block 330 , the processing logic scales a number
of serverless functions at a determined rate in view of the
quantity of serverless function invocations corresponding to
the particular type of serverless function invocation . In
embodiments , the determined rate may correspond to a rate
for invoking / deploying a number of serverless functions . In
an embodiment , the determined rate may correspond to a
rate for removing / shutting down a number of serverless
functions . In some embodiments , the processing logic may
invoke a number of serverless functions at a first rate , then
subsequently remove a number of serverless functions at a
second rate .
[0037] In embodiments , the rate for scaling the number of
serverless functions may be determined using multiple quan
tities of different types of serverless function invocations .
For example , if the quantity of serverless function invoca
tions corresponding to trigger functions and the quantity of
serverless function invocations corresponding to scaling
commands are both high (e.g. , are greater than a threshold) ,
then the processing logic may scale the number of serverless
functions at a higher rate . However , if the quantity of
serverless function invocations corresponding to trigger
functions is low (e.g. , is less than a threshold) , but the
quantity of serverless function invocations corresponding to
scaling commands is high (e.g. , is greater than a threshold) ,
then the processing logic may scale the number of serverless
functions at a lower rate .
[0038] In some embodiments , the rate for scaling the
number of serverless functions may be a linear rate . In

embodiments , the rate for scaling the number of serverless
functions may be an exponential rate . In an embodiment , the
rate for scaling the number of serverless functions may be a
step function . In embodiments , other types of models may
be used for determining the rate for scaling the number of
serverless functions .
[0039] FIG . 4 is a flow diagram of a method 400 of
determining a rate for scaling a number of serverless func
tions , in accordance with some embodiments . Method 400
may be performed by processing logic that may comprise
hardware (e.g. , circuitry , dedicated logic , programmable
logic , a processor , a processing device , a central processing
unit (CPU) , a system - on - chip (SoC) , etc.) , software (e.g. ,
instructions running / executing on a processing device) ,
firmware (e.g. , microcode) , or a combination thereof . In
some embodiments , at least a portion of method 400 may be
performed by serverless function invoker 142 of scaling
system 140 of FIG . 1 .
[0040] With reference to FIG . 4 , method 400 illustrates
example functions used by various embodiments . Although
specific function blocks (“ blocks ”) are disclosed in method
400 , such blocks are examples . That is , embodiments are
well suited to performing various other blocks or variations
of the blocks recited in method 400. It is appreciated that the
blocks in method 400 may be performed in an order different
than presented , and that not all of the blocks in method 400
may be performed .
[0041] Method 400 begins at block 410 , where the pro
cessing logic receives a plurality of serverless function
invocations . In embodiments , the plurality of serverless
function invocations may include different types of server
less function invocations , as previously described .
[0042] At block 420 , the processing logic analyzes metrics
associated with a particular type of serverless function
invocation of the plurality or serverless function invoca
tions . In embodiments , the processing logic may analyze
serverless function metrics for one or more types of server
less function invocations , as previously described at FIG . 2 .
For example , for a serverless function invocation corre
sponding to a trigger function , the processing logic may
analyze metrics associated the cost of starting up a serverless
function and / or waiting for the code to execute the function
associated with the request to start . In another example , for
a serverless function invocation corresponding to a scaling
command , the processing logic may analyze metrics asso
ciated with the cost of starting up a serverless function ,
waiting for code to execute a function , and / or the amount of
time taken for a request router to update a routing data
structure to include the new serverless function .
[0043] At block 430 , the processing logic identifies a
quality - of - service (QoS) parameter associated with the plu
rality of service function invocations . In some embodiments ,
a QoS parameter may be assigned to particular service
function invocations . The QoS parameter may include one
or more performance requirements for the particular service
function invocations . For example , a QoS parameter may
indicate a maximum latency for service function invocations
received from a particular client . In embodiments , multiple
QoS parameters may be used for different sets and / or types
of service function invocations .
[0044] At block 440 , the processing logic determines a
rate for scaling a number of serverless functions in view of
at least one of the analyzed metrics or the QoS parameter . In
embodiments , the rate may be determined in view of laten

9

US 2021/0367868 A1 Nov. 25 , 2021
5

cies included in the analyzed metrics . For example , the rate
may be determined based on an average latency for execut
ing particular type of serverless function invocation . In
embodiments , the rate may be determined in view of idle
times included in the analyzed metrics . For example , the rate
may be determined in view of how many serverless func
tions are idle and / or how long the serverless functions have
been idle . In embodiments , the rate may be determined using
other analyzed metrics associated with the serverless func
tions .
[0045] In embodiments , the rate may be determined in
view of one or more performance requirements of the QoS
parameter . For example , if the QoS parameter indicates a
high performance requirement , then the rate for invoking
new serverless functions and / or an amount of time existing
serverless functions are kept idle before being removed may
be higher than a QoS parameter indicating a lower perfor
mance requirement .
[0046] FIG . 5 is a flow diagram of a method 500 of
generating scaling heuristics for scaling serverless functions ,
in accordance with some embodiments . Method 500 may be performed by processing logic that may comprise hardware
(e.g. , circuitry , dedicated logic , programmable logic , a pro
cessor , a processing device , a central processing unit (CPU) ,
a system - on - chip (SOC) , etc.) , software (e.g. , instructions
running / executing on a processing device) , firmware (e.g. ,
microcode) , or a combination thereof . In some embodi
ments , at least a portion of method 500 may be performed
by serverless function invoker 142 of scaling system 140 of
FIG . 1 .
[0047] With reference to FIG . 5 , method 500 illustrates
example functions used by various embodiments . Although
specific function blocks (“ blocks ”) are disclosed in method
500 , such blocks are examples . That is , embodiments are
well suited to performing various other blocks or variations
of the blocks recited in method 500. It is appreciated that the
blocks in method 500 may be performed in an order different
than presented , and that not all of the blocks in method 500
may be performed .
[0048] Method 500 begins at block 510 , where the pro
cessing logic receives one or more types of serverless
function invocations . In embodiments , the one or more types
of serverless function invocations may include trigger func
tions and / or scaling commands , as previously described .
[0049] At block 520 , in response to receiving the one or
more types of serverless function invocations , the process
ing logic invokes one or more serverless functions .
[0050] At block 530 , the processing logic receives metrics
from the one or more serverless functions . In embodiments ,
the metrics may be associated with the one or more types of
serverless function invocations . For example , a first set of
the metrics may be associated with trigger functions
received at block 510 and a second set of the metrics may be
associated with scaling commands received at block 510 .
[0051] At block 540 , the processing logic generates scal
ing heuristics for scaling a number of serverless functions in
view of the received metrics . In embodiments , the scaling
heuristics may be used to determine a rate for scaling the
number of serverless functions . For example , the scaling
heuristics may be used to determine a rate for invoking new
serverless functions and / or a rate for removing existing
serverless functions . In some embodiments , the scaling
heuristics may be used to determine rates for scaling based

on quantities of different types of serverless function invo
cations , as previously described .
[0052] FIG . 6 is a flow diagram of a method 600 of
utilizing a threshold to identify a rate of scaling serverless
functions , in accordance with some embodiments . Method
600 may be performed by processing logic that may com
prise hardware (e.g. , circuitry , dedicated logic , program
mable logic , a processor , a processing device , a central
processing unit (CPU) , a system - on - chip (SOC) , etc.) , soft
ware (e.g. , instructions running / executing on a processing
device) , firmware (e.g. , microcode) , or a combination
thereof . In some embodiments , at least a portion of method
600 may be performed by serverless function invoker 142 of
scaling system 140 of FIG . 1 .
[0053] With reference to FIG . 6 , method 600 illustrates
example functions used by various embodiments . Although
specific function blocks (“ blocks ”) are disclosed in method
600 , such blocks are examples . That is , embodiments are
well suited to performing various other blocks or variations
of the blocks recited in method 600. It is appreciated that the
blocks in method 600 may be performed in an order different
than presented , and that not all of the blocks in method 600
may be performed .
[0054] Method 600 begins at block 610 , where the pro
cessing logic determines corresponding quantities of one or
more types of serverless function invocations . For example ,
the processing logic may determine corresponding quanti
ties of received trigger functions and / or scaling commands .
[0055] At block 620 , the processing logic determines
whether the corresponding quantities of at least one of the
one or more types of serverless function invocations satisfies
a threshold . In an embodiment , the threshold may be satis
fied if the quantity of a type of serverless function invoca
tions is greater than or equal to the threshold . In embodi
ments , the threshold may be satisfied if the quantity of the
type serverless function invocations is less than or equal to
the threshold .

[0056] At block 630 , in response to determining that the
corresponding quantities of the at least one of the one or
more types of serverless function invocations satisfies the
threshold , the processing logic identifies a rate to scale a
number of serverless functions . For example , if the quantity
of received trigger functions satisfies the threshold , then the
processing logic may identify a rate to scale a number of
serverless functions .
[0057] In some embodiments , the processing logic may
determine a first rate for scaling the number of serverless
functions based on the one or more quantities of types of
serverless function invocations satisfying the threshold , and
a second rate for scaling the number of serverless functions
based on the one or more quantities of types of serverless
function invocations not satisfying the threshold . For
example , if the quantity of serverless function invocations
corresponding to trigger functions is greater than the thresh
old , indicating that a large number of requests have been
received , then the processing logic may determine to scale
the number of serverless functions at a higher rate (e.g , the
first rate) . However , if the quantity of serverless function
invocations corresponding to trigger functions is less than
the threshold , indicating that a lower number of requests
have been received , then the processing logic may determine
to scale the number of serverless functions at a lower rate
(e.g. , the second rate) .

a

US 2021/0367868 A1 Nov. 25 , 2021
6

[0058] At block 640 , the processing logic scales the num
ber of serverless functions in view of the rate . In embodi
ments , the processing logic may scale the number of server
less functions by invoking new serverless functions and / or
removing existing serverless functions , as previously
described .

[0059] FIG . 7 is a flow diagram of a method 700 of
determining maximum idle times for serverless functions , in
accordance with some embodiments . Method 700 may be
performed by processing logic that may comprise hardware
(e.g. , circuitry , dedicated logic , programmable logic , a pro
cessor , a processing device , a central processing unit (CPU) ,
a system - on - chip (SOC) , etc.) , software (e.g. , instructions
running / executing on a processing device) , firmware (e.g. ,
microcode) , or a combination thereof . In some embodi
ments , at least a portion of method 700 may be performed
by serverless function invoker 142 of scaling system 140 of
FIG . 1 .
[0060] With reference to FIG . 7 , method 700 illustrates
example functions used by various embodiments . Although
specific function blocks (“ blocks ”) are disclosed in method
700 , such blocks are examples . That is , embodiments are
well suited to performing various other blocks or variations
of the blocks recited in method 700. It is appreciated that the
blocks in method 700 may be performed in an order different
than presented , and that not all of the blocks in method 700
may be performed .
[0061] Method 700 begins at block 710 , where the pro
cessing logic receives metrics associated with execution of
one or more types of operations by serverless functions . As
previously described , a serverless framework may receive
requests to perform various functions / operations that are
executed by the serverless functions . For example , the
serverless framework may receive requests from one or
more client devices to perform various operations of a web
application . The serverless framework may then use one or
more serverless functions to perform (e.g. , execute) the
operations of the web application and provide the results to
the requesting client devices .
[0062] At block 720 , the processing logic determines
heuristics for the one or more types of operations in view of
the metrics . In embodiments , different types of operations
may take different amounts of time to complete . For
example , a first type of operation may take 150 milliseconds
(ms) to be executed by a serverless framework , while
another type of operation make take 50 ms . In an embodi
ment , the heuristics may include the time (s) to execute these
different types of operations . In embodiments , the heuristics
may include latencies associated with the scaling serverless
functions to execute the one or more types of operations . For
example , the heuristics may include cold - start latencies , the
total latencies (e.g. , amount of time elapsed from receiving
a request to providing the result of the request) , and / or idle
times for the one or more types of operations .
[0063] At block 730 , the processing logic receives a
plurality of serverless function invocations comprising the
one or more types of operations . In embodiments , requests
to perform the one or more types of operations may be
received by a request router of a serverless framework . Upon
receiving the requests , the request router may transmit one
or more serverless function invocations (e.g. , trigger func
tions) to the processing logic . The processing logic may
identify existing serverless functions that are available to

execute the operations (e.g. , are idle) and / or may invoke new
serverless functions to execute the operations .
[0064] At block 740 , the processing logic determines a
maximum idle time for the serverless functions in view of
the heuristics and the plurality of serverless function invo
cations . As described above , different types of operations
may take different amounts of time to be executed by the
serverless functions . In embodiments , the processing logic
may determine that it is more efficient to adjust the idle times
of existing serverless functions to execute the operations
rather than shutting down the existing serverless functions
and subsequently invoking new serverless functions to
execute the operations , which may introduce cold - start
latency from starting up the new serverless functions .
[0065] Upon receiving the plurality of serverless function
invocations , the processing logic may identify the types of
operations associated with the serverless function invoca
tions and utilize the scaling heuristics for these types of
operations to determine a maximum idle time for the server
less functions . In embodiments , the maximum idle time may
be greater than the time to execute one or more of the types
of operations at block 730. For example , if the time to
execute a particular type of operation is 100 ms , then the
maximum idle time may be 150 ms . In an embodiment , the
maximum idle time may be less than the cold - start latency
for invoking a new serverless function . For example , if the
cold - start latency for invoking a new serverless function is
250 ms , then the maximum idle time may be 200 ms .
[0066] In embodiments , the processing logic may deter
mine multiple maximum idle times for different sets of the
serverless functions . For example , the processing logic may
determine a first maximum idle time for a first set of
serverless functions , and a second maximum idle time for a
second set of serverless functions . In some embodiments ,
the maximum idle time may be dynamically adjusted as
subsequent requests to perform types of operations are
received . In an embodiment , the maximum idle time may be dynamically adjusted upon receiving updated metrics and / or
determining new heuristics for the one or more types of
operations .

[0067] FIG . 8 is a block diagram of an example computing
device 800 that may perform one or more of the operations
described herein , in accordance with some embodiments .
Computing device 800 may be connected to other comput
ing devices in a LAN , an intranet , an extranet , and / or the
Internet . The computing device may operate in the capacity
of a server machine in client - server network environment or
in the capacity of a client in a peer - to - peer network envi
ronment . The computing device may be provided by a
personal computer (PC) , a set - top box (STB) , a server , a
network router , switch or bridge , or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine . Further , while
only a single computing device is illustrated , the term
" computing device ” shall also be taken to include any
collection of computing devices that individually or jointly
execute a set (or multiple sets) of instructions to perform the
methods discussed herein .

[0068] The example computing device 800 may include a
processing device (e.g. , a general purpose processor , a PLD ,
etc.) 802 , a main memory 804 (e.g. , synchronous dynamic
random access memory (DRAM) , read - only memory

a

2

US 2021/0367868 A1 Nov. 25 , 2021
7

a (ROM)) , a static memory 806 (e.g. , flash memory and a data
storage device 818) , which may communicate with each
other via a bus 830 .
[0069] Processing device 802 may be provided by one or
more general - purpose processing devices such as a micro
processor , central processing unit , or the like . In an illus
trative example , processing device 802 may comprise a
complex instruction set computing (CISC) microprocessor ,
reduced instruction set computing (RISC) microprocessor ,
very long instruction word (VLIW) microprocessor , or a
processor implementing other instruction sets or processors
implementing a combination of instruction sets . Processing
device 802 may also comprise one or more special - purpose
processing devices such as an application specific integrated
circuit (ASIC) , a field programmable gate array (FPGA) , a
digital signal processor (DSP) , network processor , or the
like . The processing device 802 may be configured to
execute the operations described herein , in accordance with
one or more aspects of the present disclosure , for performing
the operations and steps discussed herein .
[0070] Computing device 800 may further include a net
work interface device 808 which may communicate with a
network 820. The computing device 800 also may include a
video display unit 810 (e.g. , a liquid crystal display (LCD)
or a cathode ray tube (CRT)) , an alphanumeric input device
812 (e.g. , a keyboard) , a cursor control device 814 (e.g. , a
mouse) and an acoustic signal generation device 816 (e.g. ,
a speaker) . In one embodiment , video display unit 810 ,
alphanumeric input device 812 , and cursor control device
814 may be combined into a single component or device
(e.g. , an LCD touch screen) .
[0071] Data storage device 818 may include a computer
readable storage medium 828 on which may be stored one
or more sets of instructions 825 that may include instruc
tions for a serverless function invoker , e.g. , serverless func
tion invoker 142 for carrying out the operations described
herein , in accordance with one or more aspects of the present
disclosure . Instructions 825 may also reside , completely or
at least partially , within main memory 804 and / or within
processing device 802 during execution thereof by comput
ing device 800 , main memory 804 and processing device
802 also constituting computer - readable media . The instruc
tions 825 may further be transmitted or received over a
network 820 via network interface device 808 .
[0072] While computer - readable storage medium 828 is
shown in an illustrative example to be a single medium , the
term " computer - readable storage medium ” should be taken
to include a single medium or multiple media (e.g. , a
centralized or distributed database and / or associated caches
and servers) that store the one or more sets of instructions .
The term “ computer - readable storage medium ” shall also be
taken to include any medium that is capable of storing ,
encoding or carrying a set of instructions for execution by
the machine and that cause the machine to perform the
methods described herein . The term " computer - readable
storage medium ” shall accordingly be taken to include , but
not be limited to , solid - state memories , optical media and
magnetic media .
[0073] Example 1 is a method comprising receiving a
plurality of serverless function invocations ; determining a
quantity of serverless function invocations of the plurality of
serverless function invocations that corresponds to a par
ticular type of serverless function invocation , and scaling ,
by a processing device , a number of serverless functions at

a determined rate in view of the quantity of serverless
function invocations corresponding to the particular type of
serverless function invocation .
[0074] Example 2 is the method of Example 1 , wherein
scaling the number of serverless functions comprises invok
ing one or more containers for execution of functions
associated with the plurality of serverless function invoca
tions .
[0075] Example 3 is the method of Example 1 or Example
2 , wherein scaling the number of serverless functions com
prises removing one or more containers for execution of
functions associated with the plurality of serverless function
invocations .
[0076] Example 4 is the method of Example 1 , Example 2 ,
or Example 3 , wherein scaling the number of serverless
functions comprises at least one of invoking one or more
containers or removing one or more containers for execution
of functions associated with the plurality of serverless
function invocations at the determined rate .
[0077] Example 5 is the method of Example 1 , Example 2 ,
Example 3 , or Example 4 , wherein the determined rate is
determined in view of a quality - of - service (QoS) parameter
associated with the plurality of serverless function invoca
tions .
[0078] Example 6 is the method of Example 1 , Example 2 ,
Example 3 , Example 4 , or Example 5 , further comprising
analyzing metrics associated with the particular type of
serverless function invocation , wherein the determined rate
for scaling of the number of serverless functions is deter
mined in view of the analyzed metrics .
[0079] Example 7 is the method of Example 1 , Example 2 ,
Example 3 , Example 4 , Example 5 , or Example 6 , wherein
the metrics correspond to an idle time of the number of
serverless functions .
[0080] Example 8 is the method of Example 1 , Example 2 ,
Example 3 , Example 4 , Example 5 , Example 6 , or Example
7 , wherein the particular type of serverless function invo
cation corresponds to a request to perform a function using
a serverless function .
[0081] Example 9 is the method of Example 1 , Example 2 ,
Example 3 , Example 4 , Example 5 , Example 6 , Example 7 ,
or Example 8 , wherein the particular type of serverless
function invocation corresponds to a scaling command .
[0082] Example 10 is a system comprising a memory ; and
a processing device , operatively coupled to the memory , to
receive one or more types of serverless function invocations ;
in response to receiving the one or more types of serverless
function invocations , invoke one or more serverless func
tions ; receive metrics from the one or more serverless
functions , and generate scaling heuristics for scaling of a
number of serverless functions in view of the received
metrics .
[0083] Example 11 is the system of Example 10 , wherein
the metrics correspond to a latency of the one or more
serverless functions .
[0084] Example 12 is the system of Example 10 ,
Example 11 , wherein the metrics correspond to an idle time
of the one or more serverless functions .
[0085] Example 13 is the system of Example 10 , Example
11 , or Example 12 , wherein the one or more types of
serverless function invocations comprises a trigger function .
[0086] Example 14 is the system of Example 10 , Example
11 , Example 12 , or Example 13 , wherein to scale the number
of serverless functions in view of the scaling heuristics , the

or

US 2021/0367868 A1 Nov. 25 , 2021
8

processing device is further to determine a rate to invoke the
number of serverless functions in view of the scaling heu
ristics ; and invoke the number of serverless functions at the
determined rate .
[0087] Example 15 is the system of Example 10 , Example
11 , Example 12 , Example 13 , or Example 14 , wherein to
scale the number of serverless functions in view of the
scaling heuristics , the processing device is further to deter
mine a rate to remove the number of serverless functions in
view of the scaling heuristics ; and remove the number of
serverless functions at the determined rate .
[0088] Example 16 is the system of Example 10 , Example
11 , Example 12 , Example 13 , Example 14 , or Example 15 ,
wherein the one or more serverless functions correspond to
containers .
[0089] Example 17 is the system of Example 10 , Example
11 , Example 12 , Example 13 , Example 14 , Example 15 , or
Example 16 , wherein the one or more serverless functions
correspond to virtual machines .
[0090] Example 18 is a non - transitory computer - readable
storage medium including instructions that , when executed
by a processing device , cause the processing device to
determine corresponding quantities of one or more types of
serverless function invocations ; determine whether the cor
responding quantities of at least one of the one or more types
of serverless function invocations satisfies a threshold ; in
response to determining that the corresponding quantities of
the at least one of the one or more types of serverless
function invocations satisfies the threshold , identify a first
rate to scale a number of serverless functions , and scale the
number of serverless functions in view of the first rate .

[009] Example 19 is the non - transitory computer - read
able storage medium of Example 18 , wherein the processing
device is further to in response to determining that the
corresponding quantities of the at least one of the one or
more types of serverless function invocations does not
satisfy the threshold , identify a second rate to scale a number
of serverless functions ; and scale the number of serverless
functions in view of the second rate .

[0092] Example 20 is the non - transitory computer - read
able storage medium of Example 18 or Example 19 , wherein
the first rate is greater than the second rate .
[0093] Example 21 is the non - transitory computer - read
able storage medium of Example 18 , Example 19 , or
Example 20 , wherein the one or more types of serverless
function invocations comprise a request to perform a func
tion using a serverless function .
(0094] Example 22 is the non - transitory computer - read
able storage medium of Example 18 , Example 19 , Example
20 , or Example 21 , wherein the one or more types of
serverless function invocations comprises a scaling com
mand .

[0095] Example 23 is the non - transitory computer - read
able storage medium of Example 18 , Example 19 , Example
20 , Example 21 , or Example 22 , wherein scaling the number
of serverless functions comprises invoking one or more
containers for execution of the serverless functions .

[0096] Example 24 is the non - transitory computer - read
able storage medium of Example 18 , Example 19 , Example
20 , Example 21 , Example 22 , or Example 23 , wherein

scaling the number of serverless functions comprises remov
ing one or more containers for execution of the serverless
functions .

[0097] Example 25 is a method comprising receiving
metrics associated with execution of one or more types
operations by serverless functions ; determining heuristics
for the one or more types of operations in view of the
metrics ; receiving a plurality of serverless function invoca
tions comprising the one or more types of operations ; and
determining , by a processing device , a maximum idle time
for the serverless functions in view of the heuristics and the
plurality of serverless function invocations .
[0098] Example 26 is the method of Example 25 , wherein
the metrics comprise latencies associated with the execution
of the one or more types of functions .
[0099] Example 27 is the method of Example 25 or
Example 26 , wherein determining the maximum idle time
for the serverless functions comprises determining a quan
tity of each of the one or more types of operations associated
the plurality of serverless function invocations , and deter
mining the maximum idle time for the serverless functions
in view of the quantity of each of the one or more types of
operations .
[0100] Example 28 is the method of Example 25 , Example
26 , or Example 27 , wherein the serverless functions com
prise one or more virtual machines .
[0101] Example 29 is the method of Example 25 , Example
26 , Example 27 , or Example 28 , wherein the serverless
functions comprise one or more containers .
[0102] Example 30 is an apparatus comprising means for
receiving a plurality of serverless function invocations ;
means for determining a quantity of serverless function
invocations of the plurality of serverless function invoca
tions that corresponds to a particular type of serverless
function invocation ; and means for scaling a number of
serverless functions at a determined rate in view of the
quantity of serverless function invocations corresponding to
the particular type of serverless function invocation .
[0103] Example 31 is the apparatus of Example 30 ,
wherein scaling the number of serverless functions com
prises means for invoking one or more containers for
execution of functions associated with the plurality of
serverless function invocations .

[0104] Example 32 is the apparatus of Example 30 or
Example 31 , wherein scaling the number of serverless
functions comprises means for removing one or more con
tainers for execution of functions associated with the plu
rality of serverless function invocations .
[0105] Example 33 is the apparatus of Example 30 ,
Example 31 , or Example 32 , wherein scaling the number of
serverless functions comprises at least one of invoking one
or more containers or removing one or more containers for
execution of functions associated with the plurality of
serverless function invocations at the determined rate .
[0106] Example 34 is the apparatus of Example 30 ,
Example 31 , Example 32 , or Example 33 , wherein the
determined rate is determined in view of a quality - of - service
(QoS) parameter associated with the plurality of serverless
function invocations .

a

US 2021/0367868 A1 Nov. 25 , 2021
9

2

)

[0107] Example 35 is the apparatus of Example 30 ,
Example 31 , Example 32 , Example 33 , or Example 34 ,
further comprising means for analyzing metrics associated
with the particular type of serverless function invocation ,
wherein the determined rate for scaling of the number of
serverless functions is determined in view of the analyzed
metrics .
[0108] Example 36 is the apparatus of Example 30 ,
Example 31 , Example 32 , Example 33 , Example 34 , or
Example 35 , wherein the metrics correspond to an idle time
of the number of serverless functions .
[0109] Example 37 is the apparatus of Example 30 ,
Example 31 , Example 32 , Example 33 , Example 34 , or
Example 35 , or Example 36 , wherein the particular type of
serverless function invocation corresponds to a request to
perform a function using a serverless function .
[0110] Example 38 is the apparatus of Example 30 ,
Example 31 , Example 32 , Example 33 , Example 34 , or
Example 35 , Example 36 , or Example 37 , wherein the
particular type of serverless function invocation corresponds
to a scaling command .
[0111] Unless specifically stated otherwise , terms such as
" receiving , " " routing , " " updating , " " providing , " or the like ,
refer to actions and processes performed or implemented by
computing devices that manipulates and transforms data
represented as physical (electronic) quantities within the
computing device's registers and memories into other data
similarly represented as physical quantities within the com
puting device memories or registers or other such informa
tion storage , transmission or display devices . Also , the terms
" first , " " second , " " third , " " fourth , ” etc. , as used herein are
meant as labels to distinguish among different elements and
may not necessarily have an ordinal meaning according to
their numerical designation .
[0112] Examples described herein also relate to an appa
ratus for performing the operations described herein . This
apparatus may be specially constructed for the required
purposes , or it may comprise a general purpose computing
device selectively programmed by a computer program
stored in the computing device . Such a computer program
may be stored in a computer - readable non - transitory storage
medium .
[0113] The methods and illustrative examples described
herein are not inherently related to any particular computer
or other apparatus . Various general purpose systems may be
used in accordance with the teachings described herein , or it
may prove convenient to construct more specialized appa
ratus to perform the required method steps . The required
structure for a variety of these systems will appear as set
forth in the de ription above .
[0114] The above description is intended to be illustrative ,
and not restrictive . Although the present disclosure has been
described with references to specific illustrative examples , it
will be recognized that the present disclosure is not limited
to the examples described . The scope of the disclosure
should be determined with reference to the following claims ,
along with the full scope of equivalents to which the claims
are entitled .
[0115] As used herein , the singular forms “ a ” , “ an ” and
“ the ” are intended to include the plural forms as well , unless
the context clearly indicates otherwise . It will be further
understood that the terms “ comprises ” , “ comprising ” ,
“ includes ” , and / or " including ” , when used herein , specify
the presence of stated features , integers , steps , operations ,

elements , and / or components , but do not preclude the pres
ence or addition of one or more other features , integers ,
steps , operations , elements , components , and / or groups
thereof . Therefore , the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting .
[0116] It should also be noted that in some alternative
implementations , the functions / acts noted may occur out of
the order noted in the figures . For example , two figures
shown in succession may in fact be executed substantially
concurrently or may sometimes be executed in the reverse
order , depending upon the functionality / acts involved .
[0117] Although the method operations were described in
a specific order , it should be understood that other operations
may be performed in between described operations ,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing
[0118] Various units , circuits , or other components may be
described or claimed as “ configured to ” or “ configurable to ”
perform a task or tasks . In such contexts , the phrase " con
figured to ” or “ configurable to ” is used to connote structure
by indicating that the units / circuits / components include
structure (e.g. , circuitry) that performs the task or tasks
during operation . As such , the unit / circuit / component can be
said to be configured to perform the task , or configurable to
perform the task , even when the specified unit / circuit / com
ponent is not currently operational (e.g. , is not on) . The
units / circuits / components used with the " configured to ” or
" configurable to ” language include hardware — for example ,
circuits , memory storing program instructions executable to
implement the operation , etc. Reciting that a unit / circuit /
component is configured to ” perform one or more tasks , or
is “ configurable to ” perform one or more tasks , is expressly
intended not to invoke 35 U.S.C. 112 , sixth paragraph , for
that unit / circuit / component . Additionally , " configured to " or
“ configurable to ” can include generic structure (e.g. , generic
circuitry) that is manipulated by software and / or firmware
(e.g. , an FPGA or a general - purpose processor executing
software) to operate in manner that is capable of performing
the task (s) at issue . “ Configured to ” may also include
adapting a manufacturing process (e.g. , a semiconductor
fabrication facility) to fabricate devices (e.g. , integrated
circuits) that are adapted to implement or perform one or
more tasks . “ Configurable to ” is expressly intended not to
apply to blank media , an unprogrammed processor or unpro
grammed generic computer , or an unprogrammed program
mable logic device , programmable gate array , or other
unprogrammed device , unless accompanied by programmed
media that confers the ability to the unprogrammed device
to be configured to perform the disclosed function (s) .
[0119] The foregoing description , for the purpose of
explanation , has been described with reference to specific
embodiments . However , the illustrative discussions above
are not intended to be exhaustive or to limit the invention to
the precise forms disclosed . Many modifications and varia
tions are possible in view of the above teachings . The
embodiments were chosen and described in order to best
explain the principles of the embodiments and its practical
applications , to thereby enable others skilled in the art to
best utilize the embodiments and various modifications as
may be suited to the particular use contemplated . Accord

US 2021/0367868 A1 Nov. 25 , 2021
10

2

ingly , the present embodiments are to be considered as
illustrative and not restrictive , and the invention is not to be
limited to the details given herein , but may be modified
within the scope and equivalents of the appended claims .

1. A method comprising :
receiving a plurality of serverless function invocations ;
determining a first quantity of serverless function invo

cations of the plurality of serverless function invoca
tions that corresponds to a first type of serverless
function invocation ;

scaling , by a processing device , a first number of server
less functions at a first rate in view of the first quantity
of serverless function invocations corresponding to the
first type of serverless function invocation ;

determining a second quantity of serverless function
invocations of the plurality of serverless function invo
cations that corresponds to a second type of serverless
function invocation ; and

scaling a second number of serverless functions at a
second rate in view of the second quantity of serverless
function invocations corresponding to the second type
of serverless function invocation .

2. The method of claim 1 , wherein scaling the first number
or the second number of serverless functions comprises
invoking one or more containers for execution of functions
associated with the plurality of serverless function invoca
tions .

3. The method of claim 1 , wherein scaling the first number
or the second number of serverless functions comprises
removing one or more containers for execution of functions
associated with the plurality of serverless function invoca
tions .

4. The method of claim 1 , wherein scaling the first number
of serverless functions comprises at least one of invoking
one or more containers or removing one or more containers
for execution of functions associated with the plurality of
serverless function invocations at the first rate .

5. The method of claim 1 , wherein the first rate is
determined in view of a quality - of - service (QoS) parameter
associated with the plurality of serverless function invoca
tions .

6. The method of claim 1 , further comprising :
analyzing metrics associated with the first type of server

less function invocation , wherein the first rate for
scaling of the first number of serverless functions is
determined in view of the analyzed metrics .

7. The method of claim 6 , wherein the metrics correspond
to an idle time of the first number of serverless functions .

8. The method of claim 1 , wherein the first type of
serverless function invocation corresponds to a request to
perform a function using a serverless function .

9. The method of claim 1 , wherein the second type of
serverless function invocation corresponds to a scaling com
mand .

10. A system comprising :
a memory ; and
a processing device , operatively coupled to the memory ,

to :

receive one or more types of serverless function invo
cations ;

in response to receiving the one or more types of
serverless function invocations , invoke one or more
serverless functions , wherein the one or more types
of serverless function invocations comprises a trig
ger function ;

receive metrics from the one or more serverless func
tions :

generate scaling heuristics for scaling of a number of
serverless functions in view of the received metrics ;

determine a rate to invoke the number of serverless
functions in view of the scaling heuristics ; and

invoke the number of serverless functions at the deter
mined rate .

11. The system of claim 10 , wherein the metrics corre
spond to a latency of the one or more serverless functions .

12. The system of claim 10 , wherein the metrics corre
spond to an idle time of the one or more serverless functions .

13. (canceled)
14. (canceled)
15. The system of claim 10 , wherein to scale the number

of serverless functions in view of the scaling heuristics , the
processing device is further to :

determine a rate to remove the number of serverless
functions in view of the scaling heuristics ; and

remove the number of serverless functions at the deter
mined rate .

16. The system of claim 10 , wherein the one or more
serverless functions correspond to containers .

17. The system of claim 10 , wherein the one or more
serverless functions correspond to virtual machines .

18. A non - transitory computer - readable storage medium
including instructions that , when executed by a processing
device , cause the processing device to :

determine corresponding quantities of one or more types
of serverless function invocations ;

determine , by the processing device , whether the corre
sponding quantities of at least one of the one or more
types of serverless function invocations satisfies a
threshold ;

in response to determining that the corresponding quan
tities of the at least one of the one or more types of
serverless function invocations satisfies the threshold ,
identify a first rate to scale a number of serverless
functions ; and

scale the number of serverless functions in view of the
first rate .

19. The non - transitory computer - readable storage
medium of claim 18 , wherein the processing device is
further to :

in response to determining that the corresponding quan
tities of the at least one of the one or more types of
serverless function invocations does not satisfy the
threshold , identify a second rate to scale a number of
serverless functions ; and

scale the number of serverless functions in view of the
second rate .

20. The non - transitory computer - readable storage
medium of claim 19 , wherein the first rate is greater than the
second rate .

2

.

