PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/36487
GO6F A2) L

(43) International Publication Date: 22 June 2000 (22.06.00)

(21) International Application Number: PCT/US99/29645 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 13 December 1999 (13.12.99)

(30) Priority Data:

09/216,017 Us

16 December 1998 (16.12.98)

(71) Applicant: XSTREAM LOGIC, INC. [US/US]; 750 University
Avenue, Suite 270, Los Gatos, CA 95032 (US).

(72) Inventors: NEMIROVSKY, Mario, D.; 19750 Northampton
Drive, Saratoga, CA 95070 (US). NEMIROVSKY, Adolfo,
M.; 1044 Alderbrook Lane, San Jose, CA 95129 (US).
SANKAR, Narendra; 450 Oak Grove Drive, Apt. 313, Santa
Clara, CA 95054 (US).

(74) Agent: BOYS, Donald, R.; P.O. Box 187, Aromas, CA 95004
(US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: PRIORITIZED INSTRUCTION SCHEDULING FOR MULTI-STREAMING PROCESSORS

(57) Abstract

A multi-streaming processor has multiple streams for processing multiple threads, and an instruction scheduler including a priority
record of priority codes for one or more of the streams. The priority codes determine in some embodiments relative access to resources as
well as which stream has access at any point in time. In other embodiments priorities are determined dynamically and altered on-the—fly,
which may be done by various criteria, such as on—chip processing statistics, by executing one or more priority algorithms, by input from
off—chip, according to stream loading, or by combinations of these and other methods. In one embodiment a special code is used for
disabling a stream, and streams may be enabled and disabled dynamically by various methods, such as by on—chip events, processing
statistics, input from off-chip, and by processor interrupts. Some specific applications are taught, including for IP-routers and digital signal

Processors.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
T
UA
UG
us
Uz
VN
YU
YALS

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/36487 PCT/US99/29645

10

15

20

25

30

Prioritized Instruction Scheduling for
Multi-Streaming Processors

By Inventor(s)
Mario D. Nemirovsky, Adolfo M. Nemirovsky, and Nerendra Sankar

Field of the Invention

The present invention is in the field of digital microprocessors, and pertains
more particularly to such devices capable of operating with multiple processing

streams, which are termed multi-streaming processors in the art.

Background of the Invention

Multi-streaming processors capable of processing multiple threads are known
in the art, and have been the subject of considerable research and development. The
present invention takes notice of the prior work in this field, and builds upon that
work, bringing new and non-obvious improvements in apparatus and methods to the
art. The inventors have provided with this patent application an Information
Disclosure Statement listing a number of published papers in the technical field of
multi-streaming processors, which together provide additional background and context
for the several aspects of the present invention disclosed herein.

For purposes of definition, this specification regards a stream in reference to a
processor as principally rardware structure on the processor capable of supporting and
processing an instruction thread. A fthread is defined by software or application
context. For example, a multi-streaming processor implemented as a CPU for
operating a desktop computer may simultaneously process threads from two or more
applications, such as a word processing program and an object-oriented drawing
program. As another example, a multi-stream-capable processor may operate a
machine without regular human direction, such as a router in a data-packet network.

In this context there may be, for example, one or more applications (code sets) for

WO 00/36487 PCT/US99/29645

10

15

25

30

-2-
processing and forwarding data packets on the network, and another for such as
quality-of-service (QoS) negotiation with other routers and servers connected to the
network. The nature of data received for processing, together with pre-programmed
scheduling for internal functions will determine the calling and serving of application
routines.

In either of the above cases the maximum capability of the processor to process
multiple #hreads remains fixed at the number of hardware-limited streams. A multi-
streaming processor operating a single thread therefore operates as a single-stream
processor.

As described above and in the papers provided by IDS in the present case,
superscalar processors are also known in the art. This term refers to processors that
have more than one functional unit implemented on the processor chip, and an ability
to issue instructions to individual ones of the functional units available. Most CPU
processors built today have more than a single functional unit. Some have many such
units, including such as Floating Point units, Integer Units, Logic Units, Branch
Prediction units, Load/Store units and so forth. Multi-streaming superscalar processors
are known in the art as well.

The inventors have determined that there is a significantly neglected field in the
art, relative to scheduling instructions from streams to functional resources, whether
there are one or more functional units. The issue is priority, and which stream is to be
given priority to the functional resources. This is an issue in all multi-streaming
processors, and can be a more complicated issue in superscalar processors running
multiple instruction threads. In most development in the art, scheduling has been
developed to maximize processor efficiency. The inventors have discovered that rapid
extension of digital processing into growing technology fields has created a critical
need for dynamic prioritizing of thread processing and access to processor resources.

In many application mixes it has become clear to the inventors that application
criticality is a dominant issue, rather than processor utilization, although both need to
be considered. Up to the present most attention has been given to processor

utilization. As an example, in most real applications for multi-streaming processors, as

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-3-
opposed to theoretical, or academic exercises, there are real-time requirements.
Moreover, the criticality of some application threads may change relative to others
during run time, depending on a number of issues, and the unsophisticated means of
sharing and scheduling presently available in the art do not address real-world issues.

Accordingly, what is clearly needed in the art is apparatus and methods for
more sophisticated and dynamic scheduling and prioritizing of tasks and threads for
multi-streaming processors, including superscalar processors. The present invention

teaches such apparatus and methods, which are disclosed below in enabling detail.

Summary of the Invention

In a preferred embodiment of the present invention a multi-streaming processor
is provided, comprising a plurality of streams for streaming one or more
instruction threads; a set of functional resources for processing instructions from
streams; an instruction scheduler for managing access for the streams to the functional
resources; and a priority record of priority codes associated with streams. At any point
in time the instruction scheduler manages access for a stream to the functional
resources according to the priority record.

In some embodiments the priority record comprises one or more priority codes
associated with at least one of the streams, and the priority record is static and not
varying. In some other embodiments the priority record is varied in a consistently
repeating manner. In some embodiments the processor has a priority controller
coupled to the priority record, wherein the priority controller alters the one or more
priority codes dynamically during processing. Alteration of priority codes may be
accomplished at least in part in a manner determined by changes in on-chip processing
statistics. ~ Determination of priority codes may also, in some embodiments, be
accomplished at least in part off-chip, and communicated to the priority controller. In
yet other embodiments the priority controller alters priority codes according to instant

states of stream instruction loading.

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-4-

In one embodiment of the invention a particular priority code effectively
disables a stream, preventing access for that stream to functional resources. In some
cases the priority controller alters the priority record to enable and disable a stream in
response to on-chip events, processing statistics, or external input. In some cases
according to a processor interrupt.

In yet other embodiments of the invention the processor further comprises a
tie-breaker function, the tie-breaker resolving access to functional resources for two or
more streams having equal priority in the priority record.

In another aspect of the invention a multi-streaming processor is provided,
comprising a plurality of streams for streaming a plurality of instruction threads; a set
of functional resources for processing instructions from stream resources; a fetch unit
for fetching instructions to the streams; an instruction scheduler for managing access
for streams to the functional resources; a priority record of priority codes associated
with streams; and a priority controller dynamicaily determining priorities and altering
the priority record during processing.

In this aspect as well, alteration of the priority record may be accomplished at
least in part in a manner determined by on-chip processing statistics. And in some
embodiments alteration of the priority record may be accomplished at least in part off-
chip, and communicated to the priority controller. In some embodiments a particular
priority code may be used to effectively disable a stream, preventing access for that
stream to functional resources. Enabling and disabling may be done in response to on-
chip events, processing statistics, or external input. In some cases according to a
processor interrupt. In some cases priority may be altered according to stream
instruction loading. In this as well as other aspects a tie-breaker function may be
provided, the tie-breaker resolving access to functional resources for two or more
streams having equal priority in the priority record.

According to another aspect of the invention a method for processing
instructions from streams by priority in a multi-streaming processor is provided,
comprising steps of (a) associating priority codes with one or more of the streams and

storing the codes in a priority record; (b) checking priority codes in the priority record

WO 00/36487 PCT/US99/29645

10

15

25

30

-5-
by an instruction scheduler during processing; and (c) managing access for streams to
functional resources preferentially based on the priority codes. The priority codes in
the priority record in this method may be static and not varying, or varied in a
consistently repeating manner.

In some embodiments of this method there is a further step for altering the
priority codes in the priority record dynamically during processing by a priority
controller coupled to the priority record. The alteration of priority codes may be
accomplished at least in part in a manner determined by changes in on-chip processing
statistics, or accomplished at least in part off-chip, and communicated to the priority
controller.

In some embodiments of the invention a particular priority code effectively
disables a stream, preventing access for that stream to functional resources.

Enabling and disabling may be in response to on-chip events, processing
statistics, or external input. In some cases according to a processor interrupt. Priority
codes may also be altered according to instant states of stream instruction loading. In
this method a step may also be provided for a tie-breaker function, the tie-breaker
resolving access to functional resources for two or more streams having equal priority
in the priority record.

In yet another aspect of the invention a method is provided for processing
instructions from streams by priority in a multi-streaming processor, comprising steps
of (a) associating priority codes with one or more of the streams and storing the codes
in a priority record; (b) checkingbpriority codes in the priority record by an instruction
scheduler during processing; (c) managing access for streams to functional resources
preferentially based on the priority codes; and (d) dynamically altering priority codes in
the priority record by a priority controller during processing.

In this method, in step (d), the alteration of priority codes may be accomplished
at least in part in a manner determined by changes in on-chip processing statistics.
Also in this method determination of priority codes may be accomplished at least in
part off-chip, and communicated to the priority controller. In this method as well a

special priority code may be used to effectively disable a stream, preventing access for

WO' 00/36487 PCT/US99/29645

10

15

25

-6-
that stream to functional resources. Enabling and disabling may be done in response to
on-chip events, processing statistics, or external input. In some cases according to a
processor interrupt.

Further in this method priority may be altered according to instant states of
stream instruction loading. Further yet in this method a tie-breaker function may be
provided, the tie-breaker resolving access to functional resources for two or more
streams having equal priority in the priority record.

In yet another aspect of the invention a computer is provided, comprising a
memory for storing application programs and data; and a multi-streaming processor
coupled to the memory and having a plurality of streams for processing a plurality of
mstruction threads, a set of functional resources for processing instructions from the
streams, an instruction scheduler for managing access for the streams to the functional
resources, and a priority record of priority codes associated with streams. At any point
in time the instruction scheduler manages access for a stream to the functional
resources according to the priority record.

In some embodiments of this computer the priority record comprises one or
more priority codes associated with at least one of the streams, and the priority record
is static and not varying. In other the priority record is varied in a consistently
repeating manner. Also in some embodiments the priority record comprises one or
more priority codes associated with one or more of the streams, and the processor
further comprises a priority controller coupled to the priority record, wherein the
priority controller alters the one or more priority codes dynamically during processing.
In some cases the alteration of priority codes may be accomplished at least in part in a
manner determined by changes in on-chip processing statistics. In the same
embodiments and others determination of priority codes may be accomplished at least
in part off-chip, and communicated to the priority controller.

In some embodiments of this computer a particular priority code effectively
disables a stream, preventing access for that stream to functional resources. In some

cases the priority controller alters the priority record to enable and disable a stream in

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-7-
response to on-chip events, processing statistics, or external input. In some cases
according to a processor interrupt.
The priority controller may also alter priority codes according to instant states of
stream instruction loading. In some cases there is tie-breaker function, the tie-breaker
resolving access to functional resources for two or more streams having equal priority
in the priority record.

In yet another aspect of the invention a computer is provided, comprising a
memory for storing application programs and data; and a multi-streaming processor
coupled to the memory and having a plurality of streams for streaming a plurality of
instruction threads, a set of functional resources for processing instructions from
stream resources, an instruction scheduler for managing access for the streams to the
functional resources, and a priority record of priority codes associated with the
streams. A priority controller dynamically determines priority codes during processing
and alters the priority record accordingly.

In some embodiments this computer alteration of the priority record is
accomplished at least in part in a manner determined by on-chip processing statistics.
In others alteration of the priority record is accomplished at least in part off-chip, and
communicated to the priority controller. In some embodiments a particular priority
code effectively disables a stream, preventing access for that stream to functional
resources. The priority controller may alter the priority record to enable and disable a
stream in response to on-chip events, processing statistics, or external input. In some
cases according to a processor ihterrupt.

Further, the priority controller may alter priority codes according to instant
states of stream instruction loading. In this computer there may also be provided a tie-
breaker function, the tie-breaker resolving access to functional resources for two or
more streams having equal priority in the priority record.

In yet another aspect of the invention a packet-data router for a packet data
network is provided, comprising at least one port for connecting to the packet-data
network; a memory for storing application code; and a multi-streaming processor

coupled to the memory and having a plurality of streams for streaming a plurality of

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-8-
instruction threads, a set of functional resources for processing instructions from
stream resources, an instruction scheduler for managing access for the streams to the
functional resources, and a priority record of priority codes associated with the
streams. A priority controller dynamically determines priority codes during processing
and alters the priority record accordingly.

In yet another aspect a digital signal processor is provided, comprising a
plurality of streams for streaming a plurality of signals as separate threads; a set of
functional resources for processing signals; a scheduler for managing access for the
signals to the functional resources; and a priority record of priority codes associated
with the streams. A priority controller dynamically determines priority codes during
processing and alters the priority record accordingly.

In the several embodiments of the invention described and taught in enabling
detail below, for the first time in the computer arts a multi-streaming processor is
provided wherein access for streams to functional processor resources is selectively
managed, and wherein priorities for streams to access functional resources may be
dynamically managed, bringing increased processing power, more efficient use of

resources, and, in particular, attention to real-time processing needs.

Brief Description of the Drawings

Fig. 1 is a diagram illustrating a prioritized instruction scheduler's role in
allocating threads to processor resources according to an embodiment of the present
invention.

Fig. 2 is a block diagram illustrating a system architecture for a multi-streaming
processor, including a prioritized instruction scheduler according to an embodiment of

the present invention.

WO 00/36487 PCT/US99/29645

10

25

-9.

Description of the Preferred Embodiments

A multi-streaming processor is a processor having resources adapted to
execute multiple instruction streams in parallel from multiple available program
threads. The present invention in one aspect comprises an instruction scheduler in
combination with a priority controller that prioritizes and coordinates efficient and
timely allocation of concurrent streams to one or more processing resources, including
functional units.

In a preferred embodiment of the present invention, each stream is assigned a
priority, representing the associated stream's claim to processing resources relative to
competing instruction streams. Priorities may be implemented by a single number
representing the associated stream's relative claim on all processor resources, or by a
list containing priorities for each of several resources. In addition priorities can include
degree of access to available resources, and limitations to access among available
resources. Logic for determining and issuing priorities in various embodiments of the
invention may be implemented in a variety of ways, as indicated in descriptions below.

In some embodiments, priorities may be fixed by stream, but access to
resources may be managed in addition to priority access. In others priority by stream
may vary, and access may be dynamically managed as well. Criteria for both access
and priority determination may be from varied sources as well; in some cases according
to on-chip statistics, such as current cache and memory requests, functional unit
utilization or branch prediction, émong other things; in others according to data arrival
and availability, in others by input from off-chip, and in combinations of these and
other criteria. In preferred embodiments priority issue logic controls and manages
each stream's access to the processor's functional resources in accordance with current
priority. Also in preferred embodiments priority control and instruction issue functions
can be dynamically changed to assure that each thread is serviced in timely fashion,
while also efficiently managing utilization of processor resources within the restraints

of real priorities.

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-10 -

Fig. 1 is a diagram illustrating flow of instructions and exemplary operation of
a multi-streaming processor 14 in an embodiment of the invention, including a
prioritizing instruction scheduler 5 allocating streams to available processor functional
resources 10-13. Thread 1, thread 2 and thread 3 represent in this example programs
stored in memory that are to be executed as concurrent processor streams. Threads
may come from a variety of sources, such as, but not limited to separate application
programs, portions of a single multi-threaded program, or instruction threads fetched
as a result of interrupt service routines. The processor in this example fetches and
decodes instructions from active threads 1 and 2, gathering a pool of streams 4
containing instructions ready to execute. Thread 3 in this example is treated as
inactive. Scheduler 5 allocates streams to resources 10 through 13.

Each of the active streams has an associated instant priority, shown as priority
7, associated with the stream running thread 1, and priority 8, associated with the
stream running thread 2. The priority of each stream determines its instant access to
resources 10-13, and, in an additional feature of the invention, also determines relative
claim to resources 10 - 13. Priority issue network 6 uses priorities 7 and 8 to assign
instructions from each prioritized stream to resources 10 - 13 according to one or
more mechanisms.

A priority control unit 9 monitors priority status for streams, and in some cases
determines or amends priority according to accessible criteria, including for example, a
history of processing activity, such as cache and memory requests and utilization of
resources, varying priorities dyhamica]ly, as frequently in some embodiments as each
processor cycle, as necessary to meet the timing requirements of threads and optimize
the utilization of processing resources. In sophisticated embodiments, logic in priority
control unit 9 may switch among scheduling mechanisms dynamically, depending on
the requirements of threads 1 - 3.

Fig. 2 is a block diagram illustrating architecture in a preferred embodiment of
multi-streaming processor 14 of Fig. 1. Solid lines represent paths of instructions and
data; dotted lines represent control paths. Memory 201 in this example contains

instructions for one or more threads, which may be programs or portions of programs

WO 00/36487 PCT/US99/29645

10

15

25

30

-11-

to be executed concurrently in the processor. The processor reads instructions from
multiple threads into instruction cache 202 and data associated with the instructions
into data cache 211. Typically, under the control of multi-threaded fetch unit 203,
instructions from instruction cache 202 are transferred into multi-threaded fetch unit
203, where they are stored in prefetch buffers, decoded and placed in one or more
queues. A single queue may be shared among streams or partitioned into units for
each stream in various embodiments. In some cases a queue may be dedicated to one
or a set of resources, or any combination of streams and resources.

The net effect of the queues is that there are concurrent streams of instructions
from which eligible instructions may be issued to functional resources. Each stream
that the processor is equipped to execute has a context frame containing the program
counter and register file for that stream. A thread is made active by loading an
available context frame with the thread's program counter address and register values
and by assigning it an active priority. There may be only a single thread to be executed,
in which case there is a single stream of instructions to execute. When there are more
active threads than streams available to execute threads, a number of threads up to the
available number of context frames are made active and the remaining threads remain
temporarily inactive. It is typically a function of an operating system to assign threads
to streams of a multi-streaming processor.

Instructions from multiple streams may be interleaved for execution on a cycle-
by-cycle basis, or less frequently, for example, during long latency memory operations.

Instruction scheduler 5 determines the order in which instructions from multiple
streams are executed and dispatches selected instructions to priority issue network 6.
Instructions that load and store from memory may be monitored by instruction
scheduler 5 so that operation of memory 201, data cache 211, instruction cache 202,
and other resources may be regulated as well as functional units 207 through 210.

Within instruction scheduler 5, instructions are temporarily stored in
reservation stations and evaluated for dependencies, so that instructions that depend on
the prior execution of other instructions are delayed appropriately. Priority issue

network 6 assigns each instruction to appropriate functional units 207 - 210 for

WO 00/36487 PCT/US99/29645

10

15

20

25

-12-
execution. Functional units may comprise one or more integer units 208 and may
include branch units 207, floating point units 209 and load/store units 210. When
multiple functional units of any type are available, instruction scheduler 204 and
priority issue network 206 manage the allocation of instructions to any available
functional unit. Instruction scheduler 5 contains a priority record, which may be a file
or a set of registers, with priorities recorded for one or more of the streams. There may
therefore be fewer priorities than streams, with streams that lack active priority being
handled at a default level, or every stream may have a specific priority.

Whenever there are multiple streams there must be a mechanism for selecting
which stream is allowed access to resources. Any means of managing access among
streams may be considered broadly a priority scheme. It is common in the art, for
example, to assign static priority in descending order to streams. In this scheme one
stream always has the highest priority, and the other streams lesser priority in
descending order. In the static case for four streams labeled A, B, C, and D, Table 1
below is the priority table, with O indicating highest priority, 1 next lower, 2 next

lower, and 3 indicating the lowest priority.
Table I:

l Stream A Stream B Stream C Stream D

Priority | 0 1 2 3

In a static priority scheme as indicated in Table I, stream A always has the
highest priority, and waiting instructions will be issued from stream A to functional
units until there are no waiting instructions in stream A. At that point in time stream
B, having next lower priority to stream A, is granted access to functional units and,
and instructions are issued from stream B until there are no instructions waiting for

stream B. It may be, of course, that there are no instructions in stream B when access

WO 00/36487 PCT/US99/29645

10

15

20

-13-
shifts to stream B, in which case access goes to stream C, and so on. The constraint is
that the priority for each stream remains constant, that is, static.

It has been found in the art that in many cases, especially as stream plurality
increases, the static scheme causes problems, such as starvation of threads assigned to
streams of lower priority. In reaction, to promote fairness in access to functional
resources, a round robin scheme has been proposed and implemented in the art
wherein priority is shifted regularly among streams. Such a round robin scheme is

represented in Table II below:

Table I1:
Stream A Stream B Stream C Stream D
T1 0 1 2 3
T2 1 2 3 0
T3 2 3 0 1
T4 3 0 1 2

The rows in Table II represent time slices. At time T1 the priorities in that row
apply until time T2. At time T2 the priorities in that row apply, and so on. In the
round robin scheme, priority rotates at specific time intervals as shown, and at least
theoretically, each stream is granted equal access to the functional resources.

The inventors have discovered in their work that there are many and significant
drawbacks to the static and round robin schemes with unlimited resource access, as
described immediately above for prior art devices. These techniques simply do not
address changing conditions, real-time demands, and the structural nature of different
threads in their need for predominantly one class or another of resources. More needs
to be done. The inventors have accordingly provided apparatus and methods for

significantly improving priority scheduling and issue of instructions.

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-14 -
A closer examination of the matter of priority, broadly addressed, reveals that
there are more issues than simple priority. These issues may, in one view, be stated as

follows:

1. Which stream is to be granted access to functional resources?
2. How much access is to be granted?
3. Which stream is to have access next ?

4. What happens in case of a tie?

In present and conventional systems these questions are at best only very
poorly addressed, if at all. In various embodiments of the present invention all of these
questions (issues) are addressed, and in a variety of ways for a variety of purposes.

In some embodiments of the present invention a single number is used, as to
represent a stream's priority and that number is used by the scheduler to allocate access
to resources such as, but not limited to, functional units, memory and caches. In other
embodiments, a list of numbers stores multiple priorities for a stream, each number
representing the associated stream's priority claim to a class of resources, a class being
a set of integer units, floating point units, or the like. In still other embodiments a
stream is granted access as the instant highest priority stream, but limited in that access
to a single functional unit.

In another embodiment a list of numbers for each stream stores a stream's claim
to individual resources. For example, in a processor with multiple integer and floating
point units, a priority number can be used in connection with each integer unit and
each floating point unit. More complex representations of priority are used when a
finer-grained control over resources is needed to satisfy more demanding timing
requirements or assure more complete utilization of resources.

Specifically, in embodiments of the present invention, perturbations of round
robin and static schemes are still used for moving a pointer among streams. Much
more sophisticated mechanisms for priority are implemented however than in the prior

art. For example, in an embodiment of the present invention a static priority may be

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-15-
assigned among four streams, as in Table 1 above. The mechanism for issuing
nstructions, however, may limit access for instructions from the streams to one or a
specific combination of classes of resources. This selectivity of classes of resources
may be a property of the priority for just one stream, the highest priority stream for
example, or for more than one, or for all of the streams, with access to resources
outside the limited class allowed under special conditions.

In other embodiments of the invention two or more streams may have the same
priority, but different access rights to functional resources, including exclusivity or
some amount of overlap in access. In this unique scheme there may be conflict
requiring a tie-breaker, and a tie-breaker unit is provided for the purpose of
determining access in case of a tie, which may be according to recent processing
history on the chip (who had last access?), or by other criteria as conditions may
dictate. For example, in case of a tie, access may be partitioned equally among tied
streams.

In conventional processors interrupts (for those processors and applications
where interrupts are used) are prioritized. That is, the nature of an interrupt is to stop
the processor from what it is currently doing and to vector its activity to an interrupt
service routine. In embodiments of the present invention, in cases where an interrupt
service routine must be serviced within a small number of cycles, it may be given a high
priority assuring that all necessary resources are available to it. However, normal
threads may have, in some cases, more stringent timing requirements than that of
certain interrupts, in which case they may be assigned higher priorities than interrupts.

Beyond the new and novel features of access rights as a part of priorify and tie-
breaking logic, in specific embodiments of the present invention a powerful new
concept 1S brought to the art: Dynamic determination and management of priority in
multi-streaming processors.

In embodiments of the invention priority control unit 9 determines the context
wherein priorities are interpreted by instruction scheduler 5 to allocate instructions.
For example, the stream with the highest priority may always take precedence over a

stream with a lower priority. Alternatively, the scheduler may guarantee minimal

WO 00/36487 PCT/US99/29645

10

15

20

25

-16 -
access to all streams, but increase access in proportion to a stream's priority. Round
robin or random scheduling may be used, as described above, with a number of
processor cycles allocated in turn to each stream varied according to the stream's
priority. That is, in a conventional limited round robin scheme, streams are selected in
order, and each stream selected is allocated the same attention or resources. In
embodiments of the present invention, however, streams are serviced in a round robin
order, but each stream is allocated resources according to instant priority.

As an example of priority management, as described above, each stream
accessed may be allocated access to all resources for a number of cycles determined by
that stream's instant priority. In another embodiment, each stream accessed may be
allocated access to functional units according to instant priority. For example, a
stream may, in a static scheme, be allowed to use certain functional units, but as its
priority changes, it will be allowed access to more or fewer of available functional
units. Importantly, the issue order and access rights may be dynamically varied by
priority controller 9.

Priorities in some embodiments may be interpreted as fractions representing a
stream's desired average utilization rate of one or more resources. In particularly
sophisticated embodiments, processors may be provided with more than one of the
aforementioned scheduling methods in combination, wherein priority control unit 9
may dynamically choose among methods or use multiple methods in various
combinations. In other embodiments, scheduling methods and individual priorities
may also be chosen under software control. When software does not specify a
method, priority control unit 9 may default to a conventional method, such as round
robin or static scheduling.

When a list of numbers is used for each priority, priority controller 9 manages
each class of resources or each resource individually. Conflicting demands on a
resource or class of resources are resolved by comparing like entries in each stream's
priority list, according to any of the scheduling methods described above, alone or in

combination.

WO 00/36487 PCT/US99/29645

10

15

25

-17-

In some cases, priorities of two or more streams may be identical. In this case
instruction scheduler 5 has a tiebreaker mechanism, as introduced above. The
tiebreaker can resolve conflicts using dynamic or static methods. For example, if
round robin scheduling is used, each stream with identical priority would receive an
equal share of resources. Alternatively, conflicts could be resolved on the basis of
which resources the stream's current instruction requires or the utilization rate of
various resources, or by random scheduling.

Priority control unit 9 also can change any stream's priority. Such changes may
take place as frequently as in a fraction of a processor cycle, or less frequently, for
example each memory cycle, or when long latency memory instructions are issued.
Changes in priorities may be made under software control or in response to conditions
within the processor or other system components. In one embodiment, priority
control unit 9 monitors utilization of one or more processing resources such as
frequency of access to functional units, memory and caches. Priorities are then varied
to optimize throughput of streams or maximal utilization of one or more resources, or
to strike a balance between throughput and utilization. When memory is monitored,
priority may be changed based upon the range of addresses or memory segment being
accessed. In embodiments wherein memory 201 is segmented, memory cycles are
slower than processor cycles and multiple segments may be accessed concurrently,
instruction scheduler 5 may then interleave access to multiple segments to optimize
memory utilization. In an embodiment that monitors two or more resources, priorities
may be set to optimize utilization of one resource or to balance utilization of multiple
resources, and such a balance may be varied dynamically.

In some embodiments, resources such as integer units 208 or floating point
units 209 may be dynamically reconfigured, changing the data path to be more efficient
for certain instructions. For example, an integer unit could be reconfigured between
instructions to either multiply two numbers together or add them. In one such
embodiment, instruction scheduler 5 examines instructions in its reservation stations

and/or in the instruction queue of multi-threaded fetch unit 203 to determine optimal

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-18 -
functional unit configurations and priority issue network 206 performs reconfigurations
as necessary.

In the prior art, processors have used fixed scheduling mechanisms that do not
allow flexible assignment of resources to muitiple program threads. Dynamic
prioritization of streams permits a dynamic configuration of processing resources to
meet the needs of the combination of concurrent streams at any and every point in
time. For example, real-time threads with stringent timing requirements may be given
a higher priority to assure that their requirements are met, while less demanding
streams may be serviced in the background. Moreover, because a priority control unit
can monitor various aspects of processing , such as the content of an instruction cache,
priorities can be varied during execution to achieve processing goals, such as servicing
a stream of incoming data that arrives at a variable rate. Alternatively, at times when
no threads have stringent requirements, scheduling may be reconfigured to keep all
available resources busy, thereby maximizing total processor throughput. By
permitting more efficient uses of resources, a smaller, less expensive processor may be
designed using the present prioritized scheduler than using conventional technology.

In one preferred embodiment of the present invention a unique priority number
is assigned to a stream to disable that stream in the 1ssuing order, until a predetermined
event or set of conditions signals to re-enable the stream. For example, in such an
embodiment a multi-streaming processor having four streams may have five priority
numbers 0-4, wherein priority of zero may be set for a stream, and zero is interpreted
by the system to disable the stréam. Priority 1 is then the lowest priority, 2 the next
higher, and 4 the highest.

There exist many reasons in the art for which it may be desired to disable a
stream, and assignment of the disable priority may be based on any of a variety of
criteria, including availability of data or instructions, input from off-chip, a particular
combination of threads, and so on. In one embodiment a processor interrupt may be
used to enable and disable a stream. In this embodiment a disabled stream may be
signaled to wake up by an interrupt. The priority controller in this embodiment would

modify the priority file to assign a non-zero priority to the disabled (sleeping) stream.

WO 00/36487 PCT/US99/29645

10

15

20

25

-19-

In another embodiment priority may be managed according to stream loading.
In this scheme, thresholds may be set, and as streams fetch available instructions that
are able to be issued, priority is assigned according to the thresholds. The granularity
in such a scheme may be course or fine, as needed.

In the embodiments described priority controller 9 has been described as
managing priority, including access rights and so on, and placing the necessary criteria
in a priority file in instruction scheduler 5. It will be apparent to the skilled artisan that
the table of criteria for priority and access could reside elsewhere, and the priority
control could also be implemented in a number of ways, all within the skill of a
competent engineer having knowledge of the teachings herein. The specific
architecture shown is therefore not limiting.

Further to the above, several mechanisms and criteria for dynamically managing
priority and access have been disclosed as functions of Priority Controller 9. Priority
Controller 9 may be implemented in a variety of ways, and may perform its functions
by a mix of hardware and software techniques. In some embodiments controller 9
may, for example, access registers indexed by counters to ascertain statistics pertaining
to recent processing history, such as use of FP units as opposed to Integer units, and
manage priority rights as a result. In some embodiments the priority controller may
execute one or more code routines (algorithms) for determining priority and access
rights. In still other embodiments the priority controller may be programmable to
some extent, and accept input from off-chip to determine and set priority and access
rights.

The features of the present invention permit improvement in many types of
devices that use multiple streams. For example, modern network routers and switches
are called upon to handle multiple streams or flows of packets of incoming data and
dispatch them to various destinations on the network. Certain network protocols, such
as Asynchronous Transfer Mode, can provide guarantees of services to data flows,
assuring timely forwarding of data through a network device. The present invention
can be used to optimize processing within such a device by, for example, giving higher

priority to threads handling network data than to threads that negotiate quality of

WO 00/36487 PCT/US99/29645

10

15

25

30

-20-
service or reconfigure the paths that data takes through the device. When the quality of
service of each of several data flows may be different, streams with differing priorities
may be used to meet the service guarantees.

In another aspect of the invention processors according to embodiments of the
invention may enhance workstations. Workstations are typically general-purpose
computers that are called upon to handle a wide variety of mixes of concurrent
programs. For example, a workstation may be concurrently playing an MPEG video,
sending data to a printer, responding to typing and other inputs from a user and
running application programs such as a Web browser and a word processing program.
Using the teachings of the present invention in processors for workstations permits
improvements in responding to the varied demands of each stream. For example, the
MPEG video stream can be given high priority access to resources needed for
decoding frames and to video memory, while an interrupt service routine for the
printer is given a priority sufficient to drive the current printer at its maximum printing
rate. Application programs may be given second-level priority to video memory.

In another aspect, robotic devices are known that must respond in real time to
sensors, actuators and control inputs. By partitioning the operating software for such
devices into threads and assigning priorities appropriately, several sets of timing
requirements may be met simultaneously, and robotic devices may be operated more
efficiently with less powerful, and therefore less expensive processors than has been
the case in the current art.

In yet another embodimént of the invention features of the present invention
are implemented in special processors known in the art as Digital Signal Processors
(DSPs), which are special processors for processing what may be termed "natural
data", typically streamed in an analog fashion, by representing the data in a digital
protocol, then processing the data in pre-determined ways. Many such processors are
used for audio processing in telephony systems and other systems utilizing audio
streams. This technology is extended as well into the video realm. In many cases there
exist opportunities in such systems for multi-threading, hence for multi-streaming, and

thence for priority control according to the teachings of the present invention.

WO 00/36487 PCT/US99/29645

10

15

-21-

It is emphasized that there are few, if any, limitations in the types and sizes of
processors that may be improved in functionality by application of the teachings of the
present invention. Small processors with single functional units, such as embedded
controllers for hard-to-reach equipment, can be thus enhanced, if there are multiple
threads that may be processed. Applications extend to special microcontrollers
implemented as ASICs, and to essentially all other sorts of digital processors. Only a
few examples of the many are mentioned here.

It will be apparent to the skilled artisan that many alterations may be made in
embodiments of the invention described within the spirit and scope of the invention.
There are, for example, many ways that hardware functionality may be provided in a
processor, while accomplishing essentially the same purpose or function. Similarly,
there are many ways that software and firmware may be structured by different
programmers, or the same programmer, while still accomplishing essentially the same
purpose or function. Additionally processors according to embodiments of the present
invention may have widely varying architecture regarding such things as number of
stream resources, number of functional units, and the like. Such variations should be
considered within the scope of the invention, and the invention is limited only by the

claims below:

WOV 00/36487 PCT/US99/29645

10

15

20

25

-22-
What 1s Claimed is:

1. A multi-streaming processor comprising:

a plurality of streams for streaming one or more instruction threads:

a set of functional resources for processing instructions from streams;

an instruction scheduler for managing access for the streams to the functional
resources; and

a priority record of priority codes associated with streams;

wherein at any point in time the instruction scheduler manages access for a

stream to the functional resources according to the priority record.

2. The processor of claim | wherein the priority record comprises one or more priority
codes associated with at least one of the streams, and the priority record is static and

not varying.

3. The processor of claim 1 wherein the priority record is varied in a consistently

repeating manner.

4. The processor of claim 1 wherein the priority record comprises one or more priority
codes associated with one or more of the streams, and further comprising a priority
controller coupled to the priority record, wherein the priority controller alters the one

or more priority codes dynamically during processing.

5. The processor of claim 4 wherein the alteration of priority codes is accomplished at

least in part in a manner determined by changes in on-chip processing statistics.

6. The processor of claim 4 wherein determination of priority codes is accomplished at

least in part off-chip, and communicated to the priority controller.

WOV 00/36487 PCT/US99/29645

10

15

20

25

-23-
7. The processor of claim 4 wherein a particular priority code effectively disables a

stream, preventing access for that stream to functional resources.

8. The processor of claim 7 wherein the priority controller alters the priority record to
enable and disable a stream in response to on-chip events, processing statistics, or

external input.

9. The processor of claim 7 wherein the priority controller alters the priority record to

enable and disable a stream in response to a processor interrupt.

10. The processor of claim 5 wherein the priority controller alters priority codes

according to instant states of stream instruction loading.

11. The processor of claim 4 further comprising a tie-breaker function, the tie-breaker
resolving access to functional resources for two or more streams having equal priority

in the priority record.

12, A multi-streaming processor comprising:
a plurality of streams for streaming a plurality of instruction threads;
a set of functional resources for processing instructions from stream resources;
an instruction scheduler for managing access for streams to the functional
resources, |
a priority record of priority codes associated with streams; and
a priority controller dynamically determining priorities and altering the priority

record during processing.

13. The processor of claim 12 wherein the alteration of the priority record is

accomplished at least in part in a manner determined by on-chip processing statistics.

WO 00/36487 PCT/US99/29645

10

15

20

25

-24-
14, The processor of claim 12 wherein alteration of the priority record is

accomplished at least in part off-chip, and communicated to the priority controller.

15, The processor of claim 12 wherein a particular priority code effectively disables a

stream, preventing access for that stream to functional resources.

16. The processor of claim 15 wherein the priority controller alters the priority record
to enable and disable a stream in response to on-chip events, processing statistics, or

external input.

17. The processor of claim 15 wherein the priority controller alters the priority record

to enable and disable a stream according to a processor interrupt.

18. The processor of claim 13 wherein the priority controller alters priority codes

according to instant states of stream instruction loading.

19. The processor of claim 12 further comprising a tie-breaker function, the tie-
breaker resolving access to functional resources for two or more streams having equal

priority in the priority record.

20. A method for processing instructions from streams by priority in a multi-streaming
processor, comprising steps of’ |

(a) associating priority codes with one or more of the streams and storing the
codes in a priority record,

(b) checking priority codes in the priority record by an instruction scheduler
during processing; and

(c) managing access for streams to functional resources preferentially based on

the priority codes.

WO 00/36487 PCT/US99/29645

10

15

25

-25.-
21. The method of claim 20 wherein, in step (a), the priority codes in the priority

record are static and not varying.

22. The method of claim 20 wherein, in step (a), the priority codes in the priority

record are varied in a consistently repeating manner.

23. The method of claim 20 further comprising a step for altering the priority codes in
the priority record dynamically during processing by a priority controller coupled to

the priority record.

24. The method of claim 20 wherein the alteration of priority codes is accomplished at

least in part in a manner determined by changes in on-chip processing statistics.

25. The method of claim 23 wherein determination of priority codes is accomplished at

least in part off-chip, and communicated to the priority controller.

26. The method of claim 20 wherein a particular priority code effectively disables a
stream, preventing access for that stream to functional resources.

27. The method of claim 26 wherein the priority controller alters the priority record to
enable and disable a stream in response to on-chip events, processing statistics, or

external input.

28. The method of claim 26 wherein the priority controller alters the priority record to

enable and disable a stream in response to a processor interrupt.

29. The method of claim 23 wherein the priority controller alters priority codes

according to instant states of stream instruction loading.

WO 00/36487 PCT/US99/29645

10

15

20

25

-26 -
30. The method of claim 20 further comprising a tie-breaker function, the tie-breaker
resolving access to functional resources for two or more streams having equal priority

in the priority record.

31. A method for processing instructions from streams by priority in a multi-streaming
processor, comprising steps of’

(a) associating priority codes with one or more of the streams and storing the
codes in a priority record;

(b) checking priority codes in the priority record by an instruction scheduler
during processing;

(c)) managing access for streams to functional resources preferentially based
on the priority codes; and

(d) dynamically altering priority codes in the priority record by a priority

controller during processing.

32. The method of claim 31 wherein, in step (d), the alteration of priority codes is
accomplished at least in part in a manner determined by changes in on-chip processing

statistics.

33. The method of claim 31 wherein, in step (d), determination of priority codes is

accomplished at least in part off-chip, and communicated to the priority controller.

34, The method of claim 31 wherein a particular priority code effectively disables a

stream, preventing access for that stream to functional resources.

35. The method of claim 34 wherein the priority controller alters the priority record to
enable and disable a stream in response to on-chip events, processing statistics, or

external input.

WOv 00/36487 PCT/US99/29645

10

15

20

25

-27-
36. The method of claim 34 wherein the priority controller alters the priority record to

enable and disable a stream in response to a processor interrupt.

37. The method of claim 31 wherein the priority controller alters priority codes

according to instant states of stream instruction loading.

38. The method of claim 31 further comprising a tie-breaker function, the tie-breaker
resolving access to functional resources for two or more streams having equal priority

in the priority record.

39. A computer comprising:

a memory for storing application programs and data; and

a multi-streaming processor coupled to the memory and having a plurality of
streams for processing a plurality of instruction threads, a set of functional resources
for processing instructions from the streams, an instruction scheduler for managing
access for the streams to the functional resources, and a priority record of priority
codes associated with streams;

wherein at any point in time the instruction scheduler manages access for a

stream to the functional resources according to the priority record.

40. The computer of claim 39 wherein the priority record comprises one or more
priority codes associated with at least one of the streams, and the priority record is

static and not varying.

41. The computer of claim 39 wherein the priority record is varied in a consistently

repeating manner.

42. The computer of claim 39 wherein the priority record comprises one or more

priority codes associated with one or more of the streams, and further comprising a

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-28-
priority controller coupled to the priority record, wherein the priority controller alters

the one or more priority codes dynamically during processing.

43. The computer of claim 42 wherein the alteration of priority codes is accomplished

at least in part in a manner determined by changes in on-chip processing statistics,

44. The computer of claim 42 wherein determination of priority codes is accomplished

at least in part off-chip, and communicated to the priority controller.

45. The computer of claim 42 wherein a particular priority code effectively disables a

stream, preventing access for that stream to functional resources.

46. The method of claim 45 wherein the priority controller alters the priority record to
enable and disable a stream in response to on-chip events, processing statistics, or

external input.

47. The computer of claim 45 wherein the priority controller alters the priority record

to enable and disable a stream in response to a processor interrupt.

48. The computer of claim 42 wherein the priority controller alters priority codes

according to instant states of stream instruction loading.

49. The computer of claim 38 further comprising a tie-breaker function, the tie-
breaker resolving access to functional resources for two or more streams having equal

priority in the priority record.

50. A computer comprising:
a memory for storing application programs and data; and
a multi-streaming processor coupled to the memory and having a plurality of

streams for streaming a plurality of instruction threads, a set of functional resources for

WO 00/36487 PCT/US99/29645

10

15

20

25

30

-29.
processing instructions from stream resources, an instruction scheduler for managing
access for the streams to the functional resources, and a priority record of priority
codes associated with the streams;

wherein a priority controller dynamically determines priority codes during

processing and alters the priority record accordingly.

51. The computer of claim 50 wherein the alteration of the priority record is

accomplished at least in part in a manner determined by on-chip processing statistics.

52. The computer of claim 50 wherein alteration of the priority record is accomplished

at least in part off-chip, and communicated to the priority controller.

53. The computer of claim 50 wherein a particular priority code effectively disables a

stream, preventing access for that stream to functional resources.

54. The computer of claim 53 wherein the priority controller alters the priority record
to enable and disable a stream in response to on-chip events, processing statistics, or

external input.

55. The computer of claim 53 wherein the priority controller alters the priority record

to enable and disable a stream in response to a processor interrupt.

56. The computer of claim 50 wherein the priority controller alters priority codes

according to instant states of stream instruction loading.
7. The computer of claim 50 further comprising a tie-breaker function, the tie-
breaker resolving access to functional resources for two or more streams having equal

priority in the priority record.

58. A packet-data router for a packet data network, comprising;

WO 00/36487 PCT/US99/29645

-30-

at least one port for connecting to the packet-data network;

a memory for storing application code; and

a multi-streaming processor coupled to the memory and having a plurality of
streams for streaming a plurality of instruction threads, a set of functional resources for

5 processing instructions from stream resources,

an instruction scheduler for managing access for the streams to the functional
resources, and a priority record of priority codes associated with the streams;

wherein a priority controller dynamically determines priority codes during

processing and alters the priority record accordingly.

10
59. A digital signal processor, comprising:
a plurality of streams for streaming a plurality of signals as separate threads;
a set of functional resources for processing signals;
a scheduler for managing access for the signals to the functional resources; and
15 a priority record of priority codes associated with the streams;

wherein a priority controller dynamically determines priority codes during

processing and alters the priority record accordingly.

PCT/US99/29645

WO 00/36487

1/2

I 81

30IN0SY

el

[4

90IN0S9Y

90IN0SIY

A/

L1

\

0l

I2[Npayos

<

JIOMIDON
anssy
Arong

uan
[onuo)
Ajaong

sweans
Jo [oog

WO 00/36487

201
\

2/2

Memory

(Not part of processor 14)

\4

202

N

Instruction Cache

PCT/US99/29645

14

A 4

Multi-threaded Fetch Unit

Context
Frame

Prefetch
Buffers

Decode,

Queue

Y

Instruction Scheduler

9

S~

Priority File

Dependency

Reservation

TieBreaker

Priority
Controller

Y

Priority Issue Network

207

Y ' y 208 Y :
Branch Integer / Floating
Units Units Point

Units

A

\

Y

A

y

Load/Store Units

210

¢

Data Cache

<

211

Fig. 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

