(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102952362 B
(45) 授权公告日 2014.12.10

(21) 申请号 20120458184.7
(22) 申请日 2012.11.15

(73) 专利权人 合肥会通新材料有限公司
地址 230088 安徽省合肥市高新区芦花路2号

(72) 发明人 杨亚政 任东方 李荣群 姚其海

(74) 专利代理机构 合肥天明专利事务所 34115
代理人 江贵艳

(51) Int. Cl.
C08L 33/12 (2006.01)
C08L 25/12 (2006.01)
C08L 33/08 (2006.01)
C08K 13/06 (2006.01)
C08K 9/10 (2006.01)
C08K 3/08 (2006.01)

(56) 对比文件
CN 101787164 A, 2010.07.28, 说明书第 [0006]-[0030], [0038]-[0047] 段．
CN 102372904 A, 2012.03.14, 说明书第 [0006]-[0019] 段．

(54) 发明名称
一种金属质感超韧 PAMA 复合材料及其制备方法

(57) 摘要
本发明公开了一种金属质感超韧 PAMA 复合材料，由 PMMA、AS 树脂、相容剂、增韧剂、抗氧剂、润滑剂、增强剂、金属色粉组成，同时公开了其制备方法。本发明的金属质感复合材料是化学稳定性与耐候性优良，并且其机械性能强，具有高光泽、高表面硬度、耐酒精腐蚀、耐刮擦性好等优点，其外观具有同金属喷涂同样的美学效果。
1. 一种金属质感超韧 PMMA 复合材料，其特征在于：由下列组份按重量份组成：
PMMA：40–70 份；
AS 树脂：30–60 份；
相容剂：3–15 份；
增韧剂：5–20 份；
抗氧剂：0.3–1.0 份；
润滑剂：0.2–1.2 份；
增强剂：0.1–1.0 份；
金属色粉：1–3 份；
其中，所述增韧剂是以交联丙烯酸丁酯为核、通过核壳乳液聚合制备的丙烯酸类增韧剂；
所述相容剂为丙烯酸－马来酸酐－苯乙烯三元共聚物、乙烯－丁烯－苯乙烯接枝马来酸酐嵌段共聚物中的一种或者两种；
所述润滑剂为选自 N,N-己撑双硬脂酰胺、褐煤蜡、酰胺蜡或丁基硬脂酸酯中至少一种；
所述金属色粉是通过下面方法有机包覆处理得到：将粒径为 20–50 微米金属颗粒分散到丙烯酸溶液中进行氧化膜去除处理，然后迅速将活化后的金属颗粒超声分散在装有醇类有机物的容器里，控制温度和搅拌速度，并滴加醇类有机物保温一段时间，获得有机膜包覆的复合金属色粉，控制金属色粉粒径为 50–1000 目；
上述复合材料是先将 PMMA、AS 树脂、增韧剂、润滑剂、相容剂、增强剂混合均匀后，加入到双螺杆挤出机中，然后再将金属色粉从其侧喂料处加入，经熔融后挤出，经冷却、风干、切粒所得到。
2. 根据权利要求 1 所述的一种金属质感超韧 PMMA 复合材料，其特征在于：所述 PMMA 的熔体流动速率为 5–20 g/10min。
3. 根据权利要求 1 所述的一种金属质感超韧 PMMA 复合材料，其特征在于：所述 AS 树脂的丙烯酸含量为 20–26％，熔体流动速率为 30–70 g/10min。
4. 根据权利要求 1 所述的一种金属质感超韧 PMMA 复合材料，其特征在于：所述抗氧剂为 2,6–二叔丁基–4–甲基苯酚、双（3,5–二叔丁基–4–羟基苯基）硫醚、四[β–(3,5–二叔丁基–4–羟基苯基)丙酸]季戊四醇酯、三辛酯、三癸酯、三(十二碳醇)酯、三(十六碳醇)酯中至少一种。
5. 根据权利要求 1 所述的一种金属质感超韧 PMMA 复合材料，其特征在于：所述增强剂为选自超细滑石粉、纳米碳酸钙、云母粉或硅灰石中至少一种。
6. 根据权利要求 1 所述的一种金属质感超韧 PMMA 复合材料，其特征在于：所述的金属色粉为金属或者合金的颗粒或薄片经过磨细而制成的颜料，经过有机包覆处理的，使用的金属颗粒铝粉、铜粉、锌粉和不锈钢粉。
一种金属质感超韧 PMMA 复合材料及其制备方法

技术领域
[0001] 本发明属于高分子复合材料技术领域，具体涉及一种金属质感超韧 PMMA 复合材料及其制备方法。

【0002】技术背景
【0003】目前，世界各国科学界和产业界已意识到工程塑料与环境协调发展的重要性，正致力于研究开发具有高性价比的工程塑料材料，提高其使用寿命，充分利用其加工优势，提高材料的抗环境性，如回收料、生物料。从市场的需求来看，塑料材料加工成各种成品后会有各种各样的颜色，其颜色大多采用后期喷涂制成，但人们越来越强的健康意识要求越来越低的 CO₂排放，所以免喷涂的家电、家具越来越被广大环保人士所喜爱。从竞争趋势看，免喷涂技术不仅提高了生产效率，避免了二次加工，节约了劳动力和资源，大大降低了生产成本。

【0004】现有技术主要是高光黑色或彩色塑料材料，仿金属表面的塑料材料比较少见。现有的仿金属材料也存在的金属颜料粒子排列紊乱、流痕无法消除，而且制作过程复杂，表面易划伤，光泽不高，易被化学品侵蚀等问题。大多仿金属材料添加昂贵的金属填料或者采用复杂设备工艺，造成材料造价普遍偏高，而且牺牲材料的机械性能，热变形温度低，表面光泽度低，制品表面麻点多等，应用领域受到很大限制。

【0005】目前现有市场的仿金属材料主要是以 ABS、PC/ABS 为基材，ABS 材料金属效果好，但是耐热性较差；PC/ABS 基材耐热性比较好，但是金属效果不好。以这两种基材研制而成的仿金属材料外观留痕、熔接痕都很明显。如申请号为 201005190843.4，公开了一种仿金属的高光金属 ABS 合金及其制备方法中，以聚丙烯酸丁二烯-苯乙烯（ABS）为基体，添加铝粉制备仿金属复合材料，其产品的耐候性较差且易划伤，限制了产品的应用领域。申请号为 201002749257.7，公开了一种仿金属工程塑胶复合材料及其制备方法中，以聚酰胺或者聚对苯二甲酸丁二醇酯为基材，金属粉末为选择铝粉，也没有提及对金属粉末的处理问题，且工艺过程复杂，且制得的仿金属材料表面光泽度差，加工条件复杂。

【0006】AS 树脂由丙烯酸与苯乙烯共聚而成的高分子化合物，具有很强的承受载荷的能力、抗化学反应能力、抗热变形特性和几何稳定性。PMMA 是聚甲基丙烯酸甲酯的缩写，俗称有机玻璃，是无毒环保的材料，可用于生产餐具、卫生洁具等，是迄今为止合成透明材料中质地最优异，价格又比较适宜的品种。PMMA 材料具有良好的化学稳定性、耐候性和电绝缘性，其金属感很强，表面硬度高，耐酒精腐蚀，耐划伤，耐候性好，材料表面光泽度高，无流痕，熔接痕现象。

发明内容
【0007】本发明针对现有技术中存在的问题，提供一种高光泽、高表面硬度、耐酒精腐蚀、耐刮擦性好的金属质感超韧 PMMA 复合材料，使其外观具有金属喷涂的美学效果。本发明的另一个目的是提供上述金属质感超韧 PMMA 复合材料的制备方法。

【0008】为了达到上述目的，本发明是通过下列技术方案来实现的：
说明书

一种金属质感超韧 PMMA 复合材料是由下列组份按重量百分组成：

PMMA：40-70 份；
AS 树脂：30-60 份；
相容剂：3-15 份；
增韧剂：5-20 份；
抗氧剂：0.3-1.0 份；
润滑剂：0.2-1.2 份；
增强剂：0.1-1.0 份；
金属色粉：1-3 份；

其中，金属色粉为经过有机包覆处理，粒径为 50-1000 目金属颜料。

上述方案的优选方案是，所述 PMMA 的熔体流动速率为 5-20 g/10min。

所述 AS 树脂的丙烯酸含量为 20-26%，熔体流动速率为 30-70 g/10min。

所述相容剂为丙烯酸-马来酸酐-苯乙烯三元共聚物或乙烯-丁烯-苯乙烯接枝马来酸酐嵌段共聚物或乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油醚无规三元共聚物中的一种或者两种。

所述增韧剂为丁二烯类增韧剂和以交联丙烯酸丁酯为核、通过核-壳乳液聚合制备的丙烯酸类增韧剂。

所述抗氧剂为 2,6-三甲基-4-甲基苯酚、双(3,5-三甲基-4-羟基苯基)硫醚、四(β-3,5-三甲基-4-羟基苯基)苯酸、季戊四醇酯、三辛酯、三癸酯、三(十二烷硫)酯、三(十六碳硫)酯中至少一种。

所述润滑剂为选自季戊四醇硬脂酸酯、N,N-己撑双硬脂酰胺、褐煤蜡、甘油单酯酸值、酰胺蜡或丁基硬脂酸酯中至少一种。

所述增强剂为选自超细滑石粉、纳米碳酸钙、云母粉或硅灰石中至少一种。

制备上述一种金属质感超韧 PMMA 复合材料的方法，包括以下步骤：

1）金属色粉的制备：
将粒径为 20-50 微米金属颜料分散到丙烯酸溶液中进行氧化膜去除处理，然后迅速将活化后金属颜料超声分散在聚乙二醇有机物的容器里，控制温度和搅拌速度，并滴加醇类有机物保温一段时间，获得有机膜包覆的复合金属色粉，控制金属色粉粒径为 50-1000 目。

2）金属质感超韧 PMMA 复合材料的制备：
按配方比例将 PMMA、AS 树脂、增韧剂、润滑剂、相容剂、增强剂混合均匀后，加入到双螺杆挤出机中，然后再将经（1）处理后的金属色粉从侧喂料加入，熔融后挤出，经冷却、风干、切粒得到金属质感超韧 PMMA 复合材料。

本发明中 AS 树脂由丙烯酸与苯乙烯共聚而成的高分子化合物，具有很强的承受载荷的能力、抗化学反应能力、抗热变形特性和几何稳定性。

所述增韧剂为丁二烯类增韧剂和以交联丙烯酸丁酯为核、通过核-壳乳液聚合制备的丙烯酸类增韧剂。其中丙烯酸类增韧剂的合成方法是以交联丙烯酸丁酯为核，在高压釜中加入去离子水、乳化剂、引发剂，丙烯酸丁酯乳液进行通氧、搅拌、升温。连续加入苯乙烯 St 进行反应，控制反应温度在 60 ± 1℃，反应釜内压力为 2-4 MPA 后，快速降温，降压拖出
未反应的 St 单体，出料、过滤，取适量乳液样品供测试用。其余乳液经破乳、干燥得到以甲
基丙烯酸甲酯为单壳层、PMMA/St 为双壳层及 St 为单壳层的核 - 壳结构的丙烯酸类增韧剂。
[0033] 如丙烯酸类增韧剂为丙烯酸酯类聚合物 (ACR) ；丁二烯类增韧剂有苯乙烯 - 丁二
烯热塑性弹性体 (SBS) 、丙烯腈 - 丁二烯 - 苯乙烯共聚物 (ABS) 、甲基丙烯酸甲酯 - 丁二
烯 - 苯乙烯三元共聚物 (MBS) 。
[0034] 金属色粉由金属或合金的颜料或薄片经过磨细而制成的颜料，主要品种有铝粉、
镍粉、锌粉和不锈钢粉，本发明中主要指经过自主有机化合物处理的金属或者合金颜料。
[0035] 本发明与现有技术相比，具有以下几点优点：
[0036] 1. 本发明的金属质感复合材料是采用 PMMA 为基材，所以其复合材料化学稳定性
与耐候性优良，并且其表面金属感强烈、高硬度，耐划伤；
[0037] 2. 本发明配方中添加了 AS 树脂，使本发明复合材料具有高光泽、高透明、高冲击、
良好的耐热性和机械性能。
[0038] 3. 金属色粉是经过有机包覆技术处理的金属颜料，包裹的有机层一般在 30-80nm
左右，提高了铝粉或铜粉在基材 PMMA 中的分散，相当于为本发明金属材料提供了骨架，
解决了其熔接痕和流纹问题。同时由于采用的是醇类有机物进行包覆，提高了铝粉或铜粉
的耐腐蚀能力，也即大大提高了本发明复合材料的耐化学性。
[0039] 4. 通过核 - 壳乳液聚合制备的丙烯酸类的增韧剂在不影响本复合材料光泽度的
前提下，使复合材料的韧性大大提高，一半在普通甲基丙烯酸甲酯的冲击强度的两到三
倍；同时增韧剂所含的活性官能团能与金属粉有机包覆形成的官能团相反应，解决了本
发明金属材料表面容易产生流痕、麻点、熔接痕等问题。
[0040] 5. 本发明的制备方法简单，制的材料无污染，并具有高光泽、高表面硬度、耐酒
精腐蚀、耐划擦性好等优点，其外观具有同金属喷涂同样的美学效果。
[0041] 具体实施方式：
[0042] 下面给出实施例以对本发明进行具体的描述，有必要在此指出的是以下实施例只
用于对本发明进行进一步说明，不能理解为对本发明保护范围的限制，该领域的技术熟练
人员根据本发明内容对本发明做出的一些非本质的改讲和调整仍属于本发明的保护范围。
[0043] 在本发明中，第一步需先制成金属色粉，将微米金属颜料分散到丙烯酸溶液中进
行氧化膜去除处理，然后迅速将活化的金属颜料超声分散在装有醇类有机物的容器里，
控制温度和搅拌速度，并滴加醇类有机物温保一段时间，获得有机膜包覆的复合金属色粉，
控制金属色粉粒径为 50-1000 目。
[0044] 第二步是按配比将 PMMA 、AS 树脂、增韧剂、乳化剂、相容剂、增强剂混合均匀
后，加入到双螺杆挤出机中，然后在加入有机包覆处理后的金属颜料，熔融后挤出，经
冷却、风干、切片得到金属质感超韧 PMMA 复合材料。
[0045] 本发明的所有组成部分增韧剂外均为现有的市售产品，实施例中均以重量份计。
[0046] 实施例中，相容剂选用丙烯酸 - 马来酸酐 - 苯乙烯三元共聚物或乙烯 - 丁烯 - 苯
乙烯接枝马来酸酐嵌段共聚物或乙烯 - 丙烯酸甲酯 - 甲基丙烯酸缩水甘油酯三元共聚物
中的一种或几种。
[0047] 增韧剂选用以交联丙烯酸丁酯为核，通过核 - 壳乳液聚合制备的丙烯酸酯类聚合
物 (ACR) ；丁二烯类增韧剂有苯乙烯 - 丁二烯热塑性弹性体 (SBS) 、丙烯腈 - 丁二烯 - 苯乙
说明书

烯共聚物 (ABS)、甲基丙烯酸甲酯——丁二烯——苯乙烯三元共聚物 (MBS)。

【0048】所述质抗剂为 2,6——三级丁基 ——4— 甲基苯酚、双 (3,5——三级丁基 ——4—羟基苯基) 硫醚、四 (β —(3,5——三级丁基 ——4—羟基苯基) 丙烯) 季戊四醇酯、三辛酯、三癸酯、三 (十二碳醇) 酯、三 (十六碳醇) 酯中至少一种。

【0049】润滑剂为选自季戊四醇硬脂酸酯、N,N — 氰双硬脂酰胺、硬脂酸、甘油单酯酸酯、酰胺酸或丁基硬脂酸酯中至少一种。

【0050】增塑剂为选自超细滑石粉、纳米碳酸钙、云母粉或硅灰石中至少一种。

【0051】实施例 1

【0052】按重量配比分别称取 PMMA 55 份、AS 树脂 55 份、相容剂 5 份、增韧剂 8 份、增强剂 1 份、抗氧剂 0.4 份、润滑剂 1 份，加入高速捏合机中混合，将混合均匀的物料加到双螺杆挤出机的料斗中，再将表面经有机包覆处理的金属色粉 1.5 份以侧喂料的方式加入双螺杆挤出机的料斗中，经熔融共混，挤出造粒成金属质感超韧 PMMA 复合材料。

【0053】实施例 2

【0054】按重量配比分别称取 PMMA 40 份、AS 树脂 60 份、相容剂 3 份、增韧剂 20 份、增强剂 0.5 份、抗氧剂 0.3 份、润滑剂 1.2 份，加入高速捏合机中混合，将混合均匀的物料加到双螺杆挤出机的料斗中，再将表面经有机包覆处理的金属色粉 1 份以侧喂料的方式加入双螺杆挤出机的料斗中，经熔融共混，挤出造粒成金属质感超韧 PMMA 复合材料。

【0055】实施例 3

【0056】按重量配比分别称取 PMMA 70 份、AS 树脂 30 份、相容剂 15 份、增韧剂 5 份、增强剂 0.1 份、抗氧剂 1 份、润滑剂 0.2 份，加入高速捏合机中混合，将混合均匀的物料加到双螺杆挤出机的料斗中，再将表面经有机包覆处理的金属色粉 3 份以侧喂料的方式加入双螺杆挤出机的料斗中，经熔融共混，挤出造粒成金属质感超韧 PMMA 复合材料。

【0057】实施例 4

【0058】按重量配比分别称取 PMMA 50 份、AS 树脂 50 份、相容剂 7 份、增韧剂 10 份、增强剂 0.8 份、抗氧剂 0.8 份、润滑剂 1 份，加入高速捏合机中混合，将混合均匀的物料加到双螺杆挤出机的料斗中，再将表面经有机包覆处理的金属色粉 2 份以侧喂料的方式加入双螺杆挤出机的料斗中，经熔融共混，挤出造粒成金属质感超韧 PMMA 复合材料。

【0059】实施例 5

【0060】按重量配比分别称取 PMMA 60 份、AS 树脂 40 份、相容剂 10 份、增韧剂 15 份、增强剂 0.3 份、抗氧剂 0.4 份、润滑剂 0.6 份，加入高速捏合机中混合，将混合均匀的物料加到双螺杆挤出机的料斗中，再将表面经有机包覆处理的金属色粉 2.5 份以侧喂料的方式加入双螺杆挤出机的料斗中，经熔融共混，挤出造粒成金属质感超韧 PMMA 复合材料。

将上述实施例 1—5 中的样品按照统一工艺注塑成国标样条，按照测试标准和条件对其进行机械性能测试，其测试数据如下表所示。

【0061】表 金属质感超韧 PMMA 复合材料主要物性指标：

【0062】
<table>
<thead>
<tr>
<th>项目</th>
<th>测试标准</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>熔体流动速率</td>
<td>GB/T3682</td>
<td>15</td>
<td>25</td>
<td>12</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>g/10min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>耐热性</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
</tr>
<tr>
<td>拉伸强度 MPa</td>
<td>GB/T1040</td>
<td>52</td>
<td>56</td>
<td>65</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>弯曲强度 MPa</td>
<td>GB/T9341</td>
<td>65</td>
<td>68</td>
<td>75</td>
<td>57</td>
<td>70</td>
</tr>
<tr>
<td>弯曲模量 MPa</td>
<td>GB/T9341</td>
<td>2500</td>
<td>2600</td>
<td>2450</td>
<td>2300</td>
<td>2700</td>
</tr>
<tr>
<td>缺口冲击 KJ/m²</td>
<td>GB/T1843</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

[0064] 从上表可以看出，本发明的金属质感复合材料是化学稳定性与耐候性优良，并且其机械性能强，具有高光泽、高表面硬度、耐酒精腐蚀、耐划擦性好等优点，其外观具有同金属喷涂同样的美学效果。

[0065] 以上所述仅为本发明较佳实施例而已，并不用以限制本发明。凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等，均应包含在本发明的保护范围之内。