发明名称

用于在骨骼中形成空腔的工具和方法

摘要

用于在骨骼中形成空腔的工具。这些工具包括探针(10)；插管(34)，该插管用于提供一个穿透皮层进入骨骼内部的通道；骨棒棒(44)；和将骨骼填充物传送到空腔的系统。骨棒棒(44)具有一个穿过插管(34)插入骨骼的轴。轴的末端通过插管插入骨骼。插入骨骼的轴末端具有活板顶端，当医生展开活板顶端时，该活板顶端与轴的轴线不在一条直线上。一旦顶端被展开，骨棒棒(44)就能够旋转以便形成空腔。然后可以用药物治疗空腔，或用骨骼填充物填充，或者两种情况都有。在此描述的其他工具和材料可以用于将治疗骨骼抬起或修复到其自然骨骼。
权利要求书

1. 一种经皮外科装置，用于在骨骼内形成空腔，包括：
 一个细长轴，其具有半径和旋转轴线；
 一个顶端，可以被选择性地移动，从而与细长轴的轴线在一条直线上和不在一条直线上；
 一个铰链，用于连接细长轴和顶端；和
 还包括与细长轴有联系的手柄，其中手柄具有指示顶端展开方向的指示器。

2. 如权利要求1所述的装置，在所述细长轴上还包括一个轴环，该轴环使得顶端被移动，从而不处于细长轴的轴线上。

3. 如权利要求2所述的装置，其中，顶端的运动具有一个限制范围，其中轴环的旋转逐渐减小顶端运动的范围，直到顶端被保持在与细长轴不在一条直线上的最远位置。

4. 如权利要求3所述的装置，其中，顶端运动的范围从0°到150°。

5. 如权利要求3所述的装置，其中，顶端运动的范围从0°到90°。

6. 如权利要求1所述的装置，还包括一个手枪式把手，该手枪式把手使得顶端被移动，从而不处于细长轴的轴线上。

7. 如权利要求6所述的装置，其中，当手枪式把手被握紧时，其使得顶端移动，从而不处于细长轴的轴线上。

8. 如权利要求7所述的装置，还包括一个锁定机构，该锁定机构即使在松开手枪式把手时也将顶端保持在其位置上。

9. 如权利要求1所述的装置，其中，顶端长度在4mm到12mm之间。

10. 如权利要求1所述的装置，其中，顶端为4mm。

11. 如权利要求1所述的装置，其中，顶端为6mm。

12. 如权利要求1所述的装置，其中，顶端为8mm。

13. 如权利要求1所述的装置，其中，顶端为10mm。

14. 如权利要求1所述的装置，其中，顶端为12mm。
15. 如权利要求 1 所述的装置，其中，指示器是手柄上的一个平表面。
16. 如权利要求 1 所述的装置，其中，指示器是可触摸的。
17. 如权利要求 1 所述的装置，其中，指示器是一个标记。
18. 如权利要求 1 所述的装置，其中，细长轴具有深度标记。
19. 如权利要求 1 所述的装置，还包括一个当所述顶端部分展开时示出顶端摆动长度的指示器。
说明书

用于在骨骼中形成空腔的工具和方法

本发明的领域

本发明涉及用于诊断或治疗目的而在骨骼，尤其是脊椎骨内部区域形成空腔的工具和过程。

本发明的背景

一些诊断或治疗过程需要在骨骼内部形成空腔。这个过程可以用于治疗任何诸如由骨质疏松，无血管坏死，癌，外伤引起的骨折或者易于被压折或坍塌之类的骨骼。这些情况如果没有被成功地治疗，可能会引起残疾，慢性并发症，对生活质量产生负面影响。

例如美国专利 4,969,888，5,108,404 和 5,827,389 中所述，作为治疗由于放射性或非放射性骨坏死引起的骨裂或其他异常骨骼状况的一部分，一个可扩张体在网状骨组织内部张开以便形成空腔。这个可扩张体使网状骨压缩从而形成一个内部空腔。空腔内接收填充物，该填充物为表层骨骼提供更新的内部结构支持。

美国专利 5,062,845 描述了用于在相对脊椎骨之间准备移植部位的外科工具。这个工具末端的外部尺寸正好可以穿过病人的骨骼到达进入脊柱的部位。在每个增量伸长时，外科医生旋转手柄让刀刃切割出更大的空腔，其尺寸等于伸出工具末端的可伸缩刀刃的直径。在每次切割后，旋转手柄逐渐地增加刀刃切割边的直径，直到形成预期大小（最大为完全伸出的刀刃的直径）的腔。在扩大空腔直径的过程中，外科医生可以不时地回缩刀刃，取出工具，清洗正在形成的空腔。

美国专利 5,512,037 描述了可以穿透皮层的外科缩回器，它具有锥形结构的外部轴套。在该外部轴套末端具有限定形成前沿的角度，使得缩回器更容易穿透皮层；还描述了位于所述外部轴套中的刀刃，该刀刃至少可以在伸出外部轴套末端的张开位置和位于外部轴套内部的缩回位置之间滑动，并且该刀刃具有可展开的记忆弯曲末端。
本发明的概要

本发明提供用于在网状骨骼，例如但不仅限于脊椎骨整形术中，形成空腔和通过向这些空腔中注入诸如骨软骨、黏合剂、自体移植和异体移植等之类的治疗物来治疗空腔的工具和方法。这些工具包括探针，用于形成进入网状骨区域的通道；插管，用于扩展骨骼上的孔并且提供用于牵拉或选择性刺入的通道以便推动或推回网状骨从而形成空腔；和注射器，用于向空腔中填入适当的治疗材料。这些工具可以有利地一起使用。

探针

探针是具有锋利顶端和手柄的细长体。细长体的外径足够配合进插管内。探针的端部可以包括钴尖、锋利的尖头、锯齿刀或者它们的组合。在一个优选实施例中，探针具有可变的锋利顶端，该顶端固定在用于提供力的探针套上；和一个柔和斜面，用于楔入或者推开骨骼。在另一个实施例中，探针和探针套集成为一个单独的结构。使用时，插管可以预先装到探针上，以便插入插管时不需要拆除探针手柄。如图2A和2B所示，在一个实施例中，探针体具有深度标记。这些标记在插管进入骨骼时可以帮助医生确定插管的位置。另外，这些标记还指示插管的定位是否将探针从医生选定的位置移出。

在一个实施例中，手柄可以从前长体上拆下，以便探针定位到骨骼上后可以将插管置于探针上，可拆卸手柄设计为在外科手术过程结束后去除即可。例如，手柄可以用低成本聚合物材料制造，具有简易安装机构或两者兼有，这样可去除型手柄的替换相对便宜。在一个实施例中，可去除型手柄用塑料材料制成。这个实施例的一个优点在于塑料具有X线可透的特性，以便更好地观察治疗区。手柄的制造可以用机加工、浇铸或其他方法。手柄有助于探针在其初始定位时提供更好的握持和控制。另外，手柄还有助于在插管定位后拆除探针。

在此描述的其他项目也可以设计成用后可去除物品。例如，用于插管的手柄同样可以由低成本聚合物材料用任何适合的制造方法制成。而且，在此描述的许多工具可设计成有限次使用或者一次使用物
品。例如，在一个实施例中，工具箱内用于实施脊椎骨整形的许多工具可以在外科过程结束后丢弃。在一个优选实施例中，形成空腔的攻棒可重复使用而在工具箱中提供给外科医生的其它工具用后可丢弃。

探针导引插管，而插管扩张骨骼上的孔，并且紧紧地固定在孔中。一旦插管就位后，就可以从插管没有与骨骼接合的那端抽出并拆除探针。

插管

在一个实施例中，插管是末端有切割边的导引管。插管基本上是长圆柱形管，当用攻棒形成空腔时，导引和保持攻棒的位置。插管最好具有一个手柄，易于插管旋转和进入骨骼内。更优选地，插管具有一个带透孔的手柄，该透孔与贯穿管体的孔处于一条直线上并连续。在一个实施例中，插管手柄是可拆卸的。如上所述的探针手柄一样，可拆卸手柄可以设计为在外科手术过程完成后即被丢弃。这个实施例中的手柄可以用低成本聚合物材料制成，使得更换可丢弃型手柄相对便宜。用于这个实施例中手柄的选择材料和制造方法与上面所述的类似。

插管体最好是具有贯穿整个管体的孔的管状。孔最好但不必为圆形。配置和调整孔，以便其他工具，例如在此描述的工具，可以通过该插管孔插入骨骼。最好骨攻棒可在插管的孔中自由旋转。在一个备选实施例中，插管、攻棒或二者可以设计为具有一定的旋转范围。例如，插管和探针可以具有挡块，使得攻棒在一个范围内旋转但在不能进一步旋转。在一个实施例中，旋转的限制范围是可调的，这样允许医生在外科手术之前或手术过程中可以选择旋转的范围。

在一个优选的实施例中，插管内壁限定形成一个开口圆柱，其内径大约 3mm 到 7mm，介于大约 3mm 到 6mm 之间更好，最好介于大约 4.2mm 到 5mm 之间。在一个实施例中，插管外壁限定形成一个大约 5mm 到 9mm 的圆柱。在一个更优选的实施例中，插管外径介于大约 6mm 到 8mm 之间，最好介于大约 6mm 到 7mm 之间。在又一个实施例中，插管外壁限定形成一个大约 4mm 到 9mm 的圆柱。介于
5mm 到 6mm 之间更好，最好是 5.4mm。

插管可以用金属制造，例如外科手术用合金钢、弹性体或者用适合用作外科设备的任何其他材料。例如，插管可以用标准的柔性医用级塑料材料，如乙烯基类、尼龙、聚乙烯、离子交联聚合物、聚氨酯和聚对苯二甲酸乙二醇酯（PET）制成。插管也可包括更刚性的材料，以获得较大的刚度，从而有利于操作和扭矩传递性能。更刚性的材料也可以用于此目的，包括不锈钢、镍钛合金（NITINOL™ 材料）和其他合金金属。

在一个优选实施例中，插管末端用来刺穿皮肤、组织和骨骼。在一个实施例中，例如，插管末端具有锯齿状边。末端最好呈圆形，以利于切人骨骼。另外插管可以在外表面具有大螺距螺纹，有助于将插管插入骨骼。螺纹可以具有较低的轮廓和很陡的节距，以便可以相对较快地进入骨骼。因此，插管的旋转使螺纹有助于插管向前进入骨骼。螺纹也有助于将骨骼固定到插管或易于在希望时取下插管。在一个实施例中，插管内部和探针具有螺纹。这个实施例为插管提供了相对于探针更可控的前进运动。其他工具，如在此描述的骨夯棒和插管夯棒也可以具有螺纹，以便它们在骨骼内的展开得到更好的控制。在一个实施例中，骨夯棒具有螺纹，最好螺纹节距要相对低一些，以便当骨夯棒在骨骼内旋转形成空腔时，骨夯棒不会在轴向大幅度的移动。夯棒

夯棒或刮匙设计成适合从插管中穿过到达骨骼的网状部分。在一个实施例中，随后夯敲机构小心展开并旋转以形成空腔。夯棒有一个棒体，该棒体比较有利但不是必须为大体上的圆柱形。在一个实施例中，长棒体的外径或最宽部分介于大约 3mm 到 7mm 之间，介于 4mm 到 6mm 之间更好，最好进入骨骼处的棒体介于大约 4mm 到 4.5mm 之间。在一个实施例中，长棒体的尺寸和直径沿整个棒体基本不变。棒体可以是实心或空心的。在许多实施例中，沿棒体一侧具有一个沟槽，其中可以通过丝线或杆。丝线或杆可以用于控制夯敲机构的展开。

在一个优选实施例中，夯敲机构的尺寸适合形成空腔，其中，从
管体的轴线测量，活板或顶端的最大半径介于大约 4mm 到 24mm 之间，介于大约 6mm 到 20mm 之间更好，最好是介于大约 8mm 到 16mm 之间，而最优选的是介于大约 10mm 到 12mm 之间。几个套管机构可以提供有几种长度不同的顶端，这样医生可以在手术过程中决定将要形成的空腔的尺寸。在一个实施例中，提供了长度分别为 4mm、6mm、8mm、10mm 和 12mm 的五个套管。具有不同顶端长度的套管的组合可以根据希望的套管摆动范围来选择。

棒体和套管机构可以用金属如外科用合金钢、弹性体或任何其他适合于外科设备的材料制成。棒体和/或套管机构可以用标准的柔性医用级塑料材料，如乙烯基类、尼龙、聚乙烯、聚氯乙烯和聚对苯二甲酸乙二醇酯（PET）制成。棒体也包括更刚性的材料，以获得较高的刚度，从而有利于操作和扭转传递性能。更刚性的材料也可以用于这个目的，包括不锈钢、镍钛合金（NITINOL™ 材料）和其他合金金属。

棒体典型地具有长杆或管的外形。套管设计为使其末端穿过插管和通道进入骨骼。套管机构在管体的末端，因此也穿过插管进入骨骼。套管体的另一端由医生控制。

棒体最好在其长度上有标记，这样医生就能够迅速而且容易确定套管到达骨骼的深度。最好，当套管没有展开时，深度标记对应于从标记到套管顶端的长度。也就是说，标记指示顶端在展开前的距离。医生可以自由地沿导引插管轴向滑动套管，在目标治区域展开它。或者，在插管、套管或两者上面都提供了可调的挡块，以便控制套管的轴向行程或转动范围。使用挡块的这种方式有助于医生预先确定空腔的尺寸、长度和位置。另外，可调挡块还可以使医生在控制参数内逐渐地形成空腔。

医生控制的棒体端包括手柄和控制机构，通过它套管机构可以在套管时展开，在从骨骼取出套管时回缩或闭合。尽管可以使用电动机来产生旋转，但在某些使用中最好手动旋转套管，这样医生就可以感觉套管的旋转是否容易。手动操作套管可以更好地感觉形成空腔附近
的解剖情况。另外，手动操作手柄还可以感觉到空腔完成的程度。例如，如果手柄的手动转轴受阻，那么空腔的尺寸还没有形成。

手柄手柄是可拆卸的，但在手动操作手柄的过程中，手柄应该固定在柄体上。手柄的尺寸和形状最好有利于握把和旋转，也就是说，尺寸和形状要螺丝刀手柄一样。手柄还可以配置成能够为医生指示活板的方向。例如，手柄在活板伸展的方向上具有一个平表面。或者，手柄可以有纹理、凹槽或其他指示活板位置的标记。

手柄也可以形成手枪式把手，当握紧把手时引起手柄顶端向其伸展位置旋转。可以具有一个锁紧螺母将手柄固定到手枪。一旦顶端被锁紧螺母锁定位置，就可以旋转把手在骨骼内形成空腔。另外，锁紧螺母可以这样配置，使得手枪式把手在被部分握紧后可以锁定位置，以便活板可以处于未完全展开的状态。除了锁紧螺母外其他的锁紧机构均可使用。在一个实施例中，使用棘轮机构防止手枪式把手张开，直到棘轮被释放。棘轮可以具有听得见的卡嗒声以便为医生指示活板展开的角度。

在一个实施例中，锁定机构具有标记，当活板部分完全展开时，用来向医生指示活板前端摆动的范围。因而标记可以向医生指示出当活板前端摆过一半时的位置以及活板前端完全打开时的位置。这些标记可以在工具的任何部分提供。在一个实施例中，标记指示完全张开的活板前端扫过的百分比。例如，医生可以根据标记的指示选择让活板只提供50%的摆动量。在另一个实施例中，标记指示实际摆动量。

在一个实施例中，医生可以通过标记的指示选择要形成空腔的尺寸。在又一个实施例中，标记指示活板前端展开的角度。任何或全部的实施例可以相互组合使用。

手柄控制机构在柄体末端控制手柄机构的展开。因此在大多数的手柄实施例中，提供了一个控制机构，可以在手柄体旁边或者在手柄体内部运行。控制机构可以移动杆或伸长丝线等等，其中杆或丝线控制手柄机构张开或可以张开的角度。在某些实施例中，控制机构提供手柄的精确定位。在其他实施例中，控制机构限制手柄可以移动的范围。
围，最好是逐渐限制夯棒运动的范围，直到它被牢固地固定到一个位置。

可以使用任何方法或装置控制夯鼓机构的展开。在一个实施例中，控制机构具有螺纹和带螺纹的轴环，从而相对于夯棒的手柄转动轴环使夯鼓机构扩张、收缩或以其他方式被展开，例如通过前进或回缩环绕夯鼓机构的套，推进杆或其他类似装置以便限定夯棒运动的范围等。或者，控制机构可以限制夯鼓机构的展开或收缩。

最好，螺纹具有间断，例如以固定的间隔沿有平面，它们与位于轴环内的锁紧销和/或轴承相互作用。当与螺纹体的间断在一条线上时，锁紧销或轴环移动进入间断，从而至少部分地阻止轴环的转动。最好，间断提供一种听得到且能感觉到的卡嗒声。当轴环进一步的旋转时，锁紧销或轴环移出间断区域。

在一个备选实施例中，螺纹不具有提供听得到且感觉到的卡嗒声的间断。在这个实施例中，由于没有移入和移出上述螺纹间断的锁紧销或轴承，因此螺纹和轴环具有连续的运动范围。在这个实施例中，最好可以应用锁定和制动装置对轴环的旋转进行抵制。锁定或制动装置也可以设计用来将轴环保持在医生所希望的位置内，以便在用骨凋棒形成空腔的过程中轴环不会滑动或旋转到另外的位置。

在实践中，控制机构实际上可以相对手柄移动夯棒体，使得当从棒体末端看时，固定到手柄上的杆或丝线能够前进或回缩。或者，控制机构可以引起夯棒扩张、收缩或通过移动夯棒自身而展开。在任意一个例子中，轴环可以这样固定到手柄上，即允许轴环围绕手柄旋转但限制沿手柄纵轴移动。

在一个实施例中，夯棒使用连接到其末端的定向顶端，即活板，作为夯鼓机构。活板可以铰接在一端上，以便允许活板相对于棒体在一个平面中运动。在这个实施例中，活板被铰接，因此连接到圆柱形棒体的末端，从而活板末端能够与棒体不在一条直线上，这样当活板旋转到不与棒体在一条直线上时，在夯棒末端提供了比较大的有效半径。因此当夯棒旋转时，活板就可以使网状组织移开夯棒。
在一个优选的实施例中，活板被铰接，因此连接到夯棒体末端，这样活板末端就可以使其自身最大程度地不与棒体处于一条直线上，其中控制杆伸展开后就可以限制夯棒末端的有效半径。

在一个实施例中，当活板不受插管或控制机构阻碍时可以围绕铰轴转动从 0 度到大约 60 度和 150 度的圆弧范围，介于 80 度和 120 度之间更好，最好是在大约 90 度。当角度为 0 度时表示与棒体处在一条直线上。在一个优选实施例中，活板的运动范围可以由控制机构逐渐限制。例如，当医生如上所述转动轴环时，活板的运动范围被限制从返回到与棒体处在一条直线上，直到最后控制机构将活板固定地固定在一位置上。如上所述，尽管上文指出的最终位置也适合，但最好活板的最终位置是大约 90 度。

在另一个实施例中，活板的张开受到控制，使得活板在各个位置都只有很小的活动范围。因此，在这个实施例中，部分地转动那绕的轴环导致活板部分地与棒体不在一条直线上，并且活板活动范围在任何给定的位置都很小。这个实施例的优缺点即允许医生部分地伸展活板，形成一个比活板完全张开时直径小的小空腔。当为了逐渐形成空腔而部分地展开活板时，最好使用上述锁定或制动装置，以便防止活板从其期望位置处移出。

尽管活板可以被配置和调整用来切割网状组织、压缩或变形疏松组织或者二者兼有，但在一个优选实施例中，活板具有一个主要用于压缩组织的钝顶端。钝顶端也可以用来使裂缝缩小。例如，在脊椎骨整形术中，医生为了实现缩小的目的可以使用钝顶端在脊椎骨的前表面打孔。另外，医生可以利用顶端移动或重新定位端板（endplate）或其他小骨骼碎片，帮助骨骼修复到它的自然解剖状态。

活板也可以弯曲或有弯曲的边缘，当夯棒旋转时进一步促进夯敲回网状组织。在某些应用中，切割优先于夯敲。因此，活板可以被设置和调整用于适合特殊应用或产生希望的结果，例如使用更锐利的活板形状来切割组织而不是夯敲。例如，在一个实施例中，活板的边缘被设计成当活板旋转时切割网状物质。优选地，活板是弯曲的杯形形
状。活板也可以是圆柱杆形状，或扁平圆柱或椭圆形，或线螺旋桨形状或圆环。活板端部也可以圆整以使得切割量最小。

在一个夯棒实施例中，该夯棒具有如上所述的逐渐限制活动范围的活板，有一个杆通过夯棒侧面的沟槽或夯棒内部的沟槽。在这个实施例中，杆是控制机构的一部分，当它处于其回缩模式时不影响活板的运动。在它的完全展开模式下，杆在铰链一边撞击活板，导致活板偏离夯棒体所在的直线，而最大程度地向铰链另一边转动。当杆处于中间位置时，活板能够从稍微偏离夯棒体的点移动，杆撞击活板使其从与夯棒体在一条直线处移动到最大偏离点。最好连接是一个单独部分，以便保持设计和使用的简单性。

另一个夯棒实施例使用了可扩张的用记忆金属制作的环，即超弹性镍钛合金，例如 NITINOL。该可扩张的环具有一个预设形状，这样当记忆金属或 NITINOL 体收缩回夯棒体时没有张开的环，当 NITINOL 体从夯棒体出来时形成张开的环。这个结构包含一条能自行修复到原位的弹性惯性记忆金属条，它可以自己弯曲回来，并利用弹性记忆形成一个环。这个可扩张环是夯敲机构。

可扩张环可以形成任何希望的形状。它也可以关于轴对称或不对称，这取决于希望夯棒达到的性能。而且，可扩张环也可以这样形成，即环的一边或一部分扩张比另一边大，从而环与夯棒体的纵向轴偏心。在一个实施例中，环的形状是卵形，而在另一个实施例中环的形状为 D 形。在其他实施例中，可扩张环形成一个具有规则或不规则边和角的多边形。

在一个优选实施例中，记忆金属是扁平条带的形式。在另一个优选实施例中，钝化和/或弯曲扩张记忆金属的边缘，以便在旋转过程中最小化切割和最大化移动网状织物。当在夯棒内操作条带，也就是说，扩张和压缩以及旋转时，可以在网状骨内形成空腔。

在一个称为对称环实施例的优选实施例中，当可扩张环处于完全张开的位置时，其形成一个环状的结构，一个点位于棒体的末端。在这个实施例的一个变形中，环形成一个六边形结构，一个点位于环的
末端，另一个点靠近外棒体。在另一个实施例中，当环处于完全张开的位置时，形成一个圆形或卵圆形结构或扁平形式。在一个第三实施例中，环形成一个倒圆的三角形，其中三角形每个角的半径至少为3mm。在这些实施例中，环的张开受允许外棒体外的条带张开和回缩的丝线影响，其中丝线送时环可扩张而拉出丝线时管即可回缩，或者在预先形成管的情况下，例如通过一个杆将管推出棒体，其中随着更多的条带伸出管体外，环或其他结构将在尺寸或长度上增长或扩张。最好选择送时和回缩丝线的方法。

在一个特别优选的实施例中，环形成非对称环。实际上，这个环可以形成“D”形。在这个实施例中，形成环的条带的一端可以连接到杆上，而另一端向后朝着手柄方向伸回。在这个实施例中，控制机构控制环的扩张。当然非对称环的“D”形是预先形成的。在它完全缩回的位置处，环完全压缩进入外棒体。

可以在插管、外棒体和/或相关结构上设置一个或多个放射性标记。该标记用公知的防辐射材料，如铂、金、钯和其他重金属材料制成。标记允许目标治疗区域内环结构、外棒体，和/或插管的放射成像。

实施本发明的系统和方法实际上可以适用于任何内部身体部位，其中由于治疗或诊断的目的而必须在组织内部形成空腔。优选实施例示出了与本发明有关的用于治疗骨骼的系统和方法。实施本发明的系统和方法在这种情况下非常适合。应该知道实施本发明特征的系统和方法可以用于大多数的骨骼结构，包括而不仅限于脊椎骨。

本发明还根据这样的方法，即包括在骨骼内展开工具和操作结构以便切割网状骨并形成空腔的步骤的方法，提供用于使用选择工具的指导。用于使用的方法还指导如何将诸如骨骼结合剂、自身移植物质、异体移植物质、人造骨骼替代品、药物或具有硬化条件的流性物质之类的材料填充进空腔内。

可以在输入骨骼填充物之前将空腔清洗和/或抽吸干净。另外，可以在治疗骨骼时使用诸如外科用气球或类似装置之类的可膨胀装置。
这些方法和装置在审查中的 U.S. 申请 No. 09/908,899，标题为 “用于减少骨骼中碎片的可膨胀装置和方法” 中有进一步描述，在此全文引用。

附图说明

图 1A 是组装好的探针体和手柄以及探针顶端的视图。
图 1B 是手术探针末端的视图。
图 2A - C 是探针体相差 90 度视角的三个视图（图 2A 和 2B），以及探针顶端的前端视图（图 2C）。
图 3A - C 是探针手柄的三个视图，其中一个视图是手柄的侧视图，另外两个是视角相差 90 度的剖视图。
图 4A - C 是三个视图，其中两个是探针手柄的侧视图和端视图（图 4A 和 4B），另一个是探针体一端的局部视图，此端连接探针柄（图 4C）。
图 5A 和 5B 以示出了插管柄的侧视图和端视图。
图 6 是穿过插管的探针的视图。
图 7A - D 是插件插管和插管末端的视图。
图 8 是洁刷或刷子的视图。
图 9A 和 9B 是记忆金属圆实施例的骨针棒的两个相差 90 度视角的视图。
图 10A - C 是处于不同展开程度的记忆金属圆的三个视图。
图 11A - D 是处于不同展开程度的记忆金属圆的四个视图。
图 12 是记忆金属圆实施例的骨针棒的视图。
图 13 是带螺纹的轴线控制机构的视图。
图 14 是记忆金属圆的放大视图。
图 15A - C 是具有杆和记忆丝线的骨针棒的几个视图，该骨针棒与非对称记忆金属圆实施例一起使用。
图 16A 和 16B 是活板实施例的骨针棒的两个相差 90 度视角的视图。
图 17 是活板装置尚未展开的骨针棒的视图。
图 18A - E 是活板和铰链的细节的五个视图。
图 19 是定向端活板的细节的视图。
图 20 是完全展开的活板实施例骨针棒的末端视图。
图 21 是具有手枪式把手的活板实施例骨夯棒的视图。
图 22 是仅仅部分展开的活板的视图。
图 23 是仅仅部分展开的活板的视图。
图 24 是仅仅部分展开的活板的视图。
图 25 是还没有展开的活板的视图。
图 26A-C 是活板实施例的骨夯棒的三个视图。
图 27A-F 是活板实施例的骨夯棒的六个视图。
图 28 是用来通过插管移置物质的注射器形装置的视图。
图 29A 和 29B 是出现在脊椎骨中的记忆金属环实施例骨夯棒的两个视图。
图 30 是具有锐利的切断顶端的螺纹插管的视图。
优选实施例的详细描述

本发明涉及用于在骨骼中形成空腔的工具和方法。当骨骼填充物要被引入到骨骼内部时，骨骼内空腔的形成可能很有益。优点之一就是空腔的形成可以用于限制、容纳或者控制骨骼填充物的传送。另一个优点是空腔使得骨骼填充物可以流动和移置到希望的区域。

在此描述的工具组合可以作为一个空腔形成系统提供给医生。在一个实施例中，根据用到这些工具的治疗过程的不同阶段，这些工具的组合以工具箱的形式提供。例如，一套工具组合可以被选作空腔形成通路工具箱。例如，空腔形成工具箱可以包括探针、插管和移置杆。这些工具用于提供通路，以便进入治疗过的区域，这些工具在下面有更详细的描述。

另一个工具的组合可以被选作用来制作一套空腔形成器械。例如，空腔形成器械组可以包括一套骨夯棒（或者刮匙）的组合。一旦获得到达治疗区域的通路，就可以使用空腔形成器械组中的工具在骨骼内形成空腔。在一个实施例中，这两个工具箱提供空腔形成系统的所有工具。在另一个实施例中，根据医生要施行的特殊治疗过程可以加入其它的工具、材料或者工具箱。优选地，并且如下所述，空腔形成通路工具箱是一套工具组合，这些工具在使用后可以被丢弃，而空腔形
成器械组由可以在将来的治疗过程中重复使用的工具组成。

针对上面列出的附图作以下描述。

探针

图 1A 和 1B 示出了本发明的探针顶端的一个实施例。

探针套筒 10 被调整为使探针顶端 12 可以在里面滑动地配合。如图 1B 中所示，探针顶端 12 的末端伸出到探针套筒 10 末端的外面。在一个实施例中，顶端伸出套筒的长度可以预先设定。而且，伸出距离可以由医生可选地改变。如果顶端和套筒之间的距离被预先设定但不是可选的，那么探针套筒和探针顶端最好制成一个单件，如图 2A - C 所示。图 2A 和 2B 是探针套筒 10 的侧视图，图 2C 是只看末端时的前向透视图。

探针顶端和探针套筒末端的形状有助于探针进入治疗骨骼的皮层区域。在一个实施例中，探针顶端扣住皮层骨但没有完全穿透它。在另一个实施例中，探针顶端和套筒进入皮层骨和里面的骨网状区域。因此探针顶端和探针套筒末端可以根据希望它们所具有的功能来设计。

在一个实施例中，探针套筒 10 的末端被斜切。套筒 10 伸出探针顶端大约 0.05mm 到大约 0.5mm 之间，比如说大约 0.1mm 到 0.2mm，呈锐角，例如介于大约 30 度到大约 90 度之间，介于大约 45 度到 75 度之间更好，最好介于大约 55 度到大约 65 度之间，其中角度的测量是从沿套筒 10 轴向的假想线起。这提供了一个可以在插入过程中抵御对骨骼的剪切作用的结实表面。如图 2A 所示，斜面的角度可以改变到更柔和的角度，比如说介于大约 5 度到大约 45 度之间，最好介于大约 15 度到大约 35 度之间，并且近似维持这个角度直到与探针套筒 10 的外径匹配。这样提供了一个用于在插入过程中移动骨骼的更柔和的表面 16。当从另一个角度观察时，如图 2B 所示，探针套筒甚至具有更柔和的角度，其角度从大约 5 度到大约 30 度，这样就提供了又一个柔和的斜面 13 来移动骨骼。探针套筒 10 的外表面有距离标尺 18。最后套筒上有一个小孔或凹口 20。这个小孔内含有一个轴承 22 或因
定螺钉 22，用来将探针顶端锁定到探针套筒。可以斜截小孔以允许轴承或螺钉移动，从而拆除探针。

在图 1A 中可以看到探针顶端 12 的整体，尽管无法看见轴承 22 所在的沟槽。同时图 1A 还示出了探针套筒 10 和手柄 24 和固定螺丝 22。在图 1B 中示出了探针套筒 10 与探针顶端 12 装配后的末端的特写。可以看出，在这个实施例中，探针顶端具有一个通过在圆形探针顶端制作一个对角切口 32 而形成的点。用于形成点的其它方法和形状可等同地被接受。

最好在探针靠近身体的一端有一个手柄，以便于医生更好地操作和定位探针。图 3A～C 包含用于探针的手柄 24 的几个透视图。在这个实施例中，手柄具有探针轴环 26，当其位于所示的向下位置时，锁定轴承 22，从而紧固探针顶端 12（未示出）。探针顶端 12 具有大小和定位合适的沟槽，用于接受轴承 22 的一部分，从而防止探针顶端 12 在探针套筒 10 中轴向移动。探针轴环 26 内表面具有沟槽 28，如果沟槽 28 滑动到与轴承 22 相切，那么轴承 22 将从探针顶端 12 脱开，这时探针顶端 12 可以轴向滑动。弹簧 30 作用于探针轴环 26 上一个向下的力，因此为了分离探针顶端 12 医生必须克服弹簧力将轴环往上向手柄 22 滑动。

在由图 4A～E 示出的另一个实施例中，探针的手柄可以被设计为用后被拆除和丢弃。在这些情况下，最好把手柄设计和制造成为使之以较低的成本就可以被替换。因此，希望可以使用那些在常规生产过程中使用的便宜材料浇铸手柄。商用聚合物就是这些材料的一个例子，可以用来降低替换的成本。例如，手柄可以由注模或机加工塑料制作而成。

另外，可以简化连接手柄的装置，以降低成本。例如，如图 4E 所示，可以通过具有一个凸起的弹簧销将手柄连接到探针，该凸起与探针插管的凹槽接合。当销块被压下时，凸起从凹槽中脱离，从而取下手柄。优选地，凸起与凹槽以一种可以抵抗扭转力的方式接合。在这个实施例中，医生可以通过不时地转动探针来操作探针，让探针顶
端到达位置。

像探针手柄可用后拆卸和丢弃一样，在此描述的用于其它工具的手柄也是可拆卸的，或者设计为可以丢弃的。例如，插管同样地可以有一个可拆卸的手柄。另外，如果希望大多数的工具箱是可丢弃的，那么手柄可以用廉价的材料制作，例如上述的商用聚合物或塑料。图 5A 和 5B 示出了两个插管，其中一个具有手柄，另一个具有可拆卸的手柄。

插管

一旦探针到达位置后，探针手柄就可以拿掉，从而插管可以滑动地置于套筒上。如果手柄不可拆，插管可能在探针进入骨骼之前被滑动到探针上。图 6 显示出了图 1A 和图 1B 中的探针装配穿过插管 34 后的情形。插管 34 具有可选的螺纹 36、切割边 38 和手柄 40。

在图 7A - D 中更清晰地示出了插管 34、切割边 38 的详细图示出了其具有切割面 42，最好成 30 度角，尽管角度范围可以从 20 度到 80 度。最好切割边的角度介于大约 30 度到大约 50 度之间。在图 7B 所示的实施例中，切割边在外径为 5.4mm 的插管上的螺距大约为 7.5mm。如图 7C 所示，插管的切割边具有一个不太锐利的切割面，例如一个圆形末端边。末端边可以被斜切构成具有一个锋利的切割面。另外末端边可以被圆整或者钝化或者具有其他提供某种性能特点或特殊的感觉的轮廓。这些给出的变型可以根据希望插管具有的感觉或性能而从其它形状中选取。

当存在螺纹 36 时，其高出插管体 34 表面的高度优选介于大约 0.05mm 到大约 0.5mm 之间，最好在大约 0.2mm 到大约 0.3mm 之间。插管体 34 外径要介于大约 3mm 到大约 7mm 之间，最好在大约 4mm 到大约 6mm 之间。介于大约 5mm 到大约 5.5mm 之间则更好。在一个实施例中，插管 34 为一个管子，管壁厚度在大约 0.2mm 到大约 1mm 之间，介于大约 0.3 到大约 0.6mm 之间则更好。

图 7D 示出了一个没有螺纹的插管 34。相对于图 5A 中插管的圆形手柄而言，在此插管中，手柄 40 是一个棒状手柄。棒状手柄在某些情
况下更可取，因为套管挤压或切割进入骨骼时需要作用在插管上一个相当大的扭矩。这些不同的手柄设计可以用于互换地用于任何插管的设计。例如，图 7 中所示的插管体 34 的外径大约 4.8 毫米。切割面 42 的角度大约 50 度。

移置杆

图 8A 和 8B 示出了用于插管的移置杆。插管和移置杆之间公差介于大约 0.1mm 到大约 0.5mm 之间。如图 8C 所示，这些移置杆用于从插管中移除碎片。另外，移置杆还可用于将骨骼填充物推入空腔。在这个实施例中，骨骼填充物可以直接放置在插管中，然后被推入空腔。

在插管中的移置杆的顶端可以是适合于清理碎片的通道或将骨骼填充物导入空腔的任何形状。例如，在图 8A 中所示的顶端具有一个钝末端，而图 8B 中的顶端具有一个圆形末端。圆形末端可以将移置杆插入插管。本领域中的技术员可以理解其它如凹面、锥形末端或斜面形状也可以使用。

当移置杆是空腔形成通路工具箱的一部分时，它优选地设计为一种可弯卷的工具。图 8B 示出了一种可以降低制造和替换成本的设计。在这个实施例中的移置杆由单件材料制成。手柄呈环形，以便医生在使用时可以操作移置杆，如图 8C 中所示。

移置杆也可以用于清理在这个过程中使用的其它工具。例如，如果使用注射器将骨骼填充物导入空腔，类似的移置杆也可以用来清理注射器的针。移置杆外径与被清理区域内径之间的公差可以根据需要清理的通道和工具的相对易用程度来选择。例如，表面之间较小的公差可以更好地清理通道，但对医生来说更费时或者更困难。

另外，可以使用与移置杆构造相似的工具在使用骨芬棒的骨骼的网状区域形成通道。例如，一旦插管被适当地定位可以提供到达骨骼内部的通道时，就可以从插管中插入一个杆状工具进入骨骼，用它清理，或至少可以疏松将要插入骨芬棒的网状骨。这使得医生可以容易地将骨芬棒插入到希望位置。而且，清理和疏松骨芬棒插入区域的网状骨可以延长骨芬棒的有效使用寿命，因为它不必在导入网状骨时在
末端承受力。

骨夯棒

一旦使用上述的任意或所有工具和方法建立了空腔形成通路，就可以使用骨夯棒或者刮匙在骨骼内部形成空腔。下面将要详细描述的骨夯棒可以根据特殊性能或医生需要的感觉用各种方法制造。因此，一个实施例中的骨夯棒由形状记忆金属构成，另一个由可以转过一定运动范围的活板构成，还有一个由具有受控动作范围的活板构成。下面描述的实施例是本发明的非限制例子。

图 9A 和 9B 示出了记忆金属展开环骨夯棒的两个视图。棒体 44 大体上呈圆柱形，但是其横截面几乎可以是任何形状。在这个实施例中棒体 44 的外径大约是 4.2 加或减 0.2 毫米。棒体的尺寸并不重要，只要在收回棒体 44 和环 46 时它们可以通过插管的内径即可。具一个刻度为毫米的距离标尺 48。棒体 44 的长度大约为 190 毫米，但是这个长度可以变化。示出的记忆金属环 46 处于张开位置，直径约 10 毫米，长度约 15 毫米。用于展开环骨夯棒的展开范围介于大约 4 到大约 24 毫米间较好。最好介于大约 6 到大约 20 毫米，而介于大约 8 到大约 16 毫米之间则最好。

在这个实施例中，轴环 50 具有一个可以在导槽 54 中滑动的轴承/固定螺钉 52。让轴环前进或后退的机构包括但不仅限于滑动、转动带螺纹的轴环，甚至挤压式手枪式把手。导槽 54 紧固在手柄 56 上，因此，当轴环 50 和它的轴承或固定螺钉 52 在导槽 54 中滑动时，轴环 50 和棒体 44 相对于把柄 56 移动。通过向环 46 方向滑动轴环，环 46 就缩回到棒体内。记忆金属环的控制机构包括将记忆金属环 46 缩回棒体 44 内。在完全缩回状态下，记忆金属环 14 伸出棒体 10 不应超过大约 4 毫米，最好不超过大约 2.5 毫米。环 46 紧紧固定在手柄 56 上。按钮 58 受一个与弹簧 60 相抵消的力，与锥形衬套 62 一起保持杆和丝线 64 紧紧固定在手柄 56 上。杆和丝线 64 与记忆金属环 46 是连续的。压下按钮 58 使得杆滑动，松弛杆和手柄之间的夹紧力。这个按钮用于清洗时拆卸骨棒。注意可以使用固定螺钉 66 锁定按钮以防止环组件意
外松脱。

医生可以通过向后拉动轴环 50 来展开记忆金属环 46。轴环 50 上具有一个很有利的拇指拔点，该拔点可以很好地控制这个滑动轴环。轴环依靠摩擦、磁指作用力和可能的固定螺钉保持位置。导槽 54 具有分离的起始端和末端，因此限制了棒体 44 相对于手柄 56 的滑动量。导槽 54 可以具有侧面凹陷或沟槽，转动一下就可以将轴环“锁定”在几个预设位置之一。

环 46 的形状是按照工业方法预置到记忆金属中的。图 10A－C 所示的这种形状是圆整的三角形。图 10A－C 示出了当环 46 从棒体 44 中出来时如何展开。如图 11A－D 示出了环 46 为卵圆形的另一个实施例。图 12 示出了另一个展开环骨夯棒的实施例。在这个实施例中，环近似为六角形。

图 13 是轴环 50 的一个实施例，通过在螺纹 68 上旋转轴环使轴环移动。螺纹 68 上最好具有平面部分 70，这样螺纹就可以容易地锁定，或者当转动轴环，轴承（未示出）经过平面部分 70 时，弹簧加载的轴承可以发出听不到的响声。螺纹带来的良好控制允许夯棒机构的部分展开。

图 14 是环 46 的闭合状态图。在一个实施例中，这些环是对称的。但是另一个实施例中使用的是非对称环。如图 15A－C 所示，在这样一个实施例中，用于形成环的材料的一端由于其伸出到棒体 44 外而至少部分地支撑到杆 72 上。此金属接着被弯曲形成环 46，并且返回穿过棒体 44 内。环的展开的控制可以通过伸进和回缩丝线实现，或者最好相对于杆 72 移动棒体 44 而实现。沿杆 72 向后一直到手柄或沿棒体 44 的沟槽（未示出），使条带容易地返回到其所固定的轴环或手柄。

在每个实施例中，用于环的材料是一种弹性材料，如适当的钢或塑料。在一个典型的实施例中，诸如镍钛乃之类的形状记忆金属用于制造环。

图 16A 和 16B 示出了骨夯棒的活板实施例。夯棒具有一个带螺纹 68 的轴环 50。这个实施例中的棒体 44 具有一个杆 74 从中穿过的沟槽。
如果杆 74 没有嵌入棒体 44 而只是在开口沟槽中运动，则最好具有滑动检系，用于在几个预先选择位置处将杆 74 固定到棒体 44。挡块 78 用来防止杆 74 伸出过量。杆 74 推动活板 80。在图 16A 和 16B 中，杆完全伸出，并且活板伸开不再与棒体 44 处于一条直线上而是成大约 90 度角。固定螺钉或轴承 82 将杆 74 的底部 84 保持在轴环 50 内。底部 84 上的沟槽 86 使得轴环可以在不转动棒体 44 和杆 74 的情况下旋转。活板至少由两点和一个用作铰链的销子支撑住。在一个实施例中，当轴环沿一个方向旋转伸展活板时，活板的活动范围逐渐变小。在另一个实施例中，任何时候活板都几乎没有活动范围，但当轴环旋转时活板逐渐展开。这个实施例的一个优点是外科医生可以慢慢展开活板和旋转骨丈棒，从而使得空腔的形成更缓和。用于这些实施例中的任何一个的活板，最好当轴环完全展开时保持在它的最后位置。

图 17 - 20 进一步示出了上述活板设计的特征。在图 17 中，轴环 50 可以很好地从挡块 78 处返回。图 18A - E 示出了铰链 88 和钝化的活板 80 的细节。图 19 示出了定向的活板 80 的放大图，其中在一个方向上转动可以增加斧敲效果，而沿相反方向转动增加了对网状材料的腐蚀作用。图 20 更清晰地示出了杆 74 和活板 80 之间的相互作用，其中杆可以滑动并且移动活板。

图 21 示出了活板骨丈棒的一个实施例，其中握紧挤压手枪式把手、剪刀形把手或任何其它把手，活板就相应地展开。手枪式把手控制机构的控制如图 22 - 24 所示，活板可以根据手枪式把手臂的运动量而部分或完全展开。图 25 示出了处于未展开状态的活板。

图 26 示出了一个活板骨丈棒的实施例，其中拉动一条直接连接在活板上的金属或塑料丝线就可以引起活板移动，与轴线不再处于一直线上。

图 27A - F 示出活板骨丈棒的另一个实施例。在这个实施例中，活板铰接在点 88，而活板的另一端在点 90 与棒体 44 滑动接合。带螺纹的注射器

图 28 示出了配合一个管的注射器，该管可以穿过插管。除了下面
的描述以外，正在审查中的美国专利申请 No.____中进一步描述了该注射器，该专利申请于 2001 年 8 月 20 日提交，标题为“用于传送骨骼替代物的螺纹注射器”，在此全文引用作为参照。该注射器用来传送用于形成空腔治疗中必需的物质。在某些实施例中，必须产生大约 100psi 到 1500psi 从而以足够的速率注射治疗物质。注射器具有螺纹，以便转动螺纹部分从而使得柱塞移动和随后的填充物的可控高压传送。

送入的物质包括聚甲基丙烯酸甲酯（PMMA）或者任何其它骨科填充物。在一个优选实施例中，骨科填充物是一种由磷酸钙制成的混合物，例如可由 Norian Corporation, 10260 Bubb Road, Cupertino, CA 95014 提供。关于这样的混合物的进一步信息可以从在此参考的下列美国专利中获得：5,336,264、5,962,028、5,820,632、6,005,162、5,900,254、6,002,085、5,782,971，和 5,952,010。本发明中用到的骨科填充物的另外的例子可以从在此参考的下列美国专利中获得：5,129,905、5,047,031、4,880,610、5,053,212，和 5,178,845。

图 29 示出了环形骨夯棒的展开状态，该环形骨夯棒具有由形状记忆金属制成的环。环的释放相应于棒体从网状区域部分地收回。

图 30 示出了带螺纹的插管，管体上的螺纹有助于插管轴向进入骨骼。如图 30 所示，插管端部具有锐利的切割边，有助于插管在骨骼中适当定位。锐利的端部可能具有可以切割或粉碎骨骼的锋利的凸起。另一种如图 7C 所示的情况中，插管具有一个不太锐利的端部。例如，端部可以有一个圆锥的轮廓。为了得到希望的性能或感觉，插管端部的边缘可以被斜切、圆整、钝化或成为任何其它形状。例如，斜切端部边缘使得端部具有一个锋利的边缘，以便更好地切穿骨骼，或为外科医生提供更得心应手的控制和感觉。

另外，插管端部可以具有其它形状以取得希望的功能或感觉。例如，端部可以呈楔形，这样有助于端部前缘在穿过皮肤刺透骨骼时承受旋转力。

当然，工具的直径越小，在穿透过程中造成的伤害就越小。这些工具直径很小——例如，骨夯棒主体部分最可能的内径介于大约 4mm 到
6mm 之间。插管外径典型地要比这大至少 1mm。因此从工具进出所造成的那些无意间的伤害的角度来看，尺寸是很重要的。

在使用中，可以使骨棒体 44 在插管 34 内做轴向运动和旋转运动。医生可以在插管 34 的导向套内自由地滑动棒体 44。作为次要的防范，当被插管牢固地限制时，如果环结构伸出骨棒末端相当大的距离，就会被周围的插管折叠起来。

在正常的手术过程中，骨棒棒体折叠记忆金属环结构。当释放骨棒棒体时，环结构又弹回到原来的尺寸。医生可以随意地操作轴环 50 从而改变环 46 的形状。

医生可以通过旋转手柄来转动展开的环结构。环结构的转动会回敲并且在一定程度上切割周围的组织体。转动最好手动进行，因为回敲骨骼相对简单切除组织而言，需要更良好的“感觉”

工具对脊椎上的应用尤其有用，但不适用于此。工具可以同样地在长骨骼和其他类型的骨骼中展开。

脊椎包括延伸在脊椎前面的脊椎骨体。脊椎骨体包含由致密的皮层骨形成的外部。皮层骨包裹着一些内部网状松质骨，或海绵状骨骼（也称作髓骨或脊柱骨）。

脊椎骨体一般呈椭圆形。例如，对脊椎骨体内部的接触可以通过楔穿或切穿硬骨骼面达到。例如，这种楔穿/切穿可以通过在描述的探针和插管实现。

当骨棒棒在网状骨中插管外张开时，医生用前述方式操作控制机构使得环结构获得希望的尺寸或使得活板适当展开。医生手动旋转环结构或活板通过周围的网状骨。结构的旋转剪切和回敲网状骨，因此形成空腔。在手术过程中同步旋转和操作控制机构增大放松机构的尺寸，医生就可以实现一个预期尺寸的空腔。

使用这些工具的步骤如下。首先，探针端部伸出探针体预定长度。将手柄连结到探针上。如果探针手柄不可拆除，可以将插管预先安装到探针上。探针向前穿过骨骼，即脊椎骨，最好经由皮肤到达希望的程度。拆下手柄，保持探针位置不变，将插管轻轻地滑到探针上（如
果插管还没有装到探针上面）。深度标记用于决定穿透的深度。插管沿
探针轴向前螺旋或直接进入肉蒂或脊椎骨体。

然后，取出探针而让插管保持在它的位置不动。如果前面拆下探
针手柄，可以重新安装上，这样就可以很容易地取出探针。骨夯棒通
过插管插入，然后夯敲机构在里面张开，通过适当的收缩展开程度，
和/或在需要时旋转就可以构造出一个空间。当空腔达到预期的形状和
大小后，夯敲机构收缩使得骨夯棒从插管中抽出。

然后，可选择地，使用图28中的注射器或其他适当的设备将空穴
填充物通过插管放入空腔。可以在任何时候使用移位杆保持插管体清
洁无阻塞，也可以用它将附着在插管上的治疗物质放入空腔。最后，
取出插管。

在此描述过程中的另一个可选步骤是将药剂输送到治疗区域。药
剂可以包括密封剂、抗凝血剂、凝血剂、止痛剂或镇痛剂、增生剂或
抗菌素。药剂可以在医生希望的任何时候被输送到治疗区域，但是最
好在空腔被填充之前输送。药剂的输送可以使用医生希望的任何方式，
一些传送方式包括在一个可膨胀装置上喷射数层，并将之放入空腔；
通过插管向空腔内部注射药剂；或者在空腔内表面喷射涂层。在一个
实施例中，可膨胀装置至少具有两层物质，药剂放在两层之间。最外
层可以被移除或分解从而释放出药剂。

可膨胀装置也可以用于输送反应成分。例如，把一种混合物放在
两层之间，最外层覆盖另一种混合物。当最外层移除或分解后，两种
混合物混合并且反应。在一个备选实施例中，混合物可以被置于可膨
胀装置的不同层之间。在这个实施例中，可膨胀装置的最外层移除或
分解，第一种混合物被释放出来。接下来，可膨胀装置的下一层被移
除或分解从而释放出第二种混合物。在另一个实施例中，在可膨胀装
置的最外层被移除或分解之前，中间层被移除或分解。任意或所有的
混合物也有助于可膨胀装置的膨胀。

这其中的几个和其它的一些往空腔输送药剂的方法在审查中的
U.S.申请No.09/908,899中有描述，在此全文引用作为参照。另外，在
此描述的工具可以用于传输药剂。例如，活板顶端配制成适合向空腔中喷洒或输送药剂。药剂可以通过一个沟槽、管道或本专利之外采用的其它药剂供应方式输送到活板顶端。药剂的供应可以来自工具本身的储藏器或从另外的来源供应。

这些工具任何之一的单独使用会产生引起周围皮层和网状骨的接触，这种接触会损坏工具，产生检测不上的局部缺陷。另外，在单独使用中，工具暴露在血和组织中使得生物成分能够侵入工具表面或内部。此处描述的工具考虑到了每个元件的替换，尤其是很容易地替换那些接触骨骼的元件。这些工具也易于清洗和拆卸。这些工具可以仅使用一次就丢弃。如果这样，对很多工具来说使用塑料更可取。

在另一个实施例中，这里描述的工具用于修复骨骼。骨骼的修复可以作为以上描述的方法的一个附加步骤实施，或者并不在骨骼内形成空腔而直接实施。一旦插管定位从而提供进入骨骼的通道，就可以在骨骼内部区域移置工具来支撑或修复塌陷、破碎或虚弱的骨骼。在这种方法的一个例子中，在此描述的工具的活板伸展开，顶端接触修复骨骼的表面。医生就可以操作工具让活板向骨骼施加压力来修复它。

其它类型的工具也可以用于修复骨骼。例如，在此描述的环可以修改成具有多个环，当这些环展开时，这些环向外展开直到至少一个环接触到要修复的表面。然后医生可以操作这些工具，例如旋转、轴向移动它们或进一步展开以向骨骼治疗的表面施加压力。任何其它可以扩张开来修复骨骼的工具或材料同样适合。在一个例子中，张开的顶端可以被设计和构造为留在骨骼内对治疗区域提供长期的支撑。

在另一个例子中，水凝胶可以塞进骨骼内部接近需要修复的治疗区域。在一个实施例中，骨枃棒的活板顶端可以用水凝胶制成，以便顶端在形成空腔后用来复原骨骼。因为水凝胶吸收水分，它将一直扩张到骨骼需要复原的部分为止。此后，水凝胶的进一步扩张将使得骨骼被隆起，或向自然解剖的方向复原。骨骼填充物可以塞到水凝胶中以提供支撑。另外，水凝胶也可以不需要骨骼填充物的支撑而扩张和硬化。
很明显，在此公开的发明被精确设计以达到上面声明的目标，应理解对本领域内的技术人员来说可以对本发明做出各种改进和实施例。因此，本领域内的技术人员可以在本发明的真实精神和范围内理解这些改进和实施。
图1B
图4D
图4E
图 5A
图5B
图6
图7C
图7D
图8C
图15A

图15B

图15C
图17
图19
图20
图22
图23
图24
图25
图28
图30