2007/120429 A2 I}V 0 00 0 0100 O O A

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | ‘1”1‘

International Bureau

(43) International Publication Date
25 October 2007 (25.10.2007)

) IO O 0 OO0 O

(10) International Publication Number

WO 2007/120429 A2

(51) International Patent Classification:
GOG6F 13/00 (2006.01)

(21) International Application Number:
PCT/US2007/007120

(22) International Filing Date: 22 March 2007 (22.03.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/403,391 13 April 2006 (13.04.2006) US

(71) Applicant (for all designated States except US):
CLEVERSAFE, INC [US/US]; 10 W.35th Street,
16th Floor, #84, Chicago, IL. 60616 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GLADWIN,
Christopher, S. [US/US]; 1920 North Lincoln Avenue,
#R1, Chicago, IL. 60614 (US). ENGLAND, Matthew, M.
[US/US]; 2300 W. Wabansia Avenue, #123, Chicago, IL

60647 (US). GOPALA KRISHNA KAPILA LAKSH-
MANA HARSHA, Dhanvi [IN/US]; 3001 S. Michigan
Avenue, #2204, Chicago, IL 60616 (US). MARK,
Zachary, J. [US/US]; 4504 West 59th Street, Chicago, IL
60629 (US). THORNTON, Vance, T. [US/US]; 2921 S.
Michigan Avenue, #503, Chicago, IL. 60616 (US).

Agent: PANIAGUAS, John, S.; Katten Muchin Rosen-
man LLP, 1025 Thomas Jefferson Street, N.W., East Lobby,
Suite 700, Washington, DC 20007-5201 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(74)

(81)

(34)

[Continued on next page]

(54) Title: SYSTEM FOR REBUILDING DISPERSED DATA

34

(57) Abstract: A digital data
file storage system 1is disclosed
in which original data files to be

38> 38> 40> 42
< ~

stored are dispersed using some

) ° A form of information dispersal

fs B £s C fs D fs E fs_F algorithm into a number of file

"slices" or subsets in such a manner

Storage Storage Storage Storage Storage that the data in each file share is
Node 1 Node2 Node3 Node4 Node 5

mission 1

mission 2 |mission 3 {mission 4 |mission 5

less usable or less recognizable or
completely unusable or completely
unrecognizable by itself except
when combined with some or all
of the other file shares. These file
shares are stored on separate digital
data storage devices as a way of
increasing privacy and security.

As dispersed file shares are being

fs B fs C fs D fs B fs F transferred to or stored on a grid
- , - - - - \ of distributed storage locations,
hare 1 Share2 Share 3 \ Share 4 57 various grid resources may become

\V/

Decoding Algorithms

|

Original File: FileNameX -1 -20

24
28

non-operational or may operate
below at a less than optimal level.
When dispersed file shares are being
written to a dispersed storage grid
which not available, the grid clients
designates the dispersed data shares
that could not be written at that
time on a Rebuild List. In addition
when grid resources already storing

dispersed data become non-available, a process within the dispersed storage grid designates the dispersed data shares that need
to be recreated on the Rebuild List. At other points in time a separate process reads the set of Rebuild Lists used to create the
corresponding dispersed data and stores that data on available grid resources.

WO 2007/120429 A2 |00 000 0T 00000 O 0O

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — asto the applicant’s entitlement to claim the priority of the
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), earlier application (Rule 4.17(iii))

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB,GR,HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, PL, Published:

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, — without international search report and to be republished
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). upon receipt of that report
Declarations under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-

— as to applicant’s entitlement to apply for and be granted a ance Notes on Codes and Abbreviations” appearing at the begin-
patent (Rule 4.17(ii)) ning of each regular issue of the PCT Gagzette.

WO 2007/120429 PCT/US2007/007120

SYSTEM FOR REBUILDING DISPERSED DATA

CROSS REFERENCE TO RELATED APPLICATIONS

{0001] This application is a continuation-in-part of commonly owned co-pending US
Application No. 11/241,555, filed on September 30, 2005.

BACKGROUND OF THE INVENTION

1. Field of the Invention
[0002] The present invention relates to a distributed data file storage system and method

for storing data using information dispersal algorithms, and more particularly, to a system
and method for rebuilding dispersed data. On an information dispersal grid, dispersed
data - subsets of an original set of data and/or coded data -- are stored on multiple data
storage devices in one or more locations such that the dispersed data on each storage
device is unrecognizable and unusable ex'cept when combined with dispersed data from
other digital data storage devices. In order to address the situation when dispersed data is
transferred to or stored on an information dispersal grid which is not always fully
operational, the present invention provides capabilities to address either temporary or
permanent resource outages on an information dispersal grid as well as rebuilding of

dispersed data due to resource outages.

WO 2007/120429 PCT/US2007/007120

2. Description of the Prior Art

[0003] Various data storage systems are known for storing data. Normally such data
storage systems store all of the data associated with a particular data set, for example, all
the data of a particular user or all the data associated with a particular sofiware
application or all the data in a particular file, in a single dataspace (i.e. single digital data
storage device). Critical data is known to be initially stored on redundant digital data
storage devices. Thus, if there is a failure of one digital data storage device, a complete
copy of the data is available on the other digital data storage device. Examples of such
systems with redundant digital data storage devices are disclosed in US Patent Nos.:
5,890,156; 6,058,454; and 6,418,539, hereby incorporated by reference. Although such
redundant digital data storage systems are relatively reliable, there are other problems
with such systems. First, such systems essentially double or further increase the cost of
digital data storage. Second, all of the data in such redundant digital data storage systems

is in one place making the data vulnerable to unauthorized access.

[0004] In order to improve the security and thus the reliability of the data storage system,
the data may be stored across more than one storage device, such as a hard drive, or
removable media, such as a magnetic tape or a so called “memory stick™ as set forth in
U.S. Pat. No. 6,128,277, hereby incorporated by reference, as well as for reasons relating
to performance improvements or capacity limitations. For example, recent data in a
database might be stored on a hard drive while older data that is less often used might be
stored on a magnetic tape. Another example is storing data from a single file that would
be too large to fit on a single hard drive on two hard drives. In each of these cases, the
data subset stored on each data storage device does not contain all of the original data,
but does contain a generally continuous portion of the data that can be used to provide
some usable information. For example, if the original data to be stored was the string of

characters in the following sentence:

The quick brown fox jumped over the lazy dog.

WO 2007/120429 PCT/US2007/007120

and that data was stored on two different data storage devices, then either one or both of
those devices would contain usable information. If, for example, the first 20 characters
of that 45 character string was stored on one data storage device the remaining 25
characters were stored on a second data storage device, then the sentence be stored as

follows:

The quick fox jumped (Stored on the first storage device)

over the lazy brown dog. (Stored on the second storage device)

[0005] In each case, the data stored on each device is not a complete copy of the original

data, but each of the data subsets stored on each device provides some usable information.

[0006] Typically, the actual bit pattern of data storage on a device, such as a hard drive,
is structured with additional values to represent file types, file systems and storage
structures, such as hard drive sectors or memory segments. The techniques used to
structure data in particular file types using particular file systems and particular storage
structures are well known and allow h_ldividuals familiar with these techniques to identify

the source data from the bit pattern on a physical media.

[0007] In order to make sure that stored data is only available only to authorized users,
data is ofien stored in an encrypted form using one of several known encryption
techniques, such as DES, AES or several others. These encryption techniques store data
is some coded form that requires a mathematical key that is ideally known only to
authorized users or authorized processes. Although these encryption techniques are
difficult to “break™, instances of encmtion techniques being broken are known making

the data on such data storage systems vulnerable to unauthorized access.

[0008] In addition to securing data using encryption, several methods for improving the
security of data storage using information dispersal algorithms have been developed, for
example as disclosed in US Patent No. 6,826,711 and US Patent Application Publication
No. US 2005/0144382, hereby incorporated by reference. Such information dispersal

algorithms are used to “slice” the original data into multiple data subsets and distribute

-3-

WO 2007/120429 PCT/US2007/007120

these subsets to different storage nodes (i.e. different digital data storage devices).
Information dispersal algorithms can also be used to disperse an original data set into
multiple data sets, none of which contain any of the original data. Individually, each data
subset or slice does not contain enough information to recreate the original data; however,
when threshold number of subsets (i.e. less than the original number of subsets) are

available, all the original data can be exactly created.

{0009]] The use of such information dispersal algorithms in data storage systems
is also described in various trade publications. For example, “How to Share a Secret”, by
A.. Shamir, Communications of the ACM, Vol. 22, No. 11, November, 1979, describes a

scheme for sharing a secret, such as a cryptographic key, based on polynomial
interpolation. Another trade publication, “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance”, by M. Rabin, Journal of the Association for
Computing Machinery, Vol. 36, No. 2, April 1989, pgs. 335-348, also describes a

method for information dispersal using an information dispersal algorithm.

[0010] Unfortunately, these methods anci other known information dispersal methods are
computationally intensive and are thus not applicable for general storage of large
amounts of data using the kinds of computers in broad use by businesses, consumers and
other organizations today. Thus there is a need for a data storage system that is able to
reliably and securely protect data that does not require the use of computation intensive
algorithms.

SUMMARY OF THE INVENTION
[0011] Briefly, the present invention relates to a digital data file storage system in which

original data files to be stored are dispersed using some form of information dispersal
algorithm into a number of file “slices” or subsets in such a manner that the data in each
file share is less usable or less recognizable or completely unusable or completely
unrecognizable by itself except when combined with some or all of the other file shares.
These file shares are stored on separate digital data storage devices as a way of increasing
privacy and security. As dispersed file shares are being transferred to or stored on a grid

of distributed storage locations, various grid resources may become non-operational or

-4 -

WO 2007/120429 PCT/US2007/007120

may operate below at a less than optimal level. When dispersed file shares are designated
to be written to a disperseci storage grid resource which is not available, the grid client
designates the dispersed data shares that could not be written at that time on a Rebuild
List. In addition when grid resources already storing dispersed data become non-
available, a process within the dispersed storage grid designates the dispersed data shares
that need to be recreated on a Rebuild List. At other points in time a separate process
reads the set of Rebuild Lists and creates the corresponding dispersed data and stores that

data on available grid resources.

DESCRIPTION OF THE DRAWINGS
[0012] These and other advantages of the present invention will be readily understood

with reference to the following drawing and attached specification wherein:

[0013] FIG. 1 is a block diagram of an exemplary data storage system with six storage
nodes in accordance with the present invention which illustrates how an original data file
is dispersed into file shares, coded and transmitted to a separate digital data storage

devices or nodes.

[0014] FIG. 2 is similar to FIG. 1 but illustrates how the data subsets from all of the

exemplary six nodes are retrieved and decoded to recreate the original data set.

[0015] FIG. 3 is similar to FIG. 2 but illustrates a condition of a failure of one of the six

digital data storage devices.

[0016] FIG. 4 is similar FIG. 3 but for the condition of a failure of three of the six digital

data storage devices.

[0017] FIG. 5 is an exemplary table in accordance with the present invention that can be
used to recreate data which has been stored on the exemplary six digital data storage

devices.

[0018] JFIG. 6 is an exemplary table that lists the decode equations for an exemplary six

node storage data storage system for a condition of two node outages

[0019] FIG. 7 is similar to FIG. 6 but for a condition with three node outages

WO 2007/120429 PCT/US2007/007120

[0020] FIG. 8 is similar to FIG. 2 but illustrates a condition of a failure of one of the six

digital data storage devices while data is being written to a storage grid.

[0021] FIG. 9 is a block diagram of an exemplary data rebuilder system that rebuilds data

when a storage resource is not available while new data is being written to a storage grid.
[0022] FIG 10 is an exemplary table that lists entries in 2 Rebuild List table.

[0023] FIG. 11 is a block diagram of an exemplary data rebuilder system that rebuilds

data when a storage resource is replaced.

[0024] FIG. 12 is an exemplary table that lists entries in a Volume Identification Number

and User Identification Number mapping table.

[0025] FIG. 13 is an exemplary table that lists entries in a User Identification Number

and File Identification Number mapping table.

[0026] FIG. 14 is an exemplary table that lists entries in a table of Slice Identification

Numbers associated with a particular File.

[0027] FIG. 15 is and exemplary table that lists entries in User Identification Number and
Slice Identification Number mapping table

[0028] FIG. 16 is an exemplary diagram in accordance with the present invention which
illustrates the various functional elements of a metadata management system for use with

an information dispersal storage system in accordance with the present invention .

[0029] FIG. 17 is an exemplary flow chart that shows the process for maintaining

metadata for data stored on the dispersed data storage grid.

[0030] FIG. 18 shows the essential metadata components that are used during user

transactions and during user file set lookup.

[0031] FIGS. 19 A and 19 B illustrate the operation of the system.

DETAILED DESCRIPTION
[0032] The present invention relates to a data storage system. In order to protect the
security of the original data, the original data is separated into a number of data “slices”

or subsets. This invention can also be used to separate or disperse data files into file slices

-6-

WO 2007/120429 PCT/US2007/007120

or file “shares.” The amount of data in each slice is less usable or less recognizable or
completely unusable or completely unrecognizable by itself except when combined with
some or all of the other data subsets. In particular, the system in accordance with the
present invention “slices” the original data into data subsets and uses a coding algorithm
on the data subsets to create coded data subsets. Each data subset and its corresponding
coded subset may be transmitted separately across a communications network and stored
in a separate storage node in an array of storage nodes. In order to recreate the original
data, data subsets and coded subsets are retrieved from some or all of the storage nodes or
communication channels, depending on the availability and performance of each storage
node and each communication channel. The original data is recreated by applying a

series of decoding algorithms to the retrieved data and coded data.

[0033] As with other known data storage systems based upon information dispersal
methods, unauthorized access to one or more data subsets only provides reduced or

unusable information about the source data.

[0021] In order to understand the invention, consider a string of N characters dy, di, ...,
dyy which could comprise a file or a system of files. A typical computer file system may
contain gigabytes of data which would mean N would contain trillions of characters. The
following example considers a much smaller string where the data string length, N,
equals the number of storage nodes, n. To store larger data strings, these methods can be
applied repeatedly. These methods can also be applied repeatedly to store computer files
or entire file systems.

[0034] For this example, assume that the string contains the characters, OLIV ER

where the string contains ASCII character codes as follows:

do=0=179
dy=L=76
dy, =1=73
d;,=V=86
ds,=E=69
ds=R =282

-7-

WO 2007/120429 PCT/US2007/007120

[0035] The string is broken into segments that are n characters each, where n is chosen to
provide the desired reliability and security characteristics while maintaining the desired
level of computational efficiency — typically n would be selected to be below 100. In one
embodiment, n may be chosen to be greater than four (4) so that each subset of the data
contains less than, for example, ¥ of the original data, thus decreasing the recognizablity

of each data subset.

[0024] In an alternate embodiment, n is selected to be six (6), so that the first original

data set is separated into six (6) different data subsets as follows:
A=d0, B=dls C=d2: D=d3’ E=d4’ F=d5
[0036] For example, where the original data is the starting string of ASCI values

for the characters of the text OL 1 VE R, the values in the data subsets would be those

listed below:

A=T79
B=176
C=73
D=286
E =69
F=82

[0037] In this embodiment, the coded data values are created by adding data values from
a subset of the other data values in the original data set. For example, the coded values

can be created by adding the following data values:

c[x] = d[n_mod(x+1)] + d[n_mod(x+2)] + d[n_mod(x+4)]

where:

WO 2007/120429 PCT/US2007/007120

c[x] is the xth coded data value in the segment array of coded data values

d[x-+1] is the value in the position 1 greater than x in a array of data values
d[x+2] is the value in the position 2 greater than X in a array of data values
d[x+4] is the value in the position 4 greater than x in a array of data values

n_mod() is function that performs a modulo operation over the number space 0ton-1

[0038] Using this equation, the following coded values are created:

cA, cB, cC, cD, cE, cF

where cA, for example, is equal to B+C+E and represents the coded value that will be
communicated and /or stored along with the data value, A.

[0039] For example, where the original data is the starting string of ASCII values for the
characters of the text O L I V E R, the values in the coded data subsets would be those
listed below:

cA =218
cB =241
cC=234
cD =227
cE=234
cF =241

[0040] In accordance with the present invention, the original data set 20, consisting of
the exemplary data ABCDEF is sliced into, for example, six (6) data subsets A, B, C, D,
E and F. The data subsets A, B, C, D, E and F are also coded as discussed below forming
coded data subsets cA, ¢B, cC, ¢D, cE and cF. The data subsets A, B, C, D, E and F and
the coded data subsets cA, cB, ¢C, cD, ¢E and cF are formed into a plurality of slices 22,
24, 26, 28,30 and 32 as shown, for example, in FIG. 1. Each slice 22, 24, 26, 28, 30 and
32, contains a different data value A, B, C, D, E and F and a different coded subset cA,

-9.

WO 2007/120429 PCT/US2007/007120

¢B, cC, cD, cE and cF. The slices 22, 24, 26, 28, 30 and 32 may be transmitted across a
communications network, such as the Internet, in a series of data transmissions to a series
and each stored in a different digital data storage device or storage node 34, 36, 38, 40,
42 and 44.

[0041) In order to retrieve the original data (or receive it in the case where the data is just
transmitted, not stored), the data can reconstructed as shown in FIG. 2. Data values from
each storage node 34, 36, 38, 40, 42 and 44 are tfansmitted across a communications
network, such as the Internet, to a receiving computer (not shown). As shown in FIG. 2,
the receiving computer receives the slices 22, 24, 26, 28, 30 and 32, each of which
contains a different data value A, B, C, D, E and F and a different coded value cA, ¢B, cC,
cD, cE and cF.

[0042] For a variety of reasons, such as the outage or slow performance of a storage node
34, 36, 38, 40, 42 and 44 or a communications connection, not all data slices 22, 24, 26,
28, 30 and 32 will always be available each time data is recreated. FIG. 3 illustrates a
condition in which the present invention recreates the original data set when one data
slice 22, 24, 26, 28, 30 and 32, for example, the data slice 22 containing the data value A
and the coded value cA are not available. In this case, the original data value A can be

obtained as follows:

A=cC-D-E

where cC is a coded value and D and E are original data values, available from the slices
26, 28 and 30, which are assumed to be available from the nodes 38, 40 and 42,
respectively. In this case the missing data value can be determined by reversing the
coding equation that summed a portion of the data values to create a coded value by
subtracting the known data values from a known coded value.

[0043] For example, where the original data is the starting string of ASCII values for the
characters of the text O L I V E R, the data value of the A could be determined as

follows:

-10 -

WO 2007/120429 PCT/US2007/007120

A=234-86-69

Therefore A = 79 which is the ASCII value for the character, O.

[0044] In other cases, determining the original data values requires a more detailed
decoding equation. For example, FIG. 4 illustrates a condition in which three (3) of the
six (6) nodes 34, 36 and 42 which contain the original data values A, B and E and their
corresponding coded values cA, ¢B and cE are not available. These missing data values
A, B and E and corresponding in FIG. 4 can be restored by using the following sequence

of equations:
1. B=(cD-F+cF-cC) /2
2. E=cD-F-B
3. A=cF-B-D

[0045] These equations are performed in the order listed in order for the data values

. required for each equation to be available when the specific equation is performed.

[0046] For example, where the original data is the starting string of ASCII values for the
characters of the text O L I V E R, the data values of the B, E and A could be determined

as follows:

1. B=(227-82+241-234) /2
B =176

2. E=227-82-76
E=69

3. A=241-76-86
A=79

-11 -

WO 2007/120429 PCT/US2007/007120

[0047] In order to generalize the method for the recreation of all original data ABCDEF
when n=6 and up to three slices 22, 24, 26, 28 30 and 32 are not available at the time of
the recreation, FIG. 5 contains a table that can be used to determine how to recreate the

missing data.

[0048] This table lists the 40 different outage scenarios where 1,2, or 3 out of six storage
nodes are be not available or performing slow enough as to be considered not available.
In the table in FIG. 5, an “X’ in a row designates that data and coded values from that
node are not available. The “Type’ column designates the spatial pattern type of nodes
not available. An ‘Offset’ value for each outage scenario is also indicated. The offset is
the difference the spatial position of a particular outage scenario and the first outage

scenario of that Type.

[0049] The data values can be represented by the array d[x], where x is the node number

where that data value is stored. The coded values can be represented by the array c[x]-

[0050] In order to reconstruct missing data in an outage scenario where one node is not

available in a storage array where n=6, the follow equation can be used:

d[0 + offset] = c3d(2, 3, 4, offset)

where ¢3d() is a function in pseudo computer software code as follows:
c3d(coded_data_pos, known_data a_pos, known_data_b_pos, offset)

unknown_data=
c[n_mod(coded_data_pos+ofiset)]-
d[n_mod(known_data_a_pos-+offset)]-
d[n_mod(known_data_b_pos-+offset)];

return unknown_data

-12-

WO 2007/120429 PCT/US2007/007120

where n_mod() is the function defined previously.

[0051] In order to reconstruct missing data in an outage scenario where two nodes are not
available in a storage array where n=6, the equations in the table in FIG. 6 can be used.
In FIG. 6, the ‘Outage Type Num’ refers to the corresponding outage “Type’ from FIG. 5.
The ‘Decode Operation’ in FIG. 6 refers to the order in which the decode operations are
performed. The ‘Decoded Data’ column in FIG. 6 provides the specific decode

operations which produces each missing data value.

[0052] In order to reconstruct missing data in an outage scenario where three nodes are
not available in a storage array where n=6, the equations in the table in FIG. 7 can be
used. Note that in figure 7, the structure of the decode equation for the first decode for
outage type = 3 is a different structure than the other decode equations where n=6.

(0053] In addition to situations where not all storage nodes 57 are available when reading
data from the grid, all storage nodes 57 may not be available when writing to the
dispersed storage grid 49, as shown in FIG. 8. In the example shown in FIG. 8, it is
assumed that the storage nodes 1 and 3, identified with the reference numerals 36 and 40,
respectively, are not available when a grid client 64 is writing to the grid. In such a
situation, a grid client 64 may choose to use other storage nodes 57 to store the data in
storage nodes 1 and 3 or the client 64 may write to a Rebuilder List 66 or a set of
duplicate Rebuilder Lists , stored on other nodes on the storage grid, as shown as step 1
in FIG. 9. In general, the Rebuilder Lists 66 list the missing data slices so that the
missing data slices can be recreated in the manner discussed above. In this example,
where storage nodes 1 and 3 are not operating , the grid client 64 does not store the slices
designated for nodes 1 and 3 directly on other storage nodes 57 on the grid, but instead,
the grid client 64 adds the data slices to the Rebuilder Lists 66, as shown in FIG. 10.

[0054] When the non-operational storage nodes 1 and 3 become operational again at a
later time, then a process on the storage grid, called a Rebuilt Agent 67, can be used to
rebuild the missing data slices as shown in steps 2, 3 and 4 in FIG. 9. Using the example
above, the Rebuild Agent 67 first reads the information in FIG. 10 in step 2. Then the

-13-

WO 2007/120429 PCT/US2007/007120

Rebuild Agent 67 recreates the data slices by first creating the data values in the missing

slices and then creating the coded values in each of the missing slices.

[0055] To create the missing data values in this example, the Rebuilt Agent 67 uses the
table in FIG. 5 to determine that the outage type for a six node grid with nodes 1 and 3
missing is an outage Type 2 with and offset of 1. In this example, the Rebuilt Agent 67

uses the equations for a Type 2 outage on a six node grid from Fig. 6 which are:

Outage Decode
Type Num Operation Decoded data

2 decodet d[0+offset}=c3d(5, 1, 3, offset)
2 decode2 d{2+offset]=c3d(1, 3, 5, offset)

[0056] Using the example data with the ASCII values for the original data for the word
OLIVER, then the missing first data value would be determined by the following

equations:

di=cp-dy -ds (first decode equation)

[0057] As shown in step 3 in Figure 8, the Rebuilt Agent retrieves the required data slices

from storage nodes 57 on the grid, then recreates the first missing slice data as shown

below:
B=cA-C-E
B=218~-73-69
B=176

[0058] The ASCII value of 76 corresponds to the character ‘L’ which is the original data

for Storage Note 1. The second missing original data value can be determined as follows:

-14 -

WO 2007/120429 PCT/US2007/007120

dy=cy—dy -dp (second decode equation)

. [0059] As shown in step 3, in FIG. 8, the Rebuilt Agent retrieves the required data slices

from storage nodes 57 on the grid, then recreates the second missing slice data as shown

below:
D=cC-E-A
D=234-69-79
D =286

[0060] The ASCII value of 86 corresponds to the character “V* which is the original data

for storage node 3.

[0061] Recreating the coded data values for storage nodes 1 and 3 can be done by

reapplying the original coding equation:

o[x] = d[n_mod(x+1)] + d[n_mod(x+2)] + d[n_mod(x+4)]

[0062] Recreating the example coded data values then proceeds as follows:

'cB= C+D+F
cB=73+86+82
cB =241
¢cD=E+F+B
cD=69+82+76
cD =227

{0063] The data slice made up of B and cB can then be written to storage node 1 and the
data slice made up of D and cD can then be written to storage node 3 as shown in step 4
in FIG. 9. This method of rebuilding slices can be used to rebuild dispersed data when

storage resources are temporarily unavailable as grid clients are writing new data onto the

grid.

-15-

WO 2007/120429 PCT/US2007/007120

[0064] FIG. 11 shows how slices can be rebuilt when storage resources are permanently
damaged and are by replace by new resources. In this scenario, the data slices previous
held by the permanently lost storage resources are recreated on the new, replacement
storage resources. In step 1, a Grid Administrator 68, which may be an automated process
or a person making a judgment, determines that a storage resource as represented by a
storage node 57 in FIG. 11 is permanently unavailable. The Grid Administrator 68 then
designates a replacement dataspace in a storage node 57 with the following exemplary
information: Volume Identification_Number, Volume Location. In this example, the
Volume_Identification_Number is the dataspace number on which the data slice was
previously stored and now unavailable. The Volume_Location is the network location of
the new storage node 57. In this example, the Volume_Identification_Number could be
represented by the number 7654 and the network location could be represented by an
Internet IP address in the form 123.123.123.123. The Grid Administrator 68 provides
this information to a process running on the dispersed storage grid called a Rebuild List
Maker 70.

[0065] As shown in step 2 in FIG. 11, the Rebuilt List Maker 70 then gets Volume, User
and File information ﬁom a process on the dispersed storage grid called a Grid Director
58, discussed below. Volumes are data storage processes on the grid which can be
comprised of hard drives, servers or groups of servers in multiple locations. Users are a
designation for specific grid clients 64. In this example, Files are identifies of original
data files which have been dispersed across the grid. As discussed in more detail below,
grid directors 58 are processes that keep track of Volume, User and File information on
the grid. The Rebuild List Maker 70 requests the grid director 58 to provide information
about Users associated with the to-be-rebuilt Volume 7654 and the grid director 58
returns as shown in FIG 12.

[0066] FIG. 12 shows that three users have data on the to-be-rebuilt volume 7654. These
users have the identification numbers: 1234567, 1234568 and 1234569. The Rebuild
List Maker 70 also requests from the grid director 58, a table that relates Files to the 3
affected Users. The grid director 58 returns a table like the one shown in FIG 13. FIG. 13
shows that six files were associated with the users storing data on the to-be-rebuilt

volume.

-16 -

WO 2007/120429 PCT/US2007/007120

[0067] The Rebuilt List Maker 70 then creates a list of the total slices that would be
associated with these files affected by the loss of the to-be-rebuilt dataspace or Volume.
The File Identification Number can be converted to a corresponding
Slice_Identification Number by adding a dash and a number corresponding to the set of
slices created from that File. In this example for each file on a six node dispersed storage
grid, a list like that shown in FIG. 14 of Slice_Identification Numbers would be created
to show all the slices for that file that could be affected by the loss of the to-be-rebuilt

Volume.

[0068] The first six digits of the Slice Identification Number shown in FIG. 14
corresponds to the File_Identification_Number used to create that slice. The last digit of
the Slice_Identification Number corresponds to the specific slice identified within that

stripe or set of file slices.

[0069] Next, as shown in step 3 in FIG. 11, the Rebuild List Maker 70 queries all the
storage nodes 57 on the grid associated with the Users associated with the to-be-rebuilt
Volume to create a list of all Slices currently stored on the grid associated with those

Users.

[0070] As shown in step 3 in FIG. 11, the Rebuild List Maker 70 next queries each
storage node 57 on the grid to determine all slices stored on the grid which are associated
with the Users affected by the to-be-rebuilt Volume. Each storage node 57 returns to the
Rebuild List Maker a table in the form as shown in FIG. 15.

{0071] The Rebuild List Maker 70 collects all the Slice Identification Numbers
currently stored on the grid associated with the User affected by the to-be-rebuild
Volume. Then for each Slice as shown in FIG. 14 associated with each File affected by
the to-be-rebuilt Volume as shown in FIG. 13, the Rebuild List Maker 70 determines if
that Slice is currently stored on the grid by determining if that
Slice_Identification_Number appears in one of the tables of Slices currently stored on the

grid as shown in FIG. 15.

[0072] For each slice that is not currently stored on the grid, the Rebuild List Maker 70
adds an entry to a Rebuilder List 66 or set of Rebuilder Lists, as shown in step 5 in FIG.

-17 -

WO 2007/120429 PCT/US2007/007120

11. The processes for then completing steps 5, 6, 7 and 8 in FIG. 11 are then performed
in the same manner as the processes for the previously described steps 1, 2, 3, and 4 in
FIG. 9.

[0073] These types of data rebuilding methods can be used by those practiced in the art
of software development to create reliable storage grids with varying numbers of storage
nodes with varying numbers of storage node outages that can be tolerated by the storage

grid while perfectly restoring all original data.

Metadata Management System For Information Dispersal Storage System

[0074] In accordance with an important aspect of the invention, a metadata management
system is used to manage dispersal and storage of information that is dispersed and stored
in several storage nodes coupled to a common communication network forming a grid,
for example, as discussed above in connection with FIGS. 1-8. In order to enhance the
reliability of the information dispersal system, metadata attributes of the transactions on

the grid are stored in separate dataspace from the dispersed data.

[0075] As discussed above, the information dispersal system “slices” the original data
into data subsets and uses a coding algorithm on the data subsets to create coded data
subsets. In order to recreate the original data, data subsets and coded subsets are retrieved
from some or all of the storage nodes or communication channels, depending on the
availability and performance of each storage node and each communication channel. As
with other known data storage systems based upon information dispersal methods,
unauthorized access to one or more data subsets only provides reduced or unusable
information about the source data. For example as illustrated in FIG. 1, each slice 22,24,
26, 28, 30 and 32, contains a different data value A, B, C, D, E and F and a different
“coded subset” (Coded subsets are generated by algorithms and are stored with the data
slices to allow for restoration when restoration is done using part of the original subsets)
cA, ¢B, c¢C, cD, cE and cF. The slices 22, 24, 26, 28, 30 and 32 may be transmitted across
a comumunications network, such as the Internet, in a series of data transmissions to a

series and each stored in a different digital data storage device or storage node 34, 36, 38,

-18 -

WO 2007/120429 PCT/US2007/007120

40, 42 and 44. Each data subset and its corresponding coded subset may be transmitted
separately across a communications network and stored in a separate storage node in an

array of storage nodes.

[0076] A “file stripe” is the set of data and/or coded subsets corresponding to a particular
file. Each file stripe may be stored on a different set of data storage devices or storage
nodes 57 within the overall grid as available storage resources or storage nodes may

change over time as different files are stored on the grid.

[0077] A “dataspace” is a portion of a storage grid 49 that contains the data of a specific
client 64. A grid client may also utilize more than one data. The dataspaces table 106 in
FIG. 11 shows all dataspaces associated with a particular client. Typically, particular
grid clients are not able to view the dataspaces of other grid clients in order to provide

data security and privacy.

[0078] FIG. 16 shows the different components of a storage grid, generally identified
with the reference numeral 49. The grid 49 includes associated storage nodes 54
associated with a specific grid client 64 as well as other storage nodes 56 associated with
other grid clients (collectively or individually “the storage nodes 57”), connected to a
communication network, such as the Internet. The grid 49 also includes applications for
managing client backups and restorations in terms of dataspaces and their associated

collections.

[0079] In general, a “director” is an application running on the grid 49. The director

serves various purposes, such as:

1. Provide a centralized-but-duplicatable point of User-Client login. The Director is the
only grid application that stores User-login information.

2. Autonomously provide a per-User list of stored files. All User-Client's can acquire the
entire list of files stored on the Grid for each user by talking to one and only one
director. This file-list metadata is duplicated across one Primary Directory to several
Backup Directors.

3. Track which Sites contain User Slices.

4. Manager Authentication Certificates for other Node personalities.

~-19-

WO 2007/120429 PCT/US2007/007120

[0080] The applications on the grid form a metadata management system and include a
primary director 58 , secondary directors 60 and other directors 62. Each dataspace is
always associated at any given time with one and only one primary director 58. Every
time a grid client 64 attempts any dataspace operation (save/retrieve), the grid client 64
must reconcile the operation with the primary director 58 associated with that dataspace.
Among other things, the primary director 58 manages exclusive locks for each dataspace.
Every primary director 58 has at least one or more secondary directors 60. In order to
enhance reliability of the system, any dataspace metadata updates (especially” lock
updates) are synchronously copied by the dataspace’s primary director 58 and to all of its
secondary or backup directors 60 before returning acknowledgement status back to the
requesting grid client. 64. In addition, for additional reliability, all other directors 62 on
the Grid may also asynchronously receive a copy of the metadata update. In such a

configuration, all dataspace metadata is effectively copied across the entire grid 49.

[0081] As used herein, a primary director 58 and its associated secondary directors 60 are
also referred to as associated directors 60. The secondary directors 60 ensure that any
acknowledged metadata management updates are not lost in the event that a primary
director 58 fails in the midst of a grid clienf 64 dataspace update operation. There exists a
trade-off between the number of secondary directors 60 and the metadata access
performance of the grid 49. In general, the greater the number of secondary directors 60,
the higher the reliability of metadata updates, but the slower the metadata update

response time.

[0082] The associated directors 66 and other directors 62 do not track which slices are
stored on each storage node 57, but rather keeps track of the associated storage nodes 57
associated with each grid client 64. Once the specific nodes are known for each client, it
is necessary to contact the various storage nodes 57 in order to determine the slices

associated with each grid client 64,

[0083] While the primary director 58 controls the majority of Grid metadata; the storage
nodes 57 serve the following responsibilities:

1. Store the user's slices. The storage nodes 57 store the user slices in a file-system that

mirrors the user's file-system structure on the Client machine(s).

-20 -

WO 2007/120429 PCT/US2007/007120

2. Store a list of per-user files on the storage node 57 in a database. The storage node 57
associates minimal metadata attributes, such as Slice hash signatures (e.g., MD35s)

with each slice "row" in the database.

[0084] The Grid identifies each storage node 57 with a unique storage volume serial
number (volumeID) and as such can identify the storage volume even when it is spread
across multiple servers. In order to recreate the original data, data subsets and coded
subsets are retrieved from some or all of the storage nodes 57 or communication channels,
depending on the availability and performance of each storage node 57 and each
communication channel. Each primary director 58 keeps a list of all storage nodes 57 on

the grid 49 and therefore all the nodes available at each site.

[0085] Following is the list of key metadata attributes used during backup/restore

processes:

iAccountID Uniqlie ID number for ea
Unique ID for each user on all the volumes, it is used to keep track
iDataspacelD ‘
of the user data on each volume
Grid wide unique ID which identifies a running instance of the
iDirectorAppID .
director.
iRank Used to insure that primary director always has accurate metadata.
Unique for identifying each volume on the Grid, director uses this
iVolumelD to generate a volume map for a new user (first time) and track
volume map for existing users.
iTransactionContextID Identifies a running instance of a client.
Grid wide unique ID which identifies running instance of an
iApplicationID o
application.
All the contents stored on the grid is in the form of data source,
iDatasourcelD) o) .
each unique file on the disk is associated with this unique ID.
iRevision Keeps track of the different revisions for a data source.
iSize Metadata to track the size of the data source

-21-

WO 2007/120429 PCT/US2007/007120

sName Metadata to track the name of the data source
iCreationTime Metadata to track the creation time of the data source
iModificationTime Metadata to track the last modification time of the data source,

[0086] FIG. 17 describes a flow of data and a top level view of what happens when a
client interacts with the storage system. FIG. 18 illustrates the key metadata tables that

are used to keep track of user info in the process.

[0087] Referring to FIG. 17, initially in step 70, a grid client 64 starts with logging into a
director application running on a server on the grid. After a successful log in, the director
application returns to the grid client 64 in step 72, a DataspaceDirectorMap 92 (FIG. 18).
The director application includes an AccountDataspaceMap 93; a look up table which
looks up the grid client’s AccountID in order to determine the DataspaceID. The
DataspacelD is then used to determine the grid client’s primary director (i.e.

DirectorAppID) from the DataspaceDirectorMap 92.

[0088] Once the grid client 64 knows its primary director 58., the grid client 64 can
request a Dataspace VolumeMap 94 (FIG. 18) and use the DataspacelD to determine the
storage nodes associated with that grid client 64 (i.e.VolumeID). The primary director 58
sets up a TransactionContextID for the grid client 64 in a Transactions table 104 (FIG.
18). The TransactionContextID is unique for each transaction (i.e. for each running
instance or session of the grid client 64). In particular, the Dataspace ID from the
DataspaceDirectorMap 92 is used to create a unique transaction ID in a
TransactionContexts table 96. The transaction ID stored in a Transaction table 104 along
with the TransactionContextID in order to keep track of all transactions by all of the grid
clients for each session of a grid client with the grid 49.

[0089] The “TransactionContextld” metadata attribute is a different attribute than
TransactionID in that a client can be involved with more than one active transactions
(not committed) but at all times only one “Transaction context 1d” is associated with one
running instance of the client. These metadata attributes allow management of concurrent

transactions by different grid clients.

-22.

WO 2007/120429 PCT/US2007/007120

[0090] As mentioned above, the primary director 58 maintains a list of the storage nodes
57 associated with each grid client 64. This list is maintained as a TransactionContexts
table 96 which maintains the identities of the storage nodes (i.e. DataspaceID) and the
identity of the grid client 64 (i.e. ID). The primary director 58 contains the “Application”
metadata (i.e. Applications table 104) used by the grid client 64 to communicate with the
primary director 58. The Applications table 64 is used to record the type of transaction
(AppTypelD) , for example add or remove data slices and the storage nodes 57 associated
with the transaction (i.e. SiteID).

[0091] Before any data transfers begins, the grid client 64 files metadata with the pﬁrﬂary
director 58 regarding the intended transaction, such as the name and size of the file as
well as its creation date and modification date, for example. The metadata may also
include other metadata attributes, such as the various fields illustrated in the
TransactionsDatasources table 98.(FIG. 18) The Transaction Datasources metadata table

98 is used to keep control over the transactions until the transactions are completed.

[0092] After the above information is exchanged between the grid client 64 and the
primary director 58, the grid client 64 connects to the storage nodes in step 74 in
preparation for transfer of the file slices. Before any information is exchanged , the grid
client 64 registers the metadata in its Datasources table 100 in step 76 in order to fill in

the data fields in the Transaction Datasources table 98.

[0093] Next in step 78, the data slices and coded subsets are created in the manner
discussed above by an application running on the grid client 64. Any data scrambling,
compression and/or encryption of the data may be done before or after the data has been

dispersed into slices. The data slices are then uploaded to the storage nodes 57 in step 80.

[0094] Once the upload starts, the grid client 64 uses the transaction metadata (i.e. data
from Transaction Datasources table 98) to update the file metadata (i.e. DataSources table
100). Once the upload is complete, only then the datasource information from the
Transaction Datasources table 98 is moved to the Datasource table 100 and removed
from the Transaction Datasources table 98 in steps 84 , 86 and 88. This process is

“atomic” in nature, that is, no change is recorded if at any instance the transaction fails.

-23 -

WO 2007/120429 PCT/US2007/007120

The Datasources table 100 includes revision numbers to maintain the integrity of the

user’s file set.

[0095] A simple example, as illustrated in FIGS. 19 A and 19 B, illustrates the operation
of the metadata management system 50. The example assumes that the client wants to

save a file named “Mjyfile.txt” on the grid 49.

[0096] Step 1: The grid client connects to the director application running on the grid 49.
Since the director application is not the primary director 58 for this grid client 64, the
director application authenticates the grid client and returns the DataspaceDirectorMap
92. Basically, the director uses the AccountID to find its DataspacelD and return the
corresponding DirectorAppID (primary director ID for this client).

[0097] Step 2: Once the grid client 64 has the DataspaceDirectorMap 92, it now knows
which director is its primary director. The grid client 64 then connects to this director
api)lication and the primary director creates a TransactionContextiD , as explained above,
which is unique for the grid client session. The primary director 58 also sends the grid
client 64 its DataspaceVolumeMap 94 (i.e. the number of storage nodes 57 in which the
grid client 64 needs to a connection). The grid client 64 sends the file metadata to the

director (i.e. fields required in the Transaction Datasources table).

[0098] Step 3: By way of an application running on the client, the data slices and coded
subsets of “Myfile.txt” are created using storage algorithms as discussed above. The grid
client 64 now connects to the various storage nodes 57 on the grid 49, as per the
DataspaceVolumeMap 94. The grid client now pushes its data and coded subsets to the

various storage nodes 57 on the grid 49.

[0099] Step 4: When the grid client 64 is finished saving its file slices on the various
storage nodes 57, the grid client 64 notifies the primary director application 58 to remove
this transaction from the TransactionDatasources Table 98 and add it to the Datasources
Table 100. The system is configured so that the grid clent 64 is not able retrieve any file
that is not on the Datasources Table 100. As such, adding the file Metadata on the

Datasources table 100 completes the file save/backup operation.

-24 -

WO 2007/120429 PCT/US2007/007120

[00100] As should be clear from the above, the primary director 58 is an
application that decides when a transaction begins or ends. A transaction begins before a
primary director 58 sends the storage node 57 metadata to the grid client 64 and it ends
after writing the information about the data sources on the Datasources table 100. This
configuration insures completeness. As such, if a primary director 58 reports a transaction
as having completed, then any application viewing that transaction will know that all the
other storage nodes have been appropriately updated for the transaction. This concept of
“Atomic Transactions” is important to maintain the integrity of the storage system. For
example, if the entire update transaction does not complete, and all of the disparate
storage nodes are not appropriately "synchronized," then the storage system is left in a
state of disarray, at least for the Dataspace table 100 of the grid client 64 in question.
Otherwise, if transactions are interrupted for any reason (e.g., simply by powering off a
client PC in the middle of a backup process) and are otherwise left in an incomplete state,

the system’s overall data integrity would become compromised rather quickly.

{00101} Obviously, many modjﬁcations and variations of the present invention are
possible in light of the above teachings. Thus, it is to be understood that, within the
scope of the appended claims, the invention may be practiced otherwise than is

specifically described above.

[00102] What is claimed and desired to be secured by a Letters Patent of the
United States is:

-25.

WO 2007/120429 PCT/US2007/007120

We claim:

1. A method for storing a string of N characters, the method comprising the steps of:
(a) segmenting the string of N characters into n data slices;
(b) storing each of said n data slices into a different storége node along with a

coded value of the data slice; and

(c) recreating data slices when one or more storage nodes are unavailable.

-26 -

PCT/US2007/007120

WO 2007/120429

1117

Y < < < <
fs B || fs_C || £s D || £s E || £fs_F
Storage Storage Storage

Storage Storage
Node 1 Node 2 Node 3 Node 4 Node 5

mission 1

fs F

mission 2 jmission 3 {mission 4 |mission 5

fs B fs C fs D fs E 2
Y

Share 4

L
Share2 Share 3

hare 1
22
24 o Decoding Algorithms 28 30
Original File: FileNameX -1 -20
FIG. 1

SUBSTITUTE SHEET (RULE 26)

Share 5 \/\ ? 57

32 J

WO 2007/120429 PCT/US2007/007120

2117

CA cB cC ch cE cF

Storage Storage Storage Storage Storage Storage
Node 0 Node 1 Node 2 Node 3 Node 4 Node 5

Trans- Trans- Trans-
missfon 1 |mission2 jmission 3 |mission 4

A B C D E F
/ CA CB cC cD cE cF
A Y
/\/Subsat 0 Subset3 \ Subsetd4\ Subset5 W
. 22 \ / 32

24 Decoding Algorithms bg 30

i

OriginalData: ABCDEF — -2

26

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

317

<
F

cF

Storage Storage Storage Storage Storage
Node 1 Node 2 Node 3 Node 4 Node 5

Trans- Trans-
mission 3 |mission 4

D E || F
cD cE CcF ‘
Subsets\/\
2 \ / \
24 Decoding Algorithms g 30
Original Data: ABCDEF — (-2
FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

4/17

34 36 38> 40> 42 44>
~

< ~
o D F
cC ch cF
Storage Storage Storage
Node 2 Node 3 Node §

Trans-
mission 5

Trans-
mission 3

C D F ’
cC cD cF
Y
ubset 2 Subset3 Subset 5 \/\
/ 32
Decoding A/gor/thms g 30

Original Data: A B C DEF —L-20

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/007120

WO 2007/120429

5117

Offset

Type

Node3 Noded4d Node5

Node2

Node0 Node1

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429

Outage

6/17

Decode

Type Num Operation Decoded data

1
1

2
2

3
3

FIG. 6

decodet
decode2

decodef
decode2

decode
decode2

d{0+offset]=c3d(2, 3, 4, offset)
dl1+offset}=c3d(3, 4, 5, offset)

d[0+offsef]=c3d(5, 1, 3, offset)
d[2+offset]=c3d(1, 3, 5, offset)

d[0+offsetj=c3d(4, 2, 5, offset)
df3+offsefl=c3d(1, 2, 5, offsat)

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/007120

WO 2007/120429

Outage

Decode

717

Type Num Operation Decoded data

1
1
1

2
2
2

w

A oh

FIG. 7

decodel
decode2
decodes

decode1
decode2
decoded

decodet
decode?2
decoded

decodet
decode2
decode3

df1+offset)=c3d(3, 4, 5, offset)
d[0+offset]=c3d(5, 1. 3, offset)
d[2+offsetj=c3d(4, 5, 0, offset)

d{0+offset]=c3d(4. 5. 2, offset)
df3+offset}=c3d(2, 4, O, offset)
d[1+offset}=c3d(5, 0, 3, offsst)

PCT/US2007/007120

d[1 +offsat]=(d(c[3+offsat]-d[5+offset]+c[5+offsat]}-c{2+offset])/2

d[4+offset]=c3d(3, 5, 1, offset)
d{0+offset}=c3d(s, 1, 3, offset)

d[2+offset]=c3d(1, 3, 5, offset)
d[o+offsetj=c3d(5, 1, 3, offset)
d[4+offset}=c3d(3, 5, 1, offset)

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

8/17

Orlginal Flle: FileNameX — (-2

|

2 Coding Algorithm 28

2 30
22 32
7 /\/

4
v A
fs A|| £fs B|| £fs C|| £s D||fs E fs F

Share 0 Share 1 Share 2 Share 3 Share 4 Share 5

Trans-
mission 5

Trans-
mission 4

Trans-
mission 3

Trans-
mission 2

fs A fs C fs E || £fs_F
Storagg Storage Storage Storage Storage Storage :
Node 0 Node 1 Node 2 Node 3 Node 4 Node 5
34 36 38 40 42 44
FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

on7

A
m
A
ﬁ
A
) <
1. Administrator signals Grid ll"
volume destructiV Administrator

Rebuild 4. Read existing
Agent slices from file
Z\Coiwstruct rebuild fist stripe
Rebuild
Agent

5. Rebuild
missing
slices

3. Read slices
marked to be
rebuilt

Rebuilder

Rebuild
List

>

67

&

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

10/17
64
Client Identification File Identification Number | Storage Node Number of
Number Missing Slices
1234567 223344 1
1234567 223344 3

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

117

58
Grid

Director

68 2. Get site-volume- , .
\ user-file map 4. Get List of Rebuilders
Grid
= 5. Update -
Administrator | —— /' popiig Rebuild Lists \ Rebuilder

List Maker
1. Administrator

Rebuild
List

signals voiume 70 60
destruction
6. Get Slices
3. Get user slices list 7. Read needed Rebuild 1D

existing slices
from file stnpes

"l 8 Rebuild slices

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

12117
Volume_Identification_Number User_ldentification_Number
7654 1234567
7654 1234568
7654 1234569
FIG. 12
User_Identification_Number File_ldentification_Number
1234567 223344
1234568 223357
1234568 223358
1234569 223365
1234569 223367
1234569 : 223369
FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

13/17

Slice_ldentification_Number

223365-0

223365-1

223365-2

223365-3

223365-4

223365-5
FIG. 14
User_|dentification_Number Slice_ldentification_Number
1234567 223344-3
1234568 ’ 223357-3
1234568 223358-4
1234569 223365-3
1234569 223367-0
1234569 223369-3
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

14/17
57
50
AL — A ~
s D 54 56
66
A 62 \ \
r I \ . N\
8 Associated Other
5& Other Storage Nodes Storage Nodes
Secondary Dirsctors
Primary Directors
Director

%49

Internet

)l crid Client

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429

70
\r Login to a Director J

15/17

PCT/US2007/007120

86

72
\. Director sends the data

74\

space list and volume map

;

Client connecis to the
vaolumes

76 l
Client Registers Data source

78\

Data Scrambling,
Compression and
Encryption of data Is done

!

80\l

Wiite o Sforage Nodes

82\

Commit the Transaction

;

SN

Remove datasource from
Transaction Table

FIG. 17

Write to Datasource Table '-\

Oparations, commit

transaction, Removing data
sources from Transaction
Table and wiiting to
datasource Tabfe are
atomic

‘

r End Transaction. —J\
90

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429

PCT/US2007/007120

16/17
92
= 94
DataspaceDirectorMap DataspaceVolumeMap]
iDataspacelD INTEGER iDataspacelD | INTEGER
iDirectorAppID | INTEGER iVolumeID INTEGER
iRank INTEGER
96 P 93
. 1
TransactionContexts AccountDataspaceMap
ilD INTEGER {Account!D INTEGER
iDataspacelD | NTEGER iDataspacelD INTEGER
98 100
Transaction Datasources Datasources
iTransactionID INTEGER iDatasourcelD INTEGER
iDataspacelD INTEGER iRevision INTEGER
iDatasourcelD INTEGER iTransactionContextID INTEGER
iRevision INTEGER iParentlD INTEGER
iParentlD INTEGER iSize INTEGER
sName VARCHAR sNarme VARCHAR
iSize INTEGER tCreationTime TIMESTAMP
iCreationTime TIMESTAMP tModificationTime TIMESTAMP
tModificationTime | TIMESTAMP sSecurityContext VARCHAR
’ 102 106
L. Dataspaces o
Applications -
- D INTEGER
ilD INTEGER iStatus INTEGER
iAppTypelD INTEGER sName VARCHAR
iSitelD INTEGER ,/1 04
Transactions
iID INTEGER
i TransactionContextID INTEGER
FIG. 18

SUBSTITUTE SHEET (RULE 26)

WO 2007/120429 PCT/US2007/007120

1717

1. Login

Arbitrary
Director

2. DataspaceDirectorMap

FIG. 19A

1. Login

Primary
Director

2. DataspaceVolumeMap

3. File Meta-data

FIG. 19B

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings

