A photo-aligning liquid crystal alignment layer formed by using a photo-aligning liquid crystal aligning agent containing polyamic acid or a derivative thereof which is synthesized by using tetracarboxylic acid dianhydride having no photoreactive structure having a specific structure and diamine having no photoreactive structure having a specific structure together with at least one of tetracarboxylic acid dianhydride having a photoreactive structure and diamine having a photoreactive structure can reduce storage of residual DC in a liquid crystal display device. Further, the above alignment layer can shorten the relaxation time and can prevent afterimages from being generated.
The present invention relates to a photo-aligning liquid crystal aligning agent used for a photo-aligning method, a photo-alignment layer and a liquid crystal display device prepared by using the same.

Display devices prepared by using nematic liquid crystals are mainly used for liquid crystal display devices which are produced in an industrial scale at present, and usually distributed, including various display devices such as monitors for personal computers, liquid crystal televisions, view finders of video cameras, projection type displays and the like, optoelectronics-related devices such as optical printer heads, optical Fourier transform, light valves and the like. A TN (twisted nematic) mode and a STN (super twisted nematic) mode are known well as a display mode of a nematic liquid crystal display device. In recent years, TN type liquid crystal display devices prepared by using an optical compensation film, an MVA (multi-domain vertical alignment) mode in which vertical alignment and a technique of a projection structure are used in combination, an IPS (in-plane switching) mode of a lateral electric field system, an FFS (fringe field switching) mode and the like are proposed in order to improve a narrow viewing angle which is one of the problems of the above modes, and they are put into practical use.

The development of the technologies of liquid crystal display devices have been achieved not only merely by improving the above drive methods and device structures but also by improving constitutional members used for the devices. Among the constitutional members used for the devices, particularly a liquid crystal alignment layer is one of important materials related to the display quality, and it has come to be important as liquid crystal display devices are provided with a higher quality that the performances of the alignment layers are enhanced.

Photo-alignment layers are formed by liquid crystal aligning agents. Liquid crystal aligning agents which are mainly used at present are solutions (vanishes) prepared by dissolving polyamic acid or soluble polyimide in organic solvents. The above solutions are applied on a substrate, and then layers are formed therefrom by means such as heating and the like to form polyimide base liquid crystal alignment layers.

A rubbing method which is simple and makes it possible to carry out high speed treatment in a large area is widely used as an alignment treating method in an industrial scale. The rubbing method is treatment in which a cloth made of fibers comprising polyesters and the like is used to rub the surface of a liquid crystal alignment layer in a single direction, and this treatment makes it possible to obtain uniformly aligned liquid crystal molecules. However, problems such as dusts, static electricity and the like which are involved in the rubbing method are pointed out, and in recent years, alignment treating methods in place of the rubbing method are actively tried to be developed.

A photo-alignment treating method in which light is radiated to carry out aligning treatment is paid attentions as an alignment treating method in place of the rubbing method. Many aligning mechanisms such as a photodecomposition method, a photoisomerization method, a photodimerization method, a photocrosslinking method and the like are proposed for the photo-alignment treating method (refer to, for example, a non-patent document 1 and patent documents 1 and 2). The photo-alignment treating method is a non-contact photo-aligning treating method having a high uniformity of alignment as compared with the rubbing method, and therefore it involves the advantages that the layer is prevented from being scratched and can be reduced in a cause of bringing about inferior display of the liquid crystal display devices by dusts, a static electricity and the like.

The present inventors have continued to investigate liquid crystal alignment layers having a photoactive group which brings about photoisomerization or photodimerization in a polyamic acid structure (refer to, for example, patent documents 3 to 5). The above photo-alignment layers have had a large anchoring energy and a good aligning property and have been excellent in electrical characteristics such as a voltage holding ratio and the like. However, a reduction in a residual voltage (residual DC) which is one of characteristics required to liquid crystal alignment layers has not sufficiently been investigated and evaluated. The residual DC is a voltage which remains when a voltage is returned to 0 V after applying a voltage to operate a liquid crystal. It is known that when a liquid crystal display device is caused to display optional images for a long time and then changed so as to display another images, a phenomenon in which the previous images remain as afterimages is brought about to deteriorate a display quality of the images, and the above afterimages can be reduced by inhibiting the storage of residual DC and shortening the relaxation time (refer to, for example, a patent document 6).

PRIOR ARTS

Display devices prepared by using nematic liquid crystals are mainly used for liquid crystal display devices which are produced in an industrial scale at present, and usually distributed, including various display devices such as monitors for personal computers, liquid crystal televisions, view finders of video cameras, projection type displays and the like, optoelectronics-related devices such as optical printer heads, optical Fourier transform, light valves and the like. A TN (twisted nematic) mode and a STN (super twisted nematic) mode are known well as a display mode of a nematic liquid crystal display device. In recent years, TN type liquid crystal display devices prepared by using an optical compensation film, an MVA (multi-domain vertical alignment) mode in which vertical alignment and a technique of a projection structure are used in combination, an IPS (in-plane switching) mode of a lateral electric field system, an FFS (fringe field switching) mode and the like are proposed in order to improve a narrow viewing angle which is one of the problems of the above modes, and they are put into practical use.

The development of the technologies of liquid crystal display devices have been achieved not only merely by improving the above drive methods and device structures but also by improving constitutional members used for the devices. Among the constitutional members used for the devices, particularly a liquid crystal alignment layer is one of important materials related to the display quality, and it has come to be important as liquid crystal display devices are provided with a higher quality that the performances of the alignment layers are enhanced.

Photo-alignment layers are formed by liquid crystal aligning agents. Liquid crystal aligning agents which are mainly used at present are solutions (vanishes) prepared by dissolving polyamic acid or soluble polyimide in organic solvents. The above solutions are applied on a substrate, and then layers are formed therefrom by means such as heating and the like to form polyimide base liquid crystal alignment layers.

A rubbing method which is simple and makes it possible to carry out high speed treatment in a large area is widely used as an alignment treating method in an industrial scale. The rubbing method is treatment in which a cloth made of fibers comprising polyesters and the like is used to rub the surface of a liquid crystal alignment layer in a single direction, and this treatment makes it possible to obtain uniformly aligned liquid crystal molecules. However, problems such as dusts, static electricity and the like which are involved in the rubbing method are pointed out, and in recent years, alignment treating methods in place of the rubbing method are actively tried to be developed.

A photo-alignment treating method in which light is radiated to carry out aligning treatment is paid attentions as an alignment treating method in place of the rubbing method. Many aligning mechanisms such as a photodecomposition method, a photoisomerization method, a photodimerization method, a photocrosslinking method and the like are proposed for the photo-alignment treating method (refer to, for example, a non-patent document 1 and patent documents 1 and 2). The photo-alignment treating method is a non-contact photo-aligning treating method having a high uniformity of alignment as compared with the rubbing method, and therefore it involves the advantages that the layer is prevented from being scratched and can be reduced in a cause of bringing about inferior display of the liquid crystal display devices by dusts, a static electricity and the like.

The present inventors have continued to investigate liquid crystal alignment layers having a photoactive group which brings about photoisomerization or photodimerization in a polyamic acid structure (refer to, for example, patent documents 3 to 5). The above photo-alignment layers have had a large anchoring energy and a good aligning property and have been excellent in electrical characteristics such as a voltage holding ratio and the like. However, a reduction in a residual voltage (residual DC) which is one of characteristics required to liquid crystal alignment layers has not sufficiently been investigated and evaluated. The residual DC is a voltage which remains when a voltage is returned to 0 V after applying a voltage to operate a liquid crystal. It is known that when a liquid crystal display device is caused to display optional images for a long time and then changed so as to display another images, a phenomenon in which the previous images remain as afterimages is brought about to deteriorate a display quality of the images, and the above afterimages can be reduced by inhibiting the storage of residual DC and shortening the relaxation time (refer to, for example, a patent document 6).

PRIOR ARTS

Patent Documents

Non-Patent Document

DISCLOSURE OF THE INVENTION

An object of the present invention is to provide a photo-aligning liquid crystal aligning agent for obtaining a liquid crystal alignment layer capable of providing a liquid crystal display device which can decrease storage of residual DC and shorten a relaxation time and which can prevent afterimages from being generated.
The present inventors have developed a photo-aligning liquid crystal aligning agent containing polyamic acid or a derivative thereof having a photoactive structure originating in at least one of tetracarboxylic acid dianhydride having a photoactive structure and diamine having a photoactive structure, wherein the polyamic acid or a derivative thereof is synthesized by using tetracarboxylic acid dianhydride having no photoactive structure having a specific structure and diamine having no photoactive structure having a specific structure together with at least one of the tetracarboxylic acid dianhydride having a photoactive structure and the diamine having a photoactive structure. Then, they have found that a liquid crystal display device which can satisfy the required characteristics described above is obtained by using a liquid crystal alignment layer formed by the above liquid crystal aligning agent, and they have completed the present invention.

The present invention comprises the following constitutions.

1. A photo-aligning liquid crystal aligning agent containing polyamic acid or a derivative thereof having a photoactive structure originating in at least one of tetracarboxylic acid dianhydride having a photoactive structure and diamine having a photoactive structure in a structural unit, wherein the above polyamic acid or a derivative thereof is synthesized by using tetracarboxylic acid dianhydride having no photoactive structure and diamine having no photoactive structure together with at least one of the tetracarboxylic acid dianhydride having a photoactive structure and diamine having a photoactive structure;

the tetracarboxylic acid dianhydride having no photoactive structure includes at least one selected from the group of compounds represented by the following Formulas (AN-a) to (AN-c);

the diamine having no photoactive structure includes at least one selected from the group of compounds represented by the following Formulas (DI-a) to (DI-c):

in Formula (AN-a), X₁ is a single bond or alkylene having 1 to 20 carbon atoms;
in Formula (AN-b), X₂ is alkylene having 1 to 8 carbon atoms;
in Formula (DI-b), R² is hydrogen or —CH₃, and a is an integer of 1 to 5; and
in Formulas (DI-a) and (DI-b), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional.

2. The photo-aligning liquid crystal aligning agent as described in the above item [1], wherein at least one of the tetracarboxylic acid dianhydride having a photoactive structure and the diamine having a photoactive structure is at least one selected from the group of compounds represented by the following Formulas (I) to (VII):

R²—C≡C—R³

R³=C≡C=C—C—R⁴

R²=C≡C—CH=CH—R³

R²=C≡C—R⁴—C—C—R²

R²=C≡C—R⁴—CH=CH—R³

R³=CH=CH—R³

R²=N=N—R³

in Formulas (I) to (VII), R² and R³ each are independently a monovalent organic group having NH₂ or a monovalent organic group having —CO—O—CO—, and R⁴ is a divalent organic group having an aromatic ring.

3. The photo-aligning liquid crystal aligning agent as described in the above item [1] or [2], wherein the photoactive structure is located in a principal chain of the polyamic acid or the derivative thereof.

4. The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [3], wherein at least one of the tetracarboxylic acid dianhydride having a photoactive structure and the diamine having a photoactive structure is at least one selected from the group of compounds represented by the following Formulas (I-1), (II-1), (III-1), (IV-1), (IV-2), (V-1), (VI-1) and (VII-1) to (VII-3);
5. The photo-aligning liquid crystal aligning agent as described in the above item [4], wherein at least one of the tetracarboxylic acid dianhydride having a photoreactive structure and the diamine having a photoreactive structure is at least one selected from the group of compounds represented by the following Formulas (VI-1-1), (VII-1-1) and (VII-3):

6. The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [5], wherein the tetracarboxylic acid dianhydride having no photoreactive structure is at least one selected from the group of the compounds represented by the following Formulas (AN-b) and (AN-c):

in Formulas (I-1), (II-1), (III-1), (IV-1), (V-1), (VI-1), (VII-1) and (VII-2), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional; in Formula (VII-1), plural R each are independently —CH₃, —OCH₃, —CF₃ or —COOCH₃; and b is an integer of 0 to 2.
[7] The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [6], wherein the diamine having no photoreactive structure is at least one selected from the group of compounds represented by the following Formulas (DI-b-1) and (DI-b-2):

![DI-b-1](image)

![DI-b-2](image)

in Formula (AN-b), \(X^2 \) is alkyne having 1 to 8 carbon atoms.

[8] The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [7], wherein the tetracarboxylic acid dianhydride having no photoreactive structure is the compound represented by the following Formula (AN-b), and the diamine having no photoreactive structure is the compound represented by the following Formula (DI-b-2):

![AN-b](image)

![DI-b-2](image)

[9] The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [8], wherein the tetracarboxylic acid dianhydride having no photoreactive structure which is used together with at least one selected from the group of the compounds represented by Formulas (AN-a) to (AN-c) is at least one selected from the group of compounds represented by the following Formulas (AN-I) to (AN-VII):

![AN-I](image)

![AN-II](image)

![AN-III](image)

![AN-IV](image)

![AN-V](image)

![AN-VI](image)

![AN-VII](image)
in Formulas (AN-I), (AN-IV) and (AN-V), plural X each are independently a single bond or —CH2—;
in Formula (AN-II), G is a single bond, alkyne having 1 to 20 carbon atoms, —CO—, —O—, —S—, —SO2—,
—(CH3)₂— or —CF3; or —O—;
in Formulas (AN-II) to (AN-IV), plural Y each are independently one selected from the group of the following trivalent groups:

at least one hydrogen of the above groups may be substituted with methyl, ethyl or phenyl;
in Formula (AN-II), when Y is 2-azapropane-1,2,3-triy, G described above is not alkyne having 1 to 20 carbon atoms, and when Y is benzene-1,2,4-triy, G described above is not alkyne having 1 to 8 carbon atoms and —O—;
in Formulas (AN-III) to (AN-V), a ring A is a monocyclic hydrocarbon group having 3 to 10 carbon atoms or a condensed polycyclic hydrocarbon group having 6 to 30 carbon atoms; at least one hydrogen of the above group may be substituted with methyl, ethyl or phenyl; an atomic bonding coupled with the ring is connected with optional carbon constituting the ring, and two atomic bondings may be connected with the same carbon; in Formula (AN-VI), X¹⁰ is alkyne having 2 to 6 carbon atoms; Me is methyl; and Ph is phenyl;
in Formula (AN-VII), plural G¹⁰ each are independently —O—, —COO— or —OCO--; and plural r each are independently 0 or 1.
[10] The photo-aligning liquid crystal aligning agent as described in the above item [9], wherein the tetracarboxylic acid dianhydride having no photoreactive structure which is used together with at least one selected from the group of the compounds represented by Formulas (AN-a) to (AN-c) is at least one selected from the group of compounds represented by the following Formulas (AN-1-1), (AN-2-1), (AN-3-1), (AN-3-2), (AN-5-1) and (AN-16-1):
[11] The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [10], wherein the diamine having no photoactive structure which is used together with at least one selected from the group of the compounds represented by Formulas (DI-a) to (DI-c) is at least one selected from the group of compounds represented by the following Formulas (DI-1) to (DI-17):

in Formula (DI-1), m is an integer of 1 to 12;
in Formulas (DI-3), (DI-6) and (DI-7), plural G^{21} each are independently a single bond, $-O-$, $-S-$, $-S-$, $-SO_2-$, $-CO-$, $-CONH-$, $-NHCO-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, $-C(CH_2)_m-$, $-O-(CH_2)_m-$, $-N-(C(CH_3)_m-(CH_2)_k-N(CH_3))_n-$ or $-S-(CH_2)_m-$, $-S-$; and plural m' each are independently an integer of 1 to 12;
in Formula (DI-5), G^{21} is a single bond, $-NH-$, $-O-$, $-S-$, $-S-$, $-SO_2-$, $-CO-$, $-CONH-$, $-NHCO-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, $-C(CH_2)_m-$, $-O-(CH_2)_m-$, $-N-(C(CH_3)_m-(CH_2)_k-N(CH_3))_n-$ or $-S-(CH_2)_m-$, $-S-$; m is an integer of 1 to 12, and m' is an integer of 6 to 12; and k is an integer of 1 to 5;
in Formulas (DI-6) and (DI-7), plural G^{22} each are independently a single bond, $-O-$, $-S-$, $-CO-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$ or alkylene having 1 to 10 carbon atoms;
at least one hydrogen of a cyclohexane ring and a benzene ring in Formulas (DI-3) to (DI-7) may be substituted with $-F-$, $-CH_3-$, $-OH-$, $-CF_3-$, $-CO_2H-$, $-CONH_2$ or benzyl, and in addition thereto, in Formula (DI-4), at least one chemical structure.
in Formula (DI-8), \(R^{21} \) and \(R^{22} \) each are independently alkyl having 1 to 3 carbon atoms or phenyl;
plural \(G^{23} \) each are independently alkenyl having 1 to 6 carbon atoms, phenylene or phenylene substituted with alkyl;
w is an integer of 1 to 10;
in Formula (DI-9), plural \(R^{23} \) each are independently alkyl having 1 to 5 carbon atoms, alkoxy having 1 to 5 carbon atoms or \(CH_2 \);
plural \(p \) each are independently an integer of 0 to 3, and \(q \) is an integer of 0 to 4; and \(p \) and \(q \) are not 0 at the same time;
in Formula (DI-10), \(R^{24} \) is alkyl having 1 to 4 carbon atoms, phenyl or benzyl;
in Formula (DI-11), \(G^{24} \) is \(-CH_2- \) or \(-NH-\);
in Formula (DI-12), \(G^{25} \) is a single bond, alkyl having 2 to 6 carbon atoms or 1,4-phenylene; and \(r \) is 0 or 1;
in Formula (DI-12), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional;
in Formulas (DI-9), (DI-11) and (DI-12), the bonding positions of \(-NH_2\) bonded to the benzene rings are optional positions:

in Formula (DI-13), \(G^{26} \) is a single bond, \(-O-, -COO-, -OCO-, -CO-, -CONH-, -CH_2O-, -OCH_2-, -CF_2O-, -OCF_2-\) or \(-O-(CH_2)_m-\), and \(m \) is an integer of 1 to 12;
\(R^{25} \) is alkyl having 3 to 20 carbon atoms, phenyl, cyclohexyl, a group having a steroid skeleton or a group represented by the following Formula (DI-13-a); in the above alkyl, at least one hydrogen may be substituted with \(-F\); and at least one \(-CH_2-\) may be substituted with \(-O-\);
hydrogen of the above phenyl may be substituted with \(-F, -CH_3, -OCH_3, -OCH_2F, -OCHF_2, -OCF_2\); alkyl having 3 to 20 carbon atoms or alkoxy having 3 to 20 carbon atoms; hydrogen of the above cyclohexyl may be substituted with alkyl having 3 to 20 carbon atoms or alkoxy having 3 to 20 carbon atoms; the bonding position of \(-NH_2\) bonded to the benzene ring shows that it is an optional position in the above ring:

in Formulas (DI-13-a), \(G^{27}, G^{28} \) and \(G^{29} \) represent a bonding group, and they each are independently a single bond or alkenylene having 1 to 12 carbon atoms; at least one \(-CH_2-\) in the above alkenylene may be substituted with \(-O-, -COO-, -OCO-, -CONH-\) or \(-CH-CH-\);
a ring \(B^{21} \), a ring \(B^{22} \), a ring \(B^{23} \) and a ring \(B^{24} \) each are independently 1,4-phenylene, 1,4-cyclohexylenyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl or anthracene-9,10-diyl;
in the ring \(B^{21} \), the ring \(B^{22} \), the ring \(B^{23} \) and the ring \(B^{24} \), at least one hydrogen may be substituted with \(-F\) or \(-CH_3\);
s, t and \(u \) each are independently an integer of 1 to 5, and a total thereof is 1 to 5;
when s, t or \(u \) is 2, two bonding groups in each parenthesis may be the same or different, and two rings may be the same or different;
\(R^{26} \) is \(-F, -OH, alkyl having 1 to 30 carbon atoms, fluorine-substituted alkyl having 1 to 30 carbon atoms, alkoxy having 1 to 30 carbon atoms, \(-CN, -OCH_2F, -OCHF_2 \) or \(-OCHF_3\); and at least one \(-CH_2-\) in the above alkenyl having 1 to 30 carbon atoms may be substituted with a divalent group represented by the following Formula (DI-13-b):

in Formula (DI-13-b), \(R^{27} \) and \(R^{28} \) each are independently alkyl having 1 to 3 carbon atoms; and \(v \) is an integer of 1 to 6;
in Formulas (DI-14) and (DI-15), plural G^30 each are independently a single bond, \(-\text{CO}--\) or \(-\text{CH}_2--;\), plural R^29 each are independently hydrogen or \(-\text{CH}_3;\), R^30 is hydrogen, alkyl having 1 to 20 carbon atoms or alkenyl having 2 to 20 carbon atoms; one hydrogen of a benzene ring in Formula (DI-15) may be substituted with alkyl having 1 to 20 carbon atoms or phenyl; in Formulas (DI-14) and (DI-15), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional; \(-\text{NH}_2\) bonded to the benzene ring shows that the bonding position thereof in the ring is optional:

\[\text{DI-16}\]

in Formulas (DI-16) and (DI-17), plural G^31 each are independently \(-\text{O}--\) or alkylene having 1 to 6 carbon atoms; G^32 is a single bond or alkylene having 1 to 3 carbon atoms; R^31 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one \(-\text{CH}_2--;\) of the above alkyl may be substituted with \(-\text{O}--;\); R^32 is alkyl having 6 to 22 carbon atoms; R^33 is hydrogen or alkyl having 1 to 22 carbon atoms; a ring B^25 is 1,4-phenylene or 1,4-cyclohexylene; r is 0 or 1; and \(-\text{NH}_2\) bonded to the benzene ring shows that the bonding position thereof in the ring is optional.

[12] The photo-aligning liquid crystal aligning agent as described in the above item [11], wherein the diamine having no photoreactive structure which is used together with at least one selected from the group of the compounds represented by Formulas (DI-a) to (DI-c) is at least one selected from the group of compounds represented by the following Formulas (DI-4-1), (DI-5-9), (DI-5-12), (DI-5-27), (DI-5-30) and (DI-7-3):
in Formula (DI-5-30), k is an integer of 1 to 5; and

in Formula (DI-7-3), n is 1 or 2.

[0018] [15] The photo-aligning liquid crystal aligning agent as described in any one of the above items [1] to [12], further comprising at least one selected from the group of compounds consisting of alkyl-substituted nitrile groups, compounds having a radically polymerizable unsaturated double bond, oxazine compounds, oxazoline compounds, epoxy compounds and silane coupling agents.

[14] The photo-aligning liquid crystal aligning agent as described in the above item [13], wherein the alkyl-substituted nitrile group is at least one selected from the group of compounds consisting of bis[4-(allyl) bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid]phenyl] methine, N,N-m-xylene-bis(allyl) bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid and N,N'-hexamethylene-bis(allylcyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid)."
part or a whole part of the above polyamic acid-polyamide copolymers to dehydronize cyclization. The polyamic acid or the derivative thereof described above may comprise a single compound or two or more compounds.

[0022] The term “tetracarboxylic acid dianhydride” used in the present specification shows a tetracarboxylic acid dianhydride single substance in a certain case and shows a mixture of plural tetracarboxylic acids dianhydride in another case. Similarly, the term “diamine” used therein shows a single substance in a certain case and shows a mixture of plural diamines in another case.

[0023] The polyamic acid or derivative thereof used for the photo-aligning liquid crystal aligning agent of the present invention has a photoactive structure in a constitutional unit thereof. The above photoactive structure is brought about by using at least one of tetracarboxylic acid dianhydride having a photoactive structure and diamine having a photoactive structure for the raw material. The above polyamic acid or derivative thereof is characterized by being obtained by reacting tetracarboxylic acid dianhydride having no photoactive structure including at least one selected from the compounds represented by the following Formulas (AN-a) to (AN-c) and diamine having no photoactive structure including at least one selected from the compounds represented by the following Formulas (DI-a) to (DI-c) together with at least one of tetracarboxylic acid dianhydride having a photoactive structure and diamine having a photoactive structure;

in Formula (AN-a), X^2 is a single bond or alkylene having 1 to 20 carbon atoms;
in Formula (AN-b), X^2 is alkylene having 1 to 8 carbon atoms;
in Formula (DI-b), R^2 is hydrogen or $-\text{CH}_3$, and n is an integer of 1 to 5; and
in Formulas (DI-a) and (DI-b), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional.

<Photoreactive Structure>

[0024] The photoactive structure can be selected from all publicly known photoactive structures which bring about isomerization, photodecomposition, dimerization reaction, and the like by irradiation with light. Photosensitive groups causing photoisomerization or dimerization reaction are preferably used from the viewpoint of a photosensitivity.

[0025] The tetracarboxylic acid dianhydride having a photoactive structure or the diamine having a photoactive structure each described above is preferably at least one selected from the group of compounds having a good photosensitivity which are represented by the following Formulas (I) to (VII):

\[
\begin{align*}
R^2-\text{C} &= C=R^3 \\
R^2-\text{C} &= C=C=R^3 \\
R^2-\text{C} &= \text{CH}_{2}=\text{CH}-R^3 \\
R^2-\text{C} &= R^4-C=C=R^3 \\
R^2-\text{C} &= R^4-\text{CH}=\text{CH}-R^3 \\
R^2-\text{CH} &= \text{CH}=R^3 \\
R^2-N &= N-R^3 \\
\end{align*}
\]

in Formulas (I) to (VII), R^2 and R^3 each are independently a monovalent organic group having NH_2 or a monovalent organic group having $-\text{CO}-\text{O}-\text{CO}-$, and R^4 is a divalent organic group having an aromatic ring.

[0026] The photoactive structure may be incorporated into either a principal chain or a side chain of the polyamic acid or the derivative thereof in the present invention, and it can suitably be used for liquid crystal devices of a lateral electric field by incorporating the structure into the principal chain.

[0027] Capable of being used as the material having the photoactive structure described above is at least one selected from the group of compounds represented by the following Formulas (I-1), (II-1), (III-1), (IV-1), (IV-2), (V-1), (VI-1) and (VII-1) to (VII-3);
The compounds represented by Formulas (VI-1), (VII-1) and (VII-3) can particularly suitably be used from the viewpoint of a photosensitivity. The compounds in which a bonding position of an amino group is a para position in Formulas (VI-1) and (VII-1) and the compounds in which b is 0 in Formula (VII-1) can more suitably be used from the viewpoint of the aligning property.

In an embodiment in which the tetracarboxylic acid dianhydride having no photoactive structure (non-photosensitive) and the tetracarboxylic acid dianhydride having a photoactive structure (photosensitive) are used in combination, the photosensitive tetracarboxylic acid dianhydride accounts for preferably 0 to 70 mole %, particularly preferably 0 to 50 mole % based on a whole amount of the tetracarboxylic acids dianhydride used as the raw material in producing the polyamic acid or derivative thereof according to the present invention in order to prevent the alignment layer from being reduced in a sensitivity to light. Also, in order to improve the foregoing various characteristics such as the sensitivity to light, the electric characteristics, the afterimage characteristic and the like, two or more tetracarboxylic acids dianhydride may be used in combination.

In an embodiment in which the diamine having no photoactive structure (non-photosensitive) and the diamine having a photoactive structure (photosensitive) are used in combination, the photosensitive diamine accounts for preferably 20 to 100 mole %, particularly preferably 50 to 100 mole % based on a whole amount of the diamines used as the raw material in producing the polyamic acid or derivative thereof according to the present invention in order to prevent the alignment layer from being reduced in a sensitivity to light. Also, in order to improve the foregoing various characteristics such as the sensitivity to light, the afterimage characteristic and the like, two or more diamines may be used in combination. As described above, a case in which the non-photosensitive tetracarboxylic acid dianhydride accounts for a whole amount of the tetracarboxylic acids dianhydride is included in the embodiment of the present invention, and in the above case, the photosensitive diamine is required to account for minimum 20 mole % based on a whole amount of the diamines.

In order to improve the foregoing various characteristics such as the sensitivity to light, the afterimage characteristic and the like, the photosensitive tetracarboxylic acid dianhydride and the photosensitive diamine may be used in combination, and two or more compounds thereof may be used in combination respectively.

<Non-Photosensitive Tetracarboxylic Acid Dianhydride>

In the non-photosensitive tetracarboxylic acids dianhydride represented by Formulas (AN-a) to (AN-c), the compounds represented by Formulas (AN-a) and (AN-b) are preferably used when further improvement in an aligning property of the liquid crystal is regarded as important; the compound represented by Formula (AN-a) is preferably used when further improvement in a VHR of the liquid crystal display device is regarded as important; the compounds represented by Formulas (AN-a) and (AN-b) are preferably used when an inhibition in storage of a residual DC of the liquid crystal alignment layer is regarded as important; and the compounds represented by Formulas (AN-b) and (AN-c) are preferably used when shortening a relaxation time in a residual DC of the liquid crystal alignment layer is regarded as important. Preferably used is the
compound represented by Formula (AN-b) which can satisfy the various characteristics described above in a good balance can more suitably be used.

[0033] In Formula (AN-b) described above, X₂ is particularly preferably alkylene having 4 to 8 carbon atoms.

[0034] The tetracarboxylic acids dianhydride represented by Formulas (AN-a) to (AN-e) account for preferably 50 to 100 mole %, more preferably 70 to 100 mole % based on a whole amount of the tetracarboxylic acids dianhydride used as the raw material in producing the polyamic acid or derivative thereof according to the present invention in order to satisfy the various characteristics described above.

<Non-Photosensitive Diamine>

[0035] In the non-photosensitive diamines represented by Formulas (DI-a) to (DI-c), the compounds represented by Formulas (DI-b) and (DI-c) are preferably used when further improvement in an aligning property of the liquid crystal is regarded as important; the compounds represented by Formulas (DI-a) and (DI-c) are preferably used when further improvement in a VHR of the liquid crystal display device is regarded as important; the compounds represented by Formulas (DI-a) and (DI-c) are preferably used when an inhibition in storage of a residual DC of the liquid crystal alignment layer is regarded as important; and the compound represented by Formula (DI-b) is preferably used when shortening a relaxation time in a residual DC of the liquid crystal alignment layer is regarded as important. The compound represented by Formula (DI-b) which can satisfy the various characteristics described above in a good balance can more preferably be used.

[0036] In Formula (DI-b), a is preferably 2 or 4, more preferably 4.

[0037] The diamines represented by Formulas (DI-a) to (DI-c) account for preferably 20 to 100 mole %, more preferably 20 to 50 mole % based on a whole amount of the diamines used as the raw material in producing the polyamic acid or derivative thereof according to the present invention in order to satisfy the various characteristics described above.

[0038] In the combinations of the tetracarboxylic acids dianhydride represented by Formulas (AN-a) to (AN-c) and the diamines represented by Formulas (DI-a) to (DI-c), the tetracarboxylic acid dianhydride represented by Formula (AN-b) and the diamine represented by Formula (DI-b) can suitably be used for satisfying the various characteristics described above. The compound in which X² is alkylene having 4 to 8 carbon atoms in Formula (AN-b) and the compound in which a is 6, in which R² is hydrogen and in which a bonding position of amine is a para position in Formula (DI-b) can particularly suitably be used.

<Other Tetracarboxylic Acids Dianhydride>

[0039] In producing the polyamic acid or derivative thereof according to the present invention, “other tetracarboxylic acids dianhydride” other than the photosensitive tetracarboxylic acids dianhydride described above and the non-photosensitive tetracarboxylic acids dianhydride represented by Formulas (AN-a) to (AN-c) can be used. The other tetracarboxylic acids dianhydride can be selected from publicly known tetracarboxylic acids dianhydride without being limited. Such tetracarboxylic acids dianhydride may be compounds belonging to either group of aromatic compounds (including heteroaromatic compounds) in which dicarboxylic acid anhydride is bonded directly to an aromatic ring and aliphatic compounds (including heteroaromatic compounds) in which dicarboxylic acid anhydride is not bonded directly to an aromatic ring.

[0040] The suitable examples of the other tetracarboxylic acids dianhydride include tetracarboxylic acids dianhydride represented by (AN-I) to (AN-VII) from the viewpoints of an availability of the raw materials, easiness in producing the polymer and the electric characteristics of the layer:
in Formulas (AN-I), (AN-IV) and (AN-V), plural X each are independently a single bond or —CH₂—;
in Formula (AN-II), G is a single bond, alkylene having 1 to 20 carbon atoms, —CO—, —O—, —S—, —SO₂—, —C(CH₃)₂— or —C(F₃)₂—;
in Formulas (AN-II) to (AN-IV), plural Y each are independently one selected from the group of the following trivalent groups, and the atomic bondings are connected with optional carbons; at least one hydrogen of the above groups may be substituted with methyl, ethyl or phenyl;
in Formula (AN-II), when Y is 2-azapropene-1,2,3-triy1, G described above is not alkylene having 1 to 20 carbon atoms, and when Y is benzene-1,2,4-triy1, G described above is not alkylene having 1 to 8 carbon atoms and —O—;
in Formulas (AN-III) to (AN-V), a ring A is a monocyclic hydrocarbon group having 3 to 10 carbon atoms or a condensed polycyclic hydrocarbon group having 6 to 30 carbon atoms; at least one hydrogen of the above group may be substituted with methyl, ethyl or phenyl; an atomic bonding coupled with the ring is connected with optional carbon constituting the ring, and two atomic bondings may be connected with the same carbon;
in Formula (AN-VI), X₁₀ is alkylene having 2 to 6 carbon atoms; Me is methyl; and Ph is phenyl;
in Formula (AN-VII), plural G₁₀ each are independently —O—, —COO— or —OCO—; and plural r each are independently 0 or 1.

[0041] To be more specific, tetracarboxylic acids dianhydride represented by Formulas (AN-1) to (AN-16-14) are listed:
in Formulas (AN-1-2) and (AN-1-3), m is an integer of 1 to 12.

in Formula (AN-2), plural \(R_{11} \) each are independently hydrogen, \(-\text{CH}_3\), \(-\text{CH}_2\text{CH}_3\) or phenyl. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-2):
in Formula (AN-3), a ring A^{11} is a cyclohexene ring or a benzene ring. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-3):

in Formula (AN-4), G^{13} is a single bond, $-\text{CH}_2-$, $-\text{CH}_2\text{CH}_2-$, $-\text{O}-$, $-\text{S}-$, $-\text{C(CH}_3)_2-$, $-\text{SO}_2-$, $-\text{CO}-$, or $-\text{C(CF}_3)_2-$; plural rings A^{11} each are independently a cyclohexene ring or a benzene ring; G^{13} may be bonded to an optional position of the ring A^{11}. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-4):
in Formula (AN-5), R^{11} is hydrogen or $-CH_3$; and R^{11} in which a bonding position is not fixed to carbon atoms constituting the benzene ring shows that the bonding position thereof in the benzene ring is optional. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-5):

in Formula (AN-6), plural X^{11} each are independently a single bond or $-CH_2-$; plural X^{12} each are independently $-CH_2-,-CH_2CH_2-$ or $-CH-CH-$; and n is 1 or 2. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-6):
in Formula (AN-7), X^{11} is a single bond or CH_2. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-7):

in Formula (AN-8), X^{11} is a single bond or CH_2; R^{12} is hydrogen, CH_3, CH_2CH_3 or phenyl; and a ring A^{12} is a cyclohexane ring or a cyclohexene ring. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-8):
Formula (AN-10) represents the following tetracarboxylic acid dianhydride:

in Formula (AN-11), plural rings A^{11} each are independently a cyclohexane ring or a benzene ring. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-11):

in Formula (AN-9), plural r each are independently 0 or 1. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-9):
in Formula (AN-12), plural rings A\(^1\) each are independently a cyclohexane ring or a benzene ring. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-12):

\[
\text{(AN-12-1)}
\]

\[
\text{(AN-12-2)}
\]

\[
\text{(AN-12-3)}
\]

in Formula (AN-13), X\(^{13}\) is alkylene having 2 to 6 carbon atoms, and Ph represents phenyl. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-13):

\[
\text{(AN-13-1)}
\]

\[
\text{(AN-13-2)}
\]

\[
\text{(AN-14)}
\]
in Formula (AN-14), plural \(G^{14} \) each are independently \(\text{--O--} \), \(\text{--COO--} \) or \(\text{--OCO--} \), and plural \(r \) each are independently \(0 \) or \(1 \). Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-14):

\[
\begin{align*}
(\text{AN-14-1}) & \quad \text{CH}_3 \quad \text{CH}_3 \\
(\text{AN-14-2}) & \quad \text{CH}_3 \quad \text{CH}_3 \\
(\text{AN-14-3}) & \quad \text{CH}_3 \quad \text{CH}_3 \\
(\text{AN-15}) & \quad \text{CH}_3 \quad \text{CH}_3
\end{align*}
\]
in Formula (AN-15), \(w \) is an integer of 1 to 10. Compounds represented by the following formulas can be listed as the examples of the tetracarboxylic acid dianhydride represented by Formula (AN-15):

\[
\text{(AN-15-1)} \\
\text{(AN-15-2)} \\
\text{(AN-15-3)} \\
\text{(AN-15-4)}
\]

[0043] Tetracarboxylic acids dianhydride other than the compounds described above include the following compounds:

\[
\text{(AN-16-1)} \\
\text{(AN-16-2)} \\
\text{(AN-16-3)} \\
\text{(AN-16-4)} \\
\text{(AN-16-5)} \\
\text{(AN-16-6)} \\
\text{(AN-16-7)} \\
\text{(AN-16-8)} \\
\text{(AN-16-9)} \\
\text{(AN-16-10)} \\
\text{(AN-16-11)} \\
\text{(AN-16-12)}
\]
When further improvement in an aligning property of the liquid crystal is regarded as important, among the tetracarboxylic acids dianhydride described above, more preferred are the compounds represented by Formulas (AN-1-1), (AN-1-3), (AN-2-1), (AN-3-2), (AN-4-1), (AN-4-5), (AN-5-1), (AN-7-2), (AN-8-1), (AN-11-3), (AN-16-3) and (AN-16-14), and the compounds represented by Formulas (AN-1-1), (AN-3-2), (AN-11-3) and (AN-16-14) are particularly preferred.

When further improvement in a VHR of the liquid crystal display device is regarded as important, among the tetracarboxylic acids dianhydride described above, more preferred are the aliphatic compounds represented by Formulas (AN-1-1), (AN-1-4), (AN-2-1), (AN-3-1), (AN-5-1), (AN-6-3), (AN-7-1), (AN-7-2), (AN-8-1), (AN-9-3), (AN-10), (AN-13-1), (AN-16-1), (AN-16-3) and (AN-16-4), and the compounds represented by Formulas (AN-1-4), (AN-2-1), (AN-3-1), (AN-7-2), (AN-10), (AN-13-1) and (AN-16-1) are particularly preferred.

When shortening a relaxation time in a residual DC of the liquid crystal alignment layer is regarded as important, among the tetracarboxylic acids dianhydride described above, the compounds represented by Formulas (AN-3-2) and (AN-11-3) are more preferred.

The compounds represented by Formulas (AN-1-1), (AN-2-1) and (AN-3-2) which satisfy the various characteristics described above in a good balance can more suitably be used.

In producing the polyamic acid or derivative thereof according to the present invention, “other diamines” other than the photosensitive diamines described above and the non-photosensitive diamines represented by Formulas (DI-a) to (DI-c) each can be used. The other diamines can be selected from publicly known diamines without being limited.

In this connection, the structures of the other diamines shall be explained. The other diamines can be divided into two kinds according to the structures thereof. That is, assuming that a skeleton connecting two amino groups is regarded as a principal chain, one is diamine having a group branching from the principal chain, that is, a side chain group, and the other is diamine having no side chain group. The above side chain group has an effect of increasing the pre-tilt angle. The side chain group having the above effect has to be a group having 3 or more carbon atoms, and the specific examples thereof include alkyl having 3 or more carbon atoms, alkoxy having 3 or more carbon atoms and a group having a steroid skeleton. Groups which have at least one ring and in which a ring at an end thereof has any one of alkyl having one or more carbon atoms, alkoxy having one or more carbon atoms and alkoxy-alkyl having two or more carbon atoms as a substituent have as well the effect of the side chain group. In the following explanations, diamines having the above side chain group shall be referred to as side chain type diamines, and diamines having no such side chain group shall be referred to as non-side chain type diamines.

Proper use of the non-side chain type diamines and the side chain type diamines makes it possible to meet the pre-tilt angles necessary for the respect compounds. The side chain type diamines are preferably used in combination as long as the characteristics of the present invention are not damaged. Also, the side chain type diamines and the non-side chain type diamines are preferably selected and used for the purpose of improving the vertical aligning property to liquid crystal, the voltage holding property, the yellowing characteristic and the photo-aligning property.

<Non-Side Chain Type Diamine>

Diamines represented by the following Formulas (DI-1) and (DI-3) to (DI-12) can be listed as publicly known diamines having no side chains:

\[
\text{(DI-1)} \quad \text{H}_2\text{N} + \text{CH}_2 \text{th} \text{NH}_2 \\
\text{(DI-3)} \quad \text{H}_2\text{N} \quad \text{G}^{21} \quad \text{NH}_2 \\
\text{(DI-4)} \quad \text{H}_2\text{N} \quad \text{G}^{21} \quad \text{G}^{22} \quad \text{NH}_2 \\
\text{(DI-5)} \quad \text{H}_2\text{N} \quad \text{G}^{21} \quad \text{NH}_2 \\
\text{(DI-6)} \quad \text{H}_2\text{N} \quad \text{G}^{21} \quad \text{G}^{22} \quad \text{NH}_2 \\
\text{(DI-7)} \quad \text{H}_2\text{N} \quad \text{G}^{21} \quad \text{G}^{22} \quad \text{G}^{23} \quad \text{NH}_2
\]

in Formula (DI-1), m is an integer of 1 to 12;
in Formulas (DI-3), (DI-6) to (DI-7), plural G21 each are independently a single bond, —O—, —S—, —S—S—, —SO$_2$—, —CO—, —CONH—, —NHCO—, —C(CH$_3$)$_2$—,
in Formula (DI-5), G21 is a single bond, —NH—, —O—,
—S—, —S—, —SO\textsubscript{2}—, —CO—, —CONH—,
—NHCO—, —C(\text{CH})\textsubscript{2}—, —C(\text{CF})\textsubscript{3}—, —C(\text{CH})\textsubscript{3}—,
—O—(\text{CH})\textsubscript{m—O—}, —N—C(\text{CH})\textsubscript{2}—(\text{CH})\textsubscript{k—N(\text{CH})\textsubscript{2}—}
or —S—(\text{CH})\textsubscript{m—S—}; m' an integer of 1 to 12, and m" is an integer of 6 to 12; and k' is an integer of 1 to 5;
in Formulas (DI-6) and (DI-7), plural G22 each are independently a single bond, —O—, —S—, —CO—, —C(\text{CH})\textsubscript{2}—,
—C(\text{CF})\textsubscript{3}— or alkylene having 1 to 10 carbon atoms;
at least one hydrogen of a cyclohexane ring and a benzene
ring in Formulas (DI-3) to (DI-7) may be substituted with
—F, —CH\textsubscript{3}, —OH, —CF\textsubscript{3}, —CO\textsubscript{2}H—, —CONH\textsubscript{2} or benzylic, and in addition thereto, in Formula (DI-4), at least one
hydrogen of a benzene ring may be substituted with groups
represented by the following Formulas (DI-4-a) to (DI-4-c);
in Formulas (DI-2) to (DI-7), groups in which bonding
positions are not fixed to any of carbon atoms constituting
the rings show that the bonding positions thereof in the rings
are optional; and the bonding position of —NH\textsubscript{2} in the
cyclohexane ring or the benzene ring is an optional position
excluding the bonding position of G21 or G22;
in Formulas (DI-4-a) and (DI-4-b), plural R20 each are independently hydrogen or —CH\textsubscript{3};
in Formula (DI-5), plural R21 and R22 each are independently alkyl having 1 to 3 carbon atoms or phenyl;
plural G23 each are independently alkylene having 1 to 6 carbon atoms, phenylene or phenylene substituted with
alkyl; w is an integer of 1 to 10;
in Formula (DI-9), plural R23 each are independently alkyl having 1 to 5 carbon atoms, alkoxy having 1 to 5 carbon
atoms or C; plural p each are independently an integer of 0
to 3, and q is an integer of 0 to 4; and p and q are not 0 at
the same time;
in Formula (DI-10), R24 is hydrogen, alkyl having 1 to 4 carbon atoms, phenyl or benzyl;
in Formula (DI-11), G24 is —CH\textsubscript{2}— or —NH—;
in Formula (DI-12), G25 is a single bond, alkylene having 2
to 6 carbon atoms or 1,4-phenylene; and r is 0 or 1; groups
in which bonding positions are not fixed to any of carbon
atoms constituting the rings show that the bonding positions
thereof in the rings are optional;
in Formulas (DI-9), (DI-11) and (DI-12), the bonding positions
of —NH\textsubscript{2} bonded to the benzene rings are optional positions.

[0053] Compounds represented by the following Formulas
(DI-1) to (DI-12-1) can be listed as the specific examples
of the diamines having no side chain groups represented by
Formulas (DI-1) to (DI-12) described above.

[0054] The examples of the diamines represented by
Formulas (DI-1) to (DI-3) are shown below:
The examples of the diamine represented by Formula (DI-4) are shown below:
The examples of the diamine represented by Formula (DI-5) are shown below:

- in Formula (DI-5), \(v \) is an integer of 1 to 6;
- in Formula (DI-5-12), \(m \) is an integer of 1 to 12;
in Formula (DI-5-30), k is an integer of 1 to 5.

[0057] The examples of the diamine represented by Formula (DI-6) are shown below:

[0058] The examples of the diamine represented by Formula (DI-7) are shown below:
in Formula (DI-7-3) and (DI-7-4), m is an integer of 1 to 12, and plural n each are independently 1 or 2;

[0059] The example of the diamine represented by Formula (DI-8) is shown below:

[0060] The examples of the diamine represented by Formula (DI-9) are shown below:
The above non-side chain type diamines have the effect of improving the electric characteristics such as a reduction in an ion density of the liquid crystal display device. When the non-side chain type diamine is used for producing the polyamic acid or polyimide used for the liquid crystal aligning agent of the present invention, a proportion thereof based on a whole amount of the diamines is preferably 0 to 80 mole %, more preferably 0 to 50 mole %.

<Side Chain Type Diamine>

The following groups can be listed as the side chain group of the side chain type diamine.

The side chain includes alkyl, alkoxy, alkoxyalkyl, alkyloxycarbonyl, alkylcarbonyloxy, alkylcarboxyloxy, alkylaminocarbonyl, alkylaminocarbonyloxy, alkylaminocarbonyloxyalkyl, alkenyl, alkenyloxy, alkenyloxyalkyl, alkenyloxycarbonyl, alkenylaminocarbonyloxy, alkenylaminocarbonyloxyalkyl, and the like. All of alkyl, alkenyl and alkenyl in the above groups are groups having 3 or more carbon atoms. In a case of alkoxyalkyl, the group may have 3 or more carbon atoms in total. The above groups may be either linear or branched.

Next, on the condition that the ring at the end has alkyl having one or more carbon atoms, alkoxy having one or more carbon atoms or alkoxyalkyl having 2 or more carbon atoms as a substituent, capable of being listed are groups of a ring structure, such as phenyl, phenylalkyl, phenylalkyloxy, phenylcarbonyloxy, phenylcarboxyloxy, phenylaminocarbonyloxy, phenylaminocarbonyloxyalkyl, cyclohexyl, cyclohexylalkyl, cyclohexylalkyloxy, cyclohexylalkyloxyalkyl, cyclohexylphenil, cyclohexylphenylalkyl, cyclohexylphenylalkyloxy, bis(cyclohexyl)oxy, bis(cyclohexyl)alkyl, bis(cyclohexyl)alkyloxy, bis(cyclohexyl)phenyl, bis(cyclohexyl)phenylalkyl, bis(cyclohexyl)oxycarbonyl, bis(cyclohexyl)phenylalkyloxyalkyl, and the like.

Further, capable of being listed are ring-condensed groups which are a group having 2 or more benzene rings, a group having 2 or more cyclohexane rings or a bicyclic or more group constituted by a benzene ring and a cyclohexane ring, wherein plural bonding groups each are independently a single bond, —O—, —COO—, —OCO—, —CONH— or alkylene having 1 to 3 carbon atoms, and the ring at the end has alkyl having one or more carbon atoms, fluorine-substituted alkyl having one or more carbon atoms or alkoxyalkyl having 2 or more carbon atoms as a substituent. Groups having a steroid skeleton are also effective as the side chain group.

Diamines represented by the following Formulas (DI-13) to (DI-17) can be listed as the diamines having side chains:
in Formula (DI-13), G^26 is a single bond, —O—, —COO—, —COO—, —CO—, —CONH—, —CH_3O—, —OCH_3—, —CF_2O—, —OCF_3— or —O—(CH_2)m—, and m is an integer of 1 to 12; the preferred examples of G^26 are a single bond, —O—, —COO—, —COO—, —CH_3O— and alkyl having 1 to 3 carbon atoms, and the particularly preferred examples are a single bond, —O—, —COO—, —OCH_3—, —CH_2— and —CH(CH_3)_; R^27 is alkyl having 3 to 30 carbon atoms, phenyl, a group having a steroid skeleton or a group represented by the following Formula (DI-13-a); in the above alkyl, at least one hydrogen may be substituted with —F, and at least one —CH_3— may be substituted with —O—, —CH—CH— or —C==CH—; hydrogen of the above phenyl may be substituted with —F, —CH_3, —OCH_3, —OCH_2F, —OCHF_2, —OCF_3, alkyl having 3 to 30 carbon atoms or alkoxy having 3 to 30 carbon atoms; hydrogen of the above cyclohexyl may be substituted with alkyl having 3 to 30 carbon atoms or alkoxy having 3 to 30 carbon atoms; the bonding position of —NH_2 bonded to the benzene ring shows that it is an optional position in the above ring, and the bonding position thereof is preferably meta or para; that is, assuming that the bonding position of a group of "R^27-G^28." is a 1-position, the two bonding positions are preferably a 3-position and a 5-position or a 2-position and a 5-position;

in Formula (DI-13-a), G^27, G^28 and G^29 are a bonding group, and they each are independently a single bond or alkylene having 1 to 12 carbon atoms; at least one —CH_3— in the above alkylene may be substituted with —O—, —COO—, —COO—, —CONH— or —CH==CH—; a ring B^21, a ring B^22, a ring B^23 and a ring B^24 each are independently 1,4-phenylene, 1,4-cyclohexylene, 1,3-dioxane-2,5-diyi, pyrimidine-2,5-diyi, pyridine-2,5-diyi, naphthalene-1,5-diyl, naphthalene-2,7-diyl or anthracene-9,10-diyl; in the ring R^21, the ring R^22, the ring R^23 and the ring R^24, at least one hydrogen may be substituted with —F or —CH_3; s, t and u each are independently an integer of 0 to 2, and a total thereof is 1 to 5; when s, t or u is 2, two bonding groups in each parenthesis may be the same or different, and two rings may be the same or different; R^29 is —F, —OH, alkyl having 1 to 30 carbon atoms, fluorine-substituted alkyl having 1 to 30 carbon atoms, alkoy having 1 to 30 carbon atoms, —CN, —OCH_3F, —OCHF_2 or —OCF_3, and at least one —CH_2— of the above alkyl having 1 to 30 carbon atoms may be substituted with a divergent group represented by the following Formula (DI-13-b):

in Formulas (DI-14) and (DI-15), plural G^30 each are independently a single bond, —CO— or —CH_2—; plural R^29 each are independently hydrogen or —CH_3; R^30 is hydrogen, alkyl having 1 to 20 carbon atoms or alkenyl having 2 to 20 carbon atoms; at least one hydrogen of a benzene ring in Formula (DI-15) may be substituted with alkyl having 1 to 20 carbon atoms or phenyl; groups in which bonding positions are not fixed to any carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional; one of two groups "—phenylene-G^30—O—" in Formula (DI-14) is bonded preferably to a 3-position of a steroid nucleus, and the other is bonded preferably to a 6-position thereof; the bonding position of two groups "—phenylene-G^30—O—" in Formula (DI-15) is preferably a meta position or a para position respectively to the bonding position of the steroid nucleus; in Formulas (DI-14) and (DI-15), —NH_2 bonded to a benzene ring shows that the bonding position thereof in the ring is optional;
in Formulas (DI-16) and (DI-17), plural G^3^1 each are independently —O— or alkyne having 1 to 6 carbon atoms; G^3^2 is a single bond or alkyne having 1 to 3 carbon atoms; R^3^1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH— of the above alkyl may be substituted with —O—, —CH—CH— or —C—CH—; R^3^2 is alkyl having 6 to 22 carbon atoms; R^3^3 is hydrogen or alkyl having 1 to 22 carbon atoms; a ring B^3^1 is 1,4-phenylene or 1,4-cyclohexylene; r is 0 or 1; —NH— bonded to a benzene ring shows that the bonding position thereof in the ring is optional, and plural bonding positions thereof each are independently preferably a meta position or a para position to the bonding position of G^3^1.

[0070] The specific examples of the side chain type diamines are shown below.

[0071] Diamines represented by the following Formulas (DI-13-1) to (DI-17-3) can be listed as the diamines having side chains represented by the Formulas (DI-13) to (DI-17) described above.

[0072] The examples of the compounds represented by Formula (DI-13) are shown below:
[0073] In Formulas (DI-13-1) to (DI-13-11), R³⁶ is alkyl having 1 to 30 carbon atoms or alkoxy having 1 to 30 carbon atoms, preferably alkyl having 5 to 25 carbon atoms or alkoxy having 5 to 25 carbon atoms. R³⁵ is alkyl having 1 to 30 carbon atoms or alkoxy having 1 to 30 carbon atoms, preferably alkyl having 3 to 25 carbon atoms or alkoxy having 3 to 25 carbon atoms.

[0074] In Formulas (DI-13-12) to (DI-13-17), R³⁶ is alkyl having 4 to 30 carbon atoms, preferably alkyl having 6 to 25 carbon atoms. R³⁷ is alkyl having 6 to 30 carbon atoms, preferably alkyl having 8 to 25 carbon atoms.
In Formulas (DI-13-18) to (DI-13-43), R_{38} is alkyl having 1 to 20 carbon atoms or alkoxy having 1 to 20 carbon atoms, preferably alkyl having 3 to 20 carbon atoms or alkoxy having 3 to 20 carbon atoms. R_{39} is hydrogen, —F, alkyl having 1 to 30 carbon atoms, alkoxy having 1 to 30 carbon atoms, —CN, —OCH_{2}F, —OCHF_{3} or —OCF_{3}, preferably alkyl having 3 to 25 carbon atoms or alkoxy having 3 to 25 carbon atoms. G^{33} is alkylene having 1 to 20 carbon atoms.
[0076] The examples of the compound represented by Formula (DI-14) are shown below:

[0077] The examples of the compound represented by Formula (DI-15) are shown below:
[0078] The examples of the compound represented by Formula (DI-16) are shown below:
The examples of the compound represented by Formula (DI-17) are shown below:

- **(DI-17-1)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

- **(DI-17-2)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

- **(DI-17-3)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

- **(DI-17-4)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

In Formulas (DI-17-1) to (DI-17-3), R^{37} is alkyl having 6 to 22 carbon atoms, and R^{41} is hydrogen or alkyl having 1 to 12 carbon atoms.

Diamines other than the diamines represented by Formulas (DI-1-1) to (DI-17-3) can also be used as the other diamines in the present invention.

The above diamines include, for example, diamines having side chain structures other than the diamines represented by Formulas (DI-13-1) to (DI-17-3), and they include, for example, compounds represented by the following Formulas (DI-18-1) to (DI-18-8):

- **(DI-18-1)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

- **(DI-18-2)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

- **(DI-18-3)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

- **(DI-18-4)**
 \[
 \begin{array}{c}
 \text{H}_2\text{N} \quad \text{O} \\
 \end{array}
 \begin{array}{c}
 \text{O} \\
 \text{H}_2\text{N} \\
 \text{NH}_2
 \end{array}
 \]

In Formulas (DI-16-1) to (DI-16-12), R^{40} is hydrogen or alkyl having 1 to 20 carbon atoms, preferably hydrogen or alkyl having 1 to 10 carbon atoms, and R^{41} is hydrogen or alkyl having 1 to 12 carbon atoms.
In Formulas (DI-18-1) to (DI-18-8), plural R^{42} each represent independently alkyl having 3 to 30 carbon atoms.

Also, diamines represented by Formulas (DI-18-9) to (DI-18-13) can be listed:

In Formulas (DI-18-9) to (DI-18-11), e is an integer of 2 to 10; in Formula (DI-18-12), plural R^{43} each are independently hydrogen, $-\text{NH}$-Boc or $-\text{N}(\text{Boc})_2$; at least one of R^{43} is $-\text{NH}$-Boc or $-\text{N}(\text{Boc})_2$; in Formulas (DI-18-13), R^{44} is $-\text{NH}$-Boc or $-\text{N}(\text{Boc})_2$; and m is an integer of 1 to 12. In the above formulas, Boc is t-butoxycarbonyl.

When a large pre-tilt angle is required for the liquid crystal display device produced by using the liquid crystal aligning agent of the present invention, particularly when a pre-tilt angle of 2 degrees or more is caused to be exerted, a proportion of the side chain type diamine based on a whole amount of the diamines is controlled to preferably 5 to 70% by mole, more preferably to 10 to 50% by mole in producing the polyamic acid and derivative thereof which are used for the liquid crystal aligning agent of the present invention.

In the respective diamines, a part of the diamines may be substituted with monoamines in a range in which a proportion of the monoamines based on the diamines is 40% by mole or less. Such substitution makes it possible to bring about termination of polymerization reaction in preparing polyamic acid to inhibit polymerization reaction from proceeding further more. Accordingly, the above substitution makes it possible to readily control a molecular weight of the resulting polymer (polyamic acid and a derivative thereof) and makes it possible to improve a coating characteristic of the liquid crystal aligning agent without damaging, for example, the effects of the present invention. One or more diamines may be substituted with the monoamines as long as the effects of the present invention are not damaged. The monoamines include, for example, aniline, 4-hydroxyaniline, cyclohexyamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine and n-eicosylamine. In particular, aniline can suitably be used.

When it is regarded as important to further improve an aligning property of the liquid crystal, among the specific examples of the diamines described above, preferably used
are the diamines represented by Formulas (DI-1-3), (DI-4-1), (DI-5-12), (DI-5-28), (DI-5-29), (DI-5-30), (DI-5-31), (DI-6-1), (DI-6-5), (DI-6-7), (DI-7-3), (DI-7-5), (DI-7-9), (DI-11-1), (DI-12-1), (DI-13-2), (DI-13-4), (DI-13-6), (DI-16-1), (DI-16-2), (DI-16-4), (DI-16-5), (DI-16-7) and (DI-16-8). The diamines represented by Formulas (DI-1-3), (DI-4-1), (DI-5-28), (DI-5-29), (DI-5-31), (DI-7-3), (DI-13-2) and (DI-13-4) to (DI-13-6) are more preferably used. Also, in Formula (DI-5-12), the compounds in which m is 2 to 4 are particularly preferred. In Formula (DI-5-30), the compound in which k is 2 is particularly preferred. In Formula (DI-7-3), the compounds in which m is 3 or 6 and in which n is 1 are particularly preferred.

When it is regarded as important to provide the liquid crystal alignment layer with a high VHR, among the specific examples of the diamines described above, preferably used are the diamines represented by Formulas (DI-5-30), (DI-7-1), (DI-7-3), (DI-11-1), (DI-12-1), (DI-13-1), (DI-13-2), (DI-13-4), (DI-13-6), (DI-16-1), (DI-16-2), (DI-16-4), (DI-16-5), (DI-16-7) and (DI-16-8). The diamines represented by Formulas (DI-5-1), (DI-5-2), (DI-5-21), (DI-5-30), (DI-13-4), (DI-13-5), (DI-16-1), (DI-16-2), (DI-16-4) and (DI-16-7) are more preferably used. In Formula (DI-5-30), the compound in which k is 2 is particularly preferred. In Formula (DI-7-3), the compound in which m is 3 and in which n is 1 is particularly preferred. In Formulas (DI-13-4) and (DI-13-5), the compound in which R^35 is alkyl having 3 to 25 carbon atoms are particularly preferred. In Formulas (DI-16-1) and (DI-16-2), the compounds in which R^6 has 1 to 10 carbon atoms are particularly preferred. In Formulas (DI-16-4) and (DI-16-7), the compounds in which R^41 has 1 to 10 carbon atoms are particularly preferred.

When it is regarded as important to further reduce a volume resistance value of the liquid crystal alignment layer, among the specific examples of the diamines described above, preferably used are the diamines represented by Formulas (DI-4-12), (DI-4-14), (DI-5-9), (DI-5-15), (DI-5-27), (DI-5-31), (DI-6-3) to (DI-6-5), (DI-11-1) and (DI-12-1). The diamines represented by Formulas (DI-5-1), (DI-5-2), (DI-5-9) to (DI-5-11), (DI-5-21), (DI-5-27) and (DI-5-30) are more preferably used. In Formula (DI-5-30), the compound in which k is 2 is particularly preferred.

The polyamic acid used for the liquid crystal aligning agent of the present invention may contain other components in addition to the polyamic acid or derivative thereof. The other components may comprise a single kind of a compound or two or more kinds of compounds.

The liquid crystal aligning agent of the present invention may further contain, for example, an alkenyl-substituted nadimide compound for the purpose of stabilizing the electric characteristics of the liquid crystal display device over a long period of time. The alkenyl-substituted nadimide compound may be used alone or in combination of two or more kinds thereof. From the viewpoint of the purpose described above, a content of the alkenyl-substituted nadimide compound is preferably 1 to 100% by weight, more preferably 1 to 70% by weight and further preferably 1 to 50% by weight based on the polyamic acid or derivative thereof.

The alkenyl-substituted nadimide compound shall specifically be explained below.

The alkenyl-substituted nadimide compound is preferably a compound which can be dissolved in a solvent dissolving the polyamic acid or derivative thereof used in the present invention. The examples of the above alkenyl-substituted nadimide compound includes compounds represented by the following Formula (NA):

\[
\begin{align*}
\text{H}_2C &= \text{C} &= \text{CN}\left(\text{L}_1\text{L}_2\right)\left(\text{L}_2\right)\left(\text{L}_1\right)\text{O} = \text{W} \\
\text{R}_1 &= \text{R}_2 &= \text{L}_1\text{L}_2\text{L}_2\text{L}_1 \\
\text{L}_1 &= \text{H}, \text{alkyl}, \text{alkenyl} \\
\text{L}_2 &= \text{H}, \text{alkyl having 1 to 12 carbon atoms}, \text{alkenyl having 3 to 6 carbon atoms}, \text{cycloalkyl having 5 to 8 carbon atoms}, \text{aryl having 6 to 12 carbon atoms or benzyl, and n is 1 or 2.}
\end{align*}
\]
and r means the same as described above) or groups obtained by substituting 1 to 3 hydrogens of the above groups with —OH.

[0100] In the above case, preferred W is alkylene having 2 to 12 carbon atoms, cyclohexylene, phenylene, tolylene, xylylene, a group represented by \(-\text{C}_n\text{H}_{2n-1}\text{-O-}\left(Z^m\right)\text{-O-}\text{C}_m\text{H}_{2m-1}\) (wherein \(Z^m\) is alkylene having 2 to 6 carbon atoms, and \(n\) is 1 or 2), a group represented by \(-\text{B}-\text{T-B}-\) (wherein B is phenylene, and T is \(-\text{CH}_2\text{-O-}\) or \(-\text{SO}_2\text{-}\)), a group represented by \(-\text{B}-\text{O-}\text{B}-\text{C}_m\text{H}_{2m-1}\) \(-\text{B}-\text{O-}\) \(-\text{B}\) (wherein B is phenylene) and groups obtained by substituting 1 or 2 hydrogens of the above groups with —OH.

[0101] Compounds obtained by holding, as described in Japanese Patent No. 2723955, an alkyl-substituted nadic anhydride derivative and diamine at a temperature of 80 to 220 °C. for 0.5 to 20 hours and commercially available compounds can be used as the above alkyl-substituted nadimide compound. The specific examples of the alkyl-substituted nadimide compound include the following compounds.

[0116] Further, the alkenyl-substituted amide compound used in the present invention may be compounds represented the following formulas containing an asymmetric alkenyl phenylene group:
Among the alkenyl-substituted nadimide compounds, the preferred compounds are shown below:

N,N'-ethylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-ethylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-ethylene-bis(methyllyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-trimethylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-hexamethylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-hexamethylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-dodecamethylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-dodecamethylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-cyclohexylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-cyclohexylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-phenylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-phenylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-phenylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-phenylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-phenylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-phenylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-xylylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-xylylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-xylylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-xylylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-xylylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-xylylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-xylylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-p-xylylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-xylylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide), N,N'-m-xylylene-bis(allyl methyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide)

The further preferred alkenyl-substituted nadimide compounds are shown below:

The particularly preferred alkenyl-substituted nadimide compounds include bis[4-{allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide} phenyl] methane represented by the following Formula (NA-1), N,N'-m-xylylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide) represented by Formula (NA-2) and N,N'-hexamethylene-bis(allyl bicyclo[2.2.1]hept-5-ene-2, 3-dicarboxyimide) represented by Formula (NA-3).
The liquid crystal aligning agent of the present invention may further contain, for example, a compound having a radically polymerizable unsaturated double bond for the purpose of stabilizing the electric characteristics of the liquid crystal display device over a long period of time. The compound having a radically polymerizable unsaturated double bond may comprise a single kind of a compound or two or more kinds of compounds. The alkenyl-substituted nadinamide compound is not included in the compound having a radically polymerizable unsaturated double bond. From the viewpoint of the purpose described above, a content of the compound having a radically polymerizable unsaturated double bond is preferably 1 to 100% by weight, more preferably 1 to 70% by weight and further preferably 1 to 50% by weight based on the polyamic acid or derivative thereof.

A proportion of the compound having a radically polymerizable unsaturated double bond to the alkenyl-substituted nadinamide compound is preferably 0.1 to 10, more preferably 0.5 to 5 in terms of a weight ratio in order to reduce an ion density of the liquid crystal display device, inhibit the ion density from increasing with the passage of time and inhibit the afterimages from being generated.

The compound having a radically polymerizable unsaturated double bond shall specifically be explained below. The compound having a radically polymerizable unsaturated double bond includes (meth)acrylic acid derivatives such as (meth)acrylic esters, (meth)acrylic acid amides and the like, and bismaleimide. The compound having a radically polymerizable unsaturated double bond is more preferably (meth)acrylic acid derivatives having two or more radically polymerizable unsaturated double bonds.

The specific examples of the (meth)acrylic esters include, for example, cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenanolxyethyl (meth)acrylate, isbornyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and 2-hydroxypropyl (meth)acrylate.

The specific examples of difunctional (meth)acrylic esters include, for example, ethylenebisacrylate, Aronix M-210, Aronix M-240 and Aronix M-6200 which are products of Toagosei Co., Ltd., KAYARAD HDDA, KAYARAD HX-220, KAYARAD R-604, and KAYARAD R-684 which are products of Nippon Kayaku Co., Ltd., V260, V312 and V335HP which are products of Osaka Organic Industry Ltd. and Light Acrylate BA-4EA, Light Acrylate BP-4PA, and Light Acrylate BP-2PA which are products of Kyoeisha Chemical Co., Ltd.

The specific examples of trifunctional or more (meth)acrylic esters include, for example, 4,4'-methylenebis (N,N-di hydroxyethylenecarboxylethylamine), Aronix M-400, Aronix M-405, Aronix M-450, Aronix M-7100, Aronix M-8030, and Aronix M-8060 which are products of Toagosei Co., Ltd., KAYARAD TMPTA, KAYARAD DP12, KAYARAD DP13, KAYARAD DP14, and KAYARAD DP11 which are products of Nippon Kayaku Co., Ltd., VGPL which is a product of Osaka Organic Industry Ltd.

The oxazine compound shall specifically be explained below.
The oxazine compound is soluble in a solvent dissolving the polyamic acid or derivative thereof, and in addition thereto, the oxazine compounds having a ring-opening polymerizability are preferred.

The number of an oxazine structure in the oxazine compound shall not specifically be restricted.

Various structures of the oxazine compound are known. In the present invention, the structure of the oxazine compound shall not specifically be restricted, and the oxazine structure in the oxazine compound includes the structures of oxazines having an aromatic group including a condensed polycyclic aromatic group such as benzoazaine, naphthoxazine and the like.

The oxazine compound includes, for example, compounds represented by the following Formulas (OX-1) to (OX-6). In the following formulas, bondings shown toward the center of the rings show that they are bonded to any carbons which constitute the rings and to which substituents can be bonded:

in Formulas (OX-1) to (OX-3), L₃ and L₄ are an organic group having 1 to 30 carbon atoms; in (OX-1) to (OX-6), L₃ to L₄ are hydrogen or a hydrocarbon group having 1 to 6 carbon atoms; in Formulas (OX-3), (OX-4) and (OX-6), Q¹ is a single bond, −O−, −S−, −S−, −SO₂−, −CO−, −CONH−, −NHCNO−, −C(H₂)₁⁴−, −C(F₃)₂−, −C(CH₂)ₗ−, −O−(CH₂)ₗ−O− or −S−(CH₂)ₗ−S−, wherein l is an integer of 1 to 6; in Formulas (OX-5) and (OX-6), plural Q² each are independently a single bond, −O−, −S−, −CO−, −C(CH₃)₂−, −C(F₃)₂− or alkylene having 1 to 3 carbon atoms; and hydrogens bonded to a benzene ring and a naphthalene ring in Q² each may be substituted independently with −F, −CH₃, −OH, −COOH, −SO₃H and −PO₃H₂.

Oligomers and polymers each having an oxazine structure on side chains and oligomers and polymers each having an oxazine structure on principal chains are included in the oxazine compounds.
[0142] The oxazine compound represented by Formula (OX-1) includes, for example, the following oxazine compounds:

![Chemical structure of OX-1-1](image)

![Chemical structure of OX-1-2](image)

[0143] In Formula (OX-2), L₂ is preferably alkyl having 1 to 30 carbon atoms, more preferably alkyl having 1 to 20 carbon atoms.

[0144] The oxazine compound represented by Formula (OX-2) includes, for example, the following oxazine compounds:

![Chemical structure of OX-2-1](image)

![Chemical structure of OX-2-2](image)

![Chemical structure of OX-2-3](image)

![Chemical structure of OX-2-4](image)

![Chemical structure of OX-2-5](image)

![Chemical structure of OX-2-6](image)
In the formulas, \(L^3 \) is preferably alkyl having 1 to 30 carbon atoms, more preferably alkyl having 1 to 20 carbon atoms.

The oxazine compound represented by Formula (OX-3) includes, for example, an oxazine compound represented by the following Formula (OX-3-1):
In the formulas, L^3 and L^4 are preferably alkyl having 1 to 30 carbon atoms, more preferably alkyl having 1 to 20 carbon atoms.

The oxazine compound represented by Formula (OX-4) includes, for example, the following oxazine compounds:
[0149] The oxazine compound represented by Formula (OX-5) includes, for example, the following oxazine compounds:
[0150] The oxazine compound represented by Formula (OX-6) includes, for example, the following oxazine compounds:
Among them, more preferably listed are the oxazine compound represented by Formulas (OX-2-1), (OX-3-1), (OX-3-3), (OX-3-5), (OX-3-7), (OX-3-9), (OX-4-1) to (OX-4-6), (OX-5-3), (OX-5-4) and (OX-6-2) to (OX-6-4).

The oxazine compound represented by Formula (OX-6) is obtained by reacting a phenol compound and primary amine with aldehyde (refer to International Publication 2004/009708).

The oxazine compound represented by Formula (OX-2) is obtained by gradually adding primary amine to formaldehyde to react with them and then adding a naphthol base compound having a hydroxyl group to react with them (refer to International Publication 2004/009708).

The oxazine compound represented by Formula (OX-3) is obtained by reacting 1 mol of a phenol compound, at least 2 mol or more of aldehyde based on one phenolic hydroxyl group of the phenol compound and 1 mol of primary amine in an organic solvent under the presence of secondary aliphatic amine, tertiary aliphatic amine or a basic nitrogen-containing heterocyclic compound (refer to International Publication 2004/009708 and JP-A 1999-12258).

The oxazine compounds represented by Formula (OX-4) to (OX-6) are obtained by subjecting to dehydration condensation reaction, diamine having plural benzene rings and organic groups combining them, such as 4,4'-diaminodiphenylmethane and the like, aldehyde such as formalin and the like, and phenol at a temperature of 90°C or higher in n-butanol (refer to JP-A 2004-352670).

The oxazine compound includes, for example, 2,2'-bis(2-oxazoline), 1,2,4-tris(2-oxazolynyl)-2-benzene, 4-furan-2-ylmethylene-2-phenyl-4H-oxazole-5-one, 1,4-bis(4,5-dihydro-2-oxazolyl)benzene, 1,3-bis(4,5-dihydro-2-oxazolyl)benzene, 2,3-bis(4-isopropenyl-2-oxazoline-2-yl)butane, 2,2'-bis-4-benzyl-2-oxazoline, 2,6-bis(isopropyl-2-oxazoline-2-yl)pyridine, 2,2'-isopropyldienebis(4-tert-butyl-2-oxazoline), 2,2'-isopropyldienebis(4-phenyl-2-oxazoline), 2,2'-methylenebis(4-tert-butyl-2-oxazoline) and 2,2'-methylenebis(4-phenyl-2-oxazoline). In addition to them, it includes polymers and oligomers having oxazolyl,
such as EPOCROS (trade name, manufactured by Nippon Shokubai Co., Ltd.). Among them, 1,3-bis(4,5-dihydro-2-oxazolyl)benzene is more preferred.

<Epoxy Compound>

[0163] The liquid crystal aligning agent of the present invention may further contain, for example, an epoxy compound for the purpose of stabilizing the electric characteristics of the liquid crystal display device over a long period of time. The epoxy compound may comprise a single kind of a compound or two or more kinds of compounds. From the viewpoint of the purpose described above, a content of the epoxy compound is preferably 0.1 to 50% by weight, more preferably 1 to 40% by weight and further preferably 1 to 20% by weight based on the polyamic acid or derivative thereof.

[0164] The epoxy compound shall specifically be explained below.

[0165] The epoxy compound includes various compounds having at least one epoxy ring in a molecule. Compounds having one epoxy ring in a molecule include, for example, phenyl glycidyl ether, butyl glycidyl ether, 3,3,3-trifluoromethylpropylene oxide, styrene oxide, hexafluoropropylene oxide, cyclohexene oxide, 3,3-dichloropropylenyltrimethoxysilane, 2-(3-epoxypropyllolyl)ethyltrimethoxysilane, N,N-diallylphthalimide, (nonfluoro-N-butyl) epoxide, perfluoroethyl glycidyl ether, epichlorohydrin, epibromohydrin, N,N-diallyldiamine and 3-[2-(perfluorohexyl)ethoxy]-1,2-epoxypropane.

[0166] Compounds having two epoxy rings in a molecule include, for example, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dimethoxypropyl glycol diglycidyl ether, 3,4-epoxyacryloxyethylmethyl-3',4'-epoxyacyclohexencarboxylate and 3,(N,N-diglycidyl)aminopropyltrimethoxysilane.

[0167] Compounds having three epoxy rings in a molecule include, for example, 2-[4-(2,3-epoxypropoxy)phenyl]-2-[4-[1-bis-((2,3-epoxypropoxy)phenyl)ethy]phenyl] propane (trade name: TECHMORE VG31011, manufactured by Mitsui Chemicals, Inc.).

[0168] Compounds having 4 epoxy rings in a molecule include, for example, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N,N-tetraglycidyl-m-xylene diamine, N,N,N,N- tetraglycidyl-4,4'-diaminodiphenylmethane and 3-(N-allyl-N-glycidyl)aminopropyltrimethoxysilane.

[0169] In addition to the compounds described above, the examples of compounds having epoxy rings in a molecule include as well oligomers and polymers having epoxy rings. Monomers having epoxy rings include, for example, glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate and methallylglycidyl (meth)acrylate.

[0170] Other monomers copolymerized with the monomers having epoxy rings include, for example, (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, styrene, methallylstyrene, chloromethylystyrene, (3-ethyl-3-oxetanylmethyl (meth) acrylate, N-cyclohexylmaleimide and N-phenylmaleimide.

[0171] The preferred specific examples of the polymers of the monomers having epoxy rings include polyglycidyl methacrylate and the like. Also, the preferred specific examples of the copolymers of the monomers having epoxy rings with other monomers include N-phenylmaleimide-glycidyl methacrylate copolymers, N-cyclohexylmaleimide-glycidyl methacrylate copolymers, benzyl methacrylate-glycidyl methacrylate copolymers, butyl methacrylate-glycidyl methacrylate copolymers, 2-hydroxyethyl methacrylate-glycidyl methacrylate copolymers, 2-hydroxyethyl methacrylate-glycidyl methacrylate copolymers, and styrene-glycidyl methacrylate copolymers.

[0172] Among the above examples, particularly preferred are N,N,N',N'-tetraglycidyl-m-xylene diamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, trade name: "TECHMORE VG31011", 3,4-epoxyacyclohexenylmethyl-3',4'-epoxyacyclohexencarboxylate, N-phenylmaleimide-glycidyl methacrylate copolymers, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane.

[0173] To be more systematic, the epoxy compound includes, for example, glycidyl ethers, glycidyl esters, glycidylamines, epoxy group-containing acryl base resins, glycidylamides, glycidyl isocyanurates, linear aliphatic epoxy compounds, and cyclic aliphatic epoxy compounds. The epoxy compounds may form compounds having an epoxy group, and the epoxy resins mean resins having an epoxy group.

[0174] The epoxy compound includes, for example, glycidyl ethers, glycidyl esters, glycidylamines, epoxy group-containing acryl base resins, glycidylamides, glycidyl isocyanurates, linear aliphatic epoxy compounds and cyclic aliphatic epoxy compounds.

[0175] The glycidyl ethers include, for example, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol type epoxy compounds, hydrogenated bisphenol A type epoxy compounds, hydrogenated bisphenol F type epoxy compounds, hydrogenated bisphenol S type epoxy compounds, hydrogenated bisphenol type epoxy compounds, brominated bisphenol A type epoxy compounds, brominated bisphenol F type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, brominated phenol novolac type epoxy compounds, brominated cresol novolac type epoxy compounds, bisphenol A novolac type epoxy compounds, naphthalene skeleton-containing epoxy compounds, aromatic polyglycidyl ether compounds, dicyclopentadiene phenol type epoxy compounds, alicyclic diglycidyl ether compounds, aliphatic polyglycidyl ether compounds, polysulfide type diglycidyl ether compounds, and bisphenol type epoxy compounds.

[0176] The glycidyl esters include, for example, diglycidyl ester compounds and glycidyl ester epoxy compounds.

[0177] The glycidylamines include, for example, polyglycidylamine compounds and glycidylamine type epoxy resins.

[0178] The epoxy group-containing acryl base compounds include, for example, homopolymers and copolymers of monomers having oxynanyl.

[0179] The glycidylamides include, for example, glycidylamide type epoxy compounds.

[0180] The linear aliphatic epoxy compounds include, for example, compounds containing an epoxy group which are obtained by oxidizing a carbon-carbon double bond of alkene compounds.
The cyclic aliphatic epoxy compounds include, for example, compounds containing an epoxy group which are obtained by oxidizing a carbon-carbon double bond of cycloalkene compounds.

The bisphenol A type epoxy compounds include, for example, jER828, jER1001, jER1002, jER1003, jER1004, jER1007 and jER1010 (all manufactured by Mitsubishi Chemical Corporation), Epototo YDE-128 (manufactured by Tohto Kasei Co., Ltd.), JER-331, DER-332 and DER-334 (all manufactured by The Dow Chemical Company), EPICLON 840, EPICLON 850 and EPICLON 1050 (all manufactured by DIC Corporation), and EPMIC R-140, EPMIC R-301, and EPMIC R-304 (all manufactured by Mitsui Chemicals, Inc.).

The bisphenol F type epoxy compounds include, for example, jER806, jER807 and jER4004P (all manufactured by Mitsubishi Chemical Corporation), Epototo YDF-170, Epototo YDF-175S and Epototo YDF-2001 (all manufactured by Tohto Kasei Co., Ltd.), DER-354 (manufactured by The Dow Chemical Company), and EPICLON 830 and EPICLON 835 (all manufactured by DIC Corporation).

The bisphenol type epoxy compounds include, for example, epoxy compounds of 2,2-bis(4-hydroxyphenyl)-1,1,3,3,6-hexahydroxypropane.

The hydrogenated bisphenol A type epoxy compounds include, for example, Santohito SI-3000 (manufactured by Tohto Kasei Co., Ltd.), RIKARESIN HBE-100 (manufactured by New Japan Chemical Co., Ltd.), and Denacol EX-252 (manufactured by Nagase Chemtex Corporation).

The hydrogenate bisphenol type epoxy compounds include, for example, epoxy compounds of hydrogenate 2,2-bis(4-hydroxyphenyl)-1,1,3,3,6-hexahydroxypropane.

The brominated bisphenol A type epoxy compounds include, for example, jER5050 and jER5051 (all manufactured by Mitsubishi Chemical Corporation), Epototo YDB-360 and Epototo YDB-400 (all manufactured by Tohto Kasei Co., Ltd.), DER-530 and DER-538 (all manufactured by The Dow Chemical Company), and EPICLON 152 and EPICLON 153 (all manufactured by DIC Corporation).

The phenol novolac type epoxy compounds include, for example, jER152 and jER154 (all manufactured by Mitsubishi Chemical Corporation), YOPN-638 (manufactured by Tohto Kasei Co., Ltd.), DEN-431 and DEN-438 (all manufactured by The Dow Chemical Company), EPICLON N-770 (manufactured by DIC Corporation), and EPPN-201 and EPPN-202 (all manufactured by Nippon Kayaku Co., Ltd.).

The cresol novolac type epoxy compounds include, for example, jER180S75 (manufactured by Mitsubishi Chemical Corporation), YDCN-701 and YDCN-702 (all manufactured by Tohto Kasei Co., Ltd.), EPICLON N-665 and EPICLON N-695 (all manufactured by DIC Corporation), and EOOCN-102S, EOOCN-103S, EOOCN-104S, EOOCN-1020, EOOCN-1025, and EOOCN-1027 (all manufactured by Nippon Kayaku Co., Ltd.).

The bisphenol A novolac type epoxy compounds include, for example, jER157S70 (manufactured by Mitsubishi Chemical Corporation) and EPICLON N-880 (manufactured by DIC Corporation).

The naphthalene skeleton-containing epoxy compounds, for example, EPICLON HP-403, EPICLON HP-4700 and EPICLON HP-4770 (manufactured by DIC Corporation), and NC-7000 (manufactured by Nippon Kayaku Co., Ltd.).

The aromatic polyglycidyl ether compounds include, for example, hydroquinone diglycidyl ether (following Formula EP-1), catechol diglycidyl ether (following Formula EP-2), resorcinol diglycidyl ether (following Formula EP-3), 2-[4-(2,3-epoxypropoxy)phenyl]-2-[4]-1,1,2-bis(4-[(2,3-epoxypropoxy)phenyl]ethyl]phenyl propane (following Formula EP-4), tris(4-glycidylxyloxyphenyl)methane (following Formula EP-5), 1031S and 1032H60 (all manufactured by Mitsubishi Chemical Corporation), TACTIX-742 (manufactured by The Dow Chemical Company), Denacol EX-201 (manufactured by Nagase Chemtex Corporation), DPPN-503, DPPN-502H, DPPN-501H, and NC6000 (all manufactured by Nippon Kayaku Co., Ltd.), TECHMORE VG3101L (manufactured by Mitsui Chemicals, Inc.), a compound represented by the following Formula EP-6, and a compound represented by the following Formula EP-7:
The dicyclopentadiene phenol type epoxy compounds include, for example, TACTIX-556 (manufactured by The Dow Chemical Company) and EPICLON HP-7200 (manufactured by DIC Corporation).

The alicyclic diglycidyl ether compounds include, for example, cyclohexanediethanol diglycidyl ether compounds and RIKARESIN DME-100 (manufactured by New Japan Chemical Co., Ltd.).

The aliphatic polyglycidyl ether compounds include, for example, ethylene glycol diglycidyl ether (following Formula EP-8), diethylene glycol diglycidyl ether (following Formula EP-9), polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether (following Formula EP-10), tripropylene glycol diglycidyl ether (following Formula EP-11), polypropylene glycol diglycidyl ether and neopentyl glycol diglycidyl ether (following Formula EP-12), 1,4-butandiol diglycidyl ether (following Formula EP-13), 1,6-hexandiol diglycidyl ether (following Formula EP-14), dibromomoneopentyl glycol diglycidyl ether (following Formula EP-15), Denacol EX-810, Denacol EX-851, Denacol EX-8301, Denacol EX-911, Denacol EX-920, Denacol EX-931, Denacol EX-211, Denacol EX-212, and Denacol EX-313 (all manufactured by Nagase ChemteX Corporation), DD-503 (manufactured by ADEKA CORPORATION), RIKARESIN W-100 (manufactured by New Japan Chemical Co., Ltd.), 1,3,5,6-tetraglycidyl-2,4-hexanediol (following Formula EP-16), glycerin polyglycidyl ether, sorbitol polyglycidyl ethers, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, and Denacol EX-313, Denacol EX-611, Denacol EX-321, and Denacol EX-411 (all manufactured by Nagase ChemteX Corporation):
The polysulfide type diglycidyl ether compounds include, for example, FLDP-50 and FLDP-60 (all manufactured by Toray Thiokol Co., Ltd.).

The biphenol type epoxy compounds include, for example, YX-4000 and YL-6121H (all manufactured by Mitsubishi Chemical Corporation), and NC-3000P and NC3000S (all manufactured by Nippon Kayaku Co., Ltd.).

The diglycidyl ester compounds include, for example, diglycidyl terephthalate (following Formula EP-17), diglycidyl phthalate (following Formula EP-18), bis(2-methoxyxynylmethyl) phthalate (following Formula EP-19), diglycidyl hexahydrophthalate (following Formula EP-20), a compound represented by the following Formula EP-21, a compound represented by the following Formula EP-22, and a compound represented by the following Formula EP-23:

[0197] The glycidyl ester epoxy compounds include, for example, 871 and 872 (all manufactured by Mitsubishi Chemical Corporation), EPICLON 200 and EPICLON 400 (all manufactured by DIC Corporation), and Denacol EX-711 and Denacol EX-721 (all manufactured by Nagase Chemtex Corporation).

[0200] The polyglycidylamine compounds include, for example, N,N-diglycidylaniline (following Formula EP-24),
-continued

(EP-36)

(EP-37)

(EP-38)

(EP-39)

(EP-40)

(EP-41)

(EP-42)

(EP-43)

(EP-44)

(EP-45)

(EP-46)

(EP-47)

(EP-48)

(EP-49)

(EP-50)

(EP-51)
The homopolymers of the monomers having oxyranyl include, for example, polyglycidyl methacrylate. The copolymers of the monomers having oxyranyl include, for example, N-phenylmaleimide-glycidyl methacrylate copolymers, N-cyclohexylmaleimide-glycidyl methacrylate copolymers, benzyl methacrylate-glycidyl methacrylate copolymers, butyl methacrylate-glycidyl methacrylate copolymers, 2-hydroxyethyl methacrylate-glycidyl methacrylate copolymers, (3-ethyl-3-oxetanyl)ethyl methacrylate-glycidyl methacrylate copolymers, and styrene-glycidyl methacrylate copolymers.

Other monomers than the monomers having oxyranyl in the copolymers of the monomers having oxyranyl include, for example, (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, iso-butyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, styrene, methylstyrene, chloromethylstyrene, (3-ethyl-3-oxetanyl)methyl (meth)acrylate, N-cyclohexylmaleimide, and N-phenylmaleimide.

Glycidyl isocyanurate includes, for example, 1,3,5-triglycidyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (following Formula EP-50), 1,3-diglycidyl-5-allyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (following Formula EP-51), and glycidyl isocyanurate type epoxy resins.

The linear aliphatic epoxy compounds include, for example, epoxidized polybutadiene and EPOLEAD PB3600 (manufactured by DAICEL CORPORATION).

The cyclic aliphatic epoxy compounds include, for example, 3,4-epoxycyclohexylenemethyl-3',4'-epoxycyclohexene-carboxylic acid (CELLOXIDE 2021) (manufactured by DAICEL CORPORATION), (following Formula EP-52), 2-methyl-3,4-epoxycyclohexenemethyl-2'-methyl-3',4'-epoxycyclohexylcarboxylate (following Formula EP-53), 2,3-epoxy-cyclopentane-2',3'-epoxycyclopentane-ether (following Formula EP-54), e-caprolactone-modified 3,4-epoxycyclohexylenemethyl-3',4'-epoxycyclohexene-carboxylic acid, 1,2,8,9-diepoxyliimonene (CELLOXIDE 3000) (manufactured by DAICEL CORPORATION), (following Formula EP-55), a compound represented by the following Formula EP-56, CY-175, CY-177 and CY-179 (all manufactured by The Ciba-Geigy Chemical Corp. (available from Huntsman Japan Inc.), EHPD-3150 (manufactured by DAICEL CORPORATION), and cyclic aliphatic epoxy resins.
The epoxy compound is preferably at least one of the polyglycidylamine compounds, the bisphenol A novolac type epoxy compounds, the cresol novolac type epoxy compounds, and the cyclic aliphatic epoxy compounds, and it is preferably at least one of N,N,N',N'-tetraglycidyl-m-xylene diamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, trade name: “TECHMORE VG3101L”, 3,4-epoxycyclohexene carboxylate, the N-phenylmaleimide-glycidyl methacrylate copolymers, N,N,O-triglycidyl-p-aminophenol, the bisphenol A novolac type epoxy compounds, and the cresol novolac type epoxy compounds.

The liquid crystal aligning agent of the present invention may further contain, for example, polymers other than the polyamic acid and derivative thereof for the purpose of controlling the electric characteristics and an aligning property of the liquid crystal display device. The above polymers include polymers soluble in organic solvents. The above polymers may be used alone or in combination of two or more kinds thereof. From the viewpoint of the purpose described above, a content of the above polymers is preferably 0.1 to 100% by weight, more preferably 0.1 to 70% by weight and further preferably 0.1 to 50% by weight based on the polyamic acid or derivative thereof. The above polymers include, for example, polyamides, polyurethanes, polyureas, polyesters, polypepoxides, polyetherpolyols, siliccon-modified polyurethanes, silicon-modified polyesters, polycrylic acid alkyl esters, polymethacrylic acid alkyl esters, acrylic acid alkyl esters and methacrylic acid alkyl esters copolymers, polyoxyethylene glycol diacylate, polyoxyethylene glycol dimethacrylate, polyoxypropylene glycol diacylate, and polyoxypropylene glycol dimethacrylate.

The liquid crystal aligning agent of the present invention may further contain, for example, a low molecular weight compound. The low molecular weight compound includes, for example, 1) when the coating property is desired to be enhanced, a surfactant which meets the above purpose, 2) when the antistatic property is required to be enhanced, an antistatic agent, 3) when the adhesive property with the substrate and the rubbing resistance are desired to be enhanced, a silane coupling agent and a titanium base coupling agent, and 4) when the imidization is promoted at low temperature, an imidization catalyst. From the viewpoints described above, a content of the low molecular weight compound is preferably 0.1 to 50% by weight, more preferably 0.1 to 40% by weight and further preferably 0.1 to 20% by weight based on the polyamic acid or derivative thereof.

The silane compounds having an epoxy group which are listed as the examples of the epoxy compounds are included as well in the silane coupling agent. For the purpose of stabilizing the electric characteristics over a long period of time in addition to enhancing the adhesive property with the substrate and the rubbing resistance, the silane coupling agent having an epoxy group may be added to the liquid crystal aligning agent of the present invention.

The silane coupling agent includes, for example, vinyltrimethoxysilane, vinyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, paraaminophenyltrimethoxysilane, paraaminophenyltriethoxysilane, p-anisidine, m-hydroxyaniline, o-hydroxyaniline, p-hydroxyaminophenol, the bisphenol A novolac type epoxy compounds, and the cresol novolac type epoxy compounds.

The liquid crystal aligning agent of the present invention is a photo-aligning liquid crystal aligning agent containing the polyamic acid or derivative thereof which is obtained by reacting at least one tetracarboxylic acid dianhydride or a mixture thereof selected from the compounds represented by Formulas (AN-a) to (AN-c) described above:

<Other Polymers>

<Low Molecular Weight Compound>

<Liquid Crystal Aligning Agent>
and at least one diamine or a mixture thereof selected from the compounds represented by Formulas (DI-a) to (DI-c) described above, wherein at least one of the tetracarboxylic acid dihydride having a photoreactive structure and the diamine having a photoreactive structure is an essential component, and other polyamic acids or derivatives thereof may be used in a mixture. In the liquid crystal aligning agent of the present invention, polymers other than polyamic acid or a derivative thereof which is obtained by reacting acid anhydride with diamine, for example, polyesters and epoxy resins can be used in combination. However, when the above polymers are used in combination, a proportion thereof is preferably 30% by weight or less based on a whole weight of the polymers.

<Solvent>

[0215] The aligning agent of the present invention is a solution obtained by dissolving the polyamic acid in a solvent. The solvent can suitably be selected from solvents used in producing and using publicly known polyamic acids according to the use purposes. The examples of the above solvents are shown below.

[0216] The examples of aprotic organic solvents include N-methyl-2-pyrrolidone (NMP), dimethylimidazolidinone, N-methylacrylamide, N,N-dimethylacetamide, dimethyl sulfoxide, N,N-dimethylformamide (DMF), N,N-diethylformamide, N,N-diethylacetamide (DMAc), and lactones such as γ-butyrolactone (GBL) and the like.

[0217] The preferred examples of solvents which are solvents other than those described above and which are used for the purpose of improving the coating property and the like include alkyl butyrate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monoalkyl ethers (examples: ethylene glycol monobutyl ether (BCS)), diethylene glycol monoalkyl ethers (examples: diethylene glycol monooctyl ether), ethylene glycol monophenyl ether, triethylene glycol monoalkyl ethers, propylene glycol monoalkyl ethers (examples: propylene glycol monobutyl ether), dialkyl malonate (examples: diethyl malonate), dipropylene glycol monoalkyl ethers (examples: dipropylene glycol monooctyl ether), and ester compounds of the above glycol monoethers. Among them, MPP, dimethylimidazolidinone, GBL, BCS, diethylene glycol monooctyl ether, propylene glycol monobutyl ether, and dipropylene glycol monooctyl ether are particularly preferred.

[0218] A concentration of the polymers in the aligning agent of the present invention is preferably 0.1 to 40% by weight, more preferably 1 to 10% by weight. When a layer thickness thereof has to be controlled in coating the aligning agent on the substrate, a concentration of the polymers contained can be controlled in advance by diluting it with a solvent.

[0219] A viscosity of the aligning agent of the present invention is varied in a preferred range according to a coating method, a concentration of the polyamic acid or derivative thereof, the kind of the polyamic acid or derivative thereof used, and the kind and a proportion of the solvent. When coating it by means of, for example, a printing machine, the viscosity is 5 to 100 mPa-s (more preferably 10 to 80 mPa-s). If it is smaller than 5 mPa-s, it is difficult to obtain the sufficiently large layer thickness, and if it exceeds 100 mPa-s, unevenness in printing is increased in a certain case. In a case of coating by spin coating, the viscosity is suitably 5 to 200 mPa-s (more preferably 10 to 100 mPa-s). When coating by means of an ink jet coating equipment, the viscosity is suitably 5 to 50 mPa-s (more preferably 5 to 20 mPa-s). A viscosity of the liquid crystal aligning agent is measured by a rotation viscosity measuring method, and it is measured (measuring temperature: 25°C) by means of, for example, a rotational viscometer (model TVE-20L, manufactured by Toki Sangyo Co., Ltd.).

<Production Step for Liquid Crystal Alignment Layer>

[0220] The liquid crystal alignment layer of the present invention can be formed, as is the case with preparing conventional liquid crystal alignment layers, by coating the liquid crystal aligning agent of the present invention on a substrate in the liquid crystal display device. The substrate described above includes a glass-made substrate on which an electrode such as ITO (indium tin oxide), IZO (In2O3−ZnO), IZO (In2O3−Ga2O3−ZnO) electrodes and the like, a color filter and the like may be provided. Also, a spinner method, a printing method, a dipping method, a dropping method, an ink jet method and the like are known as a method for coating the liquid crystal aligning agent.

<Production Step for Liquid Crystal Alignment Layer>

[0221] A method for carrying out heating treatment in an oven or an infrared furnace, a method for carrying out heating treatment on a hot plate, and the like are usually known as the heating and drying step described above. The heating and drying step is carried out preferably at a temperature falling in a range in which the solvent can be vaporized, and it is carried out more preferably at a relatively low temperature as compared with temperature in the heating and incinerating step. To be specific, the heating and drying temperature falls in a range of preferably 30 to 150°C, more preferably 50 to 120°C.

[0222] The heating and baking step described above can be carried out on a condition which is required for the polyamic acid or derivative thereof described above to be subjected to dehydrating cyclization. A method for carrying out heating treatment in an oven or an infrared furnace, a method for carrying out heating treatment on a hot plate, and the like are usually known as the method for baking the coating layer described above. The above methods can be applied as well in the present invention. In general, the heating and baking step is carried out preferably at a temperature of 100 to 300°C for 1 minute to 3 hours, more preferably 120 to 280°C, and further preferably 150 to 250°C.

[0223] A method for forming the liquid crystal alignment layer of the present invention by a photo-aligning method shall specifically be explained. The liquid crystal alignment layer of the present invention can be formed by the photo-aligning method, wherein the coating layer is dried using by heating and then irradiated with a linearly polarized or non-polarized radial ray to thereby provide the coating layer with anisotropy, and the layer is heated and baked. Or, it can be formed by heating and drying the coating layer, heating and baking and then irradiating it with a linearly polarized or non-polarized radial ray. From the viewpoint of the aligning property, the step of irradiating with a radial ray is carried out preferably before the heating and baking step.

[0224] Further, in order to enhance a liquid crystal aligning ability of the liquid crystal alignment layer, the coating
layer can be irradiated as well with a linearly polarized or non-polarized radial ray while heating it. Irradiation of the coating layer with a radial ray may be carried out in the step of heating and drying the coating layer or the step of heating and baking it, or it may be carried out between the heating and drying step and the heating and baking step. A heating and drying temperature in the above step falls in a range of preferably 30 to 150°C, more preferably 50 to 120°C. Also, a heating and baking temperature in the above step falls in a range of preferably 30 to 300°C, more preferably 50 to 250°C.

A UV ray or a visible light containing light having a wavelength of, for example, 150 to 800 nm can be used as the radial ray, and a UV ray containing light having a wavelength of 300 to 400 nm is preferred. Also, a linearly polarized or non-polarized ray can be used. The above rays shall not specifically be restricted as long as they can provide the coating layer with a liquid crystal aligning ability, and when a strong aligning regulation force is desired to be exerted on the liquid crystal, a linearly polarized ray is preferred.

The liquid crystal alignment layer of the present invention can show a high liquid crystal aligning ability even by irradiating with a ray having a low energy. A dose of the linearly polarized ray in the radial ray irradiation step described above is preferably 0.05 to 20 J/cm², more preferably 0.5 to 10 J/cm². Also, a wavelength of the linearly polarized ray is preferably 200 to 400 nm, more preferably 300 to 400 nm. An irradiation angle of the linearly polarized ray to the surface of the layer shall not specifically be restricted, and when the strong aligning regulation force is desired to be exerted on the liquid crystal, it is preferably as vertical to the surface of the layer as possible from the viewpoint of shortening the aligning treatment time. Also, the liquid crystal alignment layer of the present invention can align the liquid crystal in a direction vertical to a polarizing direction of the linearly polarized ray by irradiating with the linearly polarized ray.

When a pre-tilt angle is desired to be exerted, a ray irradiated on the layer described above may be either a linearly polarized ray or a non-polarized ray as described above. A dose of the ray irradiated on the layer when a pre-tilt angle is desired to be exerted is preferably 0.05 to 20 J/cm², particularly preferably 0.5 to 10 J/cm², and a wavelength thereof is preferably 250 to 400 nm, particularly preferably 300 to 380 nm. An irradiation angle of the ray irradiated on the layer when a pre-tilt angle is desired to be exerted shall not specifically be restricted, and it is preferably 30 to 60 degrees from the viewpoint of shortening the aligning treatment time.

An ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a Deep UV lamp, a halogen lamp, a metal halide lamp, a high power metal halide lamp, a xenon lamp, a mercury xenon lamp, an excimer lamp, a KrF excimer laser, a fluorescent lamp, an LED lamp, a sodium lamp, a microwave-excited electrodeless lamp and the like can be used for a light source used in the step of irradiating with a linearly polarized or non-polarized radial ray without limitations.

The liquid crystal alignment layer of the present invention is suitably obtained by a method further including other steps than the steps described above. For example, a step of rinsing the layer with a cleaning solution after baking or irradiating with a radial ray is not essential in the liquid crystal alignment layer of the present invention, but the rinsing step can be provided due to convenience of the other steps.

The rinsing method with a cleaning solution includes brushing, jet spraying, steam cleaning, ultrasonic cleaning and the like. The above methods may be carried out alone or in combination. Capable of being used as the cleaning solution are purified water or various alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and the like, aromatic hydrocarbons such as benzene, xylene, toluene and the like, halogenated solvents such as methylene chloride and the like, ketones such as acetone, methyl ethyl ketone and the like, but it shall not be restricted to them. It is a matter of course that solutions which are sufficiently refined and which contain fewer impurities are used for the above cleaning solutions. The above rinsing method can be applied as well to the rinsing step described above in forming the liquid crystal alignment layer of the present invention.

In order to enhance a liquid crystal alignment ability of the liquid crystal alignment layer of the present invention, annealing treatment by heat or light can be used before and after the heating and baking step, the rubbing step or the step of irradiating with a polarized or non-polarized radial ray. In the above annealing treatment, an annealing temperature is 30 to 180°C, preferably 50 to 150°C, and an annealing time is preferably 1 minute to 2 hours. An annealing light used for the annealing treatment includes a UV lamp, a fluorescent lamp, an LED lamp and the like. A dose of the light is preferably 0.3 to 10 J/cm².

A layer thickness of the liquid crystal alignment layer of the present invention shall not specifically be restricted and is preferably 10 to 300 nm, more preferably 30 to 150 nm. A layer thickness of the liquid crystal alignment layer of the present invention can be measured by means of publicly known layer thickness-measuring devices such as a step gauge, an ellipsometer and the like.

The liquid crystal alignment layer of the present invention is characterized by having a particularly large aligning anisotropy. A size of the above anisotropy can be evaluated by a method using polarized IR described in JP-A 2005-275364 and the like. Also, it can be evaluated as well by a method using an ellipsometry as shown in the following examples. When the alignment layer of the present invention is used as an alignment layer for a liquid crystal composition, it is considered that a material having a larger anisotropy of the layer has a large aligning regulation force to the liquid crystal composition.

The liquid crystal alignment layer of the present invention can be used for controlling alignment of optical compensation materials and other all liquid crystal materials in addition to uses of aligning liquid crystal compositions for liquid crystal displays. Also, the liquid crystal alignment layer of the present invention has a large anisotropy and therefore can be used alone for uses in optical compensation materials.

Liquid Crystal Display Device>

The liquid crystal display device of the present invention comprises a pair of substrates, a liquid crystal layer containing liquid crystal molecules and formed between a pair of the substrates described above, an electrode for applying a voltage to the liquid crystal layer and a liquid crystal alignment layer for aligning the liquid crystal
molecules described above to a prescribed direction. The liquid crystal alignment layer of the present invention is used for the liquid crystal alignment layer described above.

[0236] The glass-made substrate described above in the liquid crystal alignment layer of the present invention can be used for the substrate, and as described in the liquid crystal alignment layer of the present invention, the ITO, IZO and IGZO electrodes formed on the glass-made substrate can be used for the electrode described above.

[0237] The liquid crystal layer is formed by the liquid crystal composition tightly sealed in a space between a pair of the substrates, wherein the substrates are provided oppositely so that a face on which the liquid crystal alignment layer is formed in one substrate of a pair of the substrates described above is faced to the other substrate.

[0240] It is no matter to add at least one optically active compound to the liquid crystal composition having a positive or negative dielectric anisotropy.

[0241] The liquid crystal display device of the present invention is obtained by forming the liquid crystal alignment layer of the present invention on at least one of a pair of the substrates, providing oppositely a pair of the substrates via spacers so that the liquid crystal alignment layer is turned to an inside and sealing the liquid crystal composition in a space formed between the substrates to form a liquid crystal layer. An additional step of sticking a polarizing layer on the substrate may be included, if necessary, in the production step of the liquid crystal aligning device of the present invention.

[0242] In the liquid crystal display device of the present invention, liquid crystal display devices for various electric field systems can be formed. The above liquid crystal display devices for electric field systems include liquid crystal display devices of a lateral electric field system in which a voltage is applied to the liquid crystal layer by the electrode in a horizontal direction toward the surface of the substrate and liquid crystal display devices of a vertical electric field system in which a voltage is applied to the liquid crystal layer by the electrode in a vertical direction toward the surface of the substrate.

[0243] The liquid crystal alignment layer prepared by using the liquid crystal aligning agent of the present invention as the raw material can be applied to liquid crystal display devices of various display drive systems by suitably selecting the polymers which are the raw material thereof.

[0244] The liquid crystal display device of the present invention may further comprise factors other than the constitutional factors. Constitutional factors usually used for liquid crystal display devices, such as a polarizing plate (polarizing layer), a wavelength plate, a light diffusion layer, a driving circuit and the like may be mounted as the above constitutional factors in the liquid crystal display device of the present invention.

EXAMPLES

[0245] The present invention shall be explained below with reference to examples. Evaluating methods and compounds used in the examples are shown below.

< Evaluating Method of Liquid Crystal Display Device >

1. Residual DC:

[0246] A DC voltage of 5 V was applied to a liquid crystal display device described later for 15 minutes, and then the device was short-circuited for 1 second. After it was released for 15 minutes, a residual DC thereof was measured, and the values in the beginning and after relaxed for 15 minutes were obtained respectively. The measuring temperature was 60°C. A liquid crystal physical property-measuring system, model 6254 manufactured by TOYO Corporation was used for the measuring device. It is shown that the smaller the initial value of the residual DC is and the more largely the value after relaxed for 15 minutes is reduced from the initial value, the more the storage of residual DC is decreased and the relaxation time can be shortened and that afterimages can be prevented from being generated.

2. Aligning Property:

[0247] A liquid crystal display device described later was interposed between polarizing plates in which cross Nichol prisms were disposed, and it was visually confirmed whether or not the phenomenon that when liquid crystal was injected into the cell, the liquid crystal molecules were fixed in a direction in which the liquid crystal molecules flowed, so-called flow aligning was observed.

<Tetraacarbonyl Acid Dianhydride>

[0248] Acid dianhydride (A1): ethylene diaminetetraacetic acid dianhydride: a compound in which X' is —CH2CH3— in (AN-a)

Acid dianhydride (A2): 1,8-bis(3,4-phenyl dicarboxylate) octane dianhydride: a compound in which X' is —CH2k— in (AN-b)

Acid dianhydride (A3): 3,3',4,4'-diphenylether tetraacarbonyl acid dianhydride: (An-c)

Acid dianhydride (A4): 1,2,4,5-cyclohexanetetraacarbonyl acid dianhydride: (An-3-1)

Acid dianhydride (A5): azobenzene-3,3',4,4'-tetracarbonyl acid dianhydride: (VII-3)

Acid dianhydride (A6): 5,5'-p-phenylenebis(isobenzofuran-1,3-dione): (AN-16-14)
Diamine (D1): 4,4'-diaminoazobenzene: (VII-1-1)
Diamine (D2): 4,4'-diaminostilbene: (VI-1-1)
Diamine (D3): 4,4'-diaminodiphenyl-1,4-butadiyne: compound in which both of two amino groups are bonded to a para position in (II-1-1)
Diamine (D4): 1,4-cyclohexanediamine: compound in which both of two amino groups are bonded to a para position in (DI-a)
Diamine (D5): 3,3'-dimethyl-4,4'-diaminodiphenylmethane: compound in which a is 1, in which both of R₁ are methyl bonded to a meta position and in which both of two amino groups are bonded to a para position in (DI-b)
Diamine (D6): 4,4'-diaminodiphenylethane: compound in which a is 2, in which both of R₁ are hydrogen and in which both of two amino groups are bonded to a para position in (DI-b)
Diamine (D7): 4,4'-diaminodiphenylbutane: compound in which a is 4, in which both of R₁ are hydrogen and in which both of two amino groups are bonded to a para position in (DI-b)
Diamine (D8): 4,4'-N,N'-bis-(4-aminophenyl)piperazine: (DI-c)
Diamine (D9): 4,4'-diaminodiphenyloctane: (DI-5-31)
Diamine (D10): 4,4'-diaminodiphenylhexane: (DI-5-29)
Diamine (D11): 1,8-diaminooctane: (DI-1-3)
Diamine (D12): 1,1-bis(4-((aminophenyl)methyl)phenyl)-4-butylcyclohexane: compound in which R⁴⁰ is —C₆H₄ in (DI-16-2)
Diamine (D13): 1,1-bis(aminophenoxo)phenyl)-4-(4-hexylcyclohexyl)cyclohexane: compound in which R⁴⁴ is —C₆H₄ in (DI-16-4)
Diamine (D14): 1,1-bis(aminophenoxo)phenyl)-4-(p-pentylcyclohexyl)ethyl)cyclohexane: compound in which R⁴⁴ is —C₆H₄ in (DI-16-7)
Diamine (D15): 3,5-diamino-N-((dihydroxymethyl)methyl) benzamide: (DI-4-12)
Diamine (D16): 3,5-diamino-N-((triethoxymethyl)methyl) benzamide: (DI-4-13)

Solvent

N-methyl-2-pyrrolidone: NMP
Butyl cellosolve (ethylene glycol monobutyl ether): BC

Additives

Additive (Ad1): bis[4-(allylcyclo[2.2.1]hept-5-ene-2,3-dicarboxyimide)phenyl]methane
Additive (Ad2): 1,3-bis(4,5-dihydro-2-oxazolyl)benzene
Additive (Ad3): 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane
Additive (Ad4): 3-aminopropyltriethoxysilane

1. Synthesis of Polyamic Acid

Synthetic Example 1

A four neck flask of 100 mL equipped with a thermometer, a stirrer, a raw material-charging port and a nitrogen gas-introducing port was charged with 2.27 g of diamine (D1), 0.31 g of diamine (D4) and 50 g of dehydrated NMP, and the mixture was dissolved by stirring under dry nitrogen flow. Then, 3.42 g of acid dihydride (A1) and 24 g of dehydrated NMP were added thereto, and the mixture was continued to be stirred at room temperature for 24 hours. BC 20 g was added to the above reaction solution to obtain a polyamic acid solution having a polymer solid concentration of 6% by weight. This polyamic acid solution is designated as PA1. The polyamic acid contained in PA1 had a weight average molecular weight of 39,000.

The weight average molecular weight of polyamic acid was determined by measuring a molecular weight by means of a 2695 separation module 2414 differential refractometer (manufactured by Waters Corporation) according to a GPC method and reducing it to polystyrene. The polyamic acid thus obtained was diluted by a phosphoric acid-DMF mixed solution (phosphoric acid/DMF=0.6/100: weight ratio) so that a concentration of the polyamic acid was about 2% by weight. HSPgel RT MB-M (manufactured by Waters Corporation) was used for the column, and the mixed solution described above was used for the developer to carry out the measurement on the conditions of a column temperature of 50°C and a flow rate of 0.40 mL/min. TSK standard polystyrene manufactured by Tosoh Corp. was used for standard polystyrene.

Synthetic Examples 2 to 17

Polyamic acid solutions (PA2) to (PA17) having a polymer solid concentration of 6% by weight were prepared according to Synthetic Example 1, except that the tetracarboxylic acid dihydride and the polyamic acid were changed as shown in Table 1. The measured results of a weight average molecular weight of the polyamic acid obtained including the result obtained in Synthetic Example 1 were summarized in Table 1.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>PA1</th>
<th>PA2</th>
<th>PA3</th>
<th>PA4</th>
<th>PA5</th>
<th>PA6</th>
<th>PA7</th>
<th>PA8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>100</td>
<td>70</td>
<td>30</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
<td>70</td>
<td>30</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tetracarboxylic acid dihydride (mol %)</th>
<th>Diamine (mol %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>80</td>
</tr>
<tr>
<td>D2</td>
<td>50</td>
</tr>
<tr>
<td>D3</td>
<td>50</td>
</tr>
<tr>
<td>D4</td>
<td>50</td>
</tr>
<tr>
<td>D5</td>
<td>50</td>
</tr>
<tr>
<td>D6</td>
<td>50</td>
</tr>
</tbody>
</table>
2. Preparation of Liquid Crystal Display Device

Example 1

[0255] A mixed solvent of NMP/BC=4/1 (weight ratio) was added to the polyamic acid solution (PA1) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 1 to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a liquid crystal display device as shown below.

<Preparig Method of Liquid Crystal Display Device>

[0256] The liquid crystal aligning agent was coated on two glass substrates provided with ITO electrodes by means of a spinner (spin coater 1H-DX2), manufactured by Mikasa Co., Ltd.). After coated, the layer was dried by heating at 70°C for about 1 minute on a hot plate (EC Hot Plate EC-1200N), manufactured by AS ONE Corporation), and then it was irradiated with a linearly polarized UV ray via a polarizing plate from a direction vertical to the substrate by means of Multilight ML-501CB, manufactured by USHO INC. In the above case, the luminous energy was measured by means of a UV ray integration actinometer UIT-150 (optical receiver UVD-5365), and the exposure time was controlled so that the exposure energy was 5.0±0.1 J/cm² at a wavelength of 365 nm. Then, the layer was subjected to heat treatment at 230°C for 15 minutes in a clean oven (Clean Oven (PVHC-231), manufactured by ESPEC Corp.) to form an alignment layer having a layer thickness of 100±10 nm.

[0257] The faces on which the alignment layers were formed in two substrates having the alignment layers formed on the ITO electrodes were oppositely disposed to form a gap for injecting a liquid crystal composition into the gap between the opposite substrates so that the polarization directions of UV rays irradiated onto the respective alignment layers were parallel, and the substrates were stuck together to prepare a vacant cell having a cell thickness of 4 μm. An injection port for injecting liquid crystal into the above vacant cell was provided in such a position that a direction in which the liquid crystal flowed in injection was almost parallel to a polarization direction of a UV ray irradiated onto the alignment layer.

[0258] A liquid crystal composition A shown below was injected into the vacant cell prepared above under vacuum to prepare a liquid crystal display device.

<Liquid Crystal Composition A>

TABLE 1 - continued

<table>
<thead>
<tr>
<th>Synthetic Diamine (mol %)</th>
<th>Weight average molecular weight</th>
<th>Example</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>D11</th>
<th>D12</th>
<th>D13</th>
<th>D14</th>
<th>D15</th>
<th>D16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

C_{2}H_{5} F chord mot

C_{3}H_{7} – 17 wt % F

C_{3}H_{7} – 17 wt %
The additive (Ad1) was added in a proportion of 20% by weight based on a weight of the polymer to the polyamic acid solution (PA4) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 4. The above polyamic acid solution is designated as PA18. The polyamic acid contained in PA18 had a weight average molecular weight of 52,000. Then, the mixed solvent of NMP/BC=4/1 (weight ratio) was added thereto to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a vacant cell by the method according to Example 1. Then, the liquid crystal composition A was injected into the above vacant cell under vacuum to prepare a liquid crystal display device to measure residual DC and confirm an aligning property in the same manners as in Example 1.

Example 16

The additive (Ad2) was added in a proportion of 20% by weight based on a weight of the polymer to the polyamic acid solution (PA4) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 4. The above polyamic acid solution is designated as PA19. The polyamic acid contained in PA19 had a weight average molecular weight of 52,000. Then, the mixed solvent of NMP/BC=4/1 (weight ratio) was added thereto to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a vacant cell by the method according to Example 1. Then, the liquid crystal composition A was injected into the above vacant cell under vacuum to prepare a liquid crystal display device to measure residual DC and confirm an aligning property in the same manners as in Example 1.

Example 17

The additive (Ad3) was added in a proportion of 20% by weight based on a weight of the polymer to the polyamic acid solution (PA4) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 4. The above polyamic acid solution is designated as PA20. The polyamic acid contained in PA20 had a weight average molecular weight of 52,000. Then, the mixed solvent of NMP/BC=4/1 (weight ratio) was added thereto to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a vacant cell by the method according to Example 1. Then, the liquid crystal composition A was injected into the above vacant cell under vacuum to prepare a liquid crystal display device to measure residual DC and confirm an aligning property in the same manners as in Example 1.
Example 18

The additive (Ad4) was added in a proportion of 10% by weight based on a weight of the polymer to the polyamic acid solution (PA4) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 4. The above polyamic acid solution is designated as PA21. The polyamic acid contained in PA21 had a weight average molecular weight of 52,000. Then, the mixed solvent of NMP/BC=4/1 (weight ratio) was added thereto to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a vacant cell by the method according to Example 1. Then, the liquid crystal composition A was injected into the above vacant cell under vacuum to prepare a liquid crystal display device to measure residual DC and confirm an aligning property in the same manners as in Example 1. The measured results of residual DC in Examples 1 to 18 are shown in Table 2-1.

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>Polyamic acid</th>
<th>Initial value (mV)</th>
<th>After relaxed for 15 minutes (mV)</th>
<th>Aligning property</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PA1</td>
<td>785</td>
<td>59</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>PA2</td>
<td>534</td>
<td>115</td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>PA3</td>
<td>574</td>
<td>142</td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>PA4</td>
<td>556</td>
<td>111</td>
<td>○</td>
</tr>
<tr>
<td>5</td>
<td>PA5</td>
<td>689</td>
<td>74</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>PA6</td>
<td>746</td>
<td>151</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>PA7</td>
<td>591</td>
<td>63</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>PA8</td>
<td>673</td>
<td>129</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>PA9</td>
<td>631</td>
<td>134</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>PA10</td>
<td>530</td>
<td>120</td>
<td>○</td>
</tr>
<tr>
<td>11</td>
<td>PA11</td>
<td>582</td>
<td>106</td>
<td>○</td>
</tr>
<tr>
<td>12</td>
<td>PA12</td>
<td>559</td>
<td>118</td>
<td>○</td>
</tr>
<tr>
<td>13</td>
<td>PA13</td>
<td>642</td>
<td>105</td>
<td>○</td>
</tr>
<tr>
<td>14</td>
<td>PA14</td>
<td>583</td>
<td>86</td>
<td>○</td>
</tr>
<tr>
<td>15</td>
<td>PA18</td>
<td>737</td>
<td>160</td>
<td>○</td>
</tr>
<tr>
<td>16</td>
<td>PA19</td>
<td>670</td>
<td>128</td>
<td>○</td>
</tr>
<tr>
<td>17</td>
<td>PA20</td>
<td>678</td>
<td>135</td>
<td>○</td>
</tr>
<tr>
<td>18</td>
<td>PA21</td>
<td>610</td>
<td>133</td>
<td>○</td>
</tr>
</tbody>
</table>

Example 19

The mixed solvent of NMP/BC=4/1 (weight ratio) was added to the polyamic acid solution (PA1) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 1 to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a liquid crystal display device as shown below.

<Preparing Method of Liquid Crystal Display Device>

The liquid crystal aligning agent was coated on two glass substrates provided with ITO electrodes by means of the spinner (spin coater (1H-DX2), manufactured by Mikasa Co., Ltd.). After coated, the layer was dried by heating at 70°C. for about 1 minute on the hot plate (EC Hot Plate (EC-1200N), manufactured by AS ONE Corporation), and then it was irradiated (exposure energy: 5.0±0.1 J/cm² at a wavelength of 365 nm) with a linearly polarized UV ray via a polarizing plate from a direction vertical to the substrate by means of a UV lamp (UVL-1500M2-N1) manufactured by USHO INC. The conditions of irradiating with a UV ray and the method for controlling the exposure energy were based on those in Example 1. Then, the layer was subjected to heat treatment at 230°C. for 15 minutes in the clean oven (Clean Oven (PVHC-231), manufactured by ESPEC Corp.) to form an alignment layer having a layer thickness of 100±10 nm. Finally, the substrate after heated was heated and annealed at 120°C. for 30 minutes in the clean oven.

Example 20 to 24

The faces on which the alignment layers were formed in two substrates having the alignment layers formed on the ITO electrodes were oppositely disposed to form a gap for injecting a liquid crystal composition into the gap between the opposite substrates so that the polarization directions of UV rays irradiated onto the alignment layers were parallel, and the substrates were stuck together to prepare a vacant cell having a cell thickness of 4 μm. An injection port for injecting liquid crystal into the above vacant cell was provided in such a position that a direction in which the liquid crystal flowed in injection was almost parallel to a polarization direction of a UV ray irradiated onto the alignment layer.

The liquid crystal composition A described above was injected into the vacant cell prepared above under vacuum to prepare a liquid crystal display device.

The liquid crystal display device prepared above was used to measure residual DC by the method described above to find that an initial value of the residual DC was 728 mV and that the value thereof after relaxed for 15 minutes was 51 mV. Also, flow aligning was not confirmed, and the aligning property was good.

Examples 19 to 24

The mixed solvent of NMP/BC=4/1 (weight ratio) was added to the respective polyamic acid solutions (PA4, PA6, PA11, PA13 and PA19) having a polymer solid concentration of 6% by weight to dilute the solutions to a polymer solid concentration of 4% by weight, whereby liquid crystal aligning agents were prepared. The liquid crystal aligning agents thus obtained were used to prepare vacant cells by the method according to Example 19. Then, the liquid crystal composition A was injected into the above vacant cells under vacuum to prepare liquid crystal display devices to measure residual DC and confirm an aligning property in the same manners as in Example 1. The measured results of the residual DC in Examples 19 to 24 are shown in Table 2-2.

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>Polyamic acid</th>
<th>Initial value (mV)</th>
<th>After relaxed for 15 minutes (mV)</th>
<th>Aligning property</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>PA1</td>
<td>728</td>
<td>51</td>
<td>○</td>
</tr>
<tr>
<td>20</td>
<td>PA4</td>
<td>563</td>
<td>120</td>
<td>○</td>
</tr>
<tr>
<td>21</td>
<td>PA6</td>
<td>700</td>
<td>132</td>
<td>○</td>
</tr>
<tr>
<td>22</td>
<td>PA11</td>
<td>549</td>
<td>99</td>
<td>○</td>
</tr>
<tr>
<td>23</td>
<td>PA13</td>
<td>640</td>
<td>101</td>
<td>○</td>
</tr>
<tr>
<td>24</td>
<td>PA19</td>
<td>658</td>
<td>106</td>
<td>○</td>
</tr>
</tbody>
</table>
Example 25

[0272] The mixed solvent of NMP/BC=4/1 (weight ratio) was added to the polyamic acid solution (PA1) having a polymer solid concentration of 6% by weight which was prepared in Synthetic Example 1 to dilute the solution to a polymer solid concentration of 4% by weight, whereby a liquid crystal aligning agent was prepared. The liquid crystal aligning agent thus obtained was used to prepare a liquid crystal display device as shown below.

| Preparing Method of Liquid Crystal Display Device |

[0273] The liquid crystal aligning agent was coated on two glass substrates provided with ITO electrodes by means of the spinner (spin coater (IH-DX2), manufactured by Mikasa Co., Ltd.). After coated, the layer was dried by heating at 70°C for about 1 minute on the hot plate (EC Hot Plate (EC-1200N), manufactured by AS ONE Corporation), and then it was irradiated (exposure energy: 5.0×10 J/cm² at a wavelength of 365 nm) with a linearly polarized UV ray via a polarizing plate from a direction vertical to the substrate by means of Multilight ML-501C/B, manufactured by USHO INC. The substrate was heated and maintained at a temperature of 50°C during exposure to a UV ray. The conditions of irradiating with a UV ray and the method for controlling the exposure energy were based on those in Example 1. Then, the layer was subjected to heat treatment at 230°C for 15 minutes in the clean oven (Clean Oven (PVHC-231), manufactured by ESPEC Corp.) to form an alignment layer having a layer thickness of 100±10 nm.

[0274] The faces on which the alignment layers were formed in two substrates having the alignment layers formed on the ITO electrodes were oppositely disposed to form a gap for injecting a liquid crystal composition into the gap between the opposite substrates so that the polarization directions of UV rays irradiated onto the alignment layers were parallel, and the substrates were stuck together to prepare a vacant cell having a cell thickness of 4 μm. An injection port for injecting liquid crystal into the above vacant cell was provided in such a position that a direction in which the liquid crystal flowed in injection was almost parallel to a polarization direction of a UV ray irradiated onto the alignment layer.

[0275] The liquid crystal composition A described above was injected into the vacant cell prepared above under vacuum to prepare a liquid crystal display device.

[0276] The liquid crystal display device prepared above was used to measure residual DC by the method described above to find that an initial value of the residual DC was 764 mV and that the value thereof after relaxed for 15 minutes was 44 mV. Also, flow aligning was not confirmed, and the aligning property was good.

Examples 26 to 30

[0277] The mixed solvent of NMP/BC=4/1 (weight ratio) was added to the respective polyamic acid solutions (PA4, PA6, PA11, PA13 and PA19) having a polymer solid concentration of 6% by weight to dilute the solutions to a polymer solid concentration of 4% by weight, whereby liquid crystal aligning agents were prepared. The liquid crystal aligning agents thus obtained were used to prepare vacant cells by the method according to Example 25. The liquid crystal composition A was injected into the above vacant cells under vacuum to prepare liquid crystal display devices to measure residual DC and confirm an aligning property in the same manners as in Example 1. The measured results of the residual DC in Examples 25 to 30 are shown in Table 2-3.

<table>
<thead>
<tr>
<th>Ex- No.</th>
<th>Polyamic acid</th>
<th>Residual DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>solution No.</td>
<td>Initial (mV)</td>
</tr>
<tr>
<td>25</td>
<td>PA1</td>
<td>764</td>
</tr>
<tr>
<td>26</td>
<td>PA4</td>
<td>528</td>
</tr>
<tr>
<td>27</td>
<td>RA6</td>
<td>693</td>
</tr>
<tr>
<td>28</td>
<td>PA11</td>
<td>564</td>
</tr>
<tr>
<td>29</td>
<td>PA13</td>
<td>601</td>
</tr>
<tr>
<td>30</td>
<td>PA19</td>
<td>629</td>
</tr>
</tbody>
</table>

Comparative Examples 1 to 3

[0278] The mixed solvent of NMP/BC=4/1 (weight ratio) was added to the respective polyamic acid solutions (PA15 to PA17) having a polymer solid concentration of 6% by weight to dilute the solutions to a polymer solid concentration of 4% by weight, whereby liquid crystal aligning agents were prepared. The liquid crystal aligning agents thus obtained were used to prepare vacant cells by the method according to Example 1. The liquid crystal composition A was injected into the above vacant cells under vacuum to prepare liquid crystal display devices to measure residual DC and confirm an aligning property in the same manners as in Example 1. The measured results of the residual DC in Comparative Examples 1 to 3 are shown in Table 3.

<table>
<thead>
<tr>
<th>Comparative Ex- No.</th>
<th>Polyamic acid</th>
<th>Residual DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>solution No.</td>
<td>Initial (mV)</td>
</tr>
<tr>
<td>1</td>
<td>PA15</td>
<td>871</td>
</tr>
<tr>
<td>2</td>
<td>PA16</td>
<td>1172</td>
</tr>
<tr>
<td>3</td>
<td>PA17</td>
<td>1283</td>
</tr>
</tbody>
</table>

[0279] It can be found from the results obtained in Examples 1 to 30 and Comparative Examples 1 to 3 that use of the liquid crystal alignment layer of the present invention for liquid crystal display devices makes it possible to control residual DC to a small initial value while maintaining an aligning property and makes it possible to shorten a relaxation time because of a small value of the residual DC after relaxation for 15 minutes.

[0280] As described above, when the liquid crystal alignment layer of the present invention is applied to an alignment layer for liquid crystal display devices, afterimages can be inhibited from being generated, and the aligning property is good. Accordingly, it can be found that the liquid crystal alignment layer of the present invention has satisfactory characteristics which can stand practical use.

INDUSTRIAL APPLICATION

[0281] Use of the liquid crystal aligning agent of the present invention makes it possible to provide a photo-
aligning liquid crystal alignment layer which can decrease storage of residual DC and shorten a relaxation time and which can prevent afterimages from being generated. Further, capable of being provided is a liquid crystal display device which comprises the above liquid crystal alignment layer and which is excellent in display characteristics.

1-21. (canceled)

22. A photo-aligning liquid crystal aligning agent containing a polyamic acid or derivative thereof having a photoactive structure originating in at least one of a tetracarboxylic acid dianhydride having a photoactive structure and a diamine having a photoactive structure in a structural unit,

wherein the polyamic acid or derivative thereof is synthesized by using a tetracarboxylic acid dianhydride having no photoactive structure and a diamine having no photoactive structure together with at least one of the tetracarboxylic acid dianhydride having a photoactive structure and the diamine having a photoactive structure;

the tetracarboxylic acid dianhydride having no photoactive structure comprises at least one selected from the group of compounds represented by the following Formulas (AN-a);

the diamine having no photoactive structure comprises at least one selected from the group of compounds represented by the following Formulas (DI-a) and (DI-c):

![AN-a](image)

![DI-a](image)

![DI-c](image)

wherein in Formula (AN-a), X is a single bond or alkylene having 1 to 20 carbon atoms; and in Formula (DI-a), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional.

23. The photo-aligning liquid crystal aligning agent as described in claim 22, wherein at least one of the tetracarboxylic acid dianhydride having a photoactive structure and the diamine having a photoactive structure is at least one selected from the group of compounds represented by the following Formulas (I) to (VII):

\[
\begin{align*}
R_2^3 \cdots C & \equiv C \cdots C \equiv C \cdots R_3^3 \\
R_2^3 \cdots C & \equiv C \cdots CH \cdots CH \cdots R_3^3 \\
R_2^3 \cdots CH & \equiv CH \cdots R_3^3 \\
R_2^3 \cdots N & \equiv N \cdots R_3^3
\end{align*}
\]

wherein in Formulas (I) to (VII), \(R_2^3 \) and \(R_3^3 \) each are independently a monovalent organic group having \(\text{NH}_2 \) or a monovalent organic group having \(\text{CO}-\text{O}-\text{CO}- \), and \(R_4^3 \) is a divalent organic group having an aromatic ring.

24. The photo-aligning liquid crystal aligning agent as described in claim 22, wherein the photoactive structure is located in a principal chain of the polyamic acid or derivative thereof.

25. The photo-aligning liquid crystal aligning agent as described in claim 22, wherein at least one of the tetracarboxylic acid dianhydride having a photoactive structure and the diamine having a photoactive structure is at least one selected from the group of compounds represented by the following Formulas (I-1), (II-1), (III-1), (IV-1), (IV-2), (V-1), (VI-1) and (VII-1) to (VII-3):
wherein in Formulas (I-1), (II-1), (III-1), (IV-1), (V-1), (VI-1), (VII-1) and (VII-2), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional; and

in Formula (VII-1), plural R each are independently —CH₃, —OCH₃, —CF₃ or —COOCH₃; and b is an integer of 0 to 2.

26. The photo-aligning liquid crystal aligning agent as described in claim 25, wherein at least one of the tetracarboxylic acid dianhydride having a photoreactive structure and the diamine having a photoreactive structure is at least one selected from the group of compounds represented by the following Formulas (VI-1-1), (VII-1-1) and (VII-3):

27. The photo-aligning liquid crystal aligning agent as described in claim 22, wherein an other tetracarboxylic acid dianhydride having no photoreactive structure which is used together with the at least one selected from the group of the compounds represented by Formula (AN-a) is at least one selected from the group of compounds represented by the following Formulas (AN-I) to (AN-VII):
wherein in Formulas (AN-I), (AN-IV) and (AN-V), plural X each are independently a single bond or \(-\text{CH}_2\)-;

in Formula (AN-II), G is a single bond, alkylene having 1 to 20 carbon atoms, \(-\text{CO}-\), \(-\text{O}-\), \(-\text{S}-\), \(-\text{SO}_2-\), \(-\text{C}(\text{CH}_3)_2-\) or \(-\text{C}(\text{CF}_3)_2-\);

in Formulas (AN-II) to (AN-IV), plural Y each are independently one selected from the group of the following trivalent groups:

- \(-\text{O}-\)
- \(-\text{CO}-\)
- \(-\text{COO}-\) or \(-\text{OCO}-\)
- and plural r each are independently 0 or 1.

The photo-aligning liquid crystal aligning agent as described in claim 27, wherein the other tetracarboxylic acid dianhydride having no photoreactive structure which is used together with the at least one selected from the group of the compounds represented by Formula (AN-a) is at least one selected from the group of compounds represented by the following Formulas (AN-1-1), (AN-2-1), (AN-3-1), (AN-3-2), (AN-5-1) and (AN-16-1):

- \(-\text{O}-\)
- \(-\text{CO}-\)
- \(-\text{COO}-\) or \(-\text{OCO}-\)
29. The photo-aligning liquid crystal aligning agent as described in claim 22, wherein an other diamine having no photoresponsive structure which is used together with the at least one selected from the group of the compounds represented by Formulas (DI-a) and (DI-c) is at least one selected from the group of compounds represented by the following Formulas (DI-1) and (DI-3) to (DI-17):

```
H3N-CH2->NH2

(DI-1)

H3N-G21-NH2

(DI-3)

H3N-G22-NH2

(DI-6)
```

wherein in Formulas (DI-1), m is an integer of 1 to 12; in Formulas (DI-3), (DI-6) and (DI-7), plural G21 each are independently a single bond, —O—, —S—, —S—, —SO2—, —CONH—, —NHCO—, —C(CH3)2—, —C(CF3)2—, —C(CH2)2m—, —O—(CH2)m—O— or —S—(CH2)m—S—, and plural m' each are independently an integer of 1 to 12; in Formula (DI-5), G21 is a single bond, —NH—, —O—, —S—, —S—, —SO2—, —CONH—, —NHCO—, —C(CH3)2—, —C(CF3)2—, —C(CH2)2m—, —O—(CH2)m—O—, —N—C(CH3)—(CH2)m— or —S—(CH2)m—S—; m' is an integer of 1 to 12, and m" is an integer of 6 to 12; and k is an integer of 1 to 5; in Formulas (DI-6) and (DI-7), plural G22 each are independently a single bond, —O—, —S—, —CO—, —C(CH3)2—, —C(CF3)2— or alkyne having 1 to 10 carbon atoms; at least one hydrogen of a cyclohexane ring and a benzene ring in Formulas (DI-3) to (DI-7) may be substituted with —F, —CH3, —OH, —CF3, —CO2H—, —CONH2 or benzyl, and in addition thereto, in Formula (DI-4), at least one hydrogen of a benzene ring may be substituted with at least one group represented the following Formulas (DI-4-a) to (DI-4-c):

```
```

wherein in Formulas (DI-4-a) and (DI-4-b), plural R20 each are independently hydrogen or —CH3; in Formulas (DI-3) to (DI-7), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional; and the bonding position of —NH2 to the cyclohexane ring or the benzene ring is an optional position excluding the bonding position of G21 or G22.
wherein in Formula (DI-8), R²¹ and R²² each are independently alkyl having 1 to 3 carbon atoms or phenyl;
plural G²³ each are independently alkyl having 1 to 6 carbon atoms, phenylene or phenylene substituted with alkyl;
and
w is an integer of 1 to 10;
in Formula (DI-9), plural R²³ each are independently alkyl having 1 to 5 carbon atoms, alkoxyl having 1 to 5 carbon atoms or Cl;
plural p each are independently an integer of 0 to 3, and q is an integer of 0 to 4; and p and q are not 0 at the same time;
in Formula (DI-10), R²⁴ is alkyl having 1 to 4 carbon atoms, phenyl or benzyl;
in Formula (DI-11), G²⁴ is —CH₂— or —NH—;
in Formula (DI-12), G²⁵ is a single bond, alkylene having 2 to 6 carbon atoms or 1,4-phenylene; and r is 0 or 1;
in Formula (DI-12), groups in which bonding positions are not fixed to any of carbon atoms constituting the rings show that the bonding positions thereof in the rings are optional;
in Formulas (DI-9), (DI-11) and (DI-12), the bonding positions of —NH₂ bonded to the benzene rings are optional positions.

wherein in Formula (DI-13), G²⁶ is a single bond, —O—,
—COO—, —OCO—, —CO—, —CONH—,
—CH₂O—, —OCH₂—, —CF₂O—, —OCF₃— or
—O—(CH₂)ₙ—, and m is an integer of 1 to 12;
R²⁵ is alkyl having 3 to 20 carbon atoms, phenyl, cyclohexyl, a group having a steroid skeleton or a group represented by the following Formula (DI-13-a); wherein in the above alkyl, at least one hydrogen may be substituted with —F; and at least one —CH₂— may be substituted with —O—; hydrogen of the above phenyl may be substituted with —F; —CH₃, —OCH₃, —OCH₂F —OCH₂F₂ —OCF₃, alkyl having 3 to 20 carbon atoms or alkoxyl having 3 to 20 carbon atoms; hydrogen of the above cyclohexyl may be substituted with alkyl having 3 to 20 carbon atoms or alkoxyl having 3 to 20 carbon atoms; and the bonding position of —NH₂ bonded to the benzene ring shows that it is an optional position in the above ring:

wherein in Formula (DI-13-a), G²⁷, G²⁸ and G²⁹ represent a bonding group, and they each are independently a single bond or alkylene having 1 to 12 carbon atoms; wherein at least one —CH₂— in the above alkylene may be substituted with —O—, —COO—, —OCO—,
—CONH— or —CH—CH—; a ring B²¹, a ring B²², a ring B²³ and a ring B²⁴ each are independently 1,4-phenylene, 1,4-cyclohexylene, 1,3-dioxane-2,5-diyi, pyrimidine-2,5-diyi, pyridine-2,5-diyi, naphthalene-1, 4-diyi, naphthalene-1,5-diyi, naphthalene-2,6-diyi, naphthalene-2,7-diyi or anthracene-9,10-diyi; in the ring B²¹, the ring B²², the ring B²³ and the ring B²⁴, at least one hydrogen may be substituted with —F or —CH₃;
s, t and u each are independently an integer of 0 to 2, and a total thereof is 1 to 5;
when s, t or u is 2, two bonding groups in each parenthesis may be the same or different, and two rings may be the same or different;
R²⁹ is —F, —OH, alkyl having 1 to 30 carbon atoms, fluorine-substituted alkyl having 1 to 30 carbon atoms, alkoxyl having 1 to 30 carbon atoms, —CN, —OCH₂F, —OCH₂F₂ or —OCF₃, and at least one —CH₂— in the above alkyl having 1 to 30 carbon atoms may be substituted with a divalent group represented by the following Formula (DI-13-b):
constituting the rings show that the bonding positions thereof in the rings are optional; and
—NH₂ bonded to the benzene ring shows that the bonding position thereof in the ring is optional.

wherein in Formulas (DI-16) and (DI-17), plural G₃¹ each are independently —O— or alkylene having 1 to 6 carbon atoms;
G₃² is a single bond or alkylene having 1 to 3 carbon atoms;
R₃¹ is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH₂— of the above alkyl may be substituted with —O—;
R₃² is alkyl having 6 to 22 carbon atoms;
R₃³ is hydrogen or alkyl having 1 to 22 carbon atoms; a ring B₂⁵ is 1,4-phenylene or 1,4-cyclohexylene; r is 0 or 1; and
—NH₂ bonded to the benzene ring shows that the bonding position thereof in the ring is optional.

30. The photo-aligning liquid crystal aligning agent as described in claim 29, wherein the other diamine having no photoactive structure which is used together with the at least one selected from the group of the compounds represented by Formulas (DI-a) and (DI-c) is at least one selected from the group of compounds represented by the following Formulas (DI-4-1), (DI-5-9), (DI-5-12), (DI-5-27), (DI-5-30) and (DI-7-3):

wherein in Formulas (DI-14) and (DI-15), plural G₃⁰ each are independently a single bond, —CO— or —CH₂—; plural R₃⁰ each are independently hydrogen or —CH₃;
R₃⁰ is hydrogen, alkyl having 1 to 20 carbon atoms or alkenyl having 2 to 20 carbon atoms; and
one hydrogen of a benzene ring in Formula (DI-15) may be substituted with alkyl having 1 to 20 carbon atoms or phenyl;
in Formulas (DI-14) and (DI-15), groups in which bonding positions are not fixed to any of carbon atoms

wherein in Formula (DI-13-b), R²⁷ and R²⁸ each are independently alkyl having 1 to 3 carbon atoms; and v is an integer of 1 to 6:
wherein in Formula (DI-5-12) and (DI-7-3), m is an integer of 1 to 12;
in Formula (DI-5-30), k is an integer of 1 to 5; and
in Formula (DI-7-3), n is 1 or 2.

31. The photo-aligning liquid crystal aligning agent as described in claim 22, further comprising at least one selected from the group of compounds consisting of alkenyl-substituted nadiimide compounds, compounds having a radically polymerizable unsaturated double bond, oxazine compounds, oxazoline compounds, epoxy compounds and silane coupling agents.

32. The photo-aligning liquid crystal aligning agent as described in claim 31, wherein the alkenyl-substituted nadiimide compound is at least one selected from the group of compounds consisting of bis{4-(allyl)cyclohexyl}hept-5-ene-2,3-dicarboxyimide-phenoxy)methane, (N,N'-m-xylene-bis(allyl)cyclohexylhept-5-ene-2,3-dicarboxyimide) and (N,N'-hexamethylen-bis(allyl)cyclohexylhept-5-ene-2,3-dicarboxyimide).

33. The photo-aligning liquid crystal aligning agent as described in claim 31, wherein the epoxy compound is at least one selected from the group of compounds consisting of N,N,N',N'-tetraglycidyl-m-xylendediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminoxyphenylethane, 2-[4-(2,3-epoxypropoxy)phenyl]-2-[4-[1,1-bis(4-[(2,3-epoxypropoxy)phenyl]ethy])phenyl]propane, 3,4-epoxy-cyclohexenecarboxylate and N-phenylmaleimide-glycidyl methacrylate copolymers.

34. The photo-aligning liquid crystal aligning agent as described in claim 31, wherein the silane coupling agent is at least one selected from the group of compounds consisting of 2-(3,4-epoxy)ethyldimethoxysilane, paraaminophenylmethoxysilane and 3-aminopropyltriethoxysilane.

35. A photo-aligning liquid crystal alignment layer formed by the photo-aligning liquid crystal aligning agent as described in claim 22.

36. A photo-aligning liquid crystal alignment layer formed by a step of coating the photo-aligning liquid crystal aligning agent as described in claim 22 on a substrate, a step of heating and drying the substrate coated with the aligning agent to achieve a dried layer and a step of irradiating the dried layer with a polarized UV ray.

37. A photo-aligning liquid crystal alignment layer formed by a step of coating the photo-aligning liquid crystal aligning agent as described in claim 22 on a substrate, a step of heating and drying the substrate coated with the aligning agent to achieve a dried layer, a step of irradiating the dried layer with a polarized UV ray and then a step of heating and baking the layer.

38. A photo-aligning liquid crystal alignment layer formed by a step of coating the photo-aligning liquid crystal aligning agent as described in claim 22 on a substrate, a step of heating and drying the substrate coated with the aligning agent to achieve a dried layer, a step of heating and baking the dried layer and then a step of irradiating the layer with a polarized UV ray.

39. A liquid crystal display device comprising the photo-aligning liquid crystal alignment layer as described in claim 35.