

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 May 2010 (06.05.2010)

(10) International Publication Number
WO 2010/051231 A1

(51) International Patent Classification:
G02B 5/28 (2006.01)

HUBBARD, Coby, Lee [US/US]; 21 Orchard Drive,
Bassett, VA 24055 (US).

(21) International Application Number:
PCT/US2009/061840

(74) Agents: BROOK, David E. et al.; Hamilton, Brook,
Smith & Reynolds, P.C., 530 Virginia Road, P.O. Box
9133, Concord, MA 01742-9133 (US).

(22) International Filing Date:
23 October 2009 (23.10.2009)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

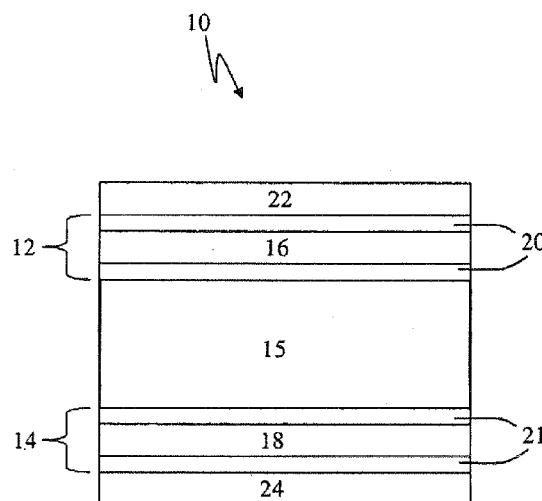
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/263,441 31 October 2008 (31.10.2008) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
US 12/263,441 (CON)
Filed on 31 October 2008 (31.10.2008)

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,


(71) Applicant (for all designated States except US): CP-
FILMS, INC. [US/US]; 4210 The Great Road, Fieldale,
VA 24089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LI, Jaime, Antonio
[PE/US]; 800 Clarke Road, Martinsville, VA 24112 (US).

[Continued on next page]

(54) Title: VARIABLE TRANSMISSION COMPOSITE INTERFERENCE FILTER

(57) Abstract: Now, according to the present invention, interference filters (10) are provided that incorporate two band pass interference filters (12,14) into a single composite interference filter (10). The two filters each have at least one band pass curve that is centered at the same wavelength for light that is incident at a given angle to the filter surface. The band pass curve shifts of the filter components, however, are dissimilar, which results in a decrease of transmitted light as the angle of incidence diverges from the given angle.

Fig. 4

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:
ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

VARIABLE TRANSMISSION COMPOSITE INTERFERENCE FILTER

RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. Application
5 No. 12/263,441, filed on October 31, 2008, the entire teachings of which are
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention is in the field of light filters in general, and, in
10 particular, the present invention is in the field of band pass interference filters used to
selectively transmit desired wavelengths of visible light.

BACKGROUND

Devices that filter selected wavelengths of light are well known and have
15 been in use for many years. Typically, a source of white light or light comprising
components from wavelengths throughout the visible spectrum is filtered so as to
transmit only the desired wavelengths. Among the various filters that are
conventionally available for use as a light filter, absorption filters and interference
filters are in common use.

20 One type of interference filter utilizes a dielectric layer disposed between
two very thin layers of a reflective material. The resulting filter transmits light
within a band of the visible spectrum. The wavelength band of the transmitted light
is not constant at all angles of incidence, however. Typically the transmitted band
will shift as the angle is changed. The apparent color of transmitted light will
25 therefore change as the viewing angle of an observer is changed. The wavelength of
light that is transmitted and the magnitude of the band shift are directly related to the
thickness of the dielectric layer and the index of refraction of the dielectric material.

Because there are many dielectric compounds from which to choose, and

because the dimensions of the various components can be finely controlled, band pass interference filters can be manufactured to transmit light in a wide variety of bands along the visible light spectrum.

What are needed in the art are novel filters that advantageously use the
5 optical properties of conventional interference filters to produce useful filtering effects.

Devices that filter selected wavelengths of light are well known and have been in use for many years. Typically, a source of white light or light comprising components from wavelengths throughout the visible spectrum is filtered so as to
10 transmit only the desired wavelengths. Among the various filters that are conventionally available for use as a light filter, absorption filters and interference filters are in common use.

One type of interference filter utilizes a dielectric layer disposed between two very thin layers of a reflective material. The resulting filter transmits light
15 within a band of the visible spectrum. The wavelength band of the transmitted light is not constant at all angles of incidence, however. Typically the transmitted band will shift as the angle is changed. The apparent color of transmitted light will therefore change as the viewing angle of an observer is changed. The wavelength of light that is transmitted and the magnitude of the band shift are directly related to the
20 thickness of the dielectric layer and the index of refraction of the dielectric material.

Because there are many dielectric compounds from which to choose, and because the dimensions of the various components can be finely controlled, band pass interference filters can be manufactured to transmit light in a wide variety of bands along the visible light spectrum.

25 What are needed in the art are novel filters that advantageously use the optical properties of conventional interference filters to produce useful filtering effects.

SUMMARY OF THE INVENTION

Now, according to the present invention, interference filters are provided that incorporate two band pass interference filters into a single composite interference
30 filter.

The two filters each have at least one band pass curve that is centered at the

same wavelength for light that is incident at a given angle to the filter surface. The band pass curve shifts of the filter components, however, are dissimilar, which results in a decrease of transmitted light as the angle of incidence diverges from the given angle.

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1a is a graph showing the light transmission of a first interference filter at a given angle of incidence.

10 Figure 1b is a graph showing the light transmission of a first interference filter at an oblique angle of incidence.

Figure 2a is a graph showing the light transmission of a second interference filter at a given angle of incidence.

Figure 2b is a graph showing the light transmission of a second interference filter at an oblique angle of incidence.

15 Figure 3a is a graph showing the light transmission of a composite interference filter of the present invention at a given angle of incidence.

Figure 3b is a graph showing the light transmission of a composite interference filter of the present invention at an oblique angle of incidence.

20 Figure 4 is a schematic representation of a cross-section of one embodiment of a composite interference filter of the present invention.

Figure 5 is a schematic representation of a cross-section of one embodiment of a double cavity interference filter of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

25 A description of example embodiments of the invention follows.

The present invention provides interference filters that can be used in a wide variety of applications, including, for example, as a privacy barrier that restricts complete viewing of an area through a window onto which a filter has been affixed.

30 Interference filters of the present invention are composite filters that comprise at least two band pass interference filters that have been combined into a single

composite filter. The two band pass filters have light transmission bands that are centered on the same wavelength for light that is incident on the filter at a given angle.

Figure 1a shows a first filter that has a band pass centered at wavelength X 5 for light that is incident at a given angle Z. Figure 2a shows a second filter that has a band pass centered at wavelength X for light that is incident at the same given angle. Figure 1b shows a transmission band for the filter shown in Figure 1a at an angle that is oblique to angle Z. The transmission band shown in Figure 1b has "shifted" relative to the transmission band shown in Figure 1a, and is now centered at 10 a wavelength that is shorter than wavelength X. A transmission band shift of a different magnitude is shown in Figure 2b, which shows the transmission band for the filter of Figure 2a for light incident at an angle that is oblique to angle Z.

Either of the filters shown in Figures 1a or 1b, as used conventionally, will 15 result in a filter that will pass an approximately equivalent amount of light within a shifting band along the visible spectrum as the viewing angle of incident light is changed. This effect might be seen, for example, as a shift in color from a yellow light to a green light as the angle of a viewer is moved from a normal viewing angle to an oblique viewing angle.

The present invention combines at least two interference filters, such as those 20 shown in Figures 1a and 2a, to produce a composite filter that undergoes a reduction in total light transmitted as the incident light angle diverges from the given angle. Figure 3a shows a light transmission curve for one example of a composite filter of the present invention for light incident at a given angle Z. As can be seen in the 25 Figure, the combination of the two filters results in a filter that transmits light at the given incidence angle in a band that is the union (overlap) of the two transmission bands.

Figure 3b shows the effect that is achieved for a composite filter of the 30 present invention when light is incident at an angle oblique to Z. As shown in the Figure, the different band shift magnitudes of the two individual filters results in an almost complete transmission blockage over the applicable wavelength range.

Embodiments of the present invention that use two filters, as just described, can be used to effectively allow viewing at a normal angle through the composite

filter while restricting viewing through the filter at oblique angles. For these embodiments, the "given" angle is the angle that is normal to the surface of the filter, and light transmission will generally decrease as the viewing angle off of the normal viewing angle increases.

5 In other embodiments, the given angle can be up to 70° off of the normal, which, in various embodiments, results in a filter that allows very little light to pass through at close to the normal angle, but that allows a significant amount of light to pass at angles far off the normal. In further embodiments, the given angle can be any angle between the normal angle and 60°, 50°, 40°, 30°, or 20° off of the normal.

10 In yet further embodiments, filters having multiple peaks in their transmission spectrum can be used as long as at least one peak from each of the two filters exhibit the properties described above and shown in the figures.

To achieve the desired optical effect, at least two interference filters are combined to form a composite filter of the present invention, as shown generally at 15 10 in Figure 4.

As shown in Figure 4, a first band pass interference filter 12 comprises a first dielectric layer 16 disposed between two reflective layers 20. A polymer film 22 is disposed adjacent the first band pass interference filter 12. A second band pass interference filter 14 comprises a second dielectric layer 18 disposed between two reflective layers 21. A polymer film 24 is disposed adjacent the second band pass filter 14. The two polymer films 22, 24 are optional components in these embodiments, and can be added as a substrate onto which the interference filters are formed, or, for example, as an added protective layer. The polymer films 22, 24 can include a primer layer to facilitate formation of the interference filter reflective layer 25 component in embodiments in which the polymer films are used as substrates. Alternatively, in various embodiments, hardcoat layers can be substituted for the polymer films 22, 24, and, in yet further embodiments, rigid substrates such as glass or rigid plastic can be used in place of the polymer films 22, 24. Hardcoat layers can also be used as primer layers or smoothing layers between a band pass interference 30 filter and the substrate on which it is formed.

A massive spacer 15, which can comprise any suitable material and which will be described in detail below, is disposed between the two interference filters.

The resulting composite filter 10 will exhibit the combined filtering effect of both of the band pass interference filters as transmitted light is observed across the full range of viewing angles, as described above.

The embodiment shown in Figure 4 can be modified to form further 5 embodiments by adding layers to the first band pass interference filter 12, the second band pass interference filter 14, or both. In various embodiments, one or both of the filters are modified to add one or more further layers of dielectric and reflective layers. Figure 5 shows one such embodiment. As shown in Figure 5, a dual cavity band pass interference filter 26 comprises a first dielectric layer 28, a second 10 dielectric layer 30, and three reflective layers 32. As with the embodiments described above, an optional polymer film layer 34 can be included as a substrate upon which to form the filter or as a protective layer.

Dual cavity filters such as those described above can be used in place of one or both of the single cavity filters shown in Figure 4 in composite filters of the 15 present invention.

In addition to dual cavity filters, band pass interference filters having three or more dielectric layers and associated reflective layers can also be employed, where appropriate, in place of one or both of the interference filters in a composite filter of the present invention.

20 As used herein, two band pass interference filters can be combined with a spacer, or in some embodiments, no spacer, to form a composite filter of the present invention if the total amount of transmitted visible light at an angle of 45 degrees to the given angle (where the two curve centers are aligned) is less than 80% of the transmitted visible light at the given angle. In some embodiments, the total 25 amount of transmitted visible light at an angle of 45 degrees to the given angle (where the two curve centers are aligned) is less than 60 %, 40%, or 20% of the transmitted visible light at the given angle.

In other embodiments, the figures given immediately above apply to the 30 infrared region of the electromagnetic spectrum, the ultraviolet region, or to other regions, and filters of the present invention can be used in conjunction with infrared remote devices, communication devices, or with any device using any part of the electromagnetic spectrum for which the variable transmission of the present

invention would be useful.

Interference filters of the present invention are useful in a wide variety of light filtering applications, for example, for light collimation, light elimination, or for anti-counterfeiting measures.

5

POLYMER FILM

The polymer film shown in Figure 4 as elements 22 and 24 and described herein can be any suitable thermoplastic film that is used in performance film applications. In various embodiments, the polymer film can comprise 10 polycarbonates, acrylics, nylons, polyesters, polyurethanes, polyolefins such as polypropylene, cellulose acetates and triacetates, vinyl acetals, such as poly(vinyl butyral), vinyl chloride polymers and copolymers and the like, or another plastic suitable for use in a performance film.

In various embodiments, the polymer film is a polyester film, for example 15 poly(ethylene terephthalate). In various embodiments the polymer film can have a thickness of 0.012 mm to 0.40 mm, preferably 0.025 mm to 0.1 mm, or 0.04 to 0.06 mm.

The polymer film can include, where appropriate, a primer layer to facilitate bonding of metallized layers to the polymeric substrate, to provide strength to the 20 substrate, and/or to improve the planarity.

The polymer films are typically optically transparent (i.e. objects adjacent one side of the layer can be comfortably seen by the eye of a particular observer looking through the layer from the other side). In various embodiments, the polymer film comprises materials such as re-stretched thermoplastic films having the noted 25 properties, which include polyesters. In various embodiments, poly(ethylene terephthalate) is used, and, in various embodiments, the poly(ethylene terephthalate) has been biaxially stretched to improve strength, and has been heat stabilized to provide low shrinkage characteristics when subjected to elevated temperatures (e.g. less than 2% shrinkage in both directions after 30 minutes at 150°C).

30 A preferred polymer film is poly(ethylene terephthalate).

As used herein and as shown in the figures, a "polymer film" includes multiple layer constructs as well as single layer and coextruded films. For example,

two or more separate polymeric layers that are laminated, pressed, or otherwise bound together to form a single film can be used as polymer films of the present invention.

Useful example of polymer films that can be used with the present invention include those described in U.S. Patents 6,049,419 and 6,451,414, and U.S. Patents 5 6,830,713, 6,827,886, 6,808,658, 6,783,349, and 6,569,515.

For embodiments in which a polymer film is employed as a massive spacer, the thickness of the polymer film can be those given for massive spacers elsewhere herein.

10 DIELECTRIC LAYERS

The dielectric layers of the present invention can comprise any suitable materials, as are known in the art. Useful dielectrics include silicon dioxide, titanium dioxide, magnesium fluoride, and zinc sulfide. In preferred embodiments, the following dielectric pairs are used in two single cavity interference filters in a composite filter of 15 the present invention: TiO₂ or Nb₂O₅ for the first filter, and SiO₂, MgF₂, YF₂ for the other filter. Generally, dielectric pairs having a large difference in index of refraction are preferred. In various embodiments, that difference is one unit or greater.

The dielectric layers of the present invention can be formed at the appropriate 20 thicknesses so as to provide the desired filtration effect. In various embodiments, the dielectric layers have a thickness of two or more quarter waves. In various embodiments, the two layer pair would have a thickness of 340 to 420 nanometers, for example for a MgF₂ layer, and 160 to 240 nanometers, for example for a TiO₂ layer.

The dielectric layers of the present invention can have any suitable high/low 25 combination of refractive indices, for example, greater than 2 and less than 1.8, and greater than 2.2 and less than 1.5.

Dielectric layers of the present invention can be formed using any suitable method, as are known in the art, for example, with chemical or physical vapor deposition methods such as evaporation or sputtering. Various layer formation 30 techniques are described in *Handbook of Thin-Film Deposition Processes and Techniques*, edited by Klaus K. Schuegraf. Noyes Publications.

REFLECTIVE LAYERS

Reflective layers of the present invention are well known in the art and include any suitable metal composition. In various embodiments reflective layers of the present invention comprise a material that is highly reflective to infrared radiation.

5 Examples include silver, gold, aluminum, and copper and their alloys. High infrared radiation reflection is desirable for many applications to prevent the transmission of heat through the filter, such as for embodiments in which incandescent light is filtered. Infrared reflection is also a desirable characteristic for heat sensitive substrates, such as poly(ethylene terephthalate).

10 Reflective layers of the present invention can be formed using any suitable method, for example sputtering, and can have any suitable thickness.

The several reflective layers of the present invention can comprise the same material or different material and can have the same thickness or different thickness, as is desired for a particular embodiment.

15 In preferred embodiments, metallic reflective layers comprise silver or silver alloys.

MASSIVE SPACER

20 Massive spacers of the present invention include any suitable laminating adhesives or polymer film layers or combinations of the two. Further, massive spacers can include glass and rigid plastic layers, for example polycarbonate layers, and other suitable rigid substrates.

25 Laminating adhesives include those that are conventionally used in the art to bond films together, for example and without limitation, poly(vinyl butyral), polyurethane, silicone, and the like.

30 Massive spacers of the present invention include combinations of polymer films and laminating adhesives. In some embodiments, for example, the two interference filters can be formed on two separate polymer film substrates (elements 22 and 24 in Figure 4) and then laminated to a polymer film spacer with an adhesive, in which case the polymer film spacer and the adhesive form the massive spacer. Polymer film layers include those disclosed elsewhere herein.

In yet further embodiments, a massive spacer can be formed using only a polymer film of the desired massive spacer thickness by forming the band pass interference filters directly on a single polymer film. In these embodiments, a first band pass interference filter is formed on one surface and a second band pass 5 interference filter is formed on the opposite surface of the polymer film. The exposed filter surfaces can then be protected with a polymer film layer or a hardcoat, as is known in the art. The massive spacer polymer film can include primer layers, as appropriate.

Massive spacers of the present invention can have any suitable thickness, and 10 in various embodiments the massive spacer has a thickness of at least seven quarter waves optical thickness. In various embodiments, a massive spacer has a thickness of 0.8 to 1.2 microns.

Massive spacers of the present invention can also be combinations of the above-described materials. For example, a massive spacer can be a combination of 15 glass and polymer films, wherein one or more polymer films are bonded to the glass. Glass and rigid plastic massive spacers of the present invention can have any suitable thickness, and, in various embodiments, such massive spacers can have thicknesses up to 1 millimeter, and, in other embodiments, thicknesses can be greater than 1 millimeter.

20 Composite filters of the present invention can effectively be used in many applications, for example and without limitation, as an applied filter on windows and glass applications, as a color filter for various lighting applications, anti-counterfeiting applications, directional light filters, and the like.

By virtue of the present invention, composite interference filters are provided 25 that allow for the variable filtration of light through a range of viewing angles. Among the many benefits of the composite filters is the ability to afford visual privacy through an opening while also allowing the transmission of some of the incident light at acceptable angles.

While the invention has been described with reference to exemplary 30 embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be

made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all 5 embodiments falling within the scope of the appended claims.

It will further be understood that any of the ranges, values, or characteristics given for any single component of the present invention can be used interchangeably with any ranges, values, or characteristics given for any of the other components of the invention, where compatible, to form an embodiment having defined values for 10 each of the components, as given herein throughout.

Any figure reference numbers given within the abstract or any claims are for illustrative purposes only and should not be construed to limit the claimed invention to any one particular embodiment shown in any figure.

Unless otherwise noted, drawings are not drawn to scale.

15 Each reference, including journal articles, patents, applications, and books, referred to herein is hereby incorporated by reference in its entirety.

While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without 20 departing from the scope of the invention encompassed by the appended claims.

CLAIMS

What is claimed is:

1. A composite interference filter comprising:
 - 5 a first band pass interference filter comprising a first dielectric layer disposed between two reflective layers;
 - a second band pass interference filter comprising a second dielectric layer disposed between two reflective layers; and,
 - 10 a massive spacer disposed between said first band pass interference filter and said second band pass interference filter, wherein said first band pass interference filter has a transmission band at a given angle and said second band pass interference filter has a transmission band at said given angle, wherein said transmission bands are centered at a given wavelength in the visible spectrum, and wherein said first band pass interference filter's band shift and said second band pass interference filter's band shift are different, thereby causing a reduction in transmitted visible light, relative to transmitted visible light at said given angle, at an angle of 45° to said given angle.
2. The composite interference filter of claim 1, wherein said first dielectric layer comprises a dielectric selected from the group consisting of TiO₂ and Nb₂O₅.
3. The composite interference filter of claim 1, wherein said second dielectric layer comprises a dielectric selected from the group consisting of SiO₂, MgF₂, YF₂.
4. The composite interference filter of claim 1, wherein said massive spacer comprises a member selected from the group consisting of adhesive, poly(ethylene terephthalate), and air.
- 25 5. The composite interference filter of claim 1, wherein said reflective layers comprises a member selected from the group consisting of silver, gold, aluminum, and copper.

6. The composite interference filter of claim 1, wherein said first dielectric layer comprises a material having an index of refraction of greater than 2 and said second dielectric layer comprises a material having an index of refraction of less than 1.8.
- 5 7. The composite interference filter of claim 1, wherein said first dielectric layer comprises a material having an index of refraction of greater than 2.2 and said second dielectric layer comprises a material having an index of refraction of less than 1.6.
- 10 8. The composite interference filter of claim 1, wherein said first band pass interference filter's band shift and said second band pass interference filter's band shift are different, thereby causing at least a 65% reduction in transmitted visible light, relative to transmitted visible light at said given angle, at an angle of 45° to said given angle.
- 15 9. The composite interference filter of claim 1, wherein said first band pass interference filter's band shift and said second band pass interference filter's band shift are different, thereby causing at least an 80% reduction in transmitted visible light, relative to transmitted visible light at said given angle, at an angle of 45° to said given angle.
- 20 10. The composite interference filter of claim 1, wherein said massive spacer comprises a laminating adhesive.
11. The composite interference filter of claim 1, wherein said massive spacer comprises a polymer film.
- 25 12. The composite interference filter of claim 1, wherein one of said first band pass interference filter and said second band pass interference filter comprises a double cavity filter.
13. The composite interference filter of claim 1, wherein both of said first band

pass interference filter and said second band pass interference filter comprise double cavity filters.

14. The composite interference filter of claim 1, wherein said first band pass interference filter has more than one transmission peak.
- 5 15. The composite interference filter of claim 1, wherein each of said first band pass interference filter and said second band pass interference filter has more than one transmission peak.
16. A method of altering the transmission spectrum of electromagnetic radiation through an opening, comprising the steps of:
 - 10 providing a composite interference filter comprising,
 - a first band pass interference filter comprising a first dielectric layer disposed between two reflective layers;
 - a second band pass interference filter comprising a second dielectric layer disposed between two reflective layers; and,
 - 15 a massive spacer disposed between said first band pass interference filter and said second band pass interference filter, wherein said first band pass interference filter has a transmission band at a given angle and said second band pass interference filter has a transmission band at said given angle, wherein said transmission bands are centered at a given wavelength in the visible spectrum, and wherein said first band pass interference filter's band shift and said second band pass interference filter's band shift are different, thereby causing a reduction in transmitted visible light, relative to transmitted visible light at said given angle, at an angle of 45° to said given angle; and, passing said electromagnetic radiation through said composite interference filter.
 - 20

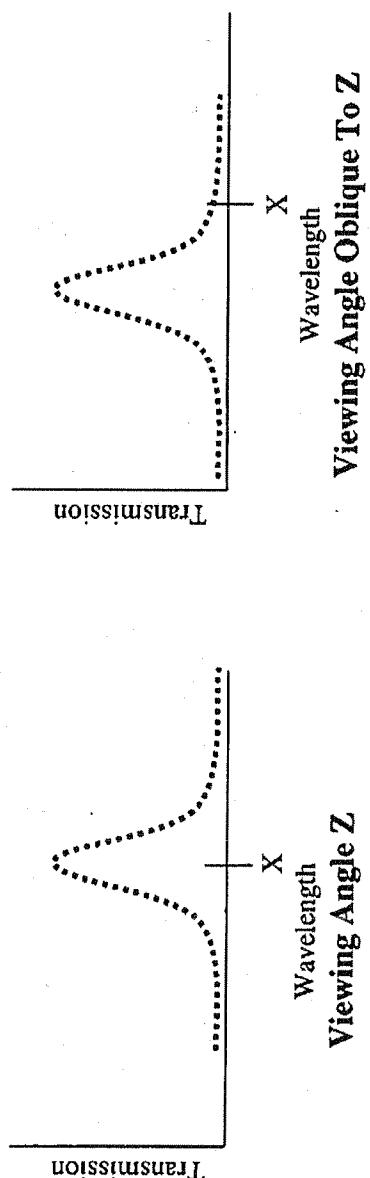


Fig. 1a

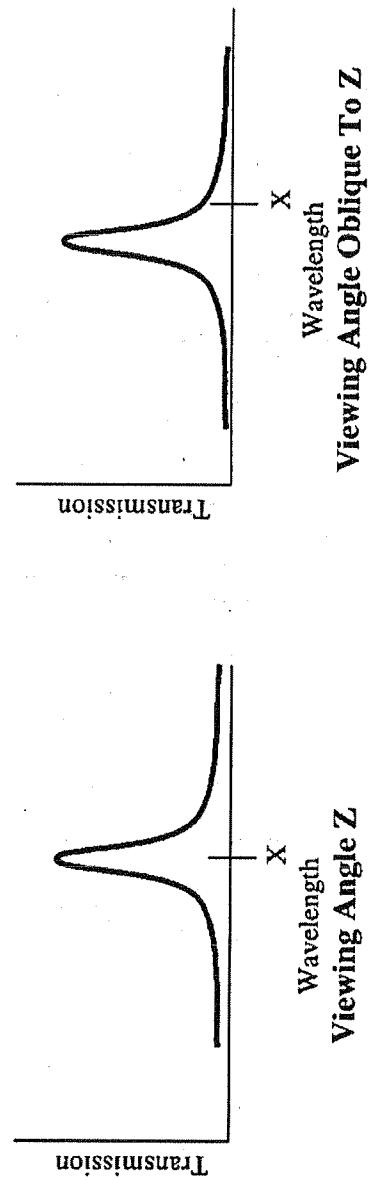


Fig. 2a

Fig. 1b

Fig. 2b

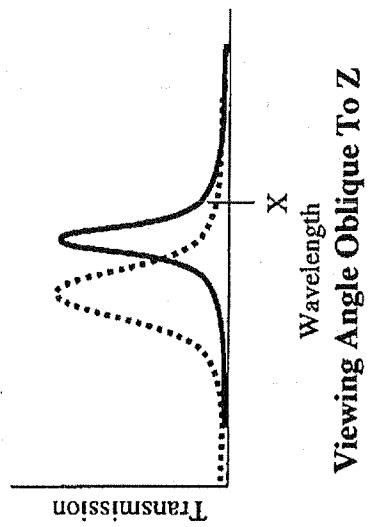


Fig. 3b

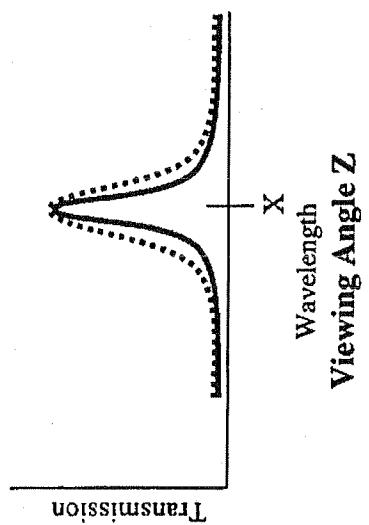


Fig. 3a

3/4

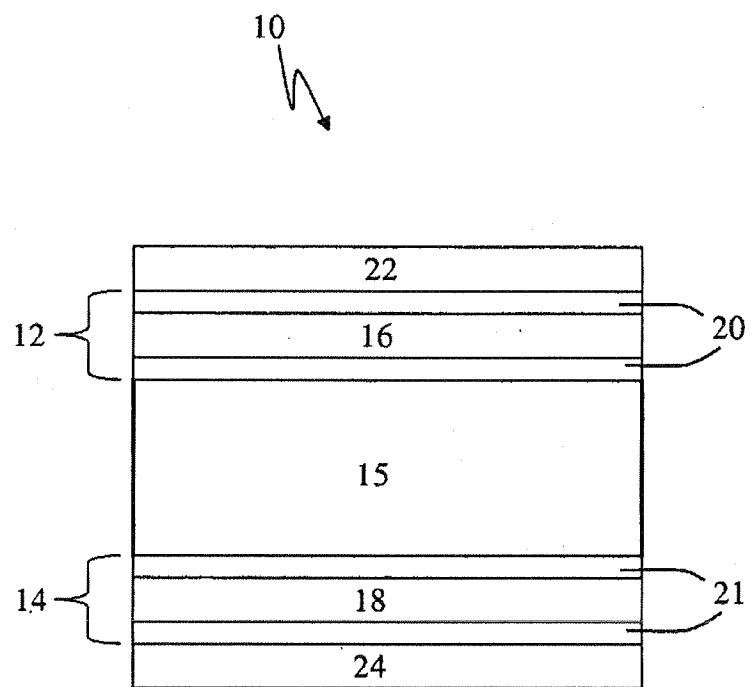


Fig. 4

4/4

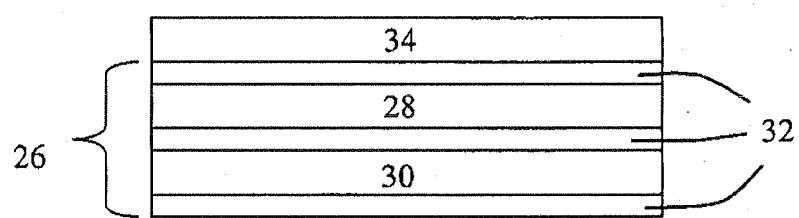


Fig. 5

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2009/061840

A. CLASSIFICATION OF SUBJECT MATTER
INV. G02B5/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 502 595 A (KUO LEE-CHING [TW] ET AL) 26 March 1996 (1996-03-26) column 6, line 13 - column 8, line 41 tables 6-9 figures 5-11 -----	1-16*
A	US 2006/007547 A1 (KAMIKAWA SHO [JP]) 12 January 2006 (2006-01-12) paragraphs [0121] - [0126], [0133] - [0137] figures 28-31, 36-38 -----	1-16
A	US 6 031 653 A (WANG YU [US]) 29 February 2000 (2000-02-29) column 5, line 23 - column 6, line 26 column 8, line 9 - line 15 figure 6 ----- -/-	1-16

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

9 December 2009

16/12/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Moroz, Alexander

INTERNATIONAL SEARCH REPORT

International application No PCT/US2009/061840

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2005/018301 A1 (UEHARA NOBORU [JP]) 27 January 2005 (2005-01-27) paragraphs [0108] - [0110] figure 5	1-16

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2009/061840

Patent document cited in search report		Publication date	Patent family member(s)			Publication date
US 5502595	A	26-03-1996	NONE			
US 2006007547	A1	12-01-2006	CN	1719283	A	11-01-2006
			JP	2006023601	A	26-01-2006
US 6031653	A	29-02-2000	NONE			
US 2005018301	A1	27-01-2005	JP	2005003806	A	06-01-2005