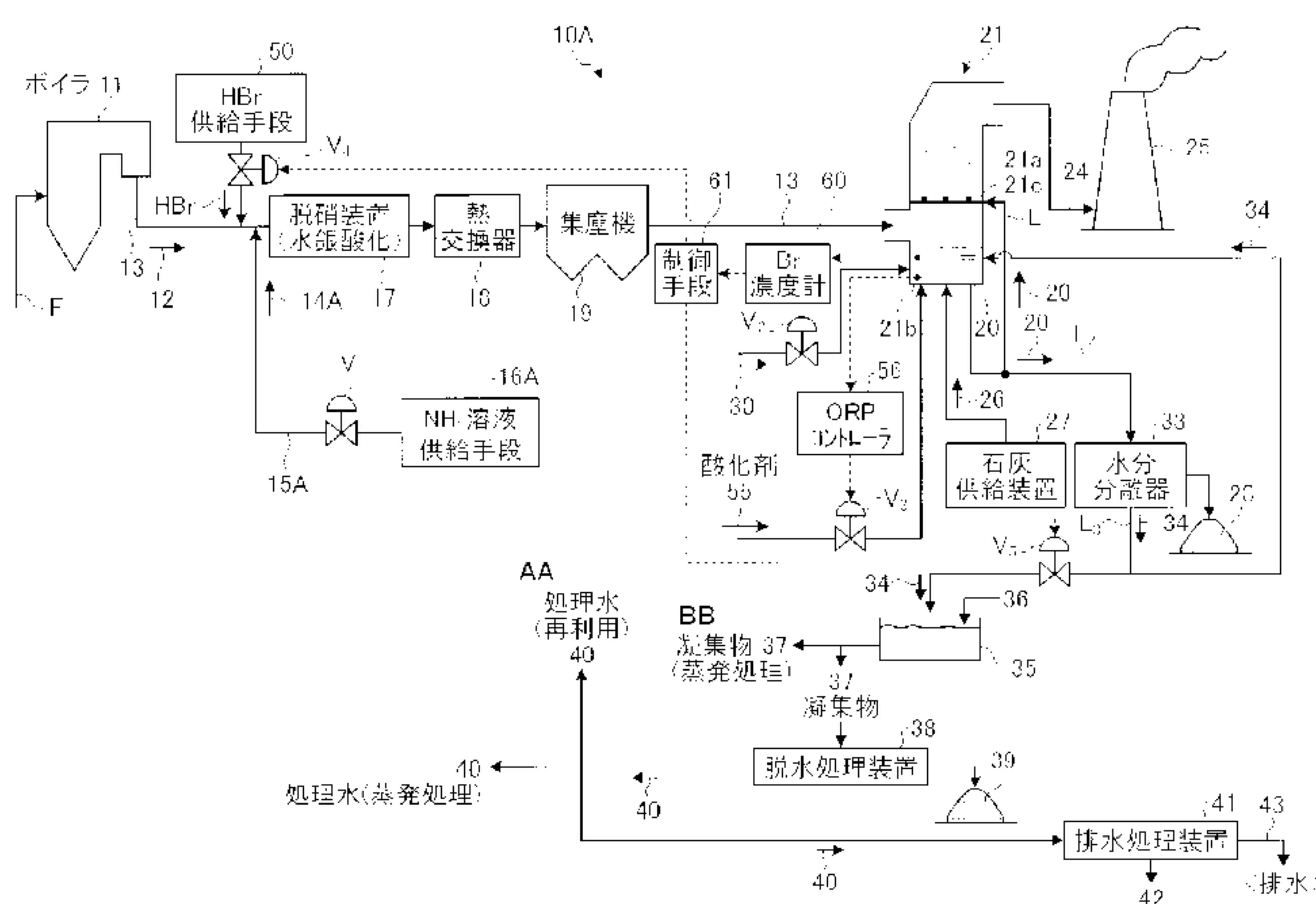


(86) Date de dépôt PCT/PCT Filing Date: 2013/08/13  
 (87) Date publication PCT/PCT Publication Date: 2014/03/20  
 (85) Entrée phase nationale/National Entry: 2015/03/11  
 (86) N° demande PCT/PCT Application No.: JP 2013/071887  
 (87) N° publication PCT/PCT Publication No.: 2014/041952  
 (30) Priorité/Priority: 2012/09/14 (JP2012-203443)

(51) Cl.Int./Int.Cl. B01D 53/64 (2006.01),  
 B01D 53/50 (2006.01), B01D 53/77 (2006.01),  
 B01D 53/94 (2006.01), C02F 1/04 (2006.01),  
 C02F 1/12 (2006.01), C02F 1/52 (2006.01)


(71) Demandeur/Applicant:  
 MITSUBISHI HITACHI POWER SYSTEMS, LTD., JP

(72) Inventeurs/Inventors:  
 NAGAE, SHOKO, JP;  
 KAGAWA, SEIJI, JP;  
 NAGAYASU, TATSUTO, JP;  
 UKAI, NOBUYUKI, JP;  
 OKAMOTO, TAKUYA, JP

(74) Agent: SMART & BIGGAR

(54) Titre : SYSTEME DE TRAITEMENT DU MERCURE CONTENU DANS UN GAZ D'ECHAPPEMENT  
 (54) Title: TREATMENT SYSTEM FOR MERCURY IN FLUE GAS

[図1]



- 11 Boiler
- 16A NH<sub>3</sub> solution supply means
- 17 Denitration device (mercury oxide)
- 18 Heat exchanger
- 19 Dust collector
- 27 Lime supply device
- 33 Moisture separator
- 37 Agglomerate
- 38 Dehydration treatment device
- 40 Treated water (evaporation treatment)
- 41 Waste water treatment device
- 43 Waste water
- 50 HBr supply means
- 55 Oxidizing agent
- 56 ORP controller
- 60 Br concentration meter
- 61 Control means
- AA Treated water (re-used)
- BB Agglomerate (evaporation treatment)

(57) Abrégé/Abstract:

Provided is a system for removing mercury in exhaust gas, where the system removes Hg contained in an exhaust gas from a boiler and comprises the following: a heat exchanger (AH) (18) which subjects an exhaust gas (12) from a boiler (11) to heat exchange; a dust collector (19) which removes particulate matter present in the exhaust gas (12); a wet-type desulfurization device (21) which removes mercury oxide (Hg<sup>2+</sup>) present in the exhaust gas (12) by means of an alkali absorption liquid and which removes sulfur oxides present in the exhaust gas; and an HBr compound supply means (50) which supplies HBr, which is a Br compound, to a

## (57) Abrégé(suite)/Abstract(continued):

flue (13) that discharges exhaust gas from a boiler outlet. The concentration of bromine in the alkali absorption liquid in the wet-type desulfurization device (21) is increased to a prescribed concentration or higher. Consequently, mercury present in the exhaust gas is stabilized in the form of  $\text{Hg}^{2+}$  ions in a gypsum slurry solution discharged from the wet-type desulfurization device (21).

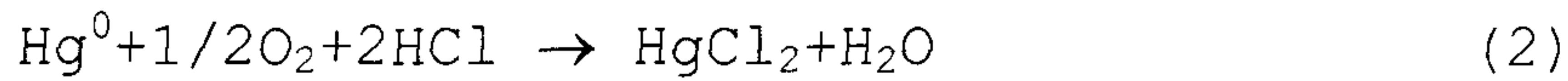
## ABSTRACT

The present invention is a removal system for mercury in the flue gas configured to remove Hg contained in a flue gas flowing from a boiler, and includes: a heat exchanger (AH) 18 configured to execute heat exchange for a flue gas 12 flowing from a boiler 11; a precipitator 19 configured to remove soot dust in the flue gas 12; a wet SOx removal unit 21 configured to remove mercury oxide  $Hg^{2+}$  in the flue gas by alkali absorbent and desulfurize sulfur oxide in the flue gas; and an HBr compound supply unit 50 configured to supply HBr, namely, a Br compound into a flue gas duct 13 configured to discharge a flue gas from a boiler outlet. Further, enrichment of bromine contained in the alkali absorbent inside the wet SOx removal unit 21 is set to predetermined enrichment or higher. With this configuration, mercury in the flue gas is stabilized in an ionic state of  $Hg^{2+}$  in gypsum slurry solution discharged from the wet SOx removal unit 21.

## DESCRIPTION

## TREATMENT SYSTEM FOR MERCURY IN FLUE GAS

## Field


[0001] The present invention relates to a treatment system 5 for mercury in a flue gas, capable of removing mercury in the flue gas down to extremely low enrichment.

## Background

[0002] A flue gas of coal combustion and a flue gas generated 10 at the time of burning heavy oil may contain metal mercury ( $Hg^0$ ) in addition to soot dust, sulfur oxide ( $SO_x$ ), nitrogen oxide ( $NO_x$ ). In recent years, various kinds of methods and apparatuses are invented to treat metal mercury ( $Hg^0$ ) by combining an  $NO_x$  removal unit configured to reduce  $NO_x$  and a wet  $SO_x$  removal unit in which alkali absorbent is used as  $SO_x$  15 absorbent.

[0003] As the method of treating metal mercury ( $Hg^0$ ) in the flue gas, there is a proposed method in which  $NH_4Cl$  solution is sprayed in a liquid state to the inside of a flue gas duct, and supplied into the flue gas duct in an upstream process of 20 an  $NO_x$  removal unit (for example, refer to Patent Literatures 1 and 2). When  $NH_4Cl$  solution is sprayed into the flue gas duct in the liquid state,  $NH_4Cl$  dissociates and generates an ammonium ( $NH_3$ ) gas and a hydrogen chloride ( $HCl$ ) gas. The  $NH_3$  gas behaves as a reducing agent, and the  $HCl$  gas behaves as a mercury 25 chlorination agent. More specifically, on a denitrification catalyst filled in the  $NO_x$  removal unit, reduction reaction progresses between  $NH_3$  and  $NO_x$  in the flue gas as shown in a following Formula (1), and oxidation reaction progresses between  $HCl$  and  $Hg^0$  in the flue gas as shown in a following 30 Formula (2).  $NH_3$  is reduced and denitrified, and also the metal mercury ( $Hg^0$ ) is oxidized on the denitrification catalyst, and water-soluble mercury chloride ( $HgCl_2$ ) is generated. Then,  $HgCl_2$  is dissolved in gypsum slurry solution to remove mercury

contained in the flue gas by the SO<sub>x</sub> removal unit according to a wet limestone-gypsum method provided on a downstream side.



5 Citation List

Patent Literature

[0004] Patent Literature 1: Japanese Patent Application Laid-open No. 2008-142602

10 Patent Literature 2: Japanese Patent Application Laid-open No. 2009-202107

Summary

Technical Problem

[0005] Meanwhile, according to the proposal of removing mercury in the flue gas in the related arts, a part of mercury 15 oxide ( $\text{Hg}^{2+}$ ) that has been absorbed and removed may be reduced to metal mercury ( $\text{Hg}^0$ ) and emitted from a stack in the same manner in the case where the absorbent in the wet SO<sub>x</sub> removal unit comes to have a reducing atmosphere again.

[0006] According to the proposal of removing mercury in the 20 flue gas in the related arts, oxidation-reduction potential of the absorbent is controlled to prevent mercury from being emitted due to reduction.

[0007] The present invention is achieved in view of the 25 above-described situation, and directed to providing a treatment system for mercury in a flue gas, in which mercury in the flue gas removed by the SO<sub>x</sub> removal unit can be selectively stabilized in a solid phase or a liquid phase.

Solution to Problem

[0008] According to a first aspect of the present invention 30 in order to solve the above-mentioned problems, there is provided a treatment system for mercury in a flue gas, which is a system to remove Hg contained in the flue gas flowing from a boiler, including: a heat exchanger configured to execute heat

exchange for the flue gas flowing from the boiler; a precipitator configured to remove soot dust in the flue gas; a wet SO<sub>x</sub> removal unit configured to remove mercury oxide Hg<sup>2+</sup> in the flue gas with alkali absorbent and also desulfurize sulfur oxide in the flue gas; and a Br compound supply unit configured to supply a Br compound into the flue gas or into the alkali absorbent of the wet SO<sub>x</sub> removal unit, wherein enrichment of bromine inside the alkali absorbent in the wet SO<sub>x</sub> removal unit is set to predetermined enrichment or higher.

5 [0009] According to a second aspect of the present invention, there is provided the treatment system for mercury in a flue gas according to the first aspect, including an NO<sub>x</sub> removal unit disposed on an upstream side of the heat exchanger and provided with a denitrification catalyst configured to denitrate NO<sub>x</sub> in the flue gas and oxidize metal mercury (Hg<sup>0</sup>).

10 15

[0010] According to a third aspect of the present invention, there is provided the treatment system for mercury in a flue gas according to the first or second aspect, wherein the alkali absorbent is limestone slurry, and a water separator configured to draw off limestone-gypsum slurry generated in the wet SO<sub>x</sub> removal unit and separate gypsum from the drawn-off limestone-gypsum slurry is provided.

20

[0011] According to a fourth aspect of the present invention, there is provided the treatment system for mercury in a flue gas according to the third aspect, wherein flocculation treatment is applied to solid content contained inside separate liquid after the gypsum separation, and a floc is separated, and further treated liquid obtained after separation is reused in the wet SO<sub>x</sub> removal unit or applied with wastewater treatment.

25 30

[0012] According to a fifth aspect of the present invention, there is provided the treatment system for mercury in a flue gas according to the third aspect, wherein mercury contained

inside the separate liquid after the gypsum separation is separated as a gas body at a heating mercury separation device, and mercury contained inside emitted gas is scavenged by a scavenging unit.

5      Advantageous Effects of Invention

[0013]     According to the present invention, enrichment of bromine in alkali absorbent inside the wet SO<sub>x</sub> removal unit is set to predetermined enrichment or higher. By thus setting the enrichment of bromine to the predetermined enrichment or higher, 10 the mercury is kept in an Hg<sup>2+</sup> ionic state inside the alkali absorbent such as gypsum slurry solution discharged from the SO<sub>x</sub> removal unit, and mercury in the flue gas can be stabilized in the liquid phase.

Brief Description of Drawings

15    [0014]    FIG. 1 is a schematic diagram illustrating a treatment system for mercury in a flue gas according a first embodiment of the present invention.

FIG. 2 is a schematic diagram illustrating a treatment system for mercury in a flue gas according a second embodiment 20 of the present invention.

FIG. 3 is a schematic diagram illustrating a treatment system for mercury in a flue gas according a third embodiment of the present invention.

FIG. 4 is a schematic diagram illustrating a treatment 25 system for mercury in a flue gas according a fourth embodiment of the present invention.

FIG. 5 is a schematic diagram illustrating a treatment system for mercury in a flue gas according a fifth embodiment of the present invention.

30    FIG. 6 is a schematic diagram illustrating a treatment system for mercury in a flue gas according a sixth embodiment of the present invention.

FIG. 7 is a diagram illustrating a relation between

enrichment of Br in slurry absorbent and enrichment of Hg in gypsum.

#### Description of Embodiments

[0015] Preferred embodiments of the present invention will be described with reference to the attached drawings. Note that the present invention is not limited to the embodiments and is intended to include configurations in which the respective embodiments are combined in the case where there is a plurality of embodiments.

10 [First Embodiment]

[0016] FIG. 1 is a schematic diagram illustrating a treatment system for mercury in a flue gas according to a first embodiment of the present invention.

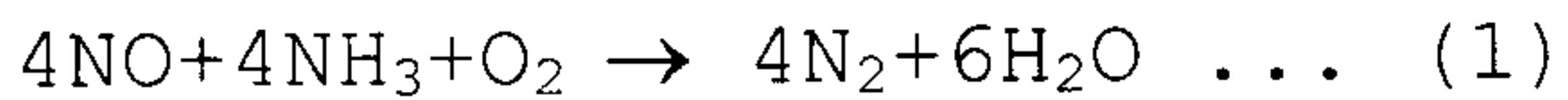
As illustrated in FIG. 1, a treatment system for mercury in a flue gas 10A according to the present embodiment is a treatment system for mercury in the flue gas configured to remove mercury contained in a flue gas 12 flowing from a boiler 11, and includes: an NOx removal unit 17 configured to denitrify nitrogen oxide (NOx) in the flue gas 12 flowing from the boiler 11 where fuel F is supplied and burned by the boiler; a heat exchanger (AH) 18 disposed on a downstream side of the NOx removal unit 17 and configured to adjust a flue gas temperature; a precipitator 19 disposed on a downstream side of the heat exchanger 18 and configured to remove soot dust in the flue gas 12; a wet SOx removal unit 21 configured to remove mercury oxide  $Hg^{2+}$  in the flue gas 12 by using alkali absorbent, and also desulfurize sulfur oxide in the flue gas 12; and an HBr supply unit 50 configured to supply HBr, namely, a Br compound into a flue gas duct 13 where the flue gas 12 is discharged from a boiler outlet. Further, enrichment of bromine inside the alkali absorbent in the wet SOx removal unit 21 is set to predetermined enrichment or higher.

Here, in FIG. 1, a reference sign 13 represents the flue

gas duct from which the flue gas 12 is discharged, and 25 represents the stack from which the purged flue gas 12 is discharged to the outside, and  $V_1$ ,  $V_2$ ,  $V_3$  represent valves.

[0017] According to the present embodiment, ammonia ( $\text{NH}_3$ ) 5 solution 14A is supplied, as a denitration aid, from an ammonia ( $\text{NH}_3$ ) solution supply unit 16A into the flue gas 12 flowing in the flue gas duct 13 via an ammonia ( $\text{NH}_3$ ) supply line 15A on a previous stage side of the  $\text{NO}_x$  removal unit 17.

Further,  $\text{NO}_x$  in the flue gas 12 is reduced with a  $\text{NH}_3$  by 10 a denitrification catalyst.


For the  $\text{NO}_x$  removal unit 17, a general unit including a reducing and denitrating catalyst can be used. The reducing and denitrating catalyst is not specifically limited, but for example, a catalyst in which metal oxide of W, Sn, In, Co, Ni, 15 Fe, Ni, Ag, Cu, etc. is supported on a carrier such as zeolite can be used.

[0018] The  $\text{NH}_3$  solution 14A is supplied, via the ammonia ( $\text{NH}_3$ ) solution supply line 15A, from the  $\text{NH}_3$  solution supply unit 16A to the flue gas 12 discharged from the boiler 11.

[0019] Preferably, a temperature of the flue gas 12 in the flue gas duct 13 is, for example, 320°C or more and 420°C or less, but more preferably, 320°C or more and the 380°C or less although it depends on combustion conditions at the boiler 11. The reason is that  $\text{NO}_x$  denitration reaction on the 25 denitrification catalyst can be effectively performed in this temperature range.

[0020] In the  $\text{NO}_x$  removal unit 17, the supplied  $\text{NH}_3$  gas is used to reduce and denitrify  $\text{NO}_x$ .

[0021] More specifically,  $\text{NH}_3$  gas reduces and denitrifies  $\text{NO}_x$  30 on the denitrification catalyst charged into a denitrification catalyst layer filled in the  $\text{NO}_x$  removal unit 17 as shown in a following formula (1).

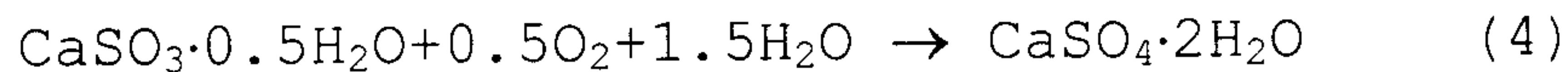


[0022] As for the flue gas 12, NOx in the flue gas 12 is reduced at the NOx removal unit 17, and then the temperature of the flue gas 12 is decreased by the heat exchanger 18.

5 [0023] After that, the flue gas 12 is passed through the precipitator (e.g., ESP) 19 and fed to the wet SOx removal unit 21. Further, a heat recovery device may be disposed between the heat exchanger 18 and the precipitator 19.

10 [0024] Next, after dust removal at the precipitator (ESP) 19, the flue gas 12 is fed to the wet SOx removal unit 21 for desulfurization treatment.

15 [0025] In the wet SOx removal unit 21, the flue gas 12 is fed from a wall surface side of a unit bottom portion 21b of a unit body 21a, and limestone-gypsum slurry 20 to be used as the alkali absorbent is supplied into the unit body 21a via an absorbent feed line L<sub>1</sub> and jetted from a nozzle 21c to a top portion side of the unit. The flue gas 12 flowing up from the unit bottom portion 21b side inside the unit body 21a is made gas-liquid contact with the limestone-gypsum slurry 20 jetted 20 from the nozzle 21c and flowing down in an opposing manner, and HgCl<sub>2</sub> and sulfur oxide (SOx) in the flue gas 12 are absorbed into the limestone-gypsum slurry 20 and separated and removed from the flue gas 12. As a result, the flue gas 12 is purged. The flue gas 12 purged by the limestone-gypsum slurry 20 is 25 discharged from the unit top portion side, and then discharged from a stack 25 outside the system as a purged gas 24.


Note that limestone 26 refilled into the unit body 21a is supplied from a limestone supply unit 27.

30 [0026] The limestone-gypsum slurry 20 used for desulfurization in the flue gas 12 is generated by mixing limestone (CaCO<sub>3</sub>) slurry, gypsum (CaSO<sub>4</sub>) slurry, and water. The limestone (CaCO<sub>3</sub>) is obtained by dissolving limestone powder in water, and the gypsum (CaSO<sub>4</sub>) slurry is obtained by reacting

the limestone 26 with SO<sub>x</sub> in the flue gas 12 and further executing oxidation. For the limestone-gypsum slurry 20, liquid stored in the unit bottom portion 21b of the unit body 21a of the wet SO<sub>x</sub> removal unit 21 is pumped up and used, for example. Inside 5 the unit body 21a, SO<sub>x</sub> in the flue gas 12 is reacted with the limestone (CaCO<sub>3</sub>) inside the limestone-gypsum slurry 20 as shown in a following formula (3).



[0027] On the other hand, the limestone-gypsum slurry 20 10 having absorbed SO<sub>x</sub> in the flue gas 12 is mixed with water 30 supplied into the unit body 21a, and oxidation treatment is applied by using air, namely, an oxidizing agent 55 supplied to the unit bottom portion 21b of the unit body 21a. At this point, the limestone-gypsum slurry 20 flowing down inside the 15 unit body 21a is reacted with the water 30 and the air as shown in a following formula (4).



Thus, SO<sub>x</sub> in the flue gas 12 is caught in a form of gypsum CaSO<sub>4</sub>·2H<sub>2</sub>O in the wet SO<sub>x</sub> removal unit 21.

20 At this point, mercury bromide (HgBr<sub>2</sub>) in the flue gas 12 is soluble in water, and therefore, is transferred to the limestone-gypsum slurry 20 side.

[0028] Thus, the removal system for mercury in the flue gas 10A according to the present embodiment is a removal system for 25 mercury in the flue gas configured to remove Hg contained in the flue gas 12 discharged from the boiler, and includes: the heat exchanger (AH) 18 configured to execute heat exchange for the flue gas 12 discharged from the boiler 11; the precipitator 19 configured to remove the soot dust in the flue gas 12; and 30 the wet SO<sub>x</sub> removal unit 21 configured to remove mercury oxide Hg<sup>2+</sup> in the flue gas 12 with the alkali absorbent, and also desulfurize sulfur oxide in the flue gas 12. Further, the

enrichment of bromine inside the alkali absorbent is controlled to be the predetermined enrichment or higher inside the wet SO<sub>x</sub> removal unit 21. As a result, mercury Hg<sup>2+</sup> is stabilized in an ionic state in the solution of the limestone-gypsum slurry 20 5 discharged from the wet SO<sub>x</sub> removal unit 21 by setting the enrichment of bromine to the predetermined enrichment or higher.

[0029] In other words, HBr supplied from the HBr supply unit 50 is introduced into the wet SO<sub>x</sub> removal unit 21 in a state 10 that HBr having the predetermined enrichment is contained in the flue gas 12. Therefore, reaction in a following formula (5) progresses in a leftward direction inside the slurry absorbent, and mercury exists in the ionic state. As a result, mercury can be stabilized in a liquid phase.



[0030] Meanwhile, FIG. 7 is a diagram illustrating a relation between the enrichment of Br in the slurry absorbent and enrichment of Hg in the gypsum.

As illustrated in FIG. 7, in the case where the enrichment 20 of Br contained inside a total dissolved substance (TDS) of the liquid phase is high, the enrichment of Hg in the gypsum becomes low, and it is confirmed that in the case where a value of the enrichment of Br/TDS is equal to 0.33 or more, the enrichment of Hg becomes substantially zero (0.01 ppm).

25 Further, in the case where the value of the enrichment of Br/TDS is equal to 0.25 or more, the enrichment of Hg becomes 0.2 ppm. Therefore, mercury content inside the gypsum particle is infinitesimal.

[0031] According to the present embodiment, the enrichment 30 of Br inside the limestone-gypsum slurry 20 at the unit bottom portion of the wet SO<sub>x</sub> removal unit 21 is measured by a Br enrichment meter 60. Further, based on a measurement result thereof, the state is held as it is in the case where the

predetermined enrichment is kept.

Further, in the case where the enrichment of Br becomes the predetermined enrichment or lower, control to adjust an opening degree of a valve V<sub>6</sub> is executed by a control unit 61 so as to increase a supply amount of HBr supplied from the HBr supply unit 50.

In contrast, in the case where the enrichment of Br exceeds the predetermined enrichment, control to adjust an opening level of the valve V<sub>5</sub> interposed on a line L<sub>3</sub> is executed by 10 the control unit 61 so as to return, to the unit bottom portion side of the wet SOx removal unit 21, separate liquid 34 separated from a later-described water separator 33.

[0032] As a result of this control, the enrichment of Br having an appropriate volume can be constantly kept, and mercury 15 in the flue gas 12 and removed by the SOx removal unit can be stabilized in the liquid phase.

[0033] Further, oxidation-reduction potential of the limestone-gypsum slurry 20 in the wet SOx removal unit 21 is kept within a constant range. The reason is to prevent mercury 20 oxide (Hg<sup>2+</sup>) inside the limestone-gypsum slurry 20 from being reduced with the metal mercury (Hg<sup>0</sup>) by SO<sub>2</sub> or the like as shown in a following formula (6), and prevent mercury from being re-scattered.



25 For a unit to keep the oxidation-reduction potential of the limestone-gypsum slurry 20 constant, an ORP controller 56 configured to control the oxidation-reduction potential (ORP) of the limestone-gypsum slurry 20 is used. For example, a supply amount of the oxidizing agent 55 is adjusted such that 30 the oxidation-reduction potential becomes preferably 200 mV or higher, and more preferably, 600 mV or higher.

As a result, mercury oxide dissolved in the limestone-gypsum slurry 20 is prevented from becoming metal

mercury and re-scattered, and also mercury is prevented from being entrained in the flue gas 12.

[0034] The limestone-gypsum slurry 20 stored in the unit bottom portion 21b of the wet SOx removal unit 21 and used for 5 desulfurization is drawn off from the unit bottom portion 21b after being oxidized. The drawn-off limestone-gypsum slurry 20 is fed to the water separator 33 via a line L<sub>2</sub>, and then discharged outside the system as a dehydrated cake (gypsum) 28 containing mercury bromide (HgBr<sub>2</sub>).

10 [0035] For the water separator 33, a belt filter or the like may be used, for example.

[0036] A method of supplying the limestone-gypsum slurry 20 is not limited to the method of jetting from the nozzle 21c toward the unit top portion side. For example, the limestone-gypsum 15 slurry may be flown downward from the nozzle 21c so as to be opposed to the flue gas 12.

[0037] According to the present embodiment, HBr is entrained in the flue gas 12 to be introduced into the wet SOx removal unit 21. Therefore, mercury oxide in the flue gas 12 is 20 dissolved into the absorbent in the ionic state, and mercury can be stabilized in the liquid phase.

[0038] The separate liquid 34 containing mercury separated at the water separator 33 is introduced via the line L<sub>3</sub> into a flocculation unit 35 in which flocculation treatment is 25 applied to a floc contained in the mercury absorbent.

In the flocculation unit 35, for example, a flocculation treatment agent 36 like flocculant such as a heavy metal scavenger and a chelate agent is added, and the flocculation treatment is applied to a floc 37 containing mercury inside the 30 separate liquid 34 containing mercury.

[0039] For the flocculation treatment agent 36, for example, Fe-based flocculant, Al-based flocculant, polymer-based flocculant, etc. can be exemplified.

When the flocculation treatment is applied, mercury oxide inside the separate liquid 34 containing mercury is flocculated, thereby transferring mercury from the liquid phase to the solid phase.

5 [0040] Evaporation treatment is separately applied to the floc 37 in the flocculation unit 35 by an evaporation treatment unit, thereby applying treatment to eliminate wastewater.

[0041] Further, a dehydration treatment device 38 configured to dehydrate the floc 37 and separate a solid from 10 liquid may also be provided to perform dehydration treatment and separate the floc into sludge 39 and treated water 40.

Then, since the sludge 39 as a dehydration product contains mercury, the sludge 39 is treated separately.

Further, the treated water 40, namely, filtrate may be 15 reused as dilution liquid for the limestone 26 at the limestone supply unit 27. Also, the treated water 40 may be utilized as a part of the water 30 to be supplied into the unit body 21a.

[0042] Moreover, for example, the treatment to eliminate the wastewater may be applied to the treated water 40 so as to 20 evaporate the treated water 40 besides reusing the treated water 40. Also, the treated water 40 may be transferred to a wastewater treatment device 41, and operation such as removing a suspended solid and a heavy metal 42 contained inside the treated water 40 and adjusting pH of the filtrate obtained from 25 dehydration may be performed by the wastewater treatment device 41.

A part of wastewater 43 for which the wastewater treatment has been applied at the wastewater treatment device 41 is returned to the wet SO<sub>x</sub> removal unit 21, and a remaining part 30 is treated as discharging water.

[Second Embodiment]

[0043] Next, a treatment system for mercury in a flue gas according to a second embodiment of the present invention will

be described. Note that components same as those of a first embodiment are denoted by the same reference signs and repetition of a description therefor will be omitted.

5 FIG. 2 is a schematic diagram illustrating the treatment system for mercury in a flue gas according to the second embodiment of the present invention.

As illustrated in FIG. 2, a treatment system for mercury in the flue gas 10B according to the present embodiment is configured to supply HBr into limestone-gypsum slurry 20 of the 10 SOx removal unit 21 from an HBr supply unit 50 instead of supplying HBr into a flue gas 12 in a treatment system for mercury in the flue gas 10A of the first embodiment. This increases enrichment of HBr inside the limestone-gypsum slurry 20.

[0044] As a result, HBr having enrichment equal to 15 predetermined enrichment or higher is contained inside slurry absorbent. Therefore, since reaction in a following formula (5) progresses in a leftward direction and mercury exists in an ionic state, mercury can be stabilized in a liquid phase.



20 [0045] According to the present embodiment, enrichment of bromine inside alkali absorbent in the wet SOx removal unit 21 is increased to the predetermined enrichment or higher by additionally supplying HBr from the HBr supply unit 50. By thus setting the enrichment of bromine to the predetermined enrichment or higher, mercury in the flue gas 12 can be 25 stabilized in an ionic state  $\text{Hg}^{2+}$ , for example, inside solution of limestone-gypsum slurry 20 which is the alkali absorbent discharged from the wet SOx removal unit 21.

[0046] According to the present embodiment, the enrichment 30 of Br in the limestone-gypsum slurry 20 at a unit bottom portion of the wet SOx removal unit 21 is measured by a Br enrichment meter 60. Further, based on a measurement result thereof, the state is held as it is in the case where the predetermined

enrichment is kept.

Further, in the case where the enrichment of Br becomes the predetermined enrichment or lower, control to adjust an opening degree of a valve  $V_6$  is executed by a control unit 61 so as to increase a supply amount of HBr supplied from the HBr supply unit 50.

In contrast, in the case where the enrichment of Br exceeds the predetermined enrichment, control to adjust an opening level of a valve  $V_5$  interposed on a line  $L_3$  is executed by the control unit 61 so as to return separate liquid 34 separated at a water separator 33 to a unit bottom portion side of the wet SOx removal unit 21.

[0047] As a result of this control, the enrichment of Br having an appropriate volume can be constantly kept, and mercury in the flue gas 12 and removed by the SOx removal unit can be stabilized in the liquid phase.

[Third Embodiment]

[0048] Next, a treatment system for mercury in a flue gas according to a third embodiment of the present invention will be described. Note that components same as those of first and second embodiments are denoted by the same reference signs and repetition of a description therefor will be omitted.

FIG. 3 is a schematic diagram illustrating the treatment system for mercury in the flue gas according to the third embodiment of the present invention.

As illustrated in FIG. 3, a treatment system for mercury in a flue gas 10C supplies, as a denitration aid, ammonium bromide ( $NH_4Br$ ) solution 14B into a flue gas 12 flowing in a flue gas duct 13 via an ammonium bromide ( $NH_4Br$ ) supply line 15B from an ammonium bromide ( $NH_4Br$ ) solution supply unit 16B in a previous stage side of an NOx removal unit 17.

Further, NOx in the flue gas 12 is reduced by  $NH_3$  gas and also metal mercury ( $Hg^0$ ) is oxidized by a denitrification

catalyst in coexistence of an HBr gas.

For the NOx removal unit 17, a general unit including a reducing and denitrating catalyst can be used. The reducing and denitrating catalyst is not specifically limited, but for example, a catalyst in which metal oxide of W, Sn, In, Co, Ni, Fe, Ni, Ag, Cu, etc. is supported on a carrier such as zeolite can be used. An amount of the reducing and denitrating catalyst included in the NOx removal unit 17 may be increased more than a normal amount in order to improve mercury oxidation efficiency.

[0049] According to the present embodiment, the ammonium bromide (NH<sub>4</sub>Br) solution 14B is used as an example, and an oxidation aid and a reduction aid are generated and also the flue gas 12 is made to contain HBr when the ammonium bromide (NH<sub>4</sub>Br) solution 14B is vaporized.

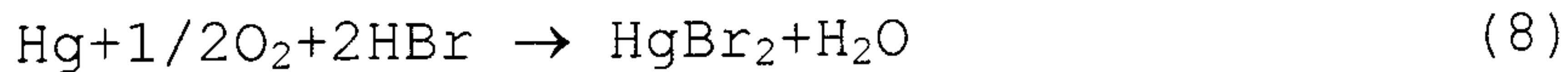
Here, according to the present embodiment, an aid that functions as an oxidation aid used to oxidize metal mercury (Hg<sup>0</sup>) in coexistence of an oxidation aid and also functions as a reducing agent to reduce NOx with a reduction aid is referred to as a reduction and oxidation aid. According to the present embodiment, the HBr gas is used as the oxidation aid, and NH<sub>3</sub> gas is used as the reduction aid.

Note that the oxidation aid (e.g., HBr gas) and the reduction aid (e.g., NH<sub>3</sub> gas) may be separately introduced as well.

[0050] The NH<sub>4</sub>Br solution 14B is supplied, via the ammonium bromide (NH<sub>4</sub>Br) solution supply line 15B, from the NH<sub>4</sub>Br solution supply unit 16B into the flue gas 12 discharged from the boiler 11.

[0051] Droplets of the NH<sub>4</sub>Br solution 14B sprayed into the flue gas duct 13 from the NH<sub>4</sub>Br solution supply unit 16B are evaporated and vaporized due to a high atmospheric temperature of the flue gas 12, and fine solid particles of NH<sub>4</sub>Br are

generated and decomposed into HBr and NH<sub>3</sub> as shown in a following formula (7). Therefore, NH<sub>4</sub>Br solution 14B sprayed from a spray unit is decomposed and HBr and NH<sub>3</sub> are generated, and then the NH<sub>3</sub> gas and the HBr gas are supplied into the flue gas duct 13.




[0052] Preferably, a temperature of the flue gas 12 in the flue gas duct 13 is, for example, 320°C or more and 420°C or less, but more preferably, 320°C or more and the 380°C or less although it depends on combustion conditions at the boiler 11.

10 The reason is that denitration reaction of NOx and oxidation reaction of Hg can be effectively achieved on the denitrification catalyst in this temperature range.

[0053] Further, the flue gas 12 is fed to the NOx removal unit 17 after containing the HBr gas and the NH<sub>3</sub> gas generated 15 from the droplets of the NH<sub>4</sub>Br solution 14B sprayed from the NH<sub>4</sub>Br solution supply unit 16B into the flue gas duct 13. In the NOx removal unit 17, the NH<sub>3</sub> gas generated by decomposing NH<sub>4</sub>Br is used to reduce and denitrify NOx, and the HBr gas is used to oxidize Hg, and NOx and Hg are removed from the flue 20 gas 12. Therefore, a mercury removal rate is more improved than the case of using ammonia.

[0054] More specifically, on the denitrification catalyst charged into a denitrification catalyst layer filled in the NOx removal unit 17, the NH<sub>3</sub> gas reduces and denitrifies NOx as shown 25 in a following formula (1) and Hg is oxidized by the HBr gas as shown in a following formula (8).



[0055] The flue gas 12 is passed through a heat exchanger 30 18 and a precipitator (ESP) 19, and then fed to a wet SOx removal unit 21 after reducing NOx in the flue gas 12 and oxidizing Hg in the flue gas 12 at the NOx removal unit 17. Further, a heat

recovery device may be disposed between the heat exchanger 18 and the precipitator (ESP) 19.

[0056] After that, SO<sub>x</sub> is desulfurized at the wet SO<sub>x</sub> removal unit 21, but at this point, since enrichment of Br inside 5 limestone-gypsum slurry is set high, reaction in a following formula (5) progresses in a leftward direction in the slurry absorbent, and since mercury exists in an ionic state. As a result, mercury can be stabilized in a liquid phase.



10 [0057] Further, according to the present embodiment, it is not necessary to separately provide an HBr supply unit 50 configured to supply HBr like the first embodiment because, different from the first embodiment, the reducing agent and the 15 oxidizing agent for denitrification are generated by using the ammonium bromide as the reducing and oxidizing agent used in the NO<sub>x</sub> removal unit 17 and further the flue gas 12 is introduced into the wet SO<sub>x</sub> removal unit 21 after being made to contain hydrogen bromide (HBr).

[0058] According to the present embodiment, the enrichment 20 of Br inside the limestone-gypsum slurry 20 at the unit bottom portion of the wet SO<sub>x</sub> removal unit 21 is measured by a Br enrichment meter 60. Further, based on a measurement result thereof, the state is held as it is in the case where the predetermined enrichment is kept.

25 Further, in the case where the enrichment of Br becomes predetermined enrichment or lower, control to adjust an opening degree of a valve V<sub>1</sub> is executed by a control unit 61 so as to increase a supply amount of NH<sub>4</sub>Br supplied from the ammonium bromide (NH<sub>4</sub>Br) solution supply unit 16B.

30 In contrast, in the case where the enrichment of Br exceeds the predetermined enrichment, control to adjust an opening level of a valve V<sub>5</sub> interposed on a line L<sub>3</sub> is executed by the control unit 61 so as to return separate liquid 34 separated

at a water separator 33 to a unit bottom portion side of the wet SO<sub>x</sub> removal unit 21.

[0059] As a result of this control, the enrichment of Br having an appropriate volume can be constantly kept, and mercury in the flue gas 12 and removed by the SO<sub>x</sub> removal unit can be stabilized in the liquid phase.

[Fourth Embodiment]

[0060] Next, a treatment system for mercury in a flue gas according to a fourth embodiment of the present invention will 10 be described. Note that components same as those of first to third embodiments are denoted by the same reference signs and repetition of a description therefor will be omitted.

FIG. 4 is a schematic diagram illustrating the treatment system for mercury in the flue gas according to the fourth 15 embodiment of the present invention.

As illustrated in FIG. 4, a treatment system for mercury in a flue gas 10D according the present embodiment includes a heating mercury separation device 80 configured to remove water from separate liquid 34 containing mercury separated at a water 20 separator 33 of the first embodiment.

[0061] The heating mercury separation device 80 sprays the separate liquid 34 into the unit body 21a and also supplies steam 81 to the inside, and separates mercury as a gas state by heat of the steam 81, and the mercury in the gas body is transferred 25 into an emitted gas 82.

[0062] Treated water 83 from which mercury is removed at the heating mercury separation device 80 is reused as make-up water.

[0063] Further, gas-like mercury transferred into the emitted gas 82 is introduced into, for example, to a mercury 30 absorber 85 filled with activated carbon 84. Then, mercury is absorbed and removed with the activated carbon 84 inside the mercury absorber 85. Further, treated water 86 from which mercury is removed may be used for evaporation treatment or

reused in a different way.

[Fifth Embodiment]

[0064] Next, a treatment system for mercury in a flue gas according to a fifth embodiment of the present invention will 5 be described. Note that components same as those of first to fourth embodiments are denoted by the same reference signs and repetition of a description therefor will be omitted.

FIG. 5 is a schematic diagram illustrating the treatment system for mercury in the flue gas according to the fifth 10 embodiment of the present invention.

As illustrated in FIG. 5, the treatment system for mercury in a flue gas 10E according the present embodiment supplies ammonium chloride instead of ammonium bromide used in a NO<sub>x</sub> removal unit 17 of the third embodiment.

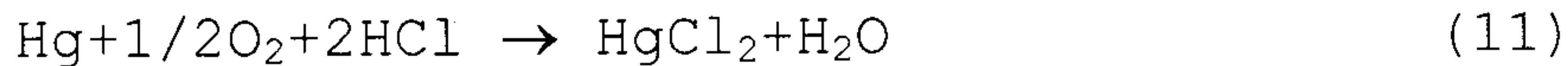
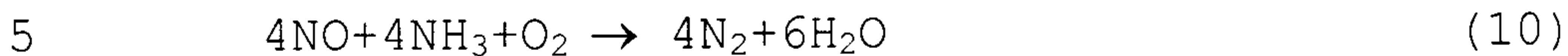
15 According to the present embodiment, an ammonium chloride (NH<sub>4</sub>Cl) solution supply unit 16C configured to spray NH<sub>4</sub>Cl solution 14C containing ammonium chloride (NH<sub>4</sub>Cl) as a reduction and oxidization aid; and a NO<sub>x</sub> removal unit 17 configured to reduce NO<sub>x</sub> in a flue gas 12 with NH<sub>3</sub> gas and also including a 20 denitrification catalyst to oxidize metal mercury (Hg<sup>0</sup>) in coexistence of an HCl gas are provided in a flue gas duct 13 at a downstream of a boiler 11.

[0065] According to the present embodiment, NH<sub>4</sub>Cl is used as an example, but not limited thereto, any reduction and 25 oxidization aid can be used as long as the reduction and oxidization aid is halide that generates an oxidation aid and a reduction aid when vaporized. Here, according to the present embodiment, an aid that functions as an oxidation aid used to oxidize metal mercury (Hg<sup>0</sup>) in coexistence of an oxidation aid and also functions as a reducing agent to reduce NO<sub>x</sub> with a reduction aid is referred to as the reduction and oxidization aid. According to the present embodiment, HCl gas is used as the 30 oxidization aid, and NH<sub>3</sub> gas is used as the reduction aid.

Further, the oxidization aid (e.g., HCl gas) and the reduction aid (e.g., NH<sub>3</sub> gas) may be separately introduced as well.

[0066] The NH<sub>4</sub>Cl solution 14C is supplied from an NH<sub>4</sub>Cl solution supply unit 16C via an ammonium chloride (NH<sub>4</sub>Cl) supply line 15C to the flue gas 12 discharged from the boiler 11.

[0067] Droplets of the NH<sub>4</sub>Cl solution 14C sprayed into the flue gas duct 13 from the NH<sub>4</sub>Cl solution supply unit 16C are evaporated and vaporized due to a high atmospheric temperature of the flue gas 12, and fine solid particles of NH<sub>4</sub>Cl are generated and decomposed into HCl and NH<sub>3</sub> as shown in a following formula (9). Therefore, the NH<sub>4</sub>Cl solution 14C sprayed from a spray unit generates HCl and NH<sub>3</sub>, and supplies the NH<sub>3</sub> gas and the HCl gas into the flue gas duct 13.


[0068] Preferably, a temperature of the flue gas 12 in the flue gas duct 13 is, for example, 320°C or more and 420°C or less, but more preferably, 320°C or more and the 380°C or less although it depends on combustion conditions at the boiler 11. The reason is that denitration reaction of NO<sub>x</sub> and oxidation reaction of Hg can be effectively achieved on the denitrification catalyst in this temperature range.

[0069] Further, the flue gas 12 is fed to the NO<sub>x</sub> removal unit 17 after containing the HCl gas and the NH<sub>3</sub> gas generated from the droplets of the NH<sub>4</sub>Cl solution 14C sprayed into the flue gas duct 13 from the NH<sub>4</sub>Cl solution supply unit 16C. In the NO<sub>x</sub> removal unit 17, the NH<sub>3</sub> gas generated from decomposing NH<sub>4</sub>Cl is used to reduce and denitrify NO<sub>x</sub>, and the HCl gas is used to oxidize Hg, and NO<sub>x</sub> and Hg are removed from the flue gas 12. Therefore, a mercury removal rate is more improved than the case of using ammonia.

[0070] More specifically, on the denitrification catalyst

charged to a denitrification catalyst layer filled in the NO<sub>x</sub> removal unit 17, the NH<sub>3</sub> gas reduces and denitrates NO<sub>x</sub> as shown in a following formula (10) and Hg is oxidized by the HCl gas as shown in a following formula (11).



[0071] The flue gas 12 lowers the temperature of the flue gas 12 by a heat exchanger 18 after reducing NOx in the flue gas 12 and oxidizing Hg in the flue gas 12 at the NOx removal unit 17.

[0072] Note that only ammonia may be supplied and nitrogen oxide in the flue gas 12 may be denitrated using ammonia by the NO<sub>x</sub> removal unit.

Further, in the case where an amount of nitrogen oxide in  
15 the flue gas 12 is little, flue gas treatment may be applied  
without providing the NO<sub>x</sub> removal unit. In this case, mercury  
oxidation, mercury is oxidized by halide (e.g., chloride) or  
the like contained in the flue gas 12.

[0073] Next, after dust removal at a precipitator 19, the  
20 flue gas 12 is fed to a wet SO<sub>x</sub> removal unit 21 for  
desulfurization treatment.

According to the present embodiment, HBr is supplied from an HBr supply unit 50 into limestone-gypsum slurry 20 of the wet SO<sub>x</sub> removal unit 21. This increases enrichment of HBr inside the limestone-gypsum slurry 20.

[0074] As a result, HBr having predetermined enrichment or more is contained inside slurry absorbent. Therefore, since reaction in a following formula (5) progresses in a leftward direction and mercury exists in an ionic state, mercury can be stabilized in a liquid phase.



[0075] According to the present embodiment, enrichment of

bromine inside alkali absorbent in the wet SO<sub>x</sub> removal unit 21 is set to the predetermined enrichment or higher by separately supplying HBr from the HBr supply unit 50. By thus setting the enrichment of bromine to the predetermined enrichment or higher, 5 mercury in the flue gas 12 can be stabilized in an ionic state Hg<sup>2+</sup>, for example, inside solution of limestone-gypsum slurry 20 which is the alkali absorbent discharged from the wet SO<sub>x</sub> removal unit 21.

[0076] According to the present embodiment, the enrichment 10 of Br inside the limestone-gypsum slurry 20 at the unit bottom portion of the wet SO<sub>x</sub> removal unit 21 is measured by a Br enrichment meter 60. Further, based on a measurement result thereof, the state is held as it is in the case where the predetermined enrichment is kept.

15 Further, in the case where the enrichment of Br becomes the predetermined enrichment or lower, control to adjust an opening degree of a valve V<sub>1</sub> or a valve V<sub>6</sub> is executed by a control unit 61 so as to increase a supply amount of NH<sub>4</sub>Br supplied from the ammonium bromide (NH<sub>4</sub>Br) solution supply unit 16B or 20 increase a supply amount of HBr supplied from the HBr supply unit 50.

In contrast, in the case where the enrichment of Br exceeds the predetermined enrichment, control to adjust an opening level of the valve V<sub>5</sub> interposed on a line L<sub>3</sub> is executed by 25 the control unit 61 so as to return separate liquid 34 separated at a water separator 33 to a bottom portion side of the wet SO<sub>x</sub> removal unit 21.

[0077] As a result of this control, the enrichment of Br having an appropriate volume can be constantly kept, and mercury 30 in the flue gas 12 and removed by the SO<sub>x</sub> removal unit can be stabilized in the liquid phase.

[Six Embodiment]

[0078] Next, a treatment system for mercury in a flue gas

according to a sixth embodiment of the present invention will be described. Note that components same as those of first to fifth embodiments are denoted by the same reference signs and repetition of a description therefor will be omitted.

5 FIG. 6 is a schematic diagram illustrating the treatment system for mercury in the flue gas according to the sixth embodiment of the present invention.

As illustrated in FIG. 6, a treatment system for mercury in a flue gas 10F according to the present embodiment supplies 10 HBr from an HBr supply unit 50 into a flue gas duct 13 configured to introduce a flue gas 12 into a wet SO<sub>x</sub> removal unit 21, different from a fifth embodiment.

HBr having been introduced into the wet SO<sub>x</sub> removal unit 21 together with the flue gas 12 is dissolved into 15 limestone-gypsum slurry 20, thereby increasing enrichment of HBr in the limestone-gypsum slurry 20 to predetermined enrichment or higher.

[0079] As a result, HBr is contained in slurry absorbent, and therefore reaction in a following formula (5) progresses 20 in a leftward direction and mercury exists in an ionic state. Therefore, mercury can be stabilized in a liquid phase.



[0080] According to the present embodiment, HBr is separately supplied from the HBr supply unit 50 into the flue 25 gas 12 introduced to the wet SO<sub>x</sub> removal unit 21, and enrichment of bromine inside alkali absorbent inside the wet SO<sub>x</sub> removal unit 21 is increased to predetermined enrichment or higher. By thus setting the enrichment of bromine to the predetermined enrichment or higher, mercury in the flue gas 12 can be 30 stabilized in an ionic state  $\text{Hg}^{2+}$ , for example, inside solution of limestone-gypsum slurry 20 which is the alkali absorbent discharged from the wet SO<sub>x</sub> removal unit 21.

According to the present embodiment, the enrichment of Br

inside the limestone-gypsum slurry 20 at the unit bottom portion of the wet SOx removal unit 21 is measured by a Br enrichment meter 60. Further, based on a measurement result thereof, the state is held as it is in the case where the predetermined enrichment is kept.

10 Additionally, in the case where the enrichment of Br becomes to the predetermined enrichment or lower, control to adjust an opening degree of a valve V<sub>7</sub> is executed by a control unit 61 so as to increase a supply amount of HBr supplied from the HBr supply unit 50.

15 In contrast, in the case where the enrichment of Br exceeds the predetermined enrichment, control to adjust an opening level of a valve V<sub>5</sub> interposed on a line L<sub>3</sub> is executed by the control unit 61 so as to return separate liquid 34 separated at a water separator 33 to a unit bottom portion side of the wet SOx removal unit 21.

20 [0081] As a result of this control, the enrichment of Br having an appropriate volume can be constantly kept, and mercury in the flue gas 12 and removed by the SOx removal unit can be stabilized in the liquid phase.

#### Reference Signs List

[0082] 10A - 10F Treatment system for mercury in flue gas

11 Boiler

12 Flue gas

25 16A NH<sub>3</sub> solution supply unit

16B NH<sub>4</sub>Br solution supply unit

16C NH<sub>4</sub>Cl solution supply unit

17 NOx removal unit

18 Heat exchanger (AH)

30 50 HBr supply unit

60 Br enrichment meter

61 Control unit

## CLAIMS

1. A treatment system for mercury in a flue gas, which is a system to remove Hg contained in the flue gas flowing from a boiler, comprising:

5 a heat exchanger configured to execute heat exchange for the flue gas flowing from the boiler;

a precipitator configured to remove soot dust in the flue gas;

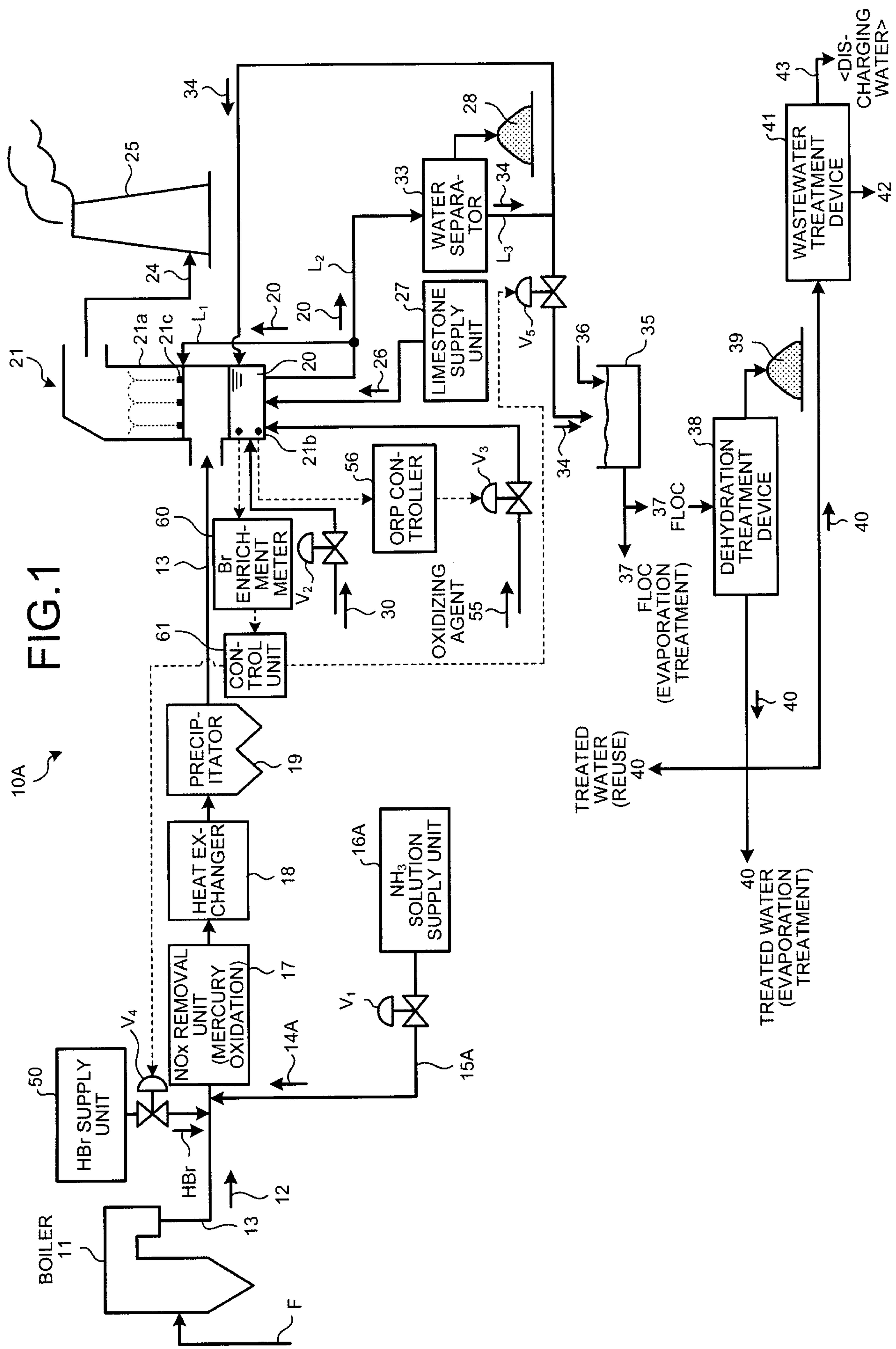
10 a wet SO<sub>x</sub> removal unit configured to remove mercury oxide Hg<sup>2+</sup> in the flue gas with alkali absorbent and also desulfurize sulfur oxide in the flue gas; and

a Br compound supply unit configured to supply a Br compound into the flue gas or into the alkali absorbent of the wet SO<sub>x</sub> removal unit,

15 wherein enrichment of bromine inside the alkali absorbent in the wet SO<sub>x</sub> removal unit is set to predetermined enrichment or higher.

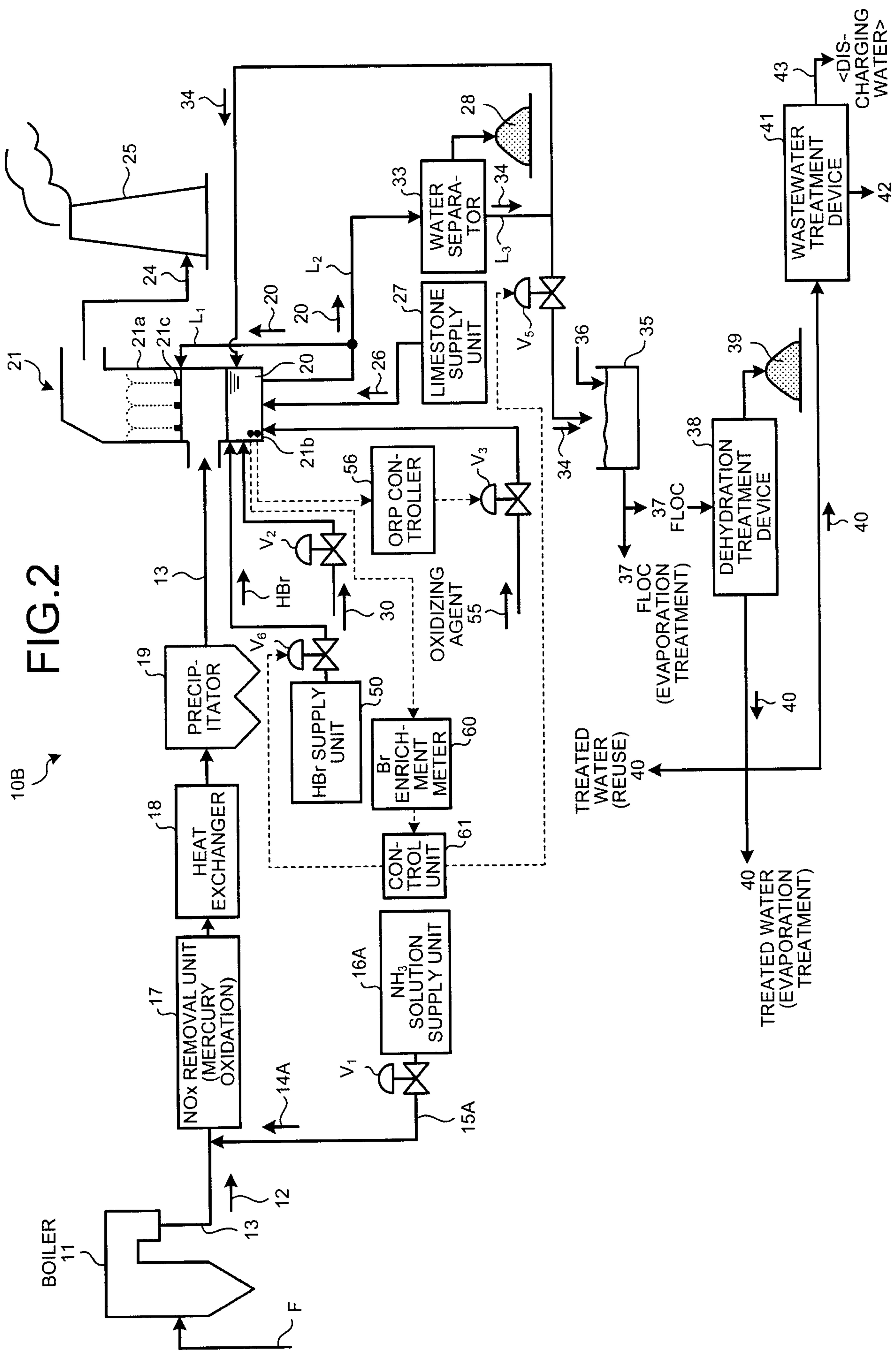
2. The treatment system for mercury in a flue gas according 20 to claim 1, including an NO<sub>x</sub> removal unit disposed on an upstream side of the heat exchanger and provided with a denitrification catalyst configured to denitrify NO<sub>x</sub> in the flue gas and oxidize metal mercury (Hg<sup>0</sup>).

25 3. The treatment system for mercury in a flue gas according to claim 1 or 2, wherein the alkali absorbent is limestone slurry, and a water separator configured to draw off limestone-gypsum slurry generated in the wet SO<sub>x</sub> removal unit and separate gypsum from the drawn-off limestone-gypsum slurry is provided.

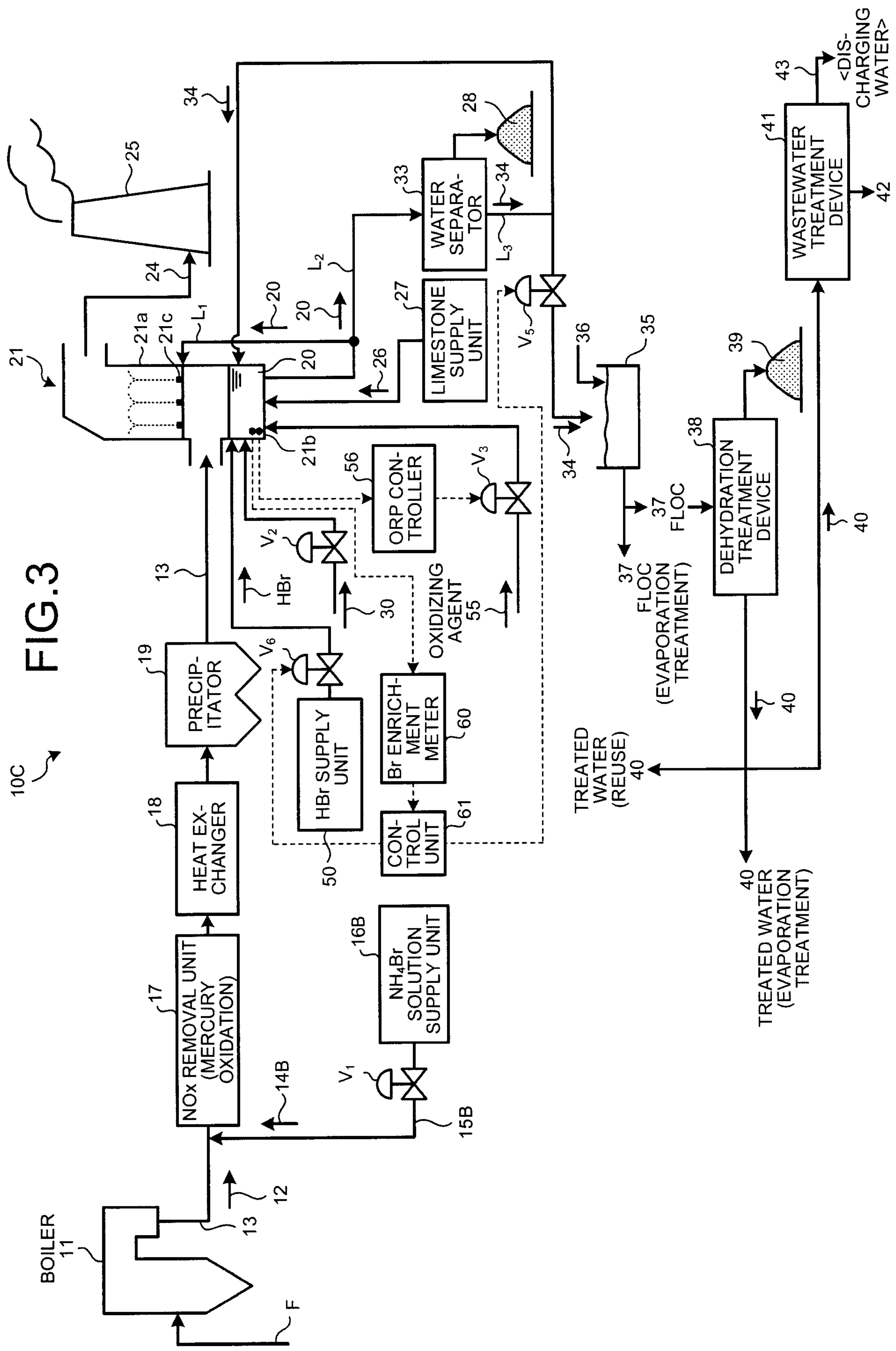

30

4. The treatment system for mercury in a flue gas according to claim 3, wherein flocculation treatment is applied to solid content contained inside separate liquid after the gypsum

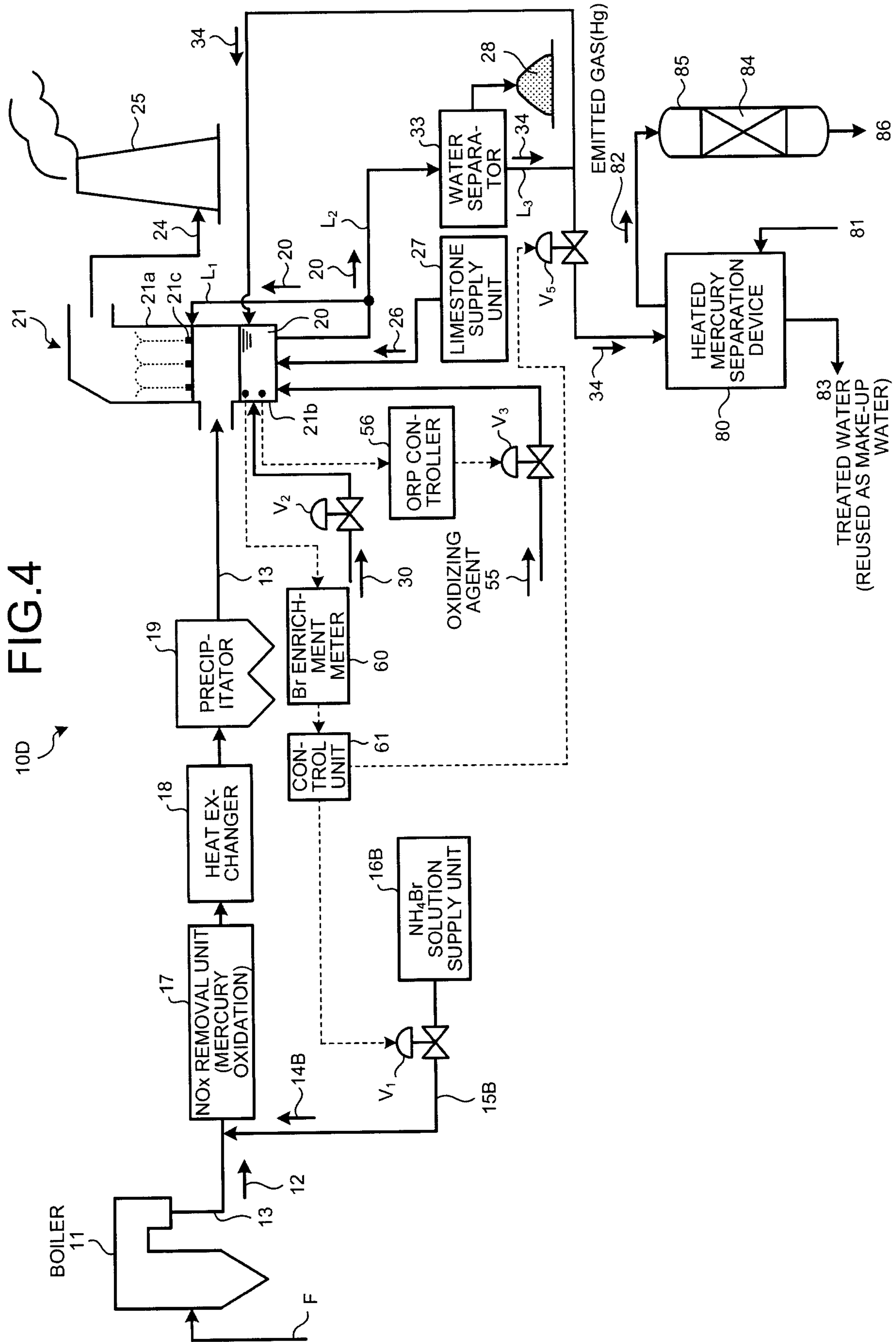
separation, and a floc is separated, and further treated liquid obtained after separation is reused in the wet SO<sub>x</sub> removal unit or applied with wastewater treatment.


5 5. The treatment system for mercury in a flue gas according to claim 3, wherein mercury contained inside the separate liquid after the gypsum separation is separated as a gas body at a heating mercury separation device, and mercury contained inside emitted gas is scavenged by a scavenging unit.

1/7

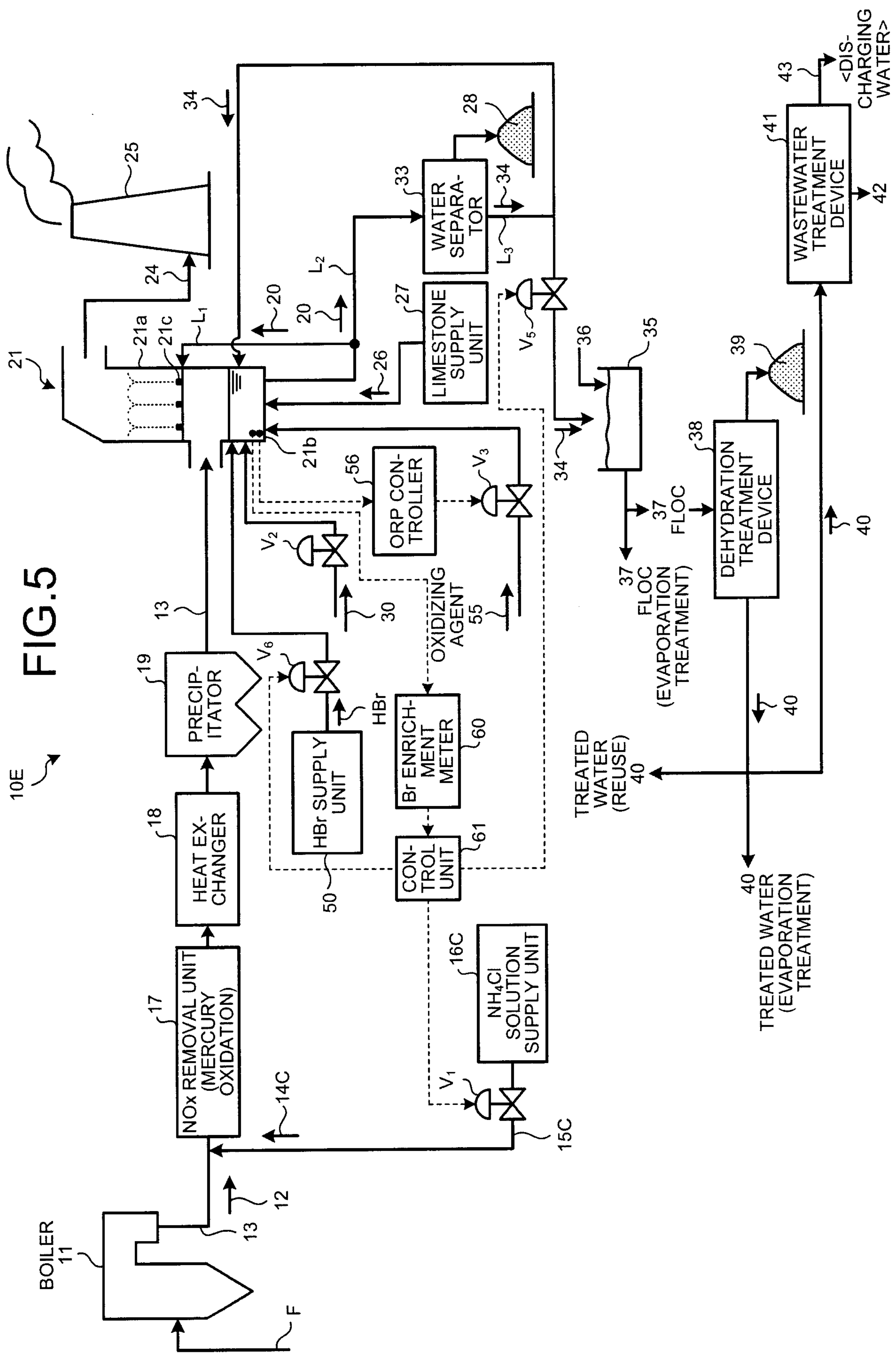



2/7

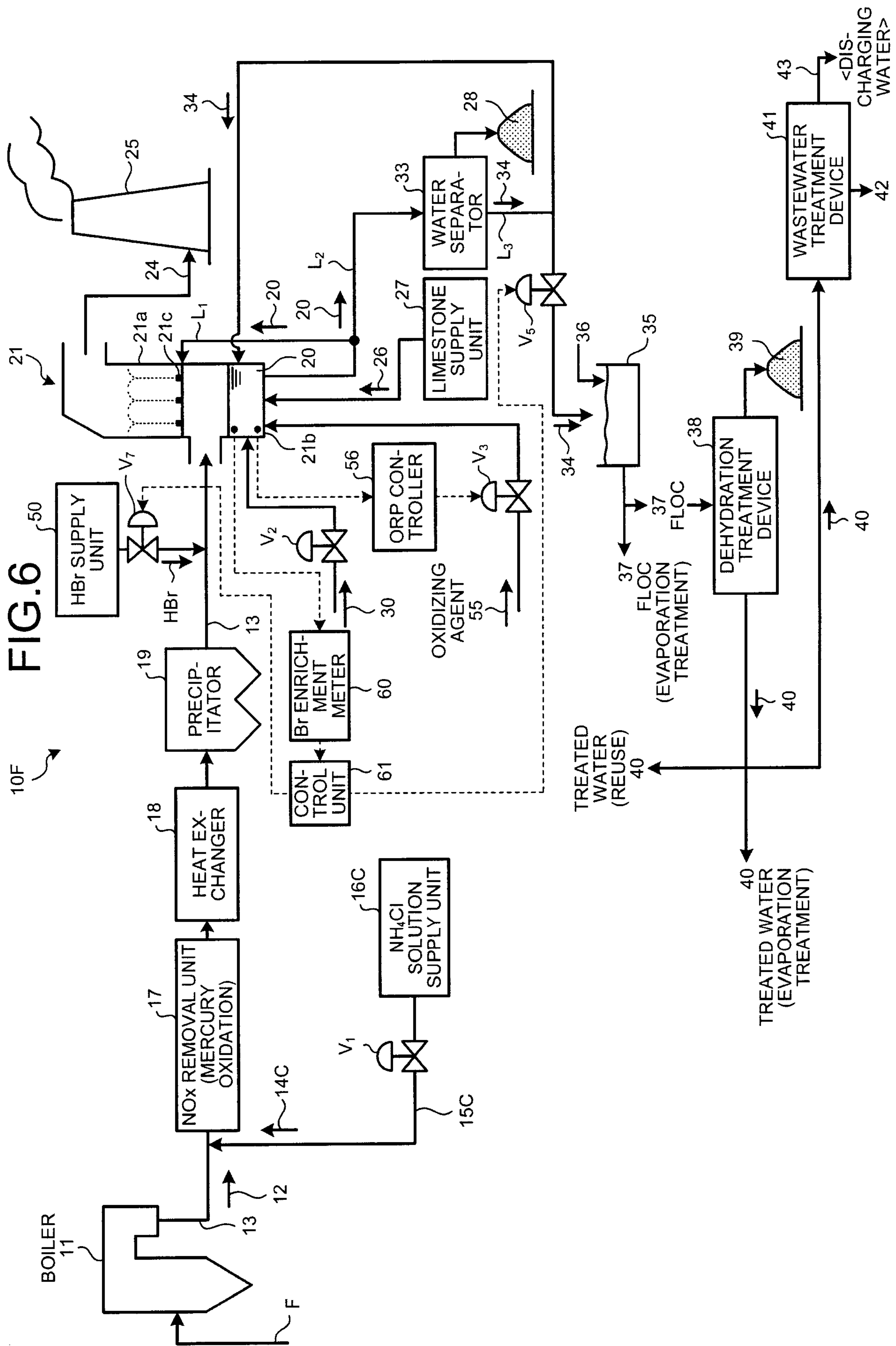

८८



3/7

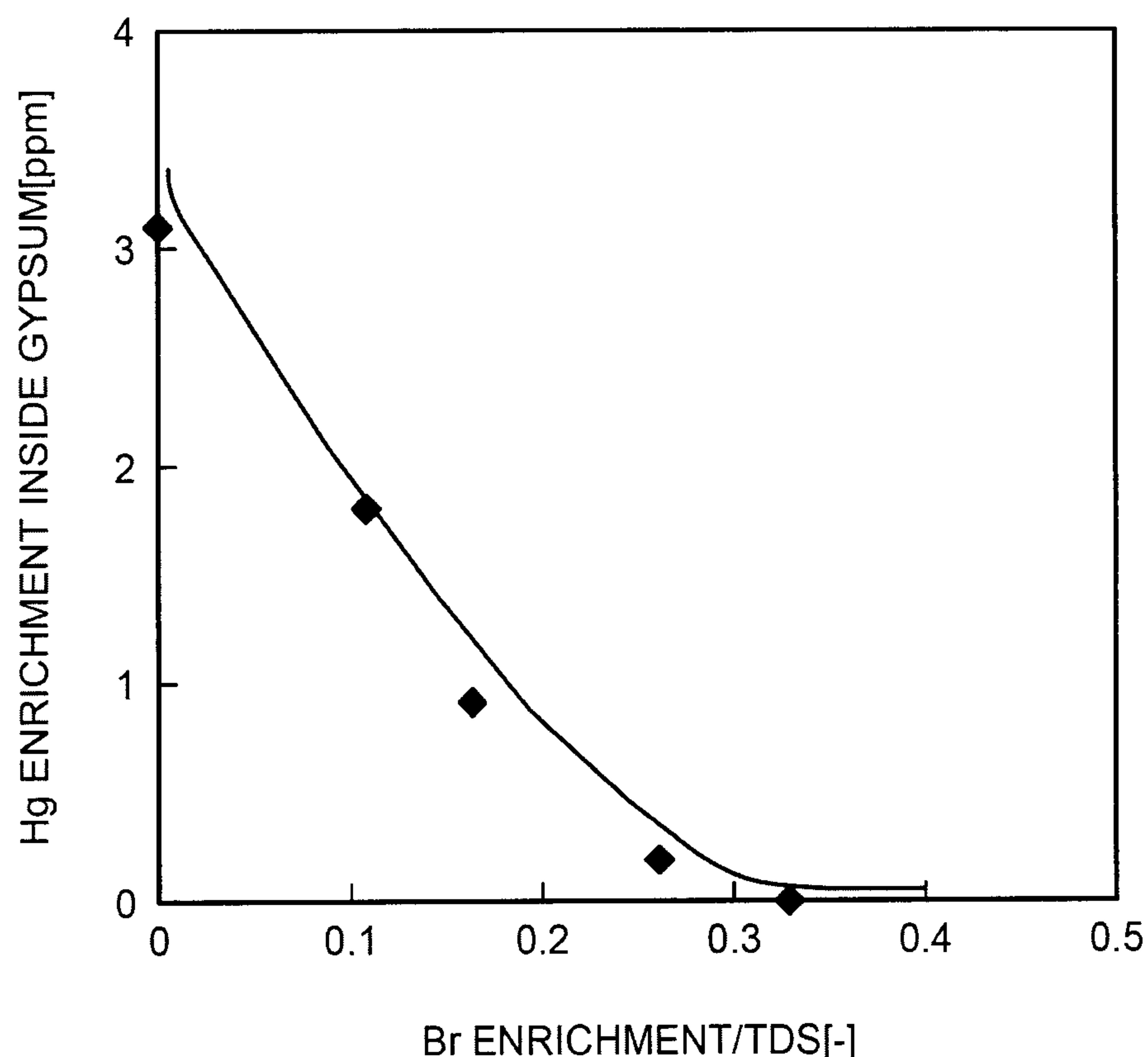



&lt;div[](https://img.shields.io/badge/4/7-green)

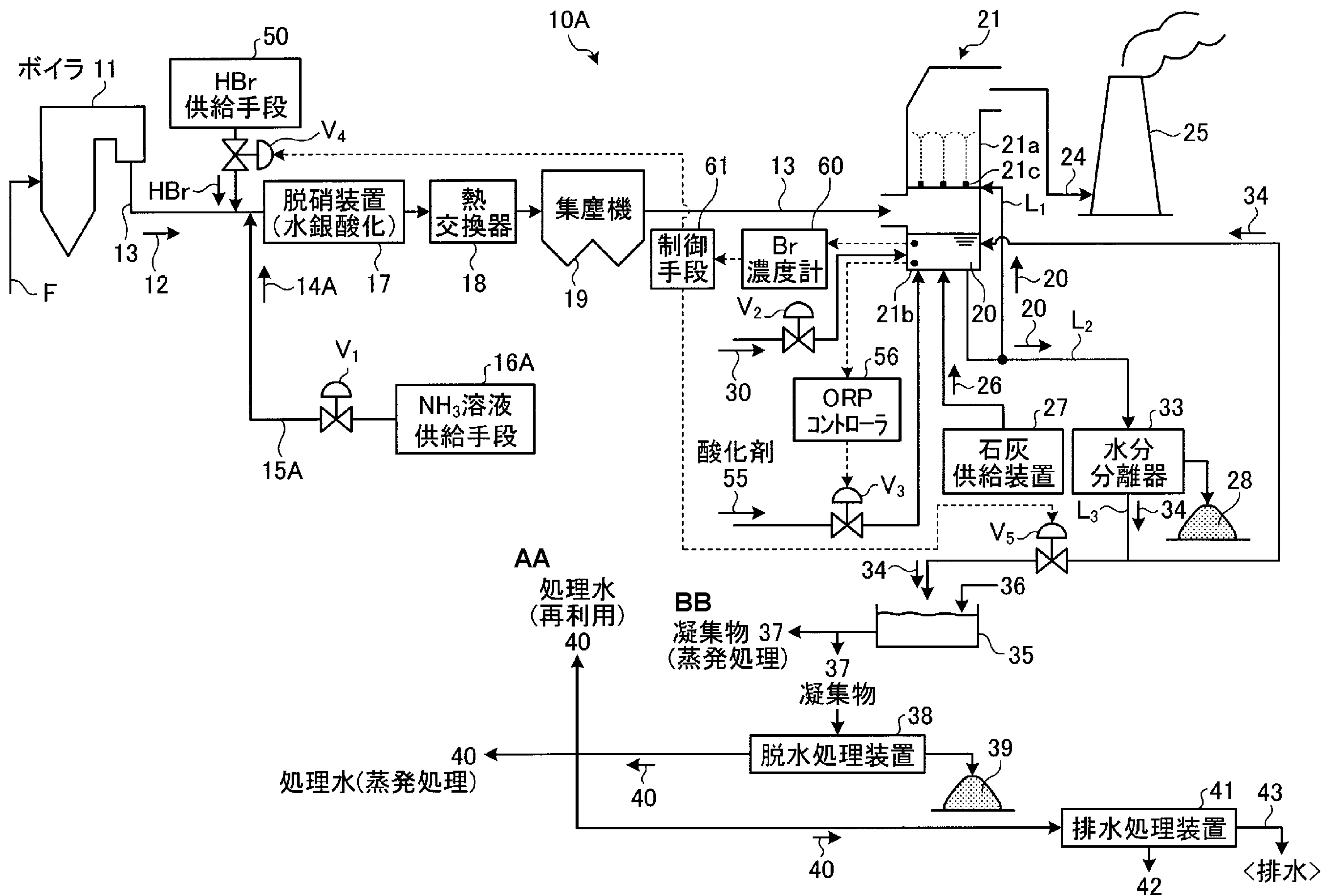



&lt;div[](https://img.shields.io/badge/5/7-green)

&lt;div




GO  
G  
E




7/7

FIG.7



[図1]



11 Boiler

16A  $\text{NH}_3$  solution supply means

17 Denitration device (mercury oxide)

18 Heat exchanger

19 Dust collector

27 Lime supply device

33 Moisture separator

37 Agglomerate

38 Dehydration treatment device

40 Treated water (evaporation treatment)

41 Waste water treatment device

43 Waste water

50 HBr supply means

55 Oxidizing agent

56 ORP controller

60 Br concentration meter

61 Control means

AA Treated water (re-used)

BB Agglomerate (evaporation treatment)