wo 2015/047642 A1 || I OO0 OO0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

2 April 2015 (02.04.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/047642 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:

GO6F 12/08 (2006.01) GO6T 15/04 (2011.01)
GO6F 12/10 (2006.01) GO6T 11/00 (2006.01)
GO6T 1/60 (2006.01)

International Application Number:
PCT/US2014/053016

International Filing Date:
27 August 2014 (27.08.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/035,643 24 September 2013 (24.09.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: GOTWALT, David A.; 105 Ashford Drive,
Winter Springs, Florida 32708 (US). FRISINGER,
Thomas Edwin; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US). GRUBER, Andrew Evan; 5775

(74

(8D

Morehouse Drive, San Diego, California 92121-1714 (US).
DEMERS, Eric; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US). SHARP, Colin Christopher;
5775 Morehouse Drive, San Diego, California 92121-1714

(US).

Agent: ANDERSON, Lester J.; Shumaker & Sietfett,
P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota
55125 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

[Continued on next page]

(54) Title: CONDITIONAL PAGE FAULT CONTROL FOR PAGE RESIDENCY

(57) Abstract: The present disclosure provides for systems and methods to

/ 550

ACCESS A NON-RESIDENT PAGE

DETERMINE THAT THE NON-
RESIDENT PAGE SHOULD NOT
CAUSE A PAGE FAULT

/- 552

Y

/- 554

RETURN A DEFAULT VALUE WHEN
THE ACCESS OF THE NON-RESIDENT
PAGE IS A READ

DISCONTINUE A WRITE WHEN THE 555

ACCESS OF THE NON-RESIDENT
PAGE IS A WRITE

/

FIG. 5

process a non-resident page that may include attempting to access the non-
resident page, an address for the non-resident page pointing to a memory
page containing default values, determining that the non-resident page should
not cause a page fault based on an indicator indicating that a particular non-
resident page should not generate a page fault, returning an indication that a
memory read did not translate and returning the default value when the ac-
cess of the non-resident page is a read and the non-resident page should not
cause a page fault. Another example may discontinue a write when the access
of the non-resident page is a write and the non-resident page should not cause
a page fault.

WO 2015/047642 A1 |IIWAK 00N VTR AU

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2015/047642 PCT/US2014/053016

CONDITIONAL PAGE FAULT CONTROL FOR PAGE RESIBENCY

TECHNICAL FIELD
(8061} This disclosure relates to resident and non-resident pages in a graphics memory

and more particularly to techmigues for page fault control,

BACKGROUND
18662} Generally, accesses to non-resident pages in some systoms causg a page fault. A
non-resident page is a page that does not bave a physical memory location associated
with 1t. Conversely, a resident page is a page that has a physical memory location
associated with #f. For exampie, a non-resident page may bhave a virtual address, but no
actual physical memory associated with that address. Tn some examples, software may
map the virtual address to the physical address for resident pages using, for exanple, a
page table. (enerally, no mapping can occur for non-resident pages because a non-
resident page has no physical memory allocated to i, A memory management unit
(MMU) may perform a loek up to determine the mapping between virtual addresses and
physical addresses in order to perform a memory transaction such as a memory read or a

Memory write.

SUMMARY
[80663] Some application programming interfaces (APIs) for handling tasks related to,
o.g., multimedia, may allow non-resident pages to be accessed without a fault. The
present disclosure provides for systems and method related to techniques for
distinguishing between non-resident pages that cause a fault and do not cause a fault. In
one example, when a non-resident tile 1S accessed predetermined bit values may be
returned in response to a read instruction and in Tesponse 10 a wrile instruction to a non-
resident tile, the write may be dropped. In another example, a “domumy page” fitled will
the proper defaclt values can be used for all non-resident pages. The dummy page may
be a single memory page filled with the proper default values that may be accessed
when any momory addresses to a nen-resident page are read, for example. In some
examples, an indication, such as a signal, that a memory read did not translate may also

be retumed. A memory read does not translate when the virtual address does not map to

WO 2015/047642 PCT/US2014/053016

a physical address. in other words, a memory address does not transiate when the page
the virtual address points 10 a page that is non-resident. When a page is non-resident,
the virtual address canmot be translated into a physical address because no physical
address exists for the virtual address.

[8084] A non-resident page is a page for which there is not a physical memory location
and hence no mapping of virtual address to physical address. A resident page,
conversely, is a page that have a physical memory location and hence may be a mapping
of virtual address to physical address. Additionally, this disclosure describes various
ways to lot a client, 1.¢., a device that may attempt to read or write to the pages ina
memory, know when a page is non-resident.

(8665} In onc example, the disclosure describes a method of processing a non-resident
page including attempting to access the non-resident page, an address for the non-
resident page poiuting to a memory page containing default values, determining that the
non-resident page should not cause a page faalt based on checking an indicator that
indicates that the non-resident page should not generate a page faull, and returning an
indication that a memory read did not transiate and returning the default values when
the access of the non-resident page is a read and the non-resident page should not cause
a page fault.

(8666} In onc example, the disclosure describes a method of processing a non-resident
page including attempting to access the non-resident page, an address for the non-
resident page pointing to a memory page containing default values, retioming an
indication that a memory read did not transiate and retwrning the default vahies when
the access of the non-resident page is a read and the non-resident page should not cause
a page fault, and discontinuing a write when the access of the non-resident page 18 a
write and the non-resident page should not cause a page faukt.

{8047} In another exampie, the disclosure describes an apparatus for processing a non-
resident including a processor configured to attemapt to access the non-resident page, an
address for the non-resident page pointing to a memory page comaining default values,
determine that the non-resident page should not cause a page fault based on checking an
indicator that fndicates that the non-resident page should not generate a page fault, and

return an indication that a memory read did not translate and retum the default valaes

WO 2015/047642 PCT/US2014/053016

JFS]

when the access of the non-resident page is a read and the nou-resident page should not
cause a page fault.
{8668} In ancther example, the disclosure describes an apparatus for processing a non-
resident including a processor configured to attempt to access the non-resident page, an
address for the nou-resident page pointing to a memory page containing default values,
veturn an indication that a memory read did not translate and return the default values
when the access of the non-resident page is a read and the non-resident page should not
causc a page fault, and discontinue a write when the access of the non-resident page is a
write and the non-resident page should not cause 2 page fauit.
186691 In ancther example, the disclosure describes an apparatus {or processing a non-
esident including means for attempting to access the non-resident page, an address for
the non-resident page pointing 0 a memory page containing default values, means for
determining that the non-resident page should not cause a page fault based on the means
checking an indicator that indicates that the non-resident page should not generate a
page fault, and means for returning a defack value when the access of the non-resident
page is a read and the non-resident page should not cause & page fanit.
166168} In another exarple, the disclosure describes an apparatus for informing a chient
that a page is non-resident incloding means for accessing a non-resident page, an
address for the non-resident page pointing to 8 memory page containing default values,
means for returning an indication that a memory read did not translate and means for
returning the defaclt vahies when the access of the non-resident page is a read and the
nop-resident page should not cause a page fault, and means for discontinuing a write
when the access of the non-resident page is a write and the nouv-resident page should not
cause a page fault,
{8611} In ancther example, the disclosure describes a computer-readable storage
medium. The computer-readable storage medivam having stored thereon instructions
that upon execution cause One Of MOTe Processors ationmpt to access a non-resident page,
an address for the non-resident page pointing to a memory page containing defanlt
values, determine that the non-resident page should not cause a page fault based on
checking an indicator that jndicates that the non-resident page should not gencrate a

page fault, and return an indication that 2 memory read did not transiate and return the

WO 2015/047642 PCT/US2014/053016

default value when the access of the non-resident page is a read and the non-resident
page should not cause a page fault.

{8612} In ancther example, the disclosure describes a computer-readable storage
medium. The computer-readable storage medivnm having stored thereon instructions
that upon exccution cause ONe of MOTe Processors a nou-transitory conputer readable
storage medium storing instractions that upon execution by one or more proccssors
cause the one or more processors to attempt {o access a non-resident page, an address
for the non-resident page pointing to a momory page containing default values return an
indication that a memory read did not transiate and returning the default values when
the access of the non-resident page is a read and the non-resident page should not cause
a page fault, and discontinue a write when the access of the non-resident page is a wriie
and the nou-resident page should not cause 2 page fault.

{68013} The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

16014} FIG. 1 is a bleck diagram illustrating an example computing device that may be
used to implement the techniques described in this disclosure.

{86158} FIG 2 is a block diagram illustrating an example computing device to implement
the techoiques for distinguishing between non-resident pages that cause a fault and von-
resident pages that do not cause a fault deseribed in this disclosure.

{8816} FIG 3 is a block diagram illustrating another example computing device to
implement the techniques for distinguishing between non-resident pages that cause 3
fault and nov-resident pages that do not cause a fault described in this disclosure.

16617} FIG. 4 1s a conceptual diagram ilustrating an example graphics pipeline that
inchides units that may perform the techniques for distinguishing between non-resident
pages that cause a fault and non-resident pages that do not causc a fault of this
disclosure.

(8018} FIQG. § is a flowchart illustrating an example method in accordance with one or

more examples described in this disclosure.

WO 2015/047642 PCT/US2014/053016

e

18419} FIG. 6 is a flowchart illustrating an example method in accordance with one or

more examples described in this disclosure,

BETAILED BESCRIPTION

186281 As discussed above, some APTs allow non-resident pages to be accessed without
a fault. One example is a new feature in DirectX 11 (DX11) called tiled resources.
Tiled resources allow for non-resident pages of a resource to be accessed via a graphics
operation (e.g., texture read, color buffer write) without faulting.

{80621} This disclosure relates to techniques for page fault control. The present
disclosure provides for systems and method related to techniques for distinguishing
hetween non-resident pages that cause 2 fault and do not cause a fault. For example,
this disclosure describes various techniques to distinguish between non-resident pages
that cause a fault and non-resident pages that do not cause a fault. A page fault
generally occurs when a processor or 1uemory management unit attempts to read or
write 10 a memory address of a non-resident page. As described above, a non-resident
page is a page for which there is not a physical memory location and hence no mapping
of virtual address to physical address. Resident pages, conversely, are pages that have a
physical memory location and hence may be & mapping of virtual address to physical
address.

{8622} Additionally, this disclosure describes various ways to let a chient know when a
page is a non-resident page. For cxample, the technigues described in this disclosure
may allow the client to determine that it is accessing a non-resident page. In some of
the techniques described in this disclosure, rather than halting the exccotion of the
subscquent conumands, the client may be configured to handle such accesses to non-
resident pages. A client is device that moay attempt to read or write to the pages ina
memory. In some examples, a processor may be a client. For example, a graphics
processing onit may be a client. In such an example, multiple sub-clients within the
GPU may request access {¢.g., a texture sub-clicnt may request a read from an address
while a raster unit could request 2 write). In such an exaraple, the GPU is making read
& write requests. n some examples, a client may be a requester within the GPU, sach
as a texture unit, bleader unit, or shader unit. The memory management unit (MMU)

may be a client. The MMU is gencrally a slave to one or more of the above clients,

WO 2015/047642 PCT/US2014/053016

however. In onc example, when a noun-resident tile is accessed by a client
predetermined bit values may be returned in response to a read operation and n
response 1o @ write operation may be dropped. In another example, a “dummy page”
filled will the proper default values may be used for all non-resident pages. The dummy
page reay be a single memory page filled with the proper default values. When a client
accesses any memory addresses 10 a non-resident page the values in the dummy page
may be returned to the client.

18623} As discussed above, a new feature in DX11 called tiled resources allows for non-
resident pages of a resource to be accessed via a graphics operation (1L.e. texture read,
color buffer write) without faslting. Accordingly, it may be necessary to distinguish
between non-resident pages that cause a fault and non-resident pages that do not causc a
fault. Additionally, a way should be found to let a cliend know when a page is non-
resident.

[8024] In one example, DX11 page attributes such as Read Permission (R}, Write
Permission (W}, Cacheable memory location (C), and Shared memory location {S) may
include an additional bit, flag, or other indication o specify that an access to a non-
resident page should not generate a page fault. Some examples of the systems and
methods described herein may add the NF (no faulting) bit on top of existing ARM bits.
The above list of other bits is not intended o be exhaustive with respect to other
attributes. There may be others. The page attributes R, W, C, and 8 are only given as
examples, based on ARM.

18025] In some examples, the no fault {NF) bit (flag, ctc.) may indicate that an access to
this nouv-resident page should not generate a page fanit. For cxample, for a given virtual
address, the page table may store the physical address that 18 associated with the virtual
address, as well as page attributes of the data stored in the page identified by the
physical address. The page atiributes may be stored as binary bils in a page table. The
page table may be mapped to a physical address {(as one cxample). NF bit 208 may be
add to page attributes to specify an access to this non-resident page should not generate
a page fault. An example device implementing these systerus and methods may then
return a default value for reads or drop the write. Thus, NF bit 208 may indicate that an
access to non-resident material should not cause a fault. In one example, such a device

may determine if a fault should occur or not for a read or write. 1f a fault does not occur

WO 2015/047642 PCT/US2014/053016

~d

the read or write may be translated. If a fauli does occur then the device may use NF bit
204 1o determine if the fault should be reported the fault 1o the operating systom (O8)
about the faglt, The device may perform various typical page fault correction
Alternatively, ¥ NF bit 208 indicates that 2 fault should not be reported to the 08, the
device may return a value such as Ox0 for reads or the device may abort the writes and
confinue.
[8826] As discussed above, in some examples, an indication, such as a single, thata
memory read did not translate may also be returned. A memory read does not transiate
when the virtual address does not map to a physical address. in other words, 2 memory
address does not translate when the page the virtual address points 1o a page that is non-
csident. When a page is non-resident, the virtual address cannot be translated into a
physical address because no physical address exists for the virtual address.
{68027} While one purpose of NF bit 208 may be to specify that non-resident material
should not casse a fault, NF bit 208 may also affect the determination of a non-resident
page. For example, NF bit 208 may be used to determine if the page in a tiled resource
18 resident as described here. In various exaraples described herecin, NF bit 208 may be
used fn conjunction with default valaes, residency checks, efc. o deternune if a page in
a tiled resource is resident.
{8628} In an example, if a fault occurs, then a memory access to a non-resident page has
oecurred and NF bit 208 must have been set to allow faults, If a fault does not occur, a
memory access has occurred, and NF bit 208 is such that a fault is allowed to secur,
then the attempted memeory access must be to a resident page. 1f a fasht would have
occurred, except NF bit 208 was set so that a fault will not eceur, then other aspects of
the disclosure may occur, such as returming of default values, residency checks, otc.
[8029] Some examples may use existing page table attributes. In other words, there
may not need to be a NF bit 208 in such an example. In such an example, a “dommy
page’” filled will the proper detanlt values can be used for all non-resident pages. The
dunumy page may be a single memory page filled with the proper default vahues that
may be accessed when any memory addresses 1o a non-resident page arc read, for
cxaraple. Such an example may store a durmmy page at a particular physical memory
address and store the value of the physical memory address in a register. The virtual

addresses of the non-resident pages may be mapped to the physical memory address of

WO 2015/047642 PCT/US2014/053016

the dunmmy page. Additionally, when a page is being accessed, its physical memory in
the page table may be compared to the physical memory value stored io the register. If
the two values are the same, then the client determines that it is accessing a non-resident
page. If the two values are different, then the cliont determines that it is accessing a
resident page.

8038} Some examples provide for letting a client, e.g., a device that may access
memory, such as a processor, know when a page is non-resident. This is referred toas a
residency check. A residency check may be used because, while default or dummy
valucs may provide an indication that a page is noun-resident, i is always possible that a
resident page may happen to have these values stored in memory, for example as actual
data. In one example, a memory management uait (MMU) may return a bit, flag, or
other fndication that may indicate that the page is nos-resident. This bit, flag, or other
mdication may be separate from NF bit 208 or flag. NF bit 208 is not necessarily the
same as the bit retimed to the client. In one example, a client, e.g., GPU, may read a bit
from an MMU to determine if the page in a tiled resource is resident. Tiled resources
are also known as megatextures, virtual textures, sparse textures, and partially resident
textures. The tiles may be multiple memory pages that store different granularities of
the same basic texture. This functionality provides for textures to be partially loaded in
memory for quicker access, ¢.g., a texture, may be tiled or stored on multiple memory
pages. This may allow larger textures to be used more etficiently. In other examples, a
flag or other indictor may be read by the clent.

18631} In some examples, an advantage to this technigque to distinguish between non-
resident pages that cause a fault and nov-resident pages that do net cause a fault is that
the graphics processing system may allow for non-resident pages that should not cause a
fault while still faulting when an access to a non-resident page that should cause a fault
is attompted.

[8032] Accordingly, the DX 11 tiled resources feature, which allows for non-resident
pages of a resource to be accessed via a graphics operation (i.¢. texture read, color
buffer write) without faulting may be supported while still supporting page faults for
accesses 1o all other resources (e.g., non-tiled resources) such that these other resources
cause a page fault if an access is attempted and the page being accessed 15 a non-

resident page. When an attempt is made to access a non-resident page to a non-tiled

WO 2015/047642 PCT/US2014/053016

resource there is not need to map the virtual address of all non-resident pages in the
non-tiled resource to a dunwuny page, rather, a fault will occur instead. Accordingly,
graphics processing systems may retirn a page fault for non-resident pages that cause a
fault. Generally, any memory operation, ¢.g., memory ready or memory write, 1o a non-
resident page would return a page fault. However, tled resources in DX11 is an
example of a feature that allows for non-resident pages of a resource to be accessed via
a graphics operation (i.c. texture read, color buffer write} without faulting. For non-
resident. Other possible examples may include the “partiaily resident texture” extension
in OpenGlL.

16033} A memory page containing default value may also be referred to as a dummy
page and be said to contain dumny valucs. For example, in some cases, for accesses to
all other resources, e.g., non-tiled, NF bit 208 may be sct 1o allow a fault. In other
words, a read or write to a non-resident page should cause a page fault for accesses o
all other resources. Thus, for rescurces unrelated to DX 11 tiled resources, which allows
for non-resident pages of a resource to be accessed via g graphics operation (i.e. texture
read, color buffer write) without faulting, NF bt 208 may be set 1o allow a fault. To one
exarple, if NF is single bif and NF ="} indicates that no fault should ocecur, then NF =
“0y” indicates that faults should be processed normally. In other words, any memory
operation, ¢.g., memory ready or memory write, 1o a non-resident page would return a2
page fault because with non-resident pages there 15 no actual memory for the GPU or
MMU to read or write. Accordingly, for accesses to all other resources, e.g., non-tiled,
NF bit 208 would be “0.” The converse is alse true. Thus, if NF is single bit and NF =
“0,” e.g., active low, indicates that no tault should occur, then NF =17 indicates that
faults should be processed like normal. Accordingly, for accesses o all other resources,
e.g., non-tiled, NF bit 208 would be “1.” Similarly, flags and other indications may also
allow for a graphics processing system, ¢.g., GPU, MMU, memory, ¢ic., to support page
faults for accesses to all non-tiled resources by simply returning a page fault rather than
mapping a virtual address of the non-tiled non-resident page to a dummy page since
generally a page fault occurs when a processor or memory management unit aticmpts to
read or write t0 a memory address of a non-resident page. For example, one flag setting

may indicate no fault while another allows for a fault to occur,

WO 2015/047642 PCT/US2014/053016

10

18434} In an example, when a graphics processor, memory management unit {MMU) or
other processor reads & non-resident page that should not cause a fault, default valoes,
e.g., predetermined bit valaes such as all @5, all Us, etc. may be retarned by the read.
The default value provides a predefing value that may be used for all non-resident page
accesses. In one example, f a read occurs 1o a non-resident page the value will be 0.
This does not conclasively indicate that the page is non-resident, however, The default
value, e.g., 0 may be a common vahie and it may be possible for resident pages to
contain the default value by chance. An MMU or other processor may use a status or
acknowledgement (ACK), for example, to indicate to a device, such as a GPLU that may
perform the read or may have requested that the MMU perform the read, that a non-
esident page has been accessed. The ACK may provide an indication that & memory
read did not translate. As discussed above, momory read docs not translate when the
virtual address does not map to a physical address. Some examples may use the ACK
{or another indication or signal) to determine if a memory read translated. NF bit 208 or
the default vaived may provide an indication that the memory read should not cause a
fault when it has been accessed. In another example, a texture unit, which may perform
reads but generally does not perform writes, may receive the default value when it or
another processor reads a non-resident page that should not caose a fault. Additionally,
in an example, the client, ¢.g., GPU, may perform a residency check by requesting
residency information from the MMU. For example, the GPU may send a signal 1o the
MMU for to cause the MMU to provide an indication that a page is resident, For
exaraple, the GPU may provide an address as 3 signal to translate and the MMU
performs a check for residency. The MMU may return an acknowledgement indicating
if the page is a resident or non-resident page. The MMU manages the memory,
accordingly, information related to pages that are resident and non-resident may be
stored in the MMUJ or inn 2 page table that may be internal or external to the MMU, In
some examples, the page table may be stored in a portion of the momory, ¢.g., DRAM,
[8035] In an example, when the GPU attempts to write t0 a non-resident page, that write
aitempt should be dropped because the non-resident page does not map to a physical
focation and so there would be nowhere to write the data. The data for the attempted
write may be lost and a processor or other circuitry may need to recalculate the data if it

is later needed. This is generally necessary, however, because no memory location has

WO 2015/047642 PCT/US2014/053016

11

been allocated to store the information for a non-resident page. As described in more
detail, in an exanple, an MMU may drop the writes, for example, when the MMU
determines that a wrile is to a non-resident page. As also described in more detail, in
some examples, a pixel shader, geometry shader, or other shader unit of a graphics
processing unit may perform a write and may be programnmed to drop writes to non-
resident pages.

[63836] As discussed above, a new feature in DX11 called tiled resources allows for non-
resident pages of a resource to be accessed via a graphics operation (1.e. fexture read,
color buffer write) without faulting. Accordingly, i may be necessary to distinguish
between non-resident pages that cause a fault and non-resident pages that do not cause a
fault. Additionally, in some cxamples, a processor, graphics processor, or MMU may
perform reads and/or writes for depth testing. Depth testing 15 a graphics operation that
may be used to with respect to image depth coordinates in three-dimensional (3-D)
graphics to decide which clements of a rendered scene are visible, and which are
hidden. The processor, graphics processor, or MMU may also perform reads as part of
color blonding graphics operation. These functions may use the examples provided
herein to allow for dealing with resident and non-resident pages related to depth testing,
color blending, etc. An example color blending operation may read a previous color
{"old_color™) for blending with an incoming color (“incoming color™) to form a new
color ("New_color). In other words, a color that was previously displayed on, ¢.g., 8
video display, may be biended with an incoming color to form a new color. The new
color may be the color that is actually displayed. The previous color may be read by 2
processor performing the blending and blended using the following:

New _color = old_color * {1-blend value) + incoming_color*(blend value)
(80371 In another example, a dummy page contains dummy vahies that indicate if a
page is resident. The dummy page may be a single memory location or series of
memory locations that form a page of information that may be mapped to any read to a
non-resident page. For example, a system {such as a compare unit) may compare an
address, ¢.g., a physical address in the page table with an address value for the doomuay
page stored 1n a register to determine if the physical address is the same as the address
to the dummy page stored in the register. In this way, the system may determine if the

page is resident. In some examples, the input address may be a virtual address stored in

WO 2015/047642 PCT/US2014/053016

page tables. Status bifs may also be stored in the page tables. The virtual address and
the status bits may be combined to generate a physical address to which a given virtual
address will map. For example, an MMU may be configured to map virtual addresses
into physical addresses. The MMU may include a sct of page table entries used to map
a virtual address to a physical address of a tile. In some examples the MMU may
melade a cache line index that may be vsed to determine whether or not a request for a
cache line 13 a hit or miss. The dimnmy page referred to has a physical address and the
same physical address may be used for multiple virtual addresses. In this example, the
durany page physical address may be used for all virtual address table entries that are
not present and part of PRT.

{8038} If the page being accessed matches the value in the register then the page is now-
residont. Reads to the page may proceed as normal. This is because a processor or
graphics processor will write the appropriate default value to the dunmny page and these
values will be read by a system attempting to access a non-resident page. An attempted
write should be dropped. Again, the data for the attempted write may be lost and may
need to be recalculated if the data s later needed. This is generally necessary, however,
because no memory location has been allocated to store the information for a non-
resident page other than the page that includes the dummy vahies that may be used by
multiple non-resident pages. Additionally, in an example, a residency check should
return false when the page being accessed matches the value in the vegister that indicate
that the page is a non-resident page.

18439} An advantage to some cxamplcs of this solution is that non-resident pages are
transparcntly mapped to the ‘dummy page’ instead of creating a page fault on reads and
that ‘special’ handling is needed only on writes. Another advantage to some examples
of this solution is the defaclt value may be programmable since software may be
responsible for filling the page with the default value.

(8048} In some examples, the DX 11 feature may also require a way for a graphics
shader program to determine if a tiled-resource is resident or non-resident. A dummy
page filled with the proper default values may be used for all non-resident pages. The
default values stored 1o the dummy page may give an indication that a page is non-
resident. Such values may be stored in a page simply because the data storved happens to

be the same values as the default values, however. Additionally, in some casgs, if a

WO 2015/047642 PCT/US2014/053016

13

write occurs to any of these non-resident pages, however, it will overwrite the defauit
vatue. Accordingly, the dummy page cannot be relied ontto always retumn the correct
defanlt value, for example if the write is allowed to continge. Accordingly, another
indication, such as a single, that 2 memory read did not translate may also be used in
conjunction with the dummy values, as described herein. Additionally, in another
example, a separate residency map may be used to allow a shader program to determine
if a page is resident. Such an example may check the residency map to determine if a
read from that texture may occur. For example, a GPU running a shader program may
request a residency cheek from an MMU. When the GPU requests a residency check
the MMU may check a residency may to determine if, for example, a tile (multiple
memory pages) is resident in memory. if the check of the residency map returns that the
tile is non-resident then a default value in the shader might be used rather than fetching
the value from the memory, In one example, the requested memory access may o
access a tiled texture. The tiled texture or one coarseness level of the tiled texture may
not be stored in the memory. Accordingly, a default value may be returned instead or, as
discussed in more detail below, a more coarse version of the texture may be available.
18641} In various examples, techmiques for distinguishing between non-resident pages
that cause a fault and non-resident pages that do not cause a fault are provided.
Additionally, various ways to let a client know when a page is non-resident are
provided. What a client does when a page that is non-resident is being accessed may
vary and may be generally dictated by the needs of the chient.

18842} For cxample, in one case a partially-resident texture may be used. A partially
resident texture that is partially stored in memory. For example, some, but not all of the
granularity levels of the texture nmight be stored in memory. Granularity refers o the
level of detail for the texture that may be provided for a particular rendering. Generally,
the farther away 8 given texture is supposed to be 1n a 2D rendering of a 3D picture the
less detail that may be used fo a texture. The entive texture, i.c., every level of
gramuanity, may be larger than the size of the memory used to store a portion of it, e.g.,
one or more granularity levels. A portion of the texture, e.g., one of more granularity
fevels, mray be stored in the memory. Accordingly, a residency check may be used to
determine if a portion of the texture, e.g., a gramudarity level of the texture that may be

used for a given rendering of a picture, is resident or non-resident. For example, a GPU

WO 2015/047642 PCT/US2014/053016

14

may request a residency check to determine, for exanple, if a particular granularity
fevel of a texture is available in memory and memory controller 8 or an JOMMU may
return a residency acknowledge mdicating that the result of the residency check, e.g., if
a particular granularity level of a texture s available in memory. When a non-resident
portion of the texture is necded for the render of a picture the memory controller 8 or
TOMMU may veturn a default value.

(88431 In some examples, when a texture needed to render a picture is not available in
memory a clicnt may falf back to a more coarse texture with a higher mipmap level
(MIP level), where the size in pixels is smaller for a given texture, and, accordingly, the
texiure is coarser. A mipmap 1s an ordered set of arrays representing the same image;
cach array has a resolution lower than the previous one. For example, a mipmap level
{(MIP fevel) of 0 moay be for the highest resolution image, a MIP level of 1 may be for
the second highest resolation image, and so forth, where the highest MIP level is for the
image with the coarsest resolotion {See Table 1.} A coarser textare is a less detailed
version of a texture that may be stored by a processor and it may take less memory to
store the less detailed version of the texture. Accordingly, # may be more efficient to
store one or more less detailed versions of a texture rather than storing a detailed version
of the texture. The coarser version of a partially-resident texture may be more likely to
be resident. In some examples, the coarser version of the partially resident texture may
be acceptable depending on the level of detail (L.OD) necded for the given texture. In
some cxamples, a texture unit may select the level of coarseness displayed. For
exaraple, the texture unit may select a coarser texture that is resident rather than a move
detailed texture that is non-resident. The texture unit may be separate hardware or may

be part of a pixel shader or other shader.

WO 2015/047642

15
Size (in pixels) MIP Level

512 x 512 0
256 x 256]
128 x 128 2
64 x 64 3
32x32 4
16x 16 5
§x8 &
4x4 7
2x2 8
Ixni 8

Table 1

{8044} The exanples described berein generally provide a “fail safe” such that a page
fault does vot ecour for a von-resident page. For example, by falling back to a more
coarse texture with a higher mipmap level (MIP level), when a texture needed to render
a picture is not available in memory. In some examples, reads may not be needed. This
may occur, for example, when reading a more detatied texture level than what is Joaded
in memory. In that case, the application may be told that the texture is not resident and
may use a less detailed version. The texture might not be loaded to save memory. For
color writes, the page may be missing to save physical memory.

[8045] Some examples may access non-resident pages for color buffering. Color
buffering may include read only operations, write only operations, or both read and
write operations. A progessor {e.g., GPU) may perform a read only operation when, for
exaraple, destination alpha channel information 1s used and the current value of the
alpha chanmel information is to be kept and the write is aborted. This may occurs, for
example, in a blending case. The alpha chanmel is an additional channel that can be
added to an image. The alpha channel nformation contains fransparency information
about the image, and depending on the type of alpha it can contain various levels of
transparcency. The alpha chanmel generally controls the wransparency of all the other
chanpels. By adding the alpha channel information to an image the transparency of the

red channel, green chanuel and the blue channel may be controlled. A write only may

PCT/US2014/053016

WO 2015/047642 PCT/US2014/053016

15

typicaily be used to write color values to memory, ¢.g., one per pixel. Aread and write
may gencrally be used for blending. For example, a processor may read a destination
color and a destination alpha for a pixel and merge that wnformation for the pixel using,
¢.g., Porter-Duff style blending, with the incoming source color and source alpha for the
pixel. Accordingly, & processor may read and then write data related 1o blend the data.
In some cases there may be aborted writes, in which case only the read occurs. (Porter-
Euft blending rule defines a pair of the blending equations for controling the
contributions of two source pixels to a destination pixel.)

16046} F1G. 1 1s a block diagram illustrating an example computing device 2 that may
be used to implement the technigues described in this disclosure. Computing device 2
may comprise a personal computer, a deskiop computer, 3 laptop computer, 3 computer
workstation, a video game platform or consele, a wireless communication device {such
as, ¢.2., a mobtle telephone, a cellular telephone, a satellite telephone, and/or a mobile
telephone handset), a landline telephone, an Internet telephone, a handheld device such
as a portable video game device or a personal digital assistant (PDA), a personal mwsic
player, a video player, a display device, a telovision, a television set-top box, a server,
an intermediate network device, a mainframe computer or any other type of device that
processes and/or displays graphical data.

(8047} As illustrated in the example of FIG. 1, computing device 2 includes a user
mierface 4, a CPU 6, 2a memory contreller 8, a memory 10, a graphics processing unit
(GPU) 12, a GPU cache 14, a display interface 16, a display 18 and bus 28, User
interface 4, CPU 6, memory controlier 8, GPU 12 and display interface 16 may
comunicate with each other using bus 20. 1t should be noted that the specific
configuration of buses and communication interfaces between the different components
ithustrated tn FEG. 1 is merely exemplary, and other configurations of computing devices
and/or other graphics processing systems with the same or different components may be
used to toplement the techniques of this disclosure.

[8048] CPU 6 may comprise a general-purpose or a special-purpose processor that
controls operation of computing device 2. A user may provide input to computing
device 2 to cause CPU 6 to execute one or more software applications. The software
applications that execute on CPU 6 may include, for example, an operating system, a

word processor application, an email application, a spreadsheet application, a media

WO 2015/047642 PCT/US2014/053016

17

player application, a video game application, a graphical user interface application or
another program. The user may provide input to computing device 2 via one or more
mput devices (not shown) such as a keyboard, a moaose, a microphone, a touch pad or
another input device that is coupled to computing device 2 via user interface 4.

8049} The sottware applications that execute on CPU 6 may include one or more
graphics rendering instructions that instruct GPU 12 to cause the rendering of graphics
data to display 18, In some examples, the software stractions may conform io a
graphics application programming inlerface {API), such as, ¢.g., an Open Graphics
Library (OpenGL™) AP an Open Graphics Library Embedded Systems (OpenGL ES)
AP, a Direct3D APL a DirectX APL a RenderMan APL, a WebGL AP, or any other
public or proprictary standard graphics APL In order to process the graphics rendering
instructions, CPU 6 may issue one or more graphics rendering commands to GPU 12 to
cause GPU 12 to perform some or all of the rendering of the graphics data. In some
examples, the graphics data to be rendered may inclade a list of graphics primitives,
o.g., points, fings, triangles, quadralaterals, triangle strips, patches, ctc.

16056] The present disclosure provides for systeras and method to inform 2 cliont, e.g.,
CPU 6, GPU 12, or memory coniroller 8, that a memory page, ¢.£., a fixed-length
contiguous block of virtual memory, is non-resident tn memory 10. Some examples
may include sttempting to access a non-resident page and determining that the non-
resident page should not cause a page fault. This determination may be based on a bit
mdicating that a particular non-resident page should not generate a page faglt. Some
exaraples may return a default value when the access of the non-resident page is a read.
In some examples, the non-resident page should not cause a page fault and
discontinuing a write when the access of the non-resident page is a write. The non-
resident page should not cause a page fault. In another example, a processor, e.g., GPU
12 may attempt to access a non-resident page, 1.¢., 8 page not stored in 3 memory such
as memory 10, Au address for the nou-resident page may instead point 1o a memory
page in, for example, memory 10, that contains default values. The defaclt values may
be returned to GPU 12 by memory 10 through memory controlier 8 when the access of
the non-resident page is a read and the non-resident page should not cause 2 page tault.
A write by a processor such as GPU 12 may be discontinued when the write is 1o anon-

resident page and the non-resident page should not cause a page fault. In some

WO 2015/047642 PCT/US2014/053016

18

examples, the processor, ¢.g., GPU 12, may recaiculate data lost from a discontinued
write if the data is later needed.

(80511 Memory controlier 8 facilitates the transter of data going into and out of memory
10. For example, memory controller 8 may receive memory read requests and memory
write requests from CPU 6 and/or GPU 12, and service such requests with respect to
memory 10 i order to provide memory services for the components in computing
deviee 2. Memory controller 8 is commumicatively coupled to memory 10, Although
memory controller 8 is illustrated tn the example computing device 2 of FIG. 1 as being
& processing modie that is separate from both CPU 6 and memory 10, in other
exanples, some or all of the functionality of memory controller 8 may be implemented
on one of more of CPU 6, GPU 12, and memory 10. In some cxamples, 2 memory
management unit (MMLU) may be part of, e.g., GPU 12 or other client. Iu other
examples, the MMU (not shown) may be between every client, e.g., GPU 12, and the
memory controller 8.

18652} Memory 10 may store program modules and/or instructions that arc accessible
for executicn by CPU 6 and/or data for use by the programs executing on CPU 6. For
example, memory 10 may store user applications and graphics data associated with the
applications. Memory 10 may also store information for use by and/or generated by
other conponents of computing device Z. For cxampie, memory 10 may act as a device
memory for GPU 12 and may store data to be operated on by GPU 12 as well as data
resulting from operations performed by GPU 12, For example, memory 10 may store
any combination of path data, path scgment data, surfaces, texture buffers, depth
buffers, cell buffers, vertex butfers, frame butfers, or the like. In addition, memory 10
may store commmand streams for processing by GPU 12, Memory 10 may inchude one
or mare volatile or non-volatile memarics or storage devices, such as, for example,
random access memory {(RAM), static RAM {(SRAM), dynamic RAM (DBRAM],
synchronous dynamic random access memory (SDRAM), read-only memory (ROM),
erasable programmable ROM (EPROM), electrically erasable programmable ROM
{(EEPROM}, Flash memory, a magnetic data media or an optical storage media.

160583) GPU 12 may be configured to execute commands that are issued to GPU 12 by
CPU 6. The commands executed by GPU 12 may include graphics commands, draw

call commands, GPU state programming commands, memory transfer commands,

WO 2015/047642 PCT/US2014/053016

19

general-purpose computing commands, kernel execution commands, ete. The memory
transter conunands may include, e.g., memory copy commands, 1uemory compoesiting
commands, and block transter (blitting) commands,

(8054} In some examples, GPU 12 may be configured to perform graphics operations to
render one or more graphics priuwitives to display 18, I such exampies, when ong of
the software applications executing on CPU 6 requires graphics processing, CPU 6 may
provide graphics data to GPU 12 for rendering to display 18 and issue one or more
graphics commands to GPU 12. The graphics commands may include, ¢.g., draw call
comvmands, GPU state progravuning conwnands, memory transfer conunands, blitting
commands, ete. The graphics data may include vertex buffers, texture data, surface
data, etc. In some examples, CPU 6 may provide the commands and graphics data to
GPU 12 by writing the conmands and graphics data to memory 10, which may be
accessed by GPU 12,

[8085] In further examples, GPU 12 may be configured to perform general-purpose
computing for applications exccuting on CPU 6. In such examples, when one of the
sottware applications executing on CPU 6 decides to off-load 2 computational task to
GPU 12, CPU 6 may provide general-purpose computing data to GPU 12, and issue one
or more general-purpose computing commands to GPU 12, The gencral-purpose
computing commands may include, ¢.g., kernel execution commands, memory transfer
commands, etc. In some exarmples, CPU & may provide the commands and general-
purpose computing data to GPU 12 by writing the commands and graphics data to
memory 10, which may be accessed by GPU 12.

180586) GPU 12 may, in some jostances, be built with a highly-paraliel structure that
provides more efficient processing than CPU 6. For example, GPU 12 may include a
plurality of processing clements that are configured to operate on multiple vertices,
conirol points, pixels and/or other data in 8 paralle] manner. The highly parallel nature
of GPU 12 may, in some instances, allow GPU 12 to render graphics images {¢.g., GUls
and two-dimensional (2D} and/or three-dimensional (3D} graphics scenes) onto display
1% more quickly than rendering the images using CPY 6. In addition, the highly paraliel
nature of GPU 12 may allow GPU 12 to process certain fypes of vector and matrix

operations for general-purposed computing applications more guickly than CPU 6.

WO 2015/047642 PCT/US2014/053016

186571 GPU 12 may, in some examples, be mtegrated into a motherboard of compuiing
device 2. To other jnstances, GPU 12 may be present on a graphics card that is installed
i & port in the motherboard of computing device 2 or may be otherwise incorporated
within a peripherai device configured to mteroperate with computing device 2. In
further instances, GPU 12 may be located on the same microchip as CPU 6 forming a
system on a chip (SoC). GPU 12 may include one or more processors, such as one or
more microprocessors, application specific integrated cireuits (ASICs), field
programmable gate arrays (FPGAs), digital signal processors (DSPs), or other
cquivalent integrated or discrete logic cireuiiry.

18658} In some examples, GPU 12 may be directly coupled to GPU cache 14, Thus,
GPU 12 may read data from and write data to GPU cache 14 without necessarily using
bus 20. In other words, GPU 12 may process data focally using a local storage, instead
of off-chip memory. This allows GPU 12 10 operate in a more efficient mamner by
eliminating the need of GPU 12 to read and write data via bus 20, which may
experience heavy bus traffic. In some instances, however, GPU 12 may not include a
separate cache, but instead utilize memory 10 via bus 20. GPU cache 14 may include
one or more volatile or non-volatile memories or storage devices, such as, e.g., random
access memory (RAM), static RAM (SRAM), dynamic RAM (DRAM), erasable
programmable ROM (EPROM]), electrically erasable programmable ROM (EEPROM),
Flash memory, a magnetic data media or an optical storage media.

[6658] CPU 6 and/or GPU 12 may store rendered image data in a frame buffer that is
allocated within memory 16. Display interface 16 may retricve the data from the frame
buffer and configure display 18 to display the image represented by the rendered image
data. In some examples, display interface 16 may include a digital-to-analog converter
{DAC) that is configured to convert the digital vahies retrieved from the frame buoffer
into an analog signal consumable by display 18, In other examples, display interface 16
may pass the digital values dircetly to display 18 for processing.

[80668] Display 18 may include a monitor, a television, a projection device, a hquid
crystal display (LCD}, a plasma display pancl, a light emitting diode {LED} array, a
cathode ray tube (CRT) display, clectronic paper, a surface-conduction clectron-emitied
display (SED), a laser television display, a nanocrystal display or another type of

display unit. Display 18 may be integrated within computing device 2. For instance,

WO 2015/047642 PCT/US2014/053016

display 18 may be a screen of a mobile telephone handset or a tablet computer.
Aliernatively, display 18 may be a stand-alone device coupled to computing device 2
via 8 wired or wireless commumnications link. For mstance, display 18 may bea
computer monitor or flat pancl display connected to a personal computer via a cable or
wireless Jink.

(68061} Bus 20 may be implemented using any combination of bus structures and bus
protocols including first, second and third generation bus structures and protocols,
shared bus structures and protocols, point-to-point bus structures and protocols,
unidirectional bus stractures and protocols, and bidirectional bus structures and
protocols. Examples of different bus structures and protocols that may be used to
implement bus 20 include, ¢.g., a HyperTranspori bus, an InfiniBand bus, an Advanced
Graphics Port bus, a Peripheral Component Interconnect (PCY) bus, a PCI Express bus,
an Advanced Microcontroller Bus Architecture (AMBA)} Advanced High-performance
Bus (AHRB), an AMBA Advanced Peripheral Bus (APB), and an AMBA Advanced

o Xentisible Interface (AXI) bus. Other types of bus structures and protocols may also
be used.

16062} The techniques for distinguish between non-resident pages that cause a fault and
non-resident pages that do not cause 3 fanlt described in this disclosure may be
implemented in any of the components in computing device 2 ifustrated in FIG. 1
melading, ¢.g., CPU 6, GPU 12, and memory 10. A page may also be referred to as a
memory page or a virtual page. The page can be a fixed-length contiguouns block of
virtual memory. Since the page is virtual, it may or may not be stored in a memory,
such as memory 16, Wheo a particular page 15 stored in, e.g., memory 10, it may be
referred to as a resident page. Conversely, when a particular page 1s not stored in, e.g.,
memory 10, it may be referred to as a non-resident page. It may also be referred to as
not resident. In some examples, all or almost all of the techniques for distinguish
between non-resident pages that cause a fault and non-resident pages that do not causc a
faolt may be implemented in GPU 12 (e.g., in a graphics pipeline of GPU 12).

18663] FIGS. 2 and 3 illusirate further details of two example systems of this disclosure
that describe vartous techuoiques to distinguish between nov-resident pages that cause a
fault and non-resident pages that do not cause a fault. Additionally, FIGS. 2 and 3

ithustrate varions ways to let a client, e.g., GPU 12, know when a page 1s non-resident.

WO 2015/047642 PCT/US2014/053016

o
2

In other words, when a page is not stored in 2 memory such as memory 10, Some
examples provide for distinguishing between non-resident pages that cause a faunlt and
do not cause a fault.

(8064} FIG. 2 is a biock diagram illustrating an example computing device to
implement the technigques for distinguishing between non-resident pages that causc a
fault and non-resident pages that do not cause a fanlt described in this disclosure. The
computing device includes a GPU 12, memory controlier 8, which may be an
Input/Output Memory Management Untt JOMMU) |, memory 10, which may be
Dynanic random-access memory (DRAM) , and Page Table (PTE) 206.

16065} As illustrated in FIG 2, the example computing device includes a memory
coniroller 8. The memory controller 8may be a form of & memory controlier.
Additionally, the memory controller 8may be configured to process various page
attributes 210, such as Read Permission (R), Write Permission (W), Cacheable memory
location {C}, and Shared memory location (S). As illustrated, i the example of FIG. 2,
the page atiributes 210 may include an additional bit to specity an access to a non-
resident page that should not generate a page fault. Thus, the memory controller 8 may
be configured to process a “No Faglt” (NF) bit 208 indicating that an access to a non-
resident page should not generate a page fault. NF bit 208 may indicate that an access
to this non-resident page should not generate a page fault

[8066] One purpose of NF bit 208 may be to specify that non-resident material should
not cause 8 fauit, NF bit 208 may also affect the determination of a non-resident page.
INF bit 208 may be used to determine if the page in a tiled resource is resident as
described here. For example, NF bit 208 may be used in conjunction with default
values, residency checks, efc. to determine if a page in a tiled resource 15 resident.
(88671 In an example, if GPU 12, memory controller 8, or other processor performs a
memory aceess (e.g., read, write) that causes a fanlt cccurs, then the memory access was
to a non-resident page and NF bit 208 must have been set to allow faults for that
memory access. If a fault does not occur for the memory access and NF bit 208 is such
that a faolt is allowed 1o occur, then the atierapted memory access by the GPU 12,
memory cordroller 8, or other processor must be to a resident page. ¥ a fault would

have occurred, except NF bit 208 was set so that a fault will not occus, then other

WO 2015/047642 PCT/US2014/053016

aspocis of the disclosure may occur, such as returning of default values, residency
checks, etc.

[8068] FIG. 2 illustrates an example including the “No Fault,” “Not Resident Bit,” or
“Non-resident bit” referred to as “NF” 208, For a given virtual address, the page table
may store the physical address 212 that is associated with the virtual address, as well ag
page atiributes 210 of the data stored in the page identified by the physical address. The
page attributes 210 may be stored as binary bits prepended to the physical address 212

{as one example). One of these page atiributes 210 is NF bit 208, as illustrated in FIG.

N2

186691 Some examples provide for letting a client, e.g., GPU 12, know when a page is
non-resident. As described herein, a page is non-resident when it is not stored in a
memory, such as memory 10, Since the page is virtual, it may or may not be stored in a
memory, such as memory 10, When a particular page is stored in, e.g., memory 10, it
may be referred to as a resident page. Conversely, when a particular page is not stored
in, €.g., memory i{, it may be referred to as a non-resident page. [t may also be referred
o as not resident.

160768] A page can be a fixed-length contiguous block of virtaal memory. Generally,
virtoal memory allows a page that does not currently reside in main memory to be
addressed and used. In some cases, it a program, e.g., running on GPU 12, iries to
access a location in a page that is not in memory, 1.e., not resident or non-resident, an
exception called a page fault is gencrated. In some cases an operating system or
hardware may lcad the required page from the auxiliary store automatically. Inthe
instand application, however, some attcmpted accesses to non-resident pages cause page
faults and others do not. As discussed above, DX11 tiled may allow non-resident
Memory accesses to ocenr without causing a fault, rather, one or more of the aspects
described herein may occur instead.

(8071} In the example lastrated in FIG. 2, NF bit 208 may provide an indication that a
page that is non-resident should not cause a faglt. For example, NF bit 208 may be used
to determine if a page in a tiled resource that is non-resident should cause a fault, An
advantage to this solution, in some cxamples, 1s that page faults may be supported for
accesses 10 all other resourees (non-tiled) by simply retarning a page fault rather than

mapping a virtual address of the non-tiled non-resident page to a duommy page since

WO 2015/047642 PCT/US2014/053016

generally a page fault occurs when a processor or memory management unit attempts o
read or write 10 a memory address of a non-resident page
{8672} In an example, for accessed to tiled resources, NF bit 208 may be set to not
allow a fauli. Conversely, for accesses to all other resources, ¢.g., non-tiled, the NF bit
208 may be set to allow a fault. In other words, a read or write to a non-resident page
should cause a page fault for accesses to all other resources. Thus, if NF 208 is single
bit and NF = “1” indicates that not fault should occur, then NF = “0” indicates that
faults should be processed like normal. Accordingly, for accesses to all other resources,
e.g., non-tiled, the NF bit 208 would be “0.” The converse is also true. Thus, if NF 208
is a single bit and NF ="0,” ¢.g., active low, indicates that not fault should occur, then
NF =“1"" indicates that faclts should be processed like normal. Accordingly, for
accesses to all other resources, o.g., non-tiled, the NF bit 208 would be “1.”
(8073} In the example of FIG. 2, when a non-resident page that should not cause a fault
1s read, default values, e.g., predetermined bit values such as all §%s, all s, ctc. may be
returned for the read. The default value provides a predefine value that may be used for
all non-resident page aceesses. In the illustrated example, if a read occurs o a non-
resident page the valoe will be 6. The default value may be a vahie stored, for example,
in memory controlier 8. Rather than read memory 10, memory controller 8 may return
the default value instead. The defaokt vaklue does not conclusively indicate that the page
18 non-resident, however. The default value, e.g., 0 may be a common value and it may
be possible for memory locations in memory 10 of resident pages to contain the defanlt
value by chance. Accordingly, memory controiler 8 may provide a statos or
acknowledgement (ACK} to indicate to the device performing the read, c.g., GPU 12,
that a non-resident page that should not cause a fault has been accessed.
[8074] In an example, a toxture unit, which may perform reads but generally does not
perform writes, may return the default value when a non-vesident page that should not
cause a fault is read. The texture vnit may be separate hardware or muay be partt ot a
pixel shader or other shader. The texture unit may select the level of coarseness
displayed. For example, the texture unit may seloct a coarser texture that is resident
rather than a more detailed texture that is non-resident.
16675] As illustrated in the example of FIG. 2, a residency check may be performed (or

requested) by the client, e.g., GPU 12. Inthe example of FIG. 2 a GPU 12 requests a

WO 2015/047642 PCT/US2014/053016

residency check and memory coniroller 8 returns a residency acknowledge indicating if
& virtual memory location is resident or non-resident.

{8876} In the exampie of FIG. 2, when an atiempt is made to write to a non-resident
page that write attempt should be dropped because the write attempt is to a page that is
not stored in memory. In other words, the virtual address of the non-resident page does
not map to an actual physical memory address. The data for the atterapted write may be
lost and may need to be recalculated if the data 1s later needed. This is gencrally
necessary, however, becanse no memory location has been allocated to store the
information for a non-resident page. Tu an cxample, a memory controller 8, c.g., a
memory management unit (MMU) or Input/Gutput MMU (IOMMU), may drop the
writes, for example, when the memory controlier 8 determines that a write is to 3 non-
resident page. In other examples, & pixel shader, geometry shader, or other shader unit
may perform a write and may be programmed to drop writes to non-resident pages.
(88771 In some examples, reads and/or writes may be performed for depth testing,
Depth testing is a graphics operation that may be used to with respect to image depth
coordinates in three-dimensional (3-13) graphics to decide which elements of a rendered
scene are visible, and which are hidden. Reads may alse be performed as part of color
blending, which may use an operation to assign a new color value: New color =

old color * (1-blend value) + incoming color®(blend value). These functions may use
the examples provided herein to allow for dealing with resident and non-resident pages
related to depth testing, color blending, eic.

188781 As discussed above, some examples may use existing page table stiributes. In
other words, there muay not need to be a NF bit 208 in such an example. In such an
exanple, a “dummy page” filled will the proper default values can be used for all non-
resident pages. The dommy page may be a single memory page filled with the proper
detfault values that may be accessed when any memory addresses {o a non-resident page
are read, for example.

(804791 FIG. 3 is a block diagram illustrating an example computing device to
implement the techniques for distinguishing between non-resident pages that cause 3
faul and non-resident pages that do not cause a fault described in this disclosure. The
example of FIG. 3 uses existing page table atiributes and does not use a NF bit 208, In

such an example, a “dummy page” filled will the proper default valacs can be used for

WO 2015/047642 PCT/US2014/053016

all non-resident pages. The computing device includes & GPU 12, memory controlier 8,
memory 10, PTE 306, and compare unit 308, No No Faul/Non-Resident Bit is used.
[6088] In the alternative sohution llustrated in FIG. 3, a dammy page contains dummmy
vafugs that indicate if a page is resident. The dummy page may be a single memory
page filled with the proper default values that may be accessed when any memory
addresses to a non-resident page are read, for example. The dommy values may be, for
example, predetermined bit values such as all §%s, all 17, or some other known values.
in other examples, the dummy page may nclude random or unknown values. o such
an exaraple, however, the values 1o the durooy page will not provide an indication f a
page is resident or non-resident. Such an example may store a dummy page at a
particular physical memory address in memory 10 and store the value of the physical
memory address in a register, ¢.g., in memory controlier 8 or PTE 306. For example,
PTE 306 may include physical address register 312, The virtual addresses of the non-
resident pages may be mapped to the physical memory address of the dummy page.
Additionally, when a page is being accessed, its physical memory in the page table may
be compared using compare unit 308 to the physical reemory value stored in physical
address register 312, If the two values are the same, then the client determines that it is
accessing 8 non-resident page. For example, the client may be GPU 12 and it may
determine that is accessing a non-resident page through memory controfier 8. If the two
values are different, then the client may determine that it is accessing a resident page. It
will be understood, however, that this comparison may alone provide an indication that
the page is resident, since the values stored in a particular memory location may be
cqual to the default values stoply by chance. Accordingly, other aspects of this
disclosure may be used to verify that the indication is correct, for example, a residency
check as described herein.

(8081} In onc cxample, a system (such as the compare voit 308 iliustrated in FIG. 3}
may compare an address, ¢.g., 2 physical address register 312 in the page table (FTE
306} with an address value for the dimmy page stored in a register, for example, a no
faolt / not resident page address register NF address register 310) to determine if the
physical address is the same as the address to the dummy page stored in a register. In

this way, the system may determine if the page is resident or non-resident.

WO 2015/047642 PCT/US2014/053016

18082} Generally, a single common dommy page may be used for ali non-resident
pages. Accordingly, if the physical address for the page being accessed matches one of
the address valoe in NF address register 310 then the page is non-resident. Reads to the
page may proceed as normal. In other words, data stored in the dummy page, ¢.g.,
default values may be read from the memory st aside for the dummy page, ¢.g., 1o
memory 10. This is because the appropriate default value will gencrally have been be
written to the dummy page and these values will be read by a system attempting to
access a non-resident page. An attempied write should be dropped. Again, the data for
the atterapted write may be lost and may veed to be recalculated if the data is [ater
needed. This is generally necessary, however, because no memory location has been
allocated to store the information for a non-resident page other than the page that
includes the donmmy values that may be used by multiple non-resident pages.
Additionally, in an example, a residency check should return false when the page being
accessed matches the valie in the register that indicate that the page is a non-resident
page. For example, a GPU running a shader program may request a residency check
from an MM, When the GPU requests a residency check the MMU may check a
residency may to determine if, for example, a tile (nuiltiple memory pages) is resident in
memory. If the check of the residency map returns that the tile is non-resident then a
default value in the shader might be used rather than fetching the value from the
mMemory.

{80831 An advantage to some examples of this sohution is that non-resident pages arc
transparently mapped to the ‘dummy page’ instead of creating a page fault on reads and
that ‘special’ handling is needed ondy on writes . Another advantage to some examples
of this solution is the defaclt value may be programmable since software may be
responsible for filling the page with the default value.

(8684} In some examples, the DX 11 feature, 1.2, tiled resources, may alse require a way
for a graphics shader program to determine if a tile (mwultiple memory pages) of a
resource is resident. As discussed above, a dummy page filled with the proper defaunlt
valuecs may be used for all non-resident pages. In some cases, if a write occurs o any of
these non-resident pages, however, #t will overwrite the default value. Accordingly, the
duromy page cannot be relied on to always veturn the correct default value, A separate

residency map is also required to allow the shader program to determine if a page s

WO 2015/047642 PCT/US2014/053016

resident. Such an example may check the residency map to determioe if a read from
that texture may occur. 1f the check of the residency map returns that the tile 1s non-
resident then a default valoe in the shader might be used rather than fetching the value
from the tiled texture.
[BORS] In various examples, techniques for distinguishing between non-resident pages
that cause a fault and non-resident pages that do not cause a faslt are provided.
Additionally, various ways to let a client, e.g., GPU 12, know when a page is non-
resident are provided. What a client does when a page that is non-resident is being
accossed may vary and may be generally dictated by the needs of the client.
16086} For example, in one case a partially-resident texture may be used. A partially-
esident texiure that is partiaily stoved in memory. For example, some, but not all of the
graradarity fevels of the texture might be stored in memory. Granularity refers to the
level of detail for the texture that may be provided for a particolar rendering. Generally,
the farther away a given fexture is supposed to be in a 2D rendering of a 3D picture the
less detail that may be used in a texture.
16087] The texture may be larger than the size of the memory used to store & portion of
it. For example, every level of granularity together may be larger than the size of the
memory used to store a portion of it, ¢.g., one or more granularity levels. A portion of
the texture, ¢.g., one or more granularity levels, may, however, be stored in the memory,
Accordingly, a residency check may be used to determine if a portion of the texture is
resident or non-resident. A non-resident portion of the texture may return a default
value.
16088} In some cases, a texture granularity level that 1s resident may be used rather than
a texture granularity level that is non-resident. Accordingly, in such an example a client
may fall back to a more coarse textore with a higher mipmap level (MIP level), where
the size in pixels is smaller for a given texture and, accordingly, the texture is coarser. A
mipmap is an ordered set of arrays represcuting the same tmage; each array has a
resohition lower than the previous one. For example, 8 mipmap level (MIP level) of O
may be for the highest resciution image, a MIP level of | may be for the second highest
resolution troage, and so forth, where the highest MIP level is for the image with the
coarsest resolution (see Table 1 above.} By using a coarser texture a less detailed

version of a texture may be stored using less memory, Accordingly, a coarser version of

WO 2015/047642 PCT/US2014/053016

a partially-resident texture may itself be a resident portion of the texture. In some
exaraples, the coarser version of the partially-resident texture may be acceptable
depending on the level of detail (LOD) needed for the given texture. In some examples,
a texture unit may select the level of coarseness displayed from a plurality of different
coarseness levels for a given texture. The texture unit may be scparate hardware or may
be part of a pixel shader or other shader. The examples described herein generally
provide a “fail safe” such that a page fault does not occur for a non-resident page.
18089] FIG. 4 is a conceptual diagram dlustrating an example graphics pipeline that
may perform the techniques for distinguish between non-resident pages that cause a
fault and non-resident pages that do not cause a fault of this disclosure. In some
examples, the graphics pipeiine may correspond to the Microsoft® DirectX (DX) 11
graphics pipclive. As illustrated in FIG. 4, the example graphics pipeline includes a
vesources block 42 and a plurality of processing stages. The plurality of processing
stages include an input assembler (IA) stage 44, a vertex shader (VS) stage 46, a hull
shader (HS) stage 48, a tessellator stage 50, a domain shader (DS) stage 52, a geometry
shader (38} stage 54, a rasterizer stage 56, a pixel shader (PS) stage 58, and an output
merger stage 60, HS stage 48, tessellator stage 50, and domain shader stage 52 may
form the tessellation stages 62 of the graphics pipeline.

(8098} As described herein, in some examples provide a way for a graphics shader
program, ¢.g., VS stage 46, HS stage 48, DS stage 52, GS stage 54, PS stage 5§, or other
stages to determine if a tile (multiple memory pages) of a resovree is resident. A tile of
a resource is resident when i is stored in a memory such as memory 10, Atile ofa
resource is non-resident when it is not stored in a memory,

160911 In some examples, a dommy page filled with the proper default values may be
vsed for all non-resident pages. A dumpmy page is a memory page that may be used to
provide an arca of memory, ¢.g., memory 10, that may be read when a read o any non-
resident pages is atiempted. Default values that may be stored 1o the dummy page may
be any predetermined values, such as all 075, all 1’s, or any other predetermined values.
Use of a known predetermined value as a default value may allow for a read to provide
an fndication that a page may be & non-resident page. In some examples, random

values, left over values from previous writes, or any other values might be used instead.

WO 2015/047642 PCT/US2014/053016

39

In such an exampie, the indication might not be provided because a predetermined value
is not used,

(80921 In some cases, if a write occurs to any of the non-resident pages, it will
overwrite the default value. Accordingly, the dummy page cannot be relied on to
always return the corroct detault value, for example, it 2 write is allowed to be
competed. A separate residency map may also be used to allow shader programs, for
example, shader stages 46, 48, 52, 54, §8, to run on, for example, GPU 12, to determing
if a page is resident. Generally, any shader program may interact as described herein to
determine if a page 1s resident. Typically, all the shader progrars have memory access,
The residency map may be part of memory controller ¥ or may be stored in memory 10,
¢.g2., by memory coniroller 8. In such an example, GPU 12 or ¢.g., a shader program
running on GPU 12 may check the residency map to deterovine if a read from a
particular page is resident or non-resident. In some examples all or a portion of a
textare may be stored in memory 10, If only a portion of the texture is stored in, e.g.,
memory 10, then some of the texture is resident and some of the texture program is non-
resident. For example, difterent coarseness levels of the texture may be stored in
memory 10 while other coarseness levels of the texture may not be stored in memory
10. Accordingly, the residency map may be used to perform a residency check to
determine if a particular coarsencss level of a particular texture that may be needed fora
rendering of a particular picture may oceur. [f the check of the residency map returmns
that the tile containing the needed coarseness level of a texture is non-resident then a
default value in the shader stages 46, 4¥, 52, 54, 58 might be used rather than fetching
the value from the tiled texture. Some examples may read a differcnt coarseness fevel
of the partially-resident texture when the read 1s {0 a non-resident page.

(60931 As ilhustrated in FIG. 4, many of the pipehine stages may also be
communicatively coupled to resources block. The resources block may include memory
resources such as buffers and texiures. The romaining blocks indicate pipeline stages.
The blocks with straight comers represent fixed-function pipeline stages, and the blocks
with rounded corners represent progranunable stages. Each of the programmable stages
may be configured to exccute a shader program of a particular type. For exanple,
vertex shader stage 46 may be configured to execate a vertex shader program, hull

shader stage 48 may be configured to execute a hull shader program, etc. Each of the

WO 2015/047642 PCT/US2014/053016

31

different types of shader programs may cxecuie either on a comumon shader unit of the
GPU or on one or more dedicated shader units that are dedicated to exccuting shader
programs of one or more particelar types. Huoll shader stage 48, tessellator stage 50, and
domain shader stage 52 stage may be collectively referred to as tessellation stages 62,
8094} Additional background imformation regarding the general operation of the
DirectX {1 graphics pipeline may be found at http:/msdn.microsoft.com/en-
us/library/windows/desktop/ff476882%2 8 v=v5.85%29.aspx, as of May 9, 2013, and is
hereby incorporated by reference. Further information regarding the general operation
of the DirectX 11 graphics pipeline may be found i Zink ¢t al,, “Practical Rendering &
Computation with Direct3D 11,7 CRC Press (2011), the entire contents of which is
incorporated herein by reference.

[8095] FIQG. 5 is a flowchart illustrating an cxample method in accordance with one or
more examples described m this disclosure. In some examples, memory controller &,
GPU 12, or other processor may attempt to acecess 8 non-resident page. An address for
the non-resident page may point to 8 memory page containing default values. o some
examples the access may be to perform, for exaraple, 4 read (550). A noun-resident page
is a page that does not have a physical memory location asseciated with it. Conversely,
a resident page is a page that has a physical memory location assoctated with it.

18696} Memory controlier 8, GPU 12, or other processor may determing that the non-
resident page should not cause a page fault based on a bit or flag indicating that a
particular non-resident page should not gencrate 8 page fault (552}, A new featore in
DX 11 called tiled resources allows for non-resident pages of a resource 1o be accessed
via a graphics operation {Lc. texture read, color buffer write) without faulting.
Accordingly, it may be necessary to distinguish between non-resident pages that canse a
fault and non-resident pages that do not cavse a fault. The bit allows a client to know
when a page is non-resident.

18097} Memory controlier 8, GPLI 12, or other processor may receive a refurm of an
mdication that a memory read did not transiate and also return the default valoes when
the access of the non-resident page is a read and the non-resident page should not cause
a page fault (554). The default values may be from registers, memory, or other
focations. Default values may be predetermined bit values such as all 07s, all 17, or

some other default value. These default valoe may be returned by the read. The defacht

WO 2015/047642 PCT/US2014/053016

32

value provides a predefine value that may be used for all non-resident page accesses. In
the tllustrated example, if a read occurs to a non-resident page the value will be 0. This
does not conclosively indicate that the page 1s non-resident, however. The default
value, e.g., (1, 1, eic. may be a conmmon value and it may be possible for resident pages
to contain the default value by chance. An MMU or other processor may use a status or
acknowledgement (ACK), for example, to indicate to the device performing the read
that a non-resident page that should not cause a fault has been accessed. In an example,
a texture unit, which may perform reads but generally does not perform wriies, may
return the default value when it or another processor reads a non-resident page that
should not cause a faplt. Additionally, in an example, the client may perform a
esidency check.
(8098} In some examples, memory cordroller 8, GPU 12, or other processor may
discontinue a write when the access of the non-resident page is a write and the non-
resident page should not cause a page fault (S56). In some examples, the write may be
discontinucs since no memory is provided for the non-resident page.
16099] FIG. 6 1s a flowchart illustrating an example method in accordance with one oy
more examples described in this disclosure. Memory controller 8, GPU 12, or other
processor may access a non-resident page (650). An address for the non-resident page
may point {0 a memory page containing default values. The memory page containing
default value may also be referred to as a dummy page and be said to contain dommy
values. These dummy values may indicate if a page s resident. For example, when
accessing the dummy page the byte address of the read request may be mapped into the
dummnyy page and the value stored there will be returned ¢.g., instead of 0x0, uniess that
is the dummy vahie.
[8168] Memory controller 8, GPU 12, or other processor may receive returned an
indication that a memory read did not translate and returning and the default values
when the memory controller 8, GPU 12, or other processor may atteopt 10 access non-
resident page (6523, This may occur, for example, when memory controller 8, GPU 12,
o1 other processor atterapts a read from the non-resident page. The non-resident page
should not cause a page fauit. Reads to the page may procced as normal. This is
because the appropriate default value will alrecady have been written to the dummy page

and these values will be read by a system attempting to access a non-resident page. A

WO 2015/047642 PCT/US2014/053016

33

memory read does not translaie when the virtual address dogs not map to 3 physical
address.

{8161} Memory controlier 8, GPU 12, or other processor may of in some ¢ases, a
memory itschf may discontimie a write when the access of the non-resident page is a
write and the non-resident page should not cause a page fault (654}, Tn some cases, if 2
write occurs to any of these non-resident pages, however, it will overwrite the defauit
value. Accordingly, if the write were allowed to continue, the dummy page would not
be able 1o be relied onto always return the correct default value,

163642} The techniques described o this disclosure may be implemented, at least in part,
in hardware, software, firmware or any combination thereof. For example, various
aspects of the described techniques may be implemented within one or more processors,
including one or more microprocessors, digital signal processors {DSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logie circuitry, as well as any combinations of
such components. The torm “processor” or “processing circuitry” may generally refer
to any of the foregoing logic cirenitry, alone or in corabination with other logic circuitry,
or any other equivalent circuitry such as discrete hardware that performs processing.
{8163} Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the various operations and functions
described in this disclosure. In addinon, any of the described units, modules or
components may be implemented together or separately as discrete but interoperable
fogic devices. Depiction of different features as modules or units is intended to
highlight different functional aspects and does not necessarily imply that such modules
or units must be realized by separate hardware or software components. Rather,
functionality asscciated with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or integrated within common
ot separate hardware ot software components.,

{8184} The techniques described in this disclosure may also be stored, embodied or
encoded in a computer-readablie medium, soch as a computer-readable storage medivim
that stores instructions. Instructions embedded or encoded in a computer-readable
medium may cause one OF more processors to perform the techniques described herein,

e.g., when the tnstructions are executed by the one or more processors. Computer

WO 2015/047642 PCT/US2014/053016

34

readable storage media may include random access memory (RAM), read only memory
(ROM}, programmable read only memory (PROM), erasable programmable read only
memory (EPROM), electronically erasable programmable read only memory
{EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, 8 cassctie, magnetic
media, optical media, or other computer readable storage media that is tangible.

[68185] Computer-readable media may include computer-readable storage media, which
corresponds to a tangible storage medim, such as those listed above. Computer-
readable media may also comprise communication medis including any medivm that
facilitates transfer of a computer program from one place to another, e.g., according to a
commumnication protocol. In this manner, the phrase “computer-readable media”
gencrally may correspond to (1) tangible computer-readable storage media which is
non-transitory, and (2} a non-tangible computer-readable commmunication medium such
as a transitory signal or carrier wave.

(8186} Various aspects and examples have been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.

WO 2015/047642 PCT/US2014/053016

35

WHAT IS CLAIMED IS

1. A method of processing a non-resident page comprising:

attempting to access the non-resident page, an address for the non-resident page
pointing to a memory page containing default values;

determining that the non-resident page should not cause 2 page fault based on
checking an indicator that indicates that the non-resident page should not generate a
page fault; and

returning an indication that a memory read did not translate and retuming the
default values when the access of the non-resident page is a read and the non-resident

page should not cause a page fault.

2. The method of claim 1, wherein the indicator comprises a bit or a flag.
3. The method of claim 1, further comprising performing a residency check when

the default values are returned.

4. The method of claim I, wherein the access comprises a read to a partially-

resident texture.

5. The method of claim 4, further comprising reading a different coarsencss lovel

of the partially-resident texture when the read is to a non-resident page.

6. The method of claim |, wherein attempting the access comprises attempting an

access o the non-resident page for color butfering.

7. A method of processing a non-resident page comprising:

attempting to access the non-resident page, an address for the non-resident page
pointing to a memory page containing default values;

returning an indication that a memory read did not translate and retuming the
default values when the access of the non-resident page is a read and the non-resident

page should not cause a page fault; and

WO 2015/047642 PCT/US2014/053016

36

discontimying a write when the access of the non-resident page is a write and the

non-resident page should not cause a page fault,

8. The method of claim 7, further comprising comparing an address in a page table
with an address value for the memory page containing default values to determine if the
physical address is the same as the address vahue for the memory page containing

defaunlt values.

9. The method of claim §, wherein the address value for the memory page
containing default values is stored in a register; and

detormining that a page being accessed is non-resident based on a match
between the default values stored in the register and the address valuce for the memory

page contaiming defanlt values.

16. The method of claim 7, wherein the default valuces indicate that a page is resident

ar non-restdent.

11 The method of claim 7, further comprising recalenlating data lost from a

discontinued write if the data is later needed.

i12. An apparatus for processing a non-resident page comprising:
a processor configured to:
attemypt 10 access the nen-resident page, an address for the nov-resident
page pointing 0 a memory page containing detault valucs;
determine that the non-resident page should not cause a page fault based
on checking an indicator that ndicates that the non-resident page should not
generate a page fault; and
retum an indication that a memory read did not franslate and return the
default values when the access of the non-resident page is a read and the non-

resident page should not cause a page fault.

13. The apparatus of claim 12, wherein the indicator comprises a bit or a flag.

WO 2015/047642 PCT/US2014/053016

37

14, The apparatus of claim 12, wherein the processor is further configured to
perform a residency check when a default value is retorned.

15. The apparatus of clatm 12, wherein, to attempt to access 10 access the non-
vesident page, the processor is further configured to perform a read to a partially-

resident texture.

16, The apparatus of claim 15, wherein the processor 1s further configured to read a
different coarseness level of the partially-resident texture when the read 1s to a non-

esident page.

17. The apparatus of claim 12, wherein, to attempt to access the non-resident page,

the processor is further configared to access the non-resident page for color buffering.

18, Awn apparatus for processing 2 non-resident page comprising:
a processor configured to:
attemipt to access the non-resident page, an address for the non-resident
page pointing to 2 memory page containing default vaiues;
return an indication that a memory read did not translate and return the
default values when the access of the non-resident page is a read and the non-
residend page should not canse a page fauli; and
discountinue a write when the access of the non-resident page s a write

and the non-resident page should not cause a page fauit.

19, The spparatus of claim 18, wherein the processor is further configured to
compare an address in & page table with an address value for the memory page
containing default values to determine if the physical address is the same as the address

value for the memory page containing detault values.

WO 2015/047642 PCT/US2014/053016

38

28, The apparatus of claim 19, wherein the address value for the memory page
containing default values is stored in 2 register; and wherein the processor is further
configured to determine that a page being accessed is non-resident based on a match
between the default values stored in the register and the address value for the memory

page containing default values.

21 The apparatus of claim 18, wherein the default values indicate that a page is

resident or non-resident.

22, The apparatus of claim 18, wherein the processor is further configured to

ccalculate data lost from a discontinued write if the data is later needed.

23, An apparatus for processing a non-resident page comprising:

means for attempting to access the non-resident page, an address for the non-
resident page pointing to a memory page containing default valoes;

means for determining that the nou-resident page should not cause a page fault
based on the means checking an indicator that indicates that the non-resident page
should not gencrate a page fault; and

means for returning a default value when the access of the non-resident page is a

vead and the non-resident page should not cause a page fanlt.

24. The apparatus of claim 23, wherein the indicator conprises a bit or a flag.

25. The apparatus of claim 23, firrther comprising mesns for performing a residency

check when a default value is returned.

26. An apparatus for informing a clicnt that a page is non-resident page comprising:
means for accessing a non-resident page, an address for the non-resident page
pointing to a memory page containing default values;
means for refurning an indication that a reemory read did not translate and
means for returning the default values when the access of the non-resident page is a read

and the non-resident page should not cavse a page fault; and

WO 2015/047642 PCT/US2014/053016

39

means for discontinuing a write when the access of the non-resident page is a

write and the non-resident page should not cause 2 page fault.

27. The apparatus of claim 26, further comprising means for comparing an address
in a page table with an address value for the memory page containing default values to
determine it the physical address is the same as the address value for the memory page

containing default values.

28, The apparatus of claim 27, register means for storing the address value for the
memory page containing defanlt vahies; and

means for determining that a page being accessed is non-resident based on a
match between the default values stored in the register means and the address value for

the memory page containing default values.

29. The apparatus of claim 26, further comprising meauns for recalculating data lost

from a discontinued wrie if the data is later needed.

30, A non-transitory compuier readable storage mediimm storing instructions that
upon execution by one or more processors cause the one 0f more Processors to:

atternpt 1o aceess a non-resident page, an address for the non-resident page
pointing to a memory page containing default values;

determine that the non-resident page should not cause a page fault based on
checking an indicator that jndicates that the non-resident page should not gencrate a
page fault; and

return an indication that a memory read did not translate and return the default
vafue when the access of the non-resident page is a read and the non-resident page

should not cause a page fault.

31. A nop-tramsifory compuicr readable storage medium storing instructions that
upon exccution by one of MOre processors cause the one or More processors tor
attempt to access a non-resident page, an address for the non-resident page

pointing to 8 memory page containing default values;

WO 2015/047642 PCT/US2014/053016

40

refurn an indication that a memory read did not fransiate and returning the
default values when the access of the non-resident page s a read and the nen-resident
page should not cause a page fault; and

discontinue a write when the access of the non-resident page is 8 write and the

non-resident page should not cause a page fault.

WO 2015/047642 PCT/US2014/053016

1/6

COMPUTING DEVICE

2
MEMORY
C';U CONTROLLER le—»! ME';";’RY
— g —

T Tt
USER
INTERFACE < BUS 20 > GPU

4 12
N ¢

DISPLAY GPU

DISPLAY [, .| INTERFACE CAGHE
18 16 14

FIG. 1

WO 2015/047642

GPU

Data Request

2/6

PCT/US2014/053016

MEMORY

L=
No Fault Ack
=

Residency Check

»
<Residency Check

8

CONTROLLER

MEMORY

10

FIG. 2

PTE ATTRIBUTES | PHYSICAL ADDRESS
206 ;10\ 212
208
RIW|C S
No Fault/Not
Resident Bit

WO 2015/047642

Data Request

3/6

PCT/US2014/053016

>
No Fault Ack
GPU B MEMORY MEMORY
CONTROLLER [«—»
12 Residency Check> 8 10
<Residency Check
COMPARE NO FAULT / NOT RESIDENT BIT
-«
308 | 310
PTE
ATTRIBUTES PHYSICAL ADDRESS
306 312

FIG. 3

WO 2015/047642

4/6

RESOURCES
BLOCK
42

INPUT
ASSEMBLER
44

|

I

VERTEX
SHADER
46

|

r

I

HULL
SHADER
48

—_ l

o

TESSELLATOR

|
|
' 50
|
|

__vl

([DOMAIN
SHADER

52

——»

r

~

A
I

GEOMETRY
SHADER
54

<
STREAM OUTPUT

RASTERIZER
56

1

PIXEL SHADER
58

|

r

N

b e e e e e e e — -

*

J/

:

OUTPUT
MERGER
60

|

FIG. 4

PCT/US2014/053016

40

Ve

TESSELLATION
> STAGES
62

WO 2015/047642

5/6

PCT/US2014/053016

ACCESS A NON-RESIDENT PAGE

l

DETERMINE THAT THE NON-
RESIDENT PAGE SHOULD NOT
CAUSE A PAGE FAULT

/ 552

l

RETURN A DEFAULT VALUE WHEN
THE ACCESS OF THE NON-RESIDENT
PAGE IS A READ

/ 554

l

DISCONTINUE A WRITE WHEN THE
ACCESS OF THE NON-RESIDENT
PAGE IS A WRITE

555

-

FIG. 5

WO 2015/047642

6/6

PCT/US2014/053016

ACCESS A NON-RESIDENT PAGE

'

RETURN AN INDICATION THAT A
MEMORY READ DID NOT TRANSLATE
AND RETURNING THE DEFAULT
VALUES WHEN THE ACCESS OF THE
NON-RESIDENT PAGE IS A READ

l

DISCONTINUE A WRITE WHEN THE
ACCESS OF THE NON-RESIDENT
PAGE IS A WRITE

/ 654

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/053016

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/08 GO6F12/10 GO6T1/60 GO6T15/04 GO6T11/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2007/073996 Al (KRUGER WARREN F [US] ET 1-3,
AL) 29 March 2007 (2007-03-29) 7-10,
12-14,
18-21,
23-28,
30,31

Y paragraph [0049] - paragraph [0063] 4-6,11,
paragraph [0123] - paragraph [0134] 15-17,
22,29

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y' document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

31 October 2014 06/11/2014

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . .
FZX:((+31-78) 240-3016 Toader, Elena Lidia

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/053016
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2008/106552 Al (EVERITT CASS W [US]) 1-3,
8 May 2008 (2008-05-08) 7-10,
12-14,
18-21,
23-28,
30,31
paragraph [0008] - paragraph [0009];
figures 1-5
paragraph [0047] - paragraph [0062]
Y US 2011/157205 Al (TAO ANDREW [US] ET AL) 4-6,11,
30 June 2011 (2011-06-30) 15-17,
22,29

paragraph [0031] - paragraph [0049];
figures 1-4
paragraph [0062] - paragraph [0073]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/053016
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2007073996 Al 29-03-2007 CN 101203837 A 18-06-2008
EP 1866772 A2 19-12-2007
US 2006230223 Al 12-10-2006
US 2007073996 Al 29-03-2007
WO 2006106428 A2 12-10-2006
US 2008106552 Al 08-05-2008 NONE
US 2011157205 Al 30-06-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

