
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0127801 A1

US 2015O127801A1

ZHAO et al. (43) Pub. Date: May 7, 2015

(54) NAME SERVICE OBJECT CLUSTERING continuation of application No. 10/017.495, filed on
Dec. 14, 2001, now Pat. No. 8,566,849.

71) Applicant: BORLAND SOFTWARE
(71) Applican CORPORATION, Scotts Valley, CA (60) Provisional application No. 60/255,651, filed on Dec.

(US) s s 14, 2000.

(72) Inventors: Cuie ZHAO, The Floravale (SG); Publication Classification
Vishwanath Keshavamurthy (51) Int. Cl
KASARAVALLI, Hayward, CA (US); we
Vijaykumar NATARAJAN, Mountain 52 Hetto (2006.01)
View, CA (US) (52) U.S. Cl.

CPC H04L 47/125 (2013.01)

1-1. Method and System for load balance of Common Object
(22) Filed: Jan. 5, 2015 Request Broker Architecture (CORBA) object servers, com

O O prising: invoking a name service cluster, indicating to a user
Related U.S. Application Data whether bind interceptors are in use, and providing the user

(63) Continuation of application No. 14/031.382, filed on with a class having relevant methods if bind interceptors are
Sep. 19, 2013, now Pat. No. 8,966,497, which is a

l, ctX.reso?ve(CRSieri)
--s -

{ (st
N- -1. 5, reseive)

6. requests aid responses

in use.

4, cluster afpends itself as a
cluster component to the oiject
reference of abjX

{bject biaxiing
table of clusteii

Obi, natite

2 arite ct{} retiris Ca2, nart
gbX accordins

-

toad baiaECe O83, name 3

Patent Application Publication May 7, 2015 Sheet 1 of 5 US 201S/O127801 A1

100

2O

N- INTERNE >

130 -
C. : ENT cuiser. - OS

130a 30a a

130n 3Of 11 Or.

F.G. 1

Patent Application Publication May 7, 2015 Sheet 2 of 5 US 2015/O127801 A1

Root Cortext

- I -
Context Object Cluster Object Context Cisie:

Reference Reference

- -r

C Object Object Object
Context is Reference Reierence Reference

FG 2

Patent Application Publication May 7, 2015 Sheet 3 of 5 US 201S/O127801 A1

Object binding
table of clustesi

Obji, nate 2. Seiect{}

Obj2, arse 2
ww a et{} retuits

gbX accordins
load balance Ob3, name 3

4, cluster aipends itself as a
cluster component to the object
reference of objX

FG. 3

: . bindinarine Y)
Object binding

2. put(objY,aineY) faie of custeri

Obji name:

Ob;2, Eame 2

3, untird(namex 4, remove(objX,raineX Obj3, name 3

Patent Application Publication May 7, 2015 Sheet 4 of 5

ACTIVATE
VCE

CLUSTERING

NWOKE
CUSER ---

(-510

PERFORM
|LOAD C
BALANCING 52

RE RNA
SECEO
OBEC

REFERENCE
COVV NCAE
W
SERVER

US 201S/O127801 A1

Patent Application Publication

NWOKE
CUSER

May 7, 2015 Sheet 5 of 5

c1 600

ERFORM

OAO -->
BAANCE C - 610

SELECT O8EC | >
REFERENCE S-- 820

AT APPEND
|CUSER TO - CSTER -
COMPONEN 838

FORWARD
SELECED -
O3C -sao REFERENCE O.

US 201S/O127801 A1

US 2015/O127801 A1

NAME SERVICE OBJECT CLUSTERING

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 14/031,382, filed Sep.19, 2013, which is
a continuation of U.S. patent application No. 10/017.495,
filed Dec. 14, 2001, which claims priority of U.S. Provisional
Patent Application No. 60/255,651, filed Dec. 14, 2000. All of
the foregoing are incorporated herein by reference in their
entireties.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention generally relates to the field of
distributed object oriented computing and, more particularly,
to a method for fault tolerance, load balance and “failover of
CORBA object servers via name service clustering.
0004 2. Description of the Related Art
0005 Recently, Common Object Request Broker Archi
tecture (CORBA) has emerged as the defacto standard archi
tecture for distributed object computing. This distributed
object infrastructure enables organizations to build and
deploy robust distributed object applications across the Inter
net and enterprise intranets.
0006 Emerging application servers and Enterprise Java
Bean (EJB) technology are being built on top of the pre
existing CORBA infrastructure. Remote Method Invocation
(RMI) technology takes advantage of the capabilities of the
Common Object Request Broker Architecture/Internet Inter
Orb Protocol (CORBA/IIOP) infrastructure. As a result, fault
tolerance, high availability and the load balancing capability
of CORBA object servers become critically important due to
the increased system capacity.
0007 For example, a large number of requests to a
CORBA object server can cause information bottlenecks at
the server (i.e., a decrease in server capacity or a reduction in
processing speed). As a result, a single CORBA object server
can become the single-point of failure in a network. More
over, since clients maybe long lived, unavailability of services
from a server is unacceptable.
0008. In the past, these problems have been solved by
replicating the CORBA servers and performing a load bal
ance by using a predefined algorithm among the replicas to
select a specific object server. Load balancing across the
servers can be performed with a variety oftechniques, such as
via a Round Robin directory and a naming service or a special
CORBA object server which dispatches requests from clients
to servers. However, Substantial coding, redesign and recon
figuration of the server, which results in increased costs, is
unavoidable.
0009. Another solution to the prior problems involves
redesigning and replicating the CORBA server, and statically
configuring the replica servers such that each server object
contains one profile for each replica server object. Upon
failure of a server, client requests “failover to a replica
server. However, this configuration is not scalable, i.e., it is
not applicable to different servers located in a large network.
Once the redesign, replication, and configuration of the server
is completed and implemented, it cannot be changed.
0010. A further solution to the above mentioned problems
comprises redesigning the client Such that it captures failures
and redirects requests to another server. However, this

May 7, 2015

approach not only requires client code changes, but also
requires that the client possess prior knowledge related to the
existence of all the servers in the network. It is therefore
apparent there is a need for a method for reducing failures
associated with selecting a server located in a distributed
object oriented computing environment.

SUMMARY OF THE INVENTION

0011. The present invention is directed to a method for
fault tolerance, load balance and “failover of CORBA object
servers via name service clustering. Name service clustering,
such as implemented in “Visibroker Naming Service' (Trade
mark, Borland Software Corp, Scotts Valley, Calif.), permits
naming service load balancing over a set of object references
contained within the same cluster Such that loads are equita
bly distributed among servers. Each cluster contains its own
unique object binding table which contains object references
that each typically represent a single server. Load balancing is
performed using a load balance algorithm (e.g., Round
Robin). The specific algorithm which is used to perform load
balancing is specified upon creation of each naming service
cluster.

0012. When a client machine invokes a cluster located
under a particular context or specific directory, i.e.,
“resolves, a load balance is performed to return an object
reference which was previously bound to the cluster. The
client machine may then communicate with the server asso
ciated with the object reference which was selected. Failover
is provided by dynamically adding cluster components to
resolved object references upon resolving each cluster.
0013. In accordance with the invention, a method for fault
tolerance, load balance and failover of CORBA object servers
comprises the steps of invoking a cluster contained in a
context; performing a load balance to select an object server
located in the invoked cluster; appending a cluster component
to the invoked cluster to provide failover upon failure of the
object server; forwarding a selected object reference to a
client upon completion of the load balance; and communicat
ing with a server associated with the selected object reference
which was forwarded to the client.

0014. In another embodiment of the invention a method
for fault tolerance, load balance and failover of CORBA
object servers comprises the steps of setting a flag in a file to
activate implicit clustering; invoking a cluster contained in a
context having clusters; performing a load balance to select
an object server located in the clusters; forwarding a selected
object reference to a client upon completion of the load bal
ance; and communicating with the server associated with the
selected object reference which was forwarded to the client.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 The present invention may be more readily under
stood by one skilled in the art with reference being had to the
following detailed description of the preferred embodiments
thereof, taken in conjunction with the accompanying draw
ings wherein like elements are designated by identical refer
ence numerals throughout the several views, and in which:
0016 FIG. 1 is an illustration of a network arrangement of
hardware components for implementing a method in accor
dance with a preferred embodiment of the invention;
0017 FIG. 2 is an exemplary illustration of a naming
graph comprising an object management group in a distrib
uted computing system;

US 2015/O127801 A1

0018 FIG.3 is an illustration of a server replication opera
tion in accordance with the preferred embodiment of the
invention;
0019 FIG. 4 is an illustration of a dynamic bind and
unbind operation of cluster objects in accordance with the
preferred embodiment of the invention;
0020 FIG. 5 is a flow chart of a method for load balancing
in accordance with the preferred embodiment of the inven
tion; and
0021 FIG. 6 is a flow chart of a method for dynamic object
clustering in accordance with the preferred embodiment of
the invention.

DESCRIPTION OF PREFERRED
EMBODIMENTS

0022. By way of overview and introduction, the invention
is described in connection with a preferred embodiment,
depicted in FIG. 3, in which load balancing is performed
among servers 110 connected to the Internet 120, or other
distributed computer network.
0023 Generally, the Visibroker Naming ServiceTM per
mits the activation and deactivation of an implicit clustering
feature and associates multiple object references with a single
name. Activation of the implicit clustering feature may be
accomplished using a flag located in a file. Such as a configu
ration file, or the like. The clustering of object references in
this manner becomes highly scalable because the object ref
erences may be dynamically added or removed from a cluster
through cluster bind or unbind operations.
0024. When implicit clustering is activated, object refer
ence bindings using the same name are clustered together in
the same cluster. A default load balance algorithm, Such as
Smart Round Robin, is used for implicit clustering. This
algorithm may be changed at the discretion of the user.
0025 If a call to a name within the clustered object refer
ences is invoked, the naming service load balances over the
set of object references associated with the name and distrib
utes the load accordingly. As a result, the need to recreate
clusters is eliminated because the load balancing is performed
among a common predetermined group of object reference
binders.
0026 FIG. 1 shows a network arrangement by which the
preferred embodiment can be implemented. The network 100
includes host servers 110, 110a . . . 110n which provide
content over the Internet 120 to a plurality of distributed users
that access the host server through client machines 130, 130a
... 130m. The content provided by the host server 110, 110a
... 110n can be viewed by users through a web browser or
other functionally equivalent Software running at their
respective client machines 130 (hereinafter, “browser').
0027. The client machines or “client 130 can assume a
variety of forms, including a home computer, a personal
digital assistant (PDA), a pager, an Internet compliant tele
phone, or other Internet compliant device. The client
machines 130 and the host server 110 communicate with one
another in a conventional manner over a communication link
through a distributed computer network such as the Internet
120. In lieu of the Internet, communications can be through an
Intranet or Extranet or between a host computer and a kiosk
located nearby, as understood by those of skill in the art.
0028 FIG. 2 is an exemplary illustration of a naming
graph comprising an object management group in a distrib
uted computing system. The starting point for the construc
tion of such a graph is the “Root Context of the object

May 7, 2015

management group. The Root context contains object name
bindings. Such a repository of object name bindings is called
a CosNaming Service, and permits a client to locate an object
using a logical name which is bound within the repository.
(0029 Visibroker Naming ServiceTM is an implementation
of OMG CosNaming Service. In addition, Visibroker Naming
ServiceTM includes a feature called clustering which groups
objects within a cluster to provide scalability and high avail
ability to applications via load balancing and alternative
server selection, i.e., “failover, upon server failures.
0030. A Visibroker Naming ServiceTM cluster is a place
holder for a set of functionally exchangeable objects. A nam
ing service cluster differs from the CosNaming context in that
the CosNaming context is a directory that may contain Sub
contexts, object references, and service clusters, while a ser
Vice cluster may contain only object references. Each object
reference shown in FIG. 2 will contain the server's Host
Name, IPAddress, Port No., and the like.
0031 FIG.3 is an illustration of a server replication opera
tion in accordance with the preferred embodiment of the
invention. Visibroker Naming ServiceTM clustering permits
naming service load balancing over a set of object references
contained within the same cluster Such that loads are equita
bly distributed among servers. Each cluster contains its own
unique object binding table which contains object references
which each typically represent a single server. Load balanc
ing is performed using a load balance algorithm (e.g., Round
Robin). The specific algorithm which is used to perform load
balancing in a given implementation is not critical to the
invention, but is specified upon creation of each naming Ser
vice cluster.

0032. When a client invokes a cluster located under a
particular context or specific directory (1), i.e., "resolves, a
load balance (2) is performed to return an object reference (3)
which was previously bound to the cluster. The client may
then communicate with the server associated with the object
reference which was selected.
0033. As shown in FIG. 3, failover is provided by dynami
cally adding cluster components to resolved object references
upon resolving each cluster (4). In other words, upon resolv
ing each cluster, a cluster component which is a part of an
object reference of an object is created. Each cluster compo
nent provides to a client object resource broker (ORB) infor
mation which permits the client ORB to access the cluster
object located in the name service to which this object is
bound. Upon the occurrence of a failure, this information
permits the client ORB to contact the cluster object to obtain
another object in the same cluster to which the client ORB can
then failoverto. If an object reference fails during processing,
the particular object reference binding associated with the
specific object reference in the cluster becomes stale.
0034. When a client invokes an invocation to a specific
server, the connection to the server is accomplished using a
process called binding. In order for the client to communicate
with the server, it must bind with the server using the IP
Address and Port No. contained in a specific object reference.
Here, a binding is performed by using an object reference and
performing the necessary steps to derive a concrete connec
tion to a specific process that implements the functionality
represented by that object reference. User participation in the
binding process is accomplished via a “binding interceptor
which is a Java class that the user may implement as desired.
Each class comprises methods of differing relevancies which
are used to indicate the binding status (i.e., Bind, Bind

US 2015/O127801 A1

Succeeded, Bind Failed, and Exception Occurred). A
“Bind' is performed by using an object reference and per
forming the steps necessary to derive a concrete connection to
a specific process which implements the functionality repre
sented by that object reference. Here, a Bind Succeeded is an
indication that a connection was achieved, a Bind Failed is an
indication that a connection was not established and an
Exception Occurred represents an indeterminate state
between Bind Succeeded and Bind Failed.
0035 Each time a client attempts to establish a connection
with a server object, a bind method is called. In accordance
with the invention, if a user is provided with the knowledge
that bind interceptors may be used, the user will be provided
with a class containing the most relevant methods, preferably
the three most relevant methods. In the preferred embodi
ment, the most relevant methods are Bind, Bind Succeeded
and Bind Failed. The user then writes (specifies) the class
Such that the class Subsequently contains the most relevant
methods. When the connection to the server is being estab
lished, the user code is called (i.e., a bind interceptor is used).
The bind interceptor provides a user with an option to select
an alternative server in the instance where the system was
operating adequately and then fails. For example, ifa returned
bind interceptor contains a Bind Failed method, the user is
presented with an opportunity to choose to connect to another
SeVe.

0036 When an attempt to send a request to the stale server
is made, the client associated with the stale object reference
will transparently intercept the cluster component using the
binding interceptor. The interceptor will then invoke the clus
ter's select operation (i.e., its load balancing algorithm) to
select and return to the client another object reference in the
same cluster. Communication is then established between the
client and the server of the newly returned object reference.
As a result, the failover to one of the object references in the
same cluster is transparently achieved. The failed object ref
erence is thereafter marked as “suspect.” In an embodiment,
the stale object reference is automatically removed from the
cluster based on a user established preference.
0037. In an aspect of the invention, the Visibroker Naming
ServiceTM permits the activation and deactivation of an
implicit clustering feature and associates multiple object ref
erences with a single name. Activation of the implicit clus
tering feature may be accomplished using a flag located in a
file, such as a configuration file, or the like. The clustering of
object references in this manner becomes highly scalable
because the object references may be dynamically added or
removed from a cluster through cluster bind or unbind opera
tions.
0038 FIG. 4 is an illustration of a dynamic bind and
unbind operation of cluster objects in accordance with the
preferred embodiment of the invention. When implicit clus
tering is activated, object reference bindings using the same
name are clustered together in the same cluster. A default load
balance algorithm, such as Smart Round Robin, is used for
implicit clustering. This algorithm may be changed at the
discretion of the user.
0039. When a call to a name within the clustered object
references is invoked (1), the naming service load balances
(2) over the set of object references associated with the name
and distributes the load accordingly (4). As a result, the need
to recreate clusters is eliminated because the load balancing is
performed among a common group of object reference bind
CS.

May 7, 2015

0040 FIG. 5 is a flow chart of a method for load balancing
in accordance with the preferred embodiment of the inven
tion. In accordance with the preferred embodiment, the
method is implemented when a client invokes a cluster
located under a particular context or specific directory, as
indicated in step 500. A load balance is performed to return an
object reference which is bound to the cluster, as indicated in
step 510. Load balancing is performed using a load balance
algorithm (e.g., Round Robin). The specific algorithm which
is used to perform load balancing is specified upon creation of
each naming service cluster. An object reference is forwarded
to the cluster, as indicated in step 520. Next, cluster compo
nents are dynamically added to resolved object references
Subsequent to load balancing each cluster to provide failover,
as indicated in step 530. Failover is provided in the manner
discussed previously. Next, the client communicates with the
server associated with the object reference which was
selected and forwarded to the client, as indicated in step 540.
0041 FIG. 6 is a flow chart illustrating dynamic bind and
unbind operations of cluster objects in accordance with the
preferred embodiment of the invention. In accordance with
this embodiment, the method is implemented when implicit
clustering is activated, as indicated in step 600. Next, a cluster
containing the clustered object reference bindings using the
same name is invoked, as indicated in Step 610. Load balanc
ing is performed on the clustered object references using a
default load balance algorithm, as indicated in step 620. This
algorithm may be changed at the discretion of the user, e.g.,
from a Round Robin algorithm to a different algorithm. A
selected object reference based on the load balance is returned
upon completion of load balancing, as indicated in step 630.
Next, the client communicates with the server associated with
the object reference which was selected and forward to the
client, as indicated in step 640.
0042 Methods in accordance with the invention permit
transparent load balancing among multiple object references
in the same cluster to be achieved. In addition, transparent
failover among object references in the same cluster is pro
vided. Method according to the invention also provide a
dynamic addition of new object references into a cluster via
binding, along with the dynamic removal of old object refer
ences from a cluster via unbinding. Moreover, automatic
detection of Stale object references in a cluster and clean up
based on the preference of a client is achieved. Further, such
methods provide a consistent application of the load balanc
ing algorithms per cluster. New load balancing algorithms
may be up-loaded to the system as required. The method
eliminates the need to change the client code or server code
Such that manual configurations are not required.
0043. While the invention has been particularly shown and
described with reference to a preferred embodiment thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention.
What is claimed is:
1. A method for load balance of Common Object Request

Broker Architecture (CORBA) object servers, comprising:
invoking a name service cluster,
indicating to a user whether bind interceptors are in use:

and
providing the user with a class having relevant methods if

bind interceptors are in use.
k k k k k

