wo 2014/151691 A1 I} TN 00O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 September 2014 (25.09.2014)

=
WIPO I PCT

\

(10) International Publication Number

WO 2014/151691 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
1

74

International Patent Classification:
GO6F 9/42 (2006.01)
GO6F 9/455 (2006.01)

International Application Number:

PCT/US2014/026252

International Filing Date:

13 March 2014 (13.03.2014)

Filing Language:
Publication Language:

Priority Data:
61/793,174

Applicant (for all designated States except US): SOFT
MACHINES, INC. [US/US]; 3211 Scott Blvd., Ste. 202,

Santa Clara, CA 95054 (US).

Inventor; and

Applicant (for US only): ABDALLAH, Mohammad
[US/US]; 3868 Suncrest Ave., San Jose, CA 95132 (US).

Agent: NANJIL, Furqan; Murabito, Hao & Barnes, LLP, 2
N. Market St., 3rd Floor, San Jose, CA 95113 (US).

GOGF 9/38 (2006.01)

15 March 2013 (15.03.2013)

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,

English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR GUEST RETURN ADDRESS STACK EMULATION SUPPORTING SPECULA -
TION

2
=3
=

C p

Map a plurality of instructions in a guest address space into
corresponding instructions in a native address space

l

During execution of instructions in native address space, for each
function call, pushing an entry into a guest return address stack
implemented at the fetch stage of the processor pipeline, wherein
the entry comprises information regarding both a guest target retum
address and a corresponding native target return address
associated with the function call
204

l

Popping the entry from the guest return address stack in response
to processing a retumn instruction

l

Fetching instructions from the native target return address popped
from the guest return address stack

208

FIG.9

(57) Abstract: A microprocessor implemented method for maintaining a
guest return address stack in an out-of- order microprocessor pipeline is dis-
closed. The method comprises mapping a plurality of instructions in a guest
address space into a corresponding plurality of instructions in a native ad-
dress space. For each function call instruction in the native address space
fetched during execution, the method also comprises performing the follow-
ing: (a) pushing a current entry into a guest return address stack (GRAS) re-
sponsive to a function call, wherein the GRAS is maintained at the fetch stage
of the pipeline, and wherein the current entry comprises information regard-
ing both a guest target return address and a corresponding native target return
address associated with the function call; (b) popping the current entry from
the GRAS in response to processing a return instruction; and (¢) fetching in-
structions from the native target return address in the current entry after the
popping from the GRAS.



WO 2014/151691 PCT/US2014/026252

METHOD AND APPARATUS FOR GUEST RETURN ADDRESS STACK EMULATION
SUPPORTING SPECULATION

FIELD OF THE INVENTION

[0001] Embodiments according to the present invention generally relate to microprocessor
architecture and more particularly to an emulated architecture for out-of-order (OOO)

Mmicroprocessors.

BACKGROUND OF THE INVENTION

[0002] Many types of digital computer system utilize code transformation/translation or
emulation to implement software-based functionality. Generally, translation and emulation both
involve examining a program of software instructions and performing the functions and actions
dictated by the software instructions, even though the instructions are not “native” to the
computer system. For example, in an emulated architecture, the non-native (or guest)
instructions may be mapped into a form of native instructions, which are designed to execute on

the hardware of the computer system.

[0003] As described in detail in related U.S. Patent Application Serial No. 13/359767,
“GUEST INSTRUCTION TO NATIVE INSTRUCTION RANGE BASED MAPPING USING
A CONERSION LOOK ASIDE BUFFER OF A PROCESSOR,” Attorney Docket SMII-0030,
Mohammad Abdallah, filed January 27, 2012, (hereinafter referred to as “Application No.
13/359,767”), guest instruction blocks are converted or mapped into native conversion blocks in
an emulated architecture. As described in Application No. 13/359,767, guest instructions in an
emulated architecture can be from a number of different guest instruction architectures (e.g.,
Java, x86, MIPS etc.) and multiple guest instruction blocks can be converted into one or more
corresponding native conversion blocks. This conversion occurs on a per instruction basis. For
example, a block of guest code may be converted into several corresponding instruction

sequences of native code.



WO 2014/151691 PCT/US2014/026252

[001] Further, as described in Application No. 13/359,767, a structure such as a
Conversion Lookaside Buffer (CLB) is commonly used to provide a mapping between the guest
addresses and native addresses in emulated architectures. A conversion look aside buffer is
typically used to cache the address mappings between guest and native blocks; such that the most
frequently encountered native conversion blocks are accessed through low latency availability to
the processor. Using a CLB accelerates the process of translating guest instructions from a guest
instruction architecture into native instructions of a native instruction architecture for execution
on a native processor. The guest instructions are rapidly converted into native instructions using

the CLB and pipelined to the native processor hardware for rapid execution.

[0004] In certain instances, a CLB may get temporarily flooded with too many entries
because of function calls to the same function in the guest space. A function call comprises both
a call to the function from within an instruction sequence and a return back to the instruction
sequence after the function has executed. For each return, following a call, (hereinafter referred
to as “function returns”) from a function in guest space then, a new corresponding instruction
sequence is typically started in native space from the return address of the function.

Accordingly, a new mapping would have to be created in the CLB for each such return. Because
a function may be called from multiple places from within a block of guest code, it results in
several guest-to-native mappings for the function in the CLB. This leads to a temporary flooding
of the CLB, which is a precious resource in the processor pipeline and is a very inefficient use of

the CLB structure.

BRIEF SUMMARY OF THE INVENTION

[0005] Accordingly, a need exists for a method and apparatus for creating a more efficient
and flexible approach to cache guest-to-native mappings for function returns in the guest code.

In one embodiment, a dedicated hardware structure called a Guest Return Address Stack (GRAS)
is used to speculatively cache the mappings for function returns, wherein the GRAS structure
caches both the guest address and the native address for a function return, and wherein the

GRAS structure resides at the front end of the processor pipeline, e.g., at the fetch stage. After a

2



WO 2014/151691 PCT/US2014/026252

mapping is created, when the function is encountered in the code, the GRAS is looked up to
determine a prediction for the target of the function return. It, therefore, prevents the CLB from
being flooded with multiple entries associated with function returns from the same function and

advantageously conserves precious space in the CLB.

[0006] In one embodiment of the present invention, the GRAS is implemented in hardware
and used to predict the target of a function return. Accordingly, stack operations, in one
embodiment, are performed speculatively in the Fetch Unit of an out-of-order (OOO)
microprocessor. In a deep and wide superscalar processor, however, there can be many calls
and returns that may be encountered in the code during execution. Because some of the
mappings created within the GRAS may be associated with functions on a mispredicted path
(e.g., because the speculation may be incorrect), the stack information within the GRAS may be

corrupted.

[0007] In one embodiment of the present invention, the GRAS is maintained and updated
similar to a linked list structure to prevent the stack from getting corrupted. For example, the
GRAS may be implemented using a circular buffer with each entry carrying a pointer to a prior
entry. Also, in one embodiment, two global variables are maintained, wherein one points to the
top of the stack and the other points to the next available entry in the GRAS. A new mapping
associated with a function call is inserted into the next available entry, thus no entry is
overwritten. Accordingly, in the case of a misprediction, the pointers used to keep track of the
entries in the GRAS can simply be adjusted to recover a prior state. Because no entries are
overwritten, the linked-list implementation of the GRAS structure prevents corruption of the

stack in the event of a misprediction.

[0008] In one embodiment, a microprocessor implemented method for maintaining a guest
return address stack in an out-of-order microprocessor pipeline is presented. The method
comprises mapping a plurality of instructions in a guest address space into a corresponding
plurality of instructions in a native address space. For each function call instruction in the native
address space fetched during execution, the method also comprises performing the following:

(a) pushing a current entry into a guest return address stack (GRAS) responsive to a function
3



WO 2014/151691 PCT/US2014/026252

call, wherein the GRAS is maintained at the fetch stage of the pipeline, and wherein the current
entry comprises information regarding both a guest target return address and a corresponding
native target return address associated with the function call; (b) popping the current entry from
the GRAS in response to processing a return instruction; and (c) fetching instructions from the

native target return address in the current entry after the popping from the GRAS.

[0009] The following detailed description together with the accompanying drawings will

provide a better understanding of the nature and advantages of the present invention.

[0010] BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Embodiments of the present invention are illustrated by way of example, and not by
way of limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements.

[0012] Figure 1 is an exemplary computer system in accordance with embodiments of the

present invention.

[0013] Figure 2 is an exemplary diagram of pipe stages of a pipeline for an out of order
microprocessor on which embodiments of the present invention can be implemented in

accordance with one embodiment of the present invention.

[0014] Figure 3A illustrates an exemplary series of functions in guest address space.

[0015] Figure 3B illustrates the respective instruction sequences that result from a mapping

of the functions of Figure 3A, which reside in a guest address space, to a native address space.

[0016] Figure 4A illustrates an exemplary sequence of instructions in guest address space

that invokes the same function multiple times.



WO 2014/151691 PCT/US2014/026252

[0017] Figures 4B-C illustrate the manner in which the GRAS is updated in accordance with

embodiments of the invention.

[0018] Figure 5 illustrates another example of the manner in which GRAS is updated in

accordance with embodiments of the present invention.

[0019] Figure 6 illustrates an example of the manner in which a GRAS may get corrupted if

maintained as a regular stack.

[0020] Figure 7 illustrates the manner in which the linked-list implementation of the GRAS
is updated speculatively in response to the instruction sequence illustrated in Figure 6 in

accordance with one embodiment of the present invention.

[0021] Figure § illustrates the manner in which the linked-list implementation of the GRAS
is updated in response to a branch mispredict in accordance with one embodiment of the present

invention.

[0022] Figure 9 depicts a flowchart 900 for an exemplary computer controlled process for
maintaining a guest return address stack in accordance with embodiments of the present

invention.

DETAILED DESCRIPTION OF THE INVENTION

[0023] Reference will now be made in detail to the various embodiments of the present
disclosure, examples of which are illustrated in the accompanying drawings. While described in
conjunction with these embodiments, it will be understood that they are not intended to limit the
disclosure to these embodiments. On the contrary, the disclosure is intended to cover
alternatives, modifications and equivalents, which may be included within the spirit and scope of
the disclosure as defined by the appended claims. Furthermore, in the following detailed

description of the present disclosure, numerous specific details are set forth in order to provide a



WO 2014/151691 PCT/US2014/026252

thorough understanding of the present disclosure. However, it will be understood that the
present disclosure may be practiced without these specific details. In other instances, well-
known methods, procedures, components, and circuits have not been described in detail so as not

to unnecessarily obscure aspects of the present disclosure.

NOTATION AND NOMENCLATURE

[0024] Some portions of the detailed descriptions that follow are presented in terms of
procedures, logic blocks, processing, and other symbolic representations of operations on data
bits within a computer memory. These descriptions and representations are the means used by
those skilled in the data processing arts to most effectively convey the substance of their work to
others skilled in the art. In the present application, a procedure, logic block, process, or the like,
is conceived to be a self-consistent sequence of steps or instructions leading to a desired result.
The steps are those utilizing physical manipulations of physical quantities. Usually, although not
necessarily, these quantities take the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise manipulated in a computer system. It
has proven convenient at times, principally for reasons of common usage, to refer to these

signals as transactions, bits, values, elements, symbols, characters, samples, pixels, or the like.

[0025] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as apparent from the following discussions,

it is appreciated that throughout the present disclosure, discussions utilizing terms such as

2% ¢ 2% ¢

“mapping,” “pushing,” “popping,” “fetching,” and “determining,” or the like, refer to actions and
processes (e.g., flowchart 900 of FIG. 9) of a computer system or similar electronic computing
device or processor (e.g., system 110 of FIG. 1). The computer system or similar electronic
computing device manipulates and transforms data represented as physical (electronic) quantities
within the computer system memories, registers or other such information storage, transmission

or display devices.



WO 2014/151691 PCT/US2014/026252

[0026] Embodiments described herein may be discussed in the general context of computer-
executable instructions residing on some form of computer-readable storage medium, such as
program modules, executed by one or more computers or other devices. By way of example, and
not limitation, computer-readable storage media may comprise non-transitory computer-readable
storage media and communication media; non-transitory computer-readable media include all
computer-readable media except for a transitory, propagating signal. Generally, program
modules include routines, programs, objects, components, data structures, etc., that perform
particular tasks or implement particular abstract data types. The functionality of the program

modules may be combined or distributed as desired in various embodiments.

[0027] Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information such as
computer-readable instructions, data structures, program modules or other data. Computer
storage media includes, but is not limited to, random access memory (RAM), read only memory
(ROM), electrically erasable programmable ROM (EEPROM), flash memory or other memory
technology, compact disk ROM (CD-ROM), digital versatile disks (DVDs) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the desired information and that can

accessed to retrieve that information.

[0028] Communication media can embody computer-executable instructions, data structures,
and program modules, and includes any information delivery media. By way of example, and
not limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other
wireless media. Combinations of any of the above can also be included within the scope of

computer-readable media.

[0029] Figure 1 is a block diagram of an example of a computing system 110 capable of
being integrated with a processor 114 of an embodiment of the present disclosure. Computing
system 110 broadly represents any single or multi-processor computing device or system capable

of executing computer-readable instructions. Examples of computing system 110 include,
7



WO 2014/151691 PCT/US2014/026252

without limitation, workstations, laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or device. In its most basic
configuration, computing system 110 may include at least one processor 114 of an embodiment

of the present invention and a system memory 116.

[0030] Processor 114 incorporates embodiments of the present invention and generally
represents any type or form of processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor 114 may receive instructions from a
software application or module. These instructions may cause processor 114 to perform the
functions of one or more of the example embodiments described and/or illustrated herein. In one
embodiment, processor 114 may be an out of order microprocessor. In a different embodiment,
processor 114 may be a superscalar processor. In yet another embodiment, processor 114 may

comprise multiple processors operating in parallel.

[0031] System memory 116 generally represents any type or form of volatile or non-volatile
storage device or medium capable of storing data and/or other computer-readable instructions.
Examples of system memory 116 include, without limitation, RAM, ROM, flash memory, or any
other suitable memory device. Although not required, in certain embodiments computing system
110 may include both a volatile memory unit (such as, for example, system memory 116) and a

non-volatile storage device (such as, for example, primary storage device 132).

[0032] Computing system 110 may also include one or more components or elements in
addition to processor 114 and system memory 116. For example, in the embodiment of Figure 1,
computing system 110 includes a memory controller 118, an input/output (I1/O) controller 120,
and a communication interface 122, each of which may be interconnected via a communication
infrastructure 112. Communication infrastructure 112 generally represents any type or form of
infrastructure capable of facilitating communication between one or more components of a
computing device. Examples of communication infrastructure 112 include, without limitation, a
communication bus (such as an Industry Standard Architecture (ISA), Peripheral Component

Interconnect (PCI), PCI Express (PCle), or similar bus) and a network.



WO 2014/151691 PCT/US2014/026252

[0033] Memory controller 118 generally represents any type or form of device capable of
handling memory or data or controlling communication between one or more components of
computing system 110. For example, memory controller 118 may control communication
between processor 114, system memory 116, and 1/0 controller 120 via communication

infrastructure 112.

[0034] I/O controller 120 generally represents any type or form of module capable of
coordinating and/or controlling the input and output functions of a computing device. For
example, 1/O controller 120 may control or facilitate transfer of data between one or more
elements of computing system 110, such as processor 114, system memory 116, communication

interface 122, display adapter 126, input interface 130, and storage interface 134.

[0035] Communication interface 122 broadly represents any type or form of communication
device or adapter capable of facilitating communication between example computing system 110
and one or more additional devices. For example, communication interface 122 may facilitate
communication between computing system 110 and a private or public network including
additional computing systems. Examples of communication interface 122 include, without
limitation, a wired network interface (such as a network interface card), a wireless network
interface (such as a wireless network interface card), a modem, and any other suitable interface.
In one embodiment, communication interface 122 provides a direct connection to a remote server
via a direct link to a network, such as the Internet. Communication interface 122 may also

indirectly provide such a connection through any other suitable connection.

[0036] Communication interface 122 may also represent a host adapter configured to
facilitate communication between computing system 110 and one or more additional network or
storage devices via an external bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Interface (SCSI) host adapters, Universal
Serial Bus (USB) host adapters, IEEE (Institute of Electrical and Electronics Engineers) 1394
host adapters, Serial Advanced Technology Attachment (SATA) and External SATA (eSATA)
host adapters, Advanced Technology Attachment (ATA) and Parallel ATA (PATA) host

adapters, Fibre Channel interface adapters, Ethernet adapters, or the like. Communication
9



WO 2014/151691 PCT/US2014/026252

interface 122 may also allow computing system 110 to engage in distributed or remote
computing. For example, communication interface 122 may receive instructions from a remote

device or send instructions to a remote device for execution.

[0037] As illustrated in Figure 1, computing system 110 may also include at least one display
device 124 coupled to communication infrastructure 112 via a display adapter 126. Display
device 124 generally represents any type or form of device capable of visually displaying
information forwarded by display adapter 126. Similarly, display adapter 126 generally
represents any type or form of device configured to forward graphics, text, and other data for

display on display device 124.

[0038] As illustrated in Figure 1, computing system 110 may also include at least one input
device 128 coupled to communication infrastructure 112 via an input interface 130. Input device
128 generally represents any type or form of input device capable of providing input, either
computer- or human-generated, to computing system 110. Examples of input device 128
include, without limitation, a keyboard, a pointing device, a speech recognition device, or any

other input device.

[0039] As illustrated in Figure 1, computing system 110 may also include a primary storage
device 132 and a backup storage device 133 coupled to communication infrastructure 112 via a
storage interface 134. Storage devices 132 and 133 generally represent any type or form of
storage device or medium capable of storing data and/or other computer-readable instructions.
For example, storage devices 132 and 133 may be a magnetic disk drive (e.g., a so-called hard
drive), a floppy disk drive, a magnetic tape drive, an optical disk drive, a flash drive, or the like.
Storage interface 134 generally represents any type or form of interface or device for transferring

data between storage devices 132 and 133 and other components of computing system 110.

[0040] In one example, databases 140 may be stored in primary storage device 132.
Databases 140 may represent portions of a single database or computing device or it may
represent multiple databases or computing devices. For example, databases 140 may represent

(be stored on) a portion of computing system 110. Alternatively, databases 140 may represent
10



WO 2014/151691 PCT/US2014/026252

(be stored on) one or more physically separate devices capable of being accessed by a computing

device, such as computing system 110.

[0041] Continuing with reference to Figure 1, storage devices 132 and 133 may be
configured to read from and/or write to a removable storage unit configured to store computer
software, data, or other computer-readable information. Examples of suitable removable storage
units include, without limitation, a floppy disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Storage devices 132 and 133 may also include other similar structures or
devices for allowing computer software, data, or other computer-readable instructions to be
loaded into computing system 110. For example, storage devices 132 and 133 may be
configured to read and write software, data, or other computer-readable information. Storage
devices 132 and 133 may also be a part of computing system 110 or may be separate devices

accessed through other interface systems.

[0042] Many other devices or subsystems may be connected to computing system 110.
Conversely, all of the components and devices illustrated in Figure 1 need not be present to
practice the embodiments described herein. The devices and subsystems referenced above may
also be interconnected in different ways from that shown in Figure 1. Computing system 110
may also employ any number of software, firmware, and/or hardware configurations. For
example, the example embodiments disclosed herein may be encoded as a computer program
(also referred to as computer software, software applications, computer-readable instructions, or

computer control logic) on a computer-readable medium.

[0043] The computer-readable medium containing the computer program may be loaded into
computing system 110. All or a portion of the computer program stored on the computer-
readable medium may then be stored in system memory 116 and/or various portions of storage
devices 132 and 133. When executed by processor 114, a computer program loaded into
computing system 110 may cause processor 114 to perform and/or be a means for performing the
functions of the example embodiments described and/or illustrated herein. Additionally or
alternatively, the example embodiments described and/or illustrated herein may be implemented

in firmware and/or hardware.
11



WO 2014/151691 PCT/US2014/026252

[0044] METHOD AND APPARATUS FOR GUEST RETURN ADDRESS STACK
EMULATION SUPPORTING SPECULATION

[0045] As described in detail related U.S. Patent Application Serial No. 13/359767, “GUEST
INSTRUCTION TO NATIVE INSTRUCTION RANGE BASED MAPPING USING A
CONERSION LOOK ASIDE BUFFER OF A PROCESSOR,” Attorney Docket SMII-0030,
Mohammad Abdallah, filed January 27, 2012, (hereinafter referred to as “Application No.
13/359767”), and incorporated herein by reference, a structure such as a Conversion Lookaside
Buffer (CLB) is commonly used to provide a mapping between the guest addresses and native
addresses in emulated architectures. A conversion look aside buffer is typically used to cache the
address mappings between guest and native blocks; such that the most frequently encountered

native conversion blocks are accessed through low latency availability to the processor.

[0046] Under certain circumstances, a conversion lookaside buffer (CLB) may become
temporarily flooded with too many entries because of function calls to the same function in the
guest space. A function call comprises both a call to the function from within an instruction
sequence and a return, which is a branch back to the instruction sequence after the function has
executed. For each return (hereinafter referred to as “function returns”), following a call, a new
corresponding instruction sequence is typically started in native space from the return address of
the function. Accordingly, a new mapping (from the guest address to the corresponding native
return address) would have to be created in the CLB for each such return. Because a function
may be called from multiple places from within a block of guest code, creating a new mapping
for each instance of the function return results in several guest-to-native mappings for the
function in the CLB. This leads to a temporary flooding of the CLB, which is a precious

resource in the processor pipeline and is a very inefficient use of the CLB structure.

[0047] Embodiments of the present invention provide a method and apparatus for creating a
more efficient and flexible approach to cache guest-to-native mappings for function returns in
the guest code. In one embodiment, a dedicated hardware structure called a Guest Return
Address Stack (GRAS) is used to cache the mappings for function returns at the front end of the

processor pipeline, wherein the GRAS structure caches both the guest address and the native
12



WO 2014/151691 PCT/US2014/026252

address for a function return. After a mapping is created, when the same function is encountered
in the code, the GRAS is looked up to determine a prediction for the target of the function return.
It, therefore, prevents the CLB from being flooded with multiple entries associated with function

returns from the same function and advantageously conserves precious space in the CLB.

[0048] In one embodiment of the present invention, the GRAS is implemented in hardware
and used to predict the target of a function return. Accordingly, stack operations, in one
embodiment, are performed speculatively and, typically, in the Fetch Unit of an out-of-order
(O0OO0) microprocessor. In a deep and wide superscalar processor, however, there can be many
calls and returns that may be encountered in the code during execution. Because some of the
mappings created within the GRAS may be associated with functions on a mispredicted path, the

stack information within the GRAS may be corrupted.

[0049] In one embodiment of the present invention, the GRAS is maintained and updated
similar to a linked list structure to prevent the stack from getting corrupted. For example, the
GRAS is implemented using a circular buffer with each entry carrying a pointer to a prior entry.
Also, in one embodiment, a first global variable is maintained that points to the top of the stack
and a second global variable is maintained that points to the next available entry in the GRAS. A
new mapping associated with a function call is inserted into the next available entry, thus no
entry is overwritten. Accordingly, in the case of a misprediction, the pointers used to keep track
of the entries in the GRAS can simply be adjusted to recover a prior state. Because no entries are
overwritten, the linked-list implementation of the GRAS structure prevents corruption of the

stack in the event of a misprediction.

[0050] Figure 2 is a block diagram of pipe stages an exemplary pipeline for an OO0

microprocessor in accordance with embodiments of the present invention.

[0051] Instructions are fetched at the fetch stage 202 and placed in the instruction fetch
queue (IFQ) (not shown) within fetch stage 202. The instructions are generally the original
assembly instructions found in the executable program. These instructions reference the

architectural registers which are stored in register file 210. If the first fetched instruction was to
13



WO 2014/151691 PCT/US2014/026252

be interrupted or raise an exception, the architectural register file 210 stores the results of all
instructions until that point. Stated differently, the architectural register file stores the state that
needs to be saved and restored in order to return back to the program break point during

debugging or otherwise.

[0052] In an OOO microprocessor, the instructions execute out-of-order while still
preserving data dependence constraints. Because instructions may finish in an arbitrary order,
the architectural register file 210 cannot be modified by the results of out of order instructions as
they finish because it would make it difficult to restore their values accurately in the event of an
exception or an interrupt. Hence, every instruction that enters the pipeline is provided a
temporary register where it can save its result. The temporary registers are eventually written
into the architectural register file in program order when the associated instruction retires. Thus,
even though instructions are being executed out of order, the contents of the architectural register

files change as though they were being executed in program order.

[0053] The ROB 208 facilitates the process of instruction retirement. After the instructions
are dispatched from the fetch unit 202, they are decoded by decode module 204 and are placed in
the ROB 208 and issue queue 206 (1Q). The ROB 208 and 1Q 206 may be part of a scheduler
module 272.  As instructions are issued out of IQ 206 out of order, they are executed by execute
module 212. Instruction execution at 212 is allowed out of order as long as data dependencies

are maintained.

[0054] In one embodiment, the write back module 214 will write the resulting values from
those instructions back to the temporary registers in ROB 208 and rely on the ROB 208 to
facilitate committing or “retiring” the instructions in order. However, in a different embodiment,
write back module 214 writes the values resulting from instruction execution directly into
register file 210 without sorting them. The unordered elements are added in physical memory to
the register file 210 in an unordered fashion and are then retired to the architectural files in order

at the retirement stage using a ROB initiated protocol.

14



WO 2014/151691 PCT/US2014/026252

[0055] The instructions issued out of order from the 1Q 206 may also comprise loads and
stores. As explained above, when loads and stores are issued out of order from the 1Q 206, there
are memory dependencies between them that need to be resolved before those instructions can be
committed. Accordingly, the store instructions are stored in order in a Load Store Queue (LSQ)

216 while the dependencies between the loads and stores are resolved with the help of ROB 208.

[0056] Figure 3A illustrates an exemplary series of functions in guest address space. The
main function 351 comprises a call to function A 354. Function A 354 comprises a call to
function B 356. The instruction following the call to function A within main function 351 is LO
321 and, accordingly, LO 321 is the return address from function A 354. The instruction
following the call to function B within function A 354 is L1 322 and, accordingly, L1 322 is the

return address from function B 356.

[0057] As discussed in Application No. 13/359767, guest instruction blocks are converted or
mapped into native conversion blocks in an emulated architecture. As described in Application
No. 13/359767, guest instructions in an emulated architecture can be from a number of different
guest instruction architectures (e.g., Java, x86, MIPS etc.) and multiple guest instruction blocks
can be converted into one or more corresponding native conversion blocks. This conversion

occurs on a per instruction basis.

[0058] Also, as described in Application No. 13/359,767, in one embodiment, every
instruction block concludes with a far branch. (The difference between near branches and far
branches are detailed in Application No. 13/359,767, however, for purposes of the embodiments
of the present invention, far branches are used as examples and will hereinafter be referred to as
“branches.”) For example, a function call in guest space will result in a guest branch and,
accordingly, end the instruction sequence it occurs within. A new instruction sequence will be

started from the return of the function call.

[0059] Figure 3B illustrates the respective instruction sequences that result from a mapping
of the functions of Figure 3A, which reside in a guest address space, to a native address space.

Sequence 0 371 in native space corresponds to the sequence which starts at the beginning of the
15



WO 2014/151691 PCT/US2014/026252

main function 351 and ends at the call to function A within function main 351. Sequence 3
corresponds to a sequence that starts at the LO label 321, which is also the return address from

the call to function A.

[0060] Sequence 1 375 in native space corresponds to the sequence which starts at the
beginning of function A 354 and ends at the call to function B within function A 354. Sequence
3 corresponds to a sequence that starts at the L1 label 322, which is also the return address from

the call to function B.

[0061] Sequence 2 376 corresponds to function B 356.

[0062] Typically, a separate mapping would need to be created for each return address from
a call in the CLB. For example, a separate mapping would be created for L0 321 in guest
address space, which would be mapped to sequence 3 378 in native address space. Also, a
separate mapping would be created for L1 322 in guest address space, which would be mapped
to sequence 4 379 in native address space. The two entries created in the CLB mapping are
useful only if function B 356 is called from the same address within function A 354
(corresponding to the sequence 4 379 entry) and if function A 354 is called from the same

address within function main A (corresponding to the sequence 3 378 entry).

[0063] Since a typical function is called from several different addresses in a program, for
each function call, a new mapping is created for the return address from the respective function
call. This is because the return address is a function of the location the corresponding call was
made from and, therefore, a corresponding entry in the CLB is not reusable by any other instance
of the function return. As stated above, this leads to a temporary flooding of the CLB, which is

a precious resource and is a very inefficient use of the CLB.

[0064] In conventional non-emulated architectures, this problem did not arise because an
offset address could simply be added to the address of the call to determine the return address in
native space. For example, if the instructions in the guest address space in Figure 3A did not

need to be mapped to a corresponding set of instructions in a native address space, then an offset
16



WO 2014/151691 PCT/US2014/026252

could be added to a call, e.g., Call A to determine the return address of the call, ¢.g., L0 321

(which is the corresponding return address for Call A).

[0065] Typically, in conventional non-emulated architecture, a return address stack (RAS) in
native space can be maintained in software or hardware. A RAS is a structure typically used to
predict the target of a function return. When a call is encountered in the code, the Program
Counter (PC) of the calling instruction plus an offset (equal to an instruction size) will be
inserted into the RAS. In other words, the PC of the return address (calculated as the PC of the
calling instruction plus the offset) would be inserted (or pushed) into the RAS. A return from
the called function will result in the stack being popped using the saved address as the next PC

address.

[0066] Embodiments of the present invention maintain a Guest Return Address Stack
(GRAS) in hardware at the front end of the pipeline to emulate the software return address stack
in guest address space. The GRAS of the present invention emulates the structure of a
conventional RAS and, like the RAS, is also used to predict the target of a function return. It
should be noted that the GRAS does not replace the software RAS maintained at the back-end of
the machine, but is maintained in addition to it in order to speculatively determine return
addresses for functions at the front-end of the machine. In contrast to the RAS, the GRAS stores

both the guest-targets and the corresponding native-targets of the function return addresses.

[0067] By storing both the guest-target and the native-target, the GRAS of the present
invention advantageously precludes adding an entry to the CLB for every instance of a function

return. Instead, the information is obtained from the GRAS.

[0068] It should be noted that the GRAS structure is speculatively maintained at the front
end of the pipeline. For example, the stack operation for the GRAS is typically performed in the
Fetch Unit. Because the GRAS is maintained speculatively, entries in it may need to be
occasionally cleared or flushed in case of a misprediction in the control flow of the program

code. Accordingly, embodiments of the present invention need to continue maintaining a

17



WO 2014/151691 PCT/US2014/026252

software RAS at the back-end of the machine to compare and validate the return addresses

predicted by the hardware GRAS.

[0069] Figure 4A illustrates an exemplary sequence of instructions in guest address space
that invokes the same function multiple times. Function foo 452 is invoked (or called) at 3
instances within the guest code, ¢.g., at address 471, 434 and 476. Call 471, for example, has a
return address of 0xA, which would be mapped to sequence T2 in the native address space. Call
434, for example, has a return address of 0xB, which would be mapped to sequence T4 in the
native address space. And call 476, for example, has a return address of 0xC, which would be

mapped to sequence TS5 in the native address space.

[0070] Instead of storing a mapping for the corresponding return address for each of the
invocations of function foo in a CLB, embodiments of the present invention provide a GRAS,
wherein new entries, in response to a function invocation, can be pushed into the stack with the
return address of the call. When an entry is pushed into the stack, both the guest address and the
corresponding native address associated with the function return are pushed onto the stack.
Further, the entry can be popped out of the stack upon a return in the guest code, and the native
address corresponding to the entry popped out can be used to redirect the front-end of the
machine to fetch instructions from. By maintaining both the guest address and the corresponding
native address in the GRAS, a separate mapping for each instance of a function return does not

need to be saved in the CLB.

[0071] Pushing a new entry into the stack and popping out the entry out of the stack in
response to a return in the guest-code enables the GRAS to be used as a temporary space for
storing the mappings. This eliminates the need to look up the CLB for a return address in the
guest space. Instead, both the guest and the native return addresses are popped off the GRAS.
The corresponding native address obtained can be used to redirect the front-end of the machine

to fetch the next instruction following the function return in native address space.

[0072] Figures 4B-C illustrate the manner in which the GRAS is updated in accordance with

embodiments of the invention. Figure 4B provides an example of the manner in which the
18



WO 2014/151691 PCT/US2014/026252

GRAS is updated in response to call 471 of function foo. When function call 471 for function
foo 452 is encountered in the code during execution, both the guest return address (0xA) and the
corresponding native return address (T2) are pushed into the GRAS 490 at entry 491.
Subsequently, after the function foo has executed and returned, entry 491 is popped from the
GRAS 490 and used to redirect the front-end of the machine to native sequence T2 to fetch

instructions from.

[0073] Figure 4C provides an example of the manner in which the GRAS is updated in
response to call 434 of function foo. When function call 434 for function foo 452 is
encountered in the code during execution, both the guest return address (0xB) and the
corresponding native return address (T4) are pushed into the GRAS 490 at entry 492.
Subsequently, after the function foo has executed and returned, entry 492 is popped from the
GRAS 490 and used to redirect the front-end of the machine to native sequence T4 to fetch

instructions from.

[0074] Instantiation 476 for function foo is treated in a similar way to calls 471 and 434

when processed during execution.

[0075] As discussed above, pushing a new entry into the stack (in response to a call) and
popping out the entry out of the stack in response to a return in the guest-code enables the GRAS
to be used as a temporary space for storing the mappings for function returns between guest
space and address space. This eliminates the need to look up the CLB for return addresses in the
guest space. Instead, both the guest and the native return addresses are popped off the GRAS at
the same time. The native address is then used to redirect the front-end to fetch instructions

from, as discussed above.

[0076] In one embodiment, when the guest to native mapping is created in software initially
prior to the execution of the code, certain instructions are introduced during the mapping in order
to emulate guest call-return behavior. For example, a function call in guest code can be

converted to a “GRAS.PUSH” instruction followed by a “G.BRN” instruction, as will be

19



WO 2014/151691 PCT/US2014/026252

discussed further below. Also, a function return in guest code can be converted to a

“G.BRN.RTN” instruction, which will also be described further below.

[0077] A) GRAS.PUSH disp32: During the mapping process, a function call in guest code
is emulated using a “GRAS.PUSH” instruction followed by a “G.BRN” instruction. The
GRAS.PUSH instruction pushes the return address (both the guest and corresponding native
return address) onto the stack. Disp32 is the displacement from the beginning of the current
calling function. With GRAS.PUSH, the return address in guest space can be calculated using
the address of the current calling function plus the displacement. This calculated return address
is then pushed into the stack along with the corresponding native address, which is also encoded
into instruction GRAS.PUSH during the mapping process by software. The “G.BRN”
instruction is a branch instruction that jumps to the called function once the respective return

addresses have been pushed into the GRAS.

[0078] As discussed above, the return address pushed to the stack comprises both native and
guest address components. The instruction is decoded early in the machine to enable the return

address to be pushed onto the hardware GRAS.

[0079] B) G.BRN.RTN: During the mapping process, a function return in guest code is
emulated using a “G.BRN.RTN” instruction. G.BRN.RTN pops the stack and jumps to the
popped address in native space. The front-end of the machine then starts fetching from this

native address.

[0080] Since the GRAS is of finite size and since operations on the hardware stack are
performed at the front-end of the machine speculatively, their accuracy is not guaranteed.
Accordingly, this requires additional validation of the entry popped from the GRAS. The
contents popped from the GRAS are typically attached along with the “G.BRN.RTN” instruction
and sent down the pipeline. The validation is performed by popping a corresponding entry from
the software RAS and comparing the two entries. In other words, the entry popped from the

GRAS is compared with the entry popped from the software RAS at the back-end of the

20



WO 2014/151691 PCT/US2014/026252

machine. On a mismatch, the entry in software stack takes priority and can be used to redirect

the front-end of the machine.

[0081] Figure 5 illustrates another example of the manner in which GRAS is updated in
accordance with embodiments of the present invention. Execution begins with instruction
sequences 571. When a call 572 to function A 575 is performed, the return address
corresponding to call A 572 is pushed into the stack at entry 502. Entry 502 comprises both the
guest return address (PC of Call A + 4) and the native return address (not shown). When a call
573 is then performed to function B 576, the return address corresponding to call B 573 is
pushed into the stack at entry 501. Entry 501 comprises both the guest return address (PC of Call

B + 4) and the native return address (not shown). The GRAS now contains two entries.

[0082] When return 577 in function B 576 is encountered, the top of stack (TOS) pointer 590
will be used to predict the target of the return and the stack will be popped. When return 578 in
function A 575 is encountered, again the TOS (now pointing at entry 502) will be used to predict
the target of the return and the stack will be popped. After returns 577 and 578, the GRAS will
be empty.

[0083] The simple stack operation shown in Figure 5 may not be sufficient in a wide and
deep superscalar processor, wherein several calls and returns in flight may be encountered.
Some of these calls may be in the wrong (mispredicted) path and corrupt the stack information

even if TOS is recovered correctly.

[0084] Figure 6 illustrates an example of the manner in which a GRAS may get corrupted if
maintained as a regular stack. For example, instruction sequence 675 comprises the speculative
path that the OOO processor followed while instruction sequence 676 comprises instructions that
were actually committed at the back-end of the pipeline. When Call A and Call B are
encountered on the speculative path during execution, return addresses corresponding to the calls
are pushed into GRAS 650 at entries 673 and 671 respectively. If Branch C is erroneously
predicted as Not Taken (NT) on the speculative path, then instructions Return D and Return E

would pop the stack twice and entries for Call A and Call B would be overwritten by new entries
21



WO 2014/151691 PCT/US2014/026252

corresponding to Call F and Call G (which would be pushed onto the stack after popping the
entries corresponding to Call A and Call B).

[0085] However, as noted above, Branch C is mispredicted and, therefore, instruction Return
D and beyond would all fall under the mispredict shadow of Branch C. Once a branch is
mispredicted, the TOS pointer 651 could be recovered in software to stack entry 671. However,
the contents of both stack entry 673 and 671 have been overwritten and corrupted. The entries
for Call A and Call B cannot be recovered because they have been overwritten. As a result,
popping the stack in response to instructions Return H and Return I on the committed path would

yield incorrect addresses.

[0086] In one embodiment of the present invention, the GRAS is maintained and updated
similar to a linked list structure to prevent the stack from getting corrupted. For example, the
GRAS is implemented using a circular buffer with each entry carrying a pointer to a prior entry.
Also, in one embodiment, a global variable is maintained that points to the top of the stack and
another global variable that points to the next available entry in the GRAS. A new mapping
associated with a function call is inserted into the next available entry, thus no entry is
overwritten. Accordingly, in the case of a misprediction, the pointers used to keep track of the
entries in the GRAS can simply be adjusted to recover a prior state. Because no entries are
overwritten, the linked-list implementation of the GRAS structure prevents corruption of the

stack in the event of a misprediction.

[0087] It should be noted that while the linked list structure is used in association with the
GRAS of the present invention to solve problems related to speculation in the guest space, it can

also be used in connection with a conventional RAS in native space.

[0088] As noted above, each entry in the circular GRAS maintains a previous pointer to
maintain the stack semantics. Because stack entries are no longer necessarily consecutive, each
entry maintains a pointer to point to the previous stack entry, which was the TOS when the entry
was inserted. The example illustrated in connection with Figures 7 and 8 will clarify the manner

in which the previous pointer for each stack entry works.
22



WO 2014/151691 PCT/US2014/026252

[0089] A global next pointer variable is maintained to point to the next available entry in the
GRAS in circular fashion. In one embodiment, the next pointer is always incremented and never
decremented. A call is accordingly inserted into the next available entry and, therefore, no entry

1s overwritten.

[0090] Figure 7 illustrates the manner in which the linked-list implementation of the GRAS
is updated speculatively in response to the instruction sequence illustrated in Figure 6 in
accordance with one embodiment of the present invention. Figure 7 will illustrate the manner in
which the GRAS is updated assuming that Branch C within sequence 675 of Figure 6 (also

illustrated as sequence 750 in Figure 7) is erroneously predicted to be not taken.

[0091] Prior to call A, the next pointer and top of stack (TOS) pointer both may be initialized
to value of 0. After the call to function A, the return address (both the guest address and the
native mapping) for call A is pushed into the GRAS at location 1 as shown in table 771. Also,
the previous pointer value is updated to a value of 0, which is the value that the TOS variable had
when the entry for call A was inserted. After inserting the entry for call A, the pointer for TOS
is updated to a value of 1 and the next pointer is updated to point to the next available entry in

the stack, 2.

[0092] Following the call to function B, the corresponding entry for call B is pushed into the
GRAS at location 2 as shown in table 772. The previous pointer value for entry 2 is updated to
a value of 1, which is the value that the TOS variable had when the entry for call B was inserted.
After inserting the entry for call B, the pointer for TOS is updated to a value of 2 and the next

pointer is updated to point to the next available entry in the stack, 3.

[0093] If Branch C is mispredicted as Not Taken (NT), then instructions Return D and
Return E will be processed next. Return D pops the entry associated with Call B, as shown in
table 773, however, this entry is neither deleted nor overwritten in hardware. Instead, in the
linked-list implementation of the present invention, the TOS pointer is updated to point to

location 1 to indicate that the entry at location 2 has been popped. However, the next pointer

23



WO 2014/151691 PCT/US2014/026252

value is still maintained at a value of 3, which is the next available location. Maintaining the

next pointer to point to location 3 ensures that entries 1 and 2 will not be overwritten.

[0094] Instruction Return E pops the entry associated with Call A, as shown in table 774.
Again, the entry associated with Call A is not overwritten or deleted. The TOS pointer is simply
updated to a value of 0 indicating that the entry at location 1 was popped. The next pointer,

meanwhile, is still maintained at 3.

[0095] When call F is encountered in the instruction sequence 750, an entry corresponding to
call F is entered at location 3 as shown in Table 775. Next pointer, as discussed above, pointed
to location 3, even though entries corresponding to calls A and B were popped. The
corresponding previous pointer value for the call F entry is 0 because it takes the value of TOS
prior to the current entry. TOS, meanwhile, is updated to 3 and next pointer is updated to a value

of 4.

[0096] Finally, for call G, an entry corresponding to call G is entered at location 4 as shown
in Table 776. The corresponding previous pointer value for the call G entry at location 4 is 3,
because that is the value of TOS prior to updating the GRAS with the entry for call G. TOS is
updated to 4 and next pointer is updated to a value of 5, which is the next available entry in the

GRAS.

[0097] Figure § illustrates the manner in which the linked-list implementation of the GRAS

is updated in response to a branch mispredict in accordance with one embodiment of the present
invention. Figure 8 uses the example from Figures 6 and 7 to illustrate the manner in which the
GRAS is updated assuming that the correct control path comprises Branch C within sequence

676 of Figure 6 (also illustrated as sequence 850 in Figure 8) being taken.

[0098] If Branch C is mispredicted, then entries for Call G and Call F need to be popped out
of the GRAS and the GRAS needs to be restored back to the state it was in prior to the Branch C
mispredict. In order to restore the GRAS back to its prior state, TOS is recovered to a value of

2. No change is made to the next pointer. TOS is recovered because each branch carries with it
24



WO 2014/151691 PCT/US2014/026252

state information, e.g., information regarding the value of the TOS at the time the prediction was
made. This allows the TOS value to be recovered in case of a branch mispredict. Setting the
TOS to 2, in effect, restores the stack back to the state it was in as reflected by table 772 (with
the exception that the next pointer now points to 5).  When instructions Return H and Return I
are encountered in sequence 850, corresponding entries for Call B and Call A are popped off as

shown in Figure 8.

[0099] Figure 9 depicts a flowchart 900 for an exemplary computer controlled process for
maintaining a guest return address stack in accordance with embodiments of the present
invention. While the various steps in this flowchart are presented and described sequentially,
one of ordinary skill will appreciate that some or all of the steps can be executed in different
orders and some or all of the steps can be executed in parallel. Further, in one or more
embodiments of the invention, one or more of the steps described below can be omitted,
repeated, and/or performed in a different order. Accordingly, the specific arrangement of steps
shown in FIG. 9 should not be construed as limiting the scope of the invention. Rather, it will be
apparent to persons skilled in the relevant art(s) from the teachings provided herein that other
functional flows are within the scope and spirit of the present invention. Flowchart 900 may be
described with continued reference to exemplary embodiments described above, though the
method is not limited to those embodiments. Process 900 may be implemented in hardware as

well.

[00100] At step 902, a plurality of instructions are mapped from a guest address space to a

native address space.

[00101] At step 904, the instructions in the native address space begin executing. For each
function call instruction that is processed, an entry is pushed into a guest return address stack
(GRAS), wherein, as discussed above and as shown in Figures 4B, 4C, and 5, the entry
comprises a guest target return address associated with the function call and a corresponding
native target return address. Further, the guest return address stack is updated speculatively at

the front-end of the machine, e.g., at the fetch stage of the pipeline.

25



WO 2014/151691 PCT/US2014/026252

[00102] At step 906, the entry associated with the function call is popped in response to
processing a return instruction. As discussed in relation to Figures 4B and 4C, the popped entry
comprises the predicted native target return address for the control flow of the program to jump

to.

[00103] At step 908, instructions are fetched speculatively from the native target return

address obtained from the popped entry in the guest return address stack.

[00104] While the foregoing disclosure sets forth various embodiments using specific block
diagrams, flowcharts, and examples, each block diagram component, flowchart step, operation,
and/or component described and/or illustrated herein may be implemented, individually and/or
collectively, using a wide range of hardware, software, or firmware (or any combination thereof)
configurations. In addition, any disclosure of components contained within other components
should be considered as examples because many other architectures can be implemented to

achieve the same functionality.

[00105] The process parameters and sequence of steps described and/or illustrated herein are
given by way of example only. For example, while the steps illustrated and/or described herein
may be shown or discussed in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various example methods described and/or
illustrated herein may also omit one or more of the steps described or illustrated herein or include

additional steps in addition to those disclosed.

[00106] While various embodiments have been described and/or illustrated herein in the
context of fully functional computing systems, one or more of these example embodiments may
be distributed as a program product in a variety of forms, regardless of the particular type of
computer-readable media used to actually carry out the distribution. The embodiments disclosed
herein may also be implemented using software modules that perform certain tasks. These
software modules may include script, batch, or other executable files that may be stored on a
computer-readable storage medium or in a computing system. These software modules may

configure a computing system to perform one or more of the example embodiments disclosed
26



WO 2014/151691 PCT/US2014/026252

herein. One or more of the software modules disclosed herein may be implemented in a cloud
computing environment. Cloud computing environments may provide various services and
applications via the Internet. These cloud-based services (e.g., software as a service, platform as
a service, infrastructure as a service, etc.) may be accessible through a Web browser or other
remote interface. Various functions described herein may be provided through a remote desktop

environment or any other cloud-based computing environment.

[00107] The foregoing description, for purpose of explanation, has been described with
reference to specific embodiments. However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and
variations are possible in view of the above teachings. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the invention and various embodiments with

various modifications as may be suited to the particular use contemplated.

[00108] Embodiments according to the invention are thus described. While the present
disclosure has been described in particular embodiments, it should be appreciated that the
invention should not be construed as limited by such embodiments, but rather construed

according to the below claims.

27



10

15

20

25

WO 2014/151691 PCT/US2014/026252

CLAIMS

What is claimed is:

1. A microprocessor implemented method for speculatively maintaining a guest return address
stack in an out-of-order microprocessor pipeline, said method comprising;:
mapping a plurality of instructions in a guest address space into a corresponding plurality
of instructions in a native address space; and
for each function call instruction in said native address space fetched during execution,
performing:
pushing a current entry into a guest return address stack (GRAS) responsive to a
function call, wherein said GRAS is maintained at the fetch stage of the pipeline, and
wherein said current entry comprises information regarding both a guest target return
address and a corresponding native target return address associated with the function call;
popping said current entry from said GRAS in response to processing a return
instruction; and
fetching instructions from said native target return address in said current entry

after said popping.

2. The method of Claim 1, wherein said return instruction corresponds to a return from said

function call.

3. The method of Claim 1, wherein said mapping comprises:
mapping a function call in said guest address space to a corresponding instruction in said
native address space, wherein said corresponding instruction performs said pushing when

processed in said native address space during execution.

4. The method of Claim 3, wherein said mapping further comprises:
mapping a return instruction to a corresponding instruction in said native address space,
wherein said return instruction performs said popping when processed in said native address

space during execution.
28



30

35

40

45

50

55

WO 2014/151691 PCT/US2014/026252

5. The method of Claim 1, wherein said GRAS is a circular buffer, and wherein said circular
buffer maintains:

a global next pointer value, wherein said global next pointer value indicates a position of
a next available entry in said GRAS; and

a previous pointer value for each entry in said GRAS, wherein said previous pointer

value points to a prior entry in said GRAS.

6. The method of Claim 5, wherein said pushing further comprises:

incrementing a global top of stack (TOS) value, wherein said global top of stack value
indicates a top of stack location of said GRAS;

incrementing said global next pointer value to point to a next available entry in said
GRAS; and

updating a previous pointer for said current entry with a TOS value prior to said pushing.

7. The method of Claim 6, wherein said popping further comprises:
decrementing said global TOS value; and

updating a previous pointer for said current entry with a TOS value prior to said popping.

8. A processor unit configured to perform a method for speculatively maintaining a guest return
address stack in an out-of-order microprocessor pipeline, said method comprising;:
mapping a plurality of instructions in a guest address space into a corresponding plurality
of instructions in a native address space; and
for each function call instruction in said native address space fetched during execution,
performing:
pushing a current entry into a guest return address stack (GRAS) responsive to a
function call, wherein said GRAS is maintained at the fetch stage of the pipeline, and
wherein said current entry comprises information regarding both a guest target return
address and a corresponding native target return address associated with the function call;
popping said current entry from said GRAS in response to processing a return

instruction; and

29



60

65

70

75

80

&5

90

WO 2014/151691 PCT/US2014/026252

fetching instructions from said native target return address in said current entry

after said popping.

9. The processor unit of Claim 8, wherein said return instruction corresponds to a return from

said function call.

10. The processor unit of Claim 8, wherein said mapping comprises:
mapping a function call in said guest address space to a corresponding instruction in said
native address space, wherein said corresponding instruction performs said pushing when

processed in said native address space during execution.

11. The processor unit of Claim 10, wherein said mapping further comprises:
mapping a return instruction to a corresponding instruction in said native address space,
wherein said return instruction performs said popping when processed in said native address

space during execution.

12. The processor unit of Claim &, wherein said GRAS is a circular buffer, and wherein said
circular buffer maintains:

a global next pointer value, wherein said global next pointer value indicates a position of
a next available entry in said GRAS; and

a previous pointer value for each entry in said GRAS, wherein said previous pointer

value points to a prior entry in said GRAS.

13. The processor unit of Claim 12, wherein said pushing further comprises:

incrementing a global top of stack (TOS) value, wherein said global top of stack value
indicates a top of stack location of said GRAS;

incrementing said global next pointer value to point to a next available entry in said
GRAS; and

updating a previous pointer for said current entry with a TOS value prior to said pushing.

14. The processor unit of Claim 13, wherein said popping further comprises:

decrementing said global TOS value; and

30



95

100

105

110

115

120

WO 2014/151691 PCT/US2014/026252

updating a previous pointer for said current entry with a TOS value prior to said popping.

15. An apparatus configured to perform a method for speculatively maintaining a guest return
address stack in an out-of-order microprocessor pipeline, said apparatus comprising:

a memory;

a processor communicatively coupled to said memory, wherein said processor is
configured to process instructions out of order, and further wherein said processor is configured
to perform a method, comprising:

mapping a plurality of instructions in a guest address space into a corresponding
plurality of instructions in a native address space; and
for each function call instruction in said native address space fetched during
execution, performing:

pushing a current entry into a guest return address stack (GRAS)
responsive to a function call, wherein said GRAS is maintained at the fetch stage
of the pipeline, and wherein said current entry comprises information regarding
both a guest target return address and a corresponding native target return address
associated with the function call;

popping said current entry from said GRAS in response to processing a
return instruction; and

fetching instructions from said native target return address in said current

entry after said popping from said GRAS.

16. The apparatus of Claim 15, wherein said return instruction corresponds to a return from said

function call.
17. The apparatus of Claim 15, wherein said mapping comprises:

mapping a function call in said guest address space to a corresponding instruction in said
native address space, wherein said corresponding instruction performs said pushing when

processed in said native address space during execution.

18. The apparatus of Claim 17, wherein said mapping further comprises:

31



125

130

135

140

WO 2014/151691 PCT/US2014/026252

mapping a return instruction to a corresponding instruction in said native address space,
wherein said return instruction performs said popping when processed in said native address

space during execution.

19. The apparatus of Claim 15, wherein said GRAS is a circular buffer, and wherein said
circular buffer maintains:

a global next pointer value, wherein said global next pointer value indicates a position of
a next available entry in said GRAS; and

a previous pointer value for each entry in said GRAS, wherein said previous pointer

value points to a prior entry in said GRAS.

20. The apparatus of Claim 19, wherein said pushing further comprises:

incrementing a global top of stack (TOS) value, wherein said global top of stack value
indicates a top of stack location of said GRAS;

incrementing said global next pointer value to point to a next available entry in said
GRAS; and

updating a previous pointer for said current entry with a TOS value prior to said pushing.
21. The apparatus of Claim 20, wherein said popping further comprises:

decrementing said global TOS value; and

updating a previous pointer for said current entry with a TOS value prior to said popping.

32



WO 2014/151691 PCT/US2014/026252
1/9
110
4 116 118 120 122
PROCESSOR SYSTEM MEMORY I/O COMMUNICATION
MEMORY CONTROLLER CONTROLLER INTERFACE
| y ' v
) /j P v v "
X 126 130 134
- DISPLAY INPUT STORAGE
ADAPTER INTERFACE INTERFACE
124 128 132 133
DISPLAY i PRIMARY BACKUP
DEVICE INPUT DEVICE STORAGE STORAGE
DEVICE DEVICE
T T
w0
 DATABASES |
N I

FIG. 1




Aowsy

e glc

i :

S Ol44vl ¢ Old

3 3HOVO 01 DS

5 d3x¥3a0

22!

=

=

M ananp aI0)g peoT

glc
cle
¥IINAIHOS
N yoeg ajluA a1noex] ol Joisiboy ananp anss| apoos
= - I — _— - — ] —
S 124 X4 0re 902 702
-
Jayng Japloay

— —

g 80¢C

=

3

=

[

:

[k

d37NA3HOS

yole
20¢




WO 2014/151691

35l§\ Main:

Lall A

371

\~

3/9
354

\~

Fanciion A;

Sequence 0

Saim

Call A
378

PCT/US2014/026252

356

AN

Fuactionn B

ANAN

Sequence 3

N

Call B
8 Retom
322\§' —~L1i:
Retumn
FIG. 3A
375
\,\ 376
Sequence 1 Sequence 2
Function A Funetion B:
Call B Retumn
379
Sequence 4
Li:
Retum

FIG. 3B



WO 2014/151691

foo();

— > - Tl
N
§\l
—_—

cl—»a—(1
N
w
g

foo();

pfootrn1  (OxA)

foortn2 (0OxB) —u-—___|

N

4/9

452

NI Function foo()

ST Return

PCT/US2014/026252

{

|3
476 ...
\r\foo(); /
foortn3 (0xC)
FIG. 4A
490 490
Hardware Guest Return Hardware Guest Return
& Address Stack Address Stack |
Cuest Address | Native Address Guest Address | Native Address
Oxa T2 {xB \/) T4
\?91 FIG. 4B 1o FIG. 4C




PCT/US2014/026252

WO 2014/151691

5/9

yA

g uonMIng

G Ol

8.9

4

WY

9.6

wmay
7+ ¥ 1122 40 34
a1l /\/
AN ¥ 12 b+ € 12030 Dd /\/Nom
€15 N\
Yy Honann . 10S
L
//\/ FALY ¢ 06S 501
cus M
12G



PCT/US2014/026252

6/9

juiniay

VL2

paigiui oy

{1} 2 8%
& Hen

Y 1D

aapeinzads

WO 2014/151691

919

G.9

Mispredicted path———p




WO 2014/151691

7/9
771 TOS=0,NP -0

"~

(1 [PrevPr=0 [Calla

TOS=1,NP =2
772

"~

PCT/US2014/026252

750

AVAN

2 Prev Pir=1 Call B

i Prev Par=0 Call A

TOS=2,NP =3
773

Call A

774 TOS=1,NP =3

2 Prev.fir=1 Gall B

1 Prev Ptr=10 Calba

TOS=0,NP =3
775

ad
g
o
Z
‘"g
e
b1
H
s ]

Call F

SPECULATIVE

Call A

CallB

BR C(NT)

Return D

Return E

CallF

CallG

M
ey b
f1

1 |PrevPr=0 | CallA

TOS=3,NP =4
776

calq

Al T
Prev Pir=1 N

Prev Ptr=90 CaltA

TOS=4,NP =5
Branch mispredict (see Figure 9)

FIG. 7




WO 2014/151691

8/9

PCT/US2014/026252

850

\™\

Prev Pir=1

fot | Bk | G| b

TOS=1

COMMITTED

Call A

CallB

BR C(T)

Return H

Return |

Pt | Bt | Gk | e

Prev Plr=0

FIG. 8




WO 2014/151691 PCT/US2014/026252

9/9

Start )

B
C

Map a plurality of instructions in a guest address space into
corresponding instructions in a native address space
902

l

During execution of instructions in native address space, for each
function call, pushing an entry into a guest return address stack
implemented at the fetch stage of the processor pipeline, wherein
the entry comprises information regarding both a guest target return
address and a corresponding native target return address
associated with the function call
904

l

Popping the entry from the guest return address stack in response
to processing a return instruction

906
|

l

Fetching instructions from the native target return address popped
from the guest return address stack
908

FIG. 9



International application No.

PCT/US2014/026252

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
GOOF 9/42(2006.01)i, GO6F 9/455(2006.01)i, GO6F 9/38(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/42; GO6F 12/02; GO6F 9/22; GO6F 9/40; GO6F 9/00; GO6F 9/38; GOGF 9/455

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: address stack emulation, microprocessor architecture, GRAS, conversion lookaside buffer

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2008-0028195 Al (Kevin D. KISSELL; and Hartvig W.J. Ekner) 31 January 200 1-21
3
See the abstract, figures 1-10, pages 1-3 and claims 1, 5.
A US 05784638 A (GOETZ; JOHN WALLACE et al.) 21 July 1998 1-21
See the abstract, figures 1-4, columns 1-2 and claims 1, 12.
A US 05053952 A (KOOPMAN, JR.; PHILIP J. et al.) 01 October 1991 1-21
See the abstract, figures 1-2, and claims 1, 8.
A WO 97-37301 A1l (ADVANCED MICRO DEVICES, INC.) 09 October 1997 1-21

See the abstract, figures 1-4, pages 1-3 and claims 1, 8.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

g

o

o

"pr

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search

26 June 2014 (26.06.2014)

Date of mailing of the international search report

27 June 2014 (27.06.2014)

Name and mailing address of the [ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. +82-42-472-7140

Authorized officer

KIM, Sang Tack

STy,
e,
%

///,

Dt

i

X r\\\“\ﬁs@

\\\\\\\\\\\"

Telephone No. +82-42-481-8211

Form PCT/ISA/210 (second sheet) (July 2009




INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/026252

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2008-0028195 Al 31/01/2008 US 2002-0194459 Al 19/12/2002
US 2005-0081022 Al 14/04/2005
US 6826681 B2 30/11/2004
US 7281123 B2 09/10/2007
US 7739484 B2 15/06/2010

US 05784638 A 21/07/1998 JP 03-552443B2 11/08/2004
JP 09-231093A 05/09/1997

US 05053952 A 01/10/1991 None

WO 97-37301 Al 09/10/1997 DE 69636416 D1 14/09/2006
DE 69636416 T2 29/03/2007
EP 0891583 Al 20/01/1999
EP 0891583 B1 02/08/2006
US 05892934 A 06/04/1999
WO 97-37301A1 09/10/1997

Form PCT/ISA/210 (patent family annex) (July 2009)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

