wo 20107142537 A1 | I IO O 0O 0 RSN

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

s . TN
(19) World Intellectual Property Organization /g [} 1M1 D 000 1.0 0000 0
nternational Bureau S,/) |
(43) International Publication Date \.;/ S (10) International Publication Number
16 December 2010 (16.12.2010) WO 2010/142537 A1
(51) International Patent Classification: (72) Inventors; and
GO6F 17/30 (2006.01) (75) Inventors/Applicants (for US only): VINING, Robert,

Guy [US/US]; IBM Corporation, Mail Drop 9032-2 253,

(21) International Application Number: 9000 S Rita Rd, Tucson, Arizona 85744-0002 (US).

PCT/EP2010/057384 GOLDSMITH, Kevin, Scott [US/US], IBM Corpora-

(22) International Filing Date: tion, Mail Drop 9032-2 260, 9000 S Rita Rd, Tucson,

28 May 2010 (28.05.2010) Arizona 85744-0002 (US). WURTH, Gregory, Paul
. . [US/US]; IBM Corporation, Mail Drop 9032-2 253, 9000

(25) Filing Language: English S Rita Rd, Tucson, Arizona 85744-0002 (US).

(26) Publication Language: English (74) Agent: LITHERLAND, David, Peter; IBM United

(30) Priority Data: Kingdom Limited, Intell.ectual Property Law, Hursley
12/482,935 11 June 2009 (11.06.2009) us Park, Winchester Hampshire SO21 2JN (GB).

(71) Applicant (for all designated States except US): INTER- (81) Designated States (unless otherwise indicated, for every
NATIONAL BUSINESS MACHINES CORPORA- kind of national protection available): AE, AG, AL, AM,
TION [US/US]; New Orchard Road, Armonk, New York AQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
10504 (US). CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(71) Applicant (for MG only): IBM UNITED KINGDOM HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
LIMITED [GB/GB]; PO Box 41, North Harbour, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
Portsmouth Hampshire PO6 3AU (GB). ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,

[Continued on next page]

(54) Title: FILE SYSTEM LOCATION VERIFICATION USING A SENTINEL

(57) Abstract: A new file system is mounted to a mount

800 point of an existing file system implemented in a computa-

/ tional system. A sentinel indicator is stored in the mount

- - - — point. Prior to initiating an input/output (I/O) operation by
Mounting a new file system to a mount point of an existing file a program, a determination is made by the program as to
system implemented in a computational system. whether the sentinel indicator exists. In response to deter-

mining by the program that the sentinel indicator exists,
the I/O operation is performed by the program. In certain
802 alternative embodiments, in response to determining by

/ the program that the sentinel indicator exists, the I/O oper-
ation is not performed by the program.

A4

Storing a sentinel indicator in the mount point, wherein the
sentinel indicator is a file.

804
A4 /

Prior to initiating an input/output (I/0) operation by a program,
determining by the program whether the sentinel indicator exists.

806
A4 /

In respanse to determining by the program that the sentinel
indicator exists, performing the 1/0 operation.

FIG. 8

WO 20107142537 A1 00000)00 N0 0 O OO

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. GW, ML, MR, NE, SN, TD, TG).

(84) Designated States (unless otherwise indicated, for every Published:
kind of regional protection available). ARIPO (BW, GH, _ th int tional 5 ¢ drt 2103
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, with international search report (drt. 21(3))
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, — before the expiration of the time limit for amending the
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, claims and to be republished in the event of receipt of
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, amendments (Rule 48.2(h))

LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

FILE SYSTEM LOCATION VERIFICATION USING A SENTINEL

Technical Field of the Invention

The invention relates to a method, a system, and a computer program product for verification

of a file system location using a sentinel.

Background of the Invention

In UNIX* file system hierarchies a tree structure may exist, wherein the tree structure
comprises of directories and files. A directory may include other directories and files,
wherein the other directories that are included in a directory may be referred to as
subdirectories. The top level directory of the UNIX file system may be referred to as the root

or the root directory.

Additionally, in UNIX file systems, the capability exists to mount other file systems into the
root of the UNIX file system hierarchy at a “mount point” or at “mount points” within
previously mounted file systems. The “mount point” is a specific directory location within
the overall UNIX file system hierarchy. This mechanism allows an administrator to construct
a flexible and expandable UNIX file system hierarchy which includes a number of mounted
file systems that can be local or remote, wherein the remote files systems may include
Network File System (NFS) mounted file systems. End users at a command prompt and
application programs may see one complete UNIX file system hierarchy and may be

unaware as to which specific directories are within which mounted file systems.

Summary of the Invention

Provided are a method, a system, and an computer program product in which a new file
system is mounted to a mount point of an existing file system implemented in a
computational system. A sentinel indicator is stored in the mount point. Prior to initiating an
input/output (I/0) operation by a program, a determination is made by the program as to

whether the sentinel indicator exists. In response to determining by the program that the

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

sentinel indicator exists, the I/O operation is performed by the program. In certain alternative
embodiments, in response to determining by the program that the sentinel indicator exists,

the 1/0 operation is not performed by the program.

In certain additional embodiments, the new file system is unmounted. Prior to initiating
another 1/O operation by the program, the program determines whether the sentinel indicator
exists. In response to determining that the sentinel indicator does not exist, an error is

returned.

In certain embodiments, the sentinel indicator is a file or a directory.

In further embodiments, the existing file system is a hierarchical file system with a root
directory that is a top level file system. The mount point is a directory or a subdirectory of
the root directory. Furthermore, in response to the new file system being mounted to the
mount point, one or more previously existing files of the existing file system are no longer

visible to the program.

Certain embodiments provide a method, comprising: mounting a new file system to a mount
point of an existing file system implemented in a computational system; storing a sentinel
indicator in the mount point; prior to initiating an input/output (I/O) operation by a program,
determining by the program whether the sentinel indicator exists; and in response to
determining by the program that the sentinel indicator exists, not performing the I/O

operation.

Brief Description of the Drawings

Embodiments of the invention will now be described, by way of example only, with

reference to the accompanying drawings in which:

FIG. 1 illustrates a block diagram of an exemplary computational device, in accordance with

certain embodiments;

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

FIG. 2 illustrates a block diagram that shows a root directory with a mount subdirectory, in

accordance with certain embodiments;

FIG. 3 illustrates a block diagram that shows a root directory with a mount subdirectory

which is a mount point for a new file system, in accordance with certain embodiments;

FIG. 4 illustrates a flowchart that shows first operations implemented in the computational
device of FIG. 1, wherein no sentinel indicator is used, in accordance with certain

embodiments;

FIG. 5 illustrates a block diagram that shows a root directory with a mount subdirectory that
has a sentinel file included in the mount subdirectory, in accordance with certain

embodiments;

FIG. 6 illustrates a flowchart that shows second operations implemented in the
computational device of FIG. 1 in which a sentinel file is used, in accordance with certain

embodiments;

FIG. 7 illustrates a flowchart that shows third operations implemented in the computational

device of FIG. 1 in which a sentinel file is used, in accordance with certain embodiments;

FIG. 8 illustrates a flowchart that shows fourth operations implemented in the computational
device of FIG. 1 in which a sentinel file is used, in accordance with certain embodiments;

and

FIG. 9 illustrates a block diagram of a computational system that shows certain elements that
may be included in the computational device of FIG. 1, in accordance with certain

embodiments.

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

Detailed Description

Given the possibility that any directory within a UNIX file system hierarchy may be a
“mount point” or not be a “mount point”, it is possible that any given specific directory
location in the overall UNIX file system hierarchy may either be within a selected mounted
file system or not within the selected mounted file system. A “mount point” may be in one
of two possible states. In a first state, a file system is not mounted at the “mount point”. In a
second state, a file system is mounted at the “mount point”. Mounting a file system at a
“mount point” has the effect of hiding or obscuring the existing contents (i.e., files and/or
subdirectories) that exist at the “mount point”, and mounting the file system at the “mount
point” makes only the mounted file system visible. When the file system is unmounted the
previous contents may be visible once again. Furthermore, any file system may potentially

be mounted at a given “mount point”.

Wherever there is a possibility of mounting or unmounting of file systems, the potential
exists that at any given point in time the overall UNIX file system hierarchy is not in the
state that the UNIX file system was intended to be in by the UNIX file system administrator.
Procedures for mounting the file systems may be manual rather than automated (for
example, during the boot of the operating system). Anytime, a manual mount is required,
the potential for neglecting to perform the corresponding unmount may exist. In addition,
file systems may be unmounted for a number of reasons, such as to perform maintenance
(i.e. a backup). In certain situations, the wrong file system may be mistakenly mounted at a

given “mount point”.

All of these possibilities can create difficulties for end users and applications that attempt to
access files and directories in the UNIX file system hierarchy. The files or directories that
are to be accessed may or may not be present in the properly mounted file systems as
anticipated. However, in some cases end users and applications may be operating on known
specific directory locations and may not be able to determine whether the intended file
system has been mounted or not, and such situations may lead to erroneous and unexpected

results. These include the following possibilities:

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

(1) Attempting to locate or read a file at a specific directory location which is intended to be
within a mounted file system, but the file system is not currently mounted. As a result, the

file cannot be located or read.

(i) Attempting to write a file at a specific directory location which is intended to be within a
mounted file system, but the file system is not currently mounted. As a result, the file is
written, but a later mount of the file system obscures the file that has been written making

the file inaccessible; and

(1i1) Attempting to write a file at a specific directory location which is intended to be within a
mounted file system, but the wrong file system is currently mounted. As a result, the file
may be written, but then the UNIX administrator may unmount the wrong file system and

mount the correct file system making the file that has been written inaccessible.

Certain embodiments provide a mechanism for an end user or application to ensure that the

contents of a specific file system location are in an intended configuration.

In certain embodiments, when a program is dependent on a specific directory being at or
within a mounted file system, the program can mandate the existence of a predetermined
sentinel at the directory location. When a storage administrator is configuring the directory
location within the mounted file system on behalf of the program, the administrator may be
responsible for the creation of the sentinel. When the program is performing Input/Output
(I/0) operations to the configured location, the program may first verify the existence of the
sentinel. If the sentinel is present, the program can be assured that the location is where the
administrator wanted the 1/0 to occur. If the sentinel is not present, the program will ensure

the failure of all I/O operations.

In certain embodiments, the program is assured that the program is performing I/O in the
location desired by the administrator as a result of the confirmation of the existence of the
sentinel. This prevents lost time in problem determination that may be necessary if the data

was not in the specified location as a result of the file system not being mounted.

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

FIG. 1 illustrates a block diagram of an exemplary computational device 100, in accordance
with certain embodiments. The computational device 100 may comprise any suitable
computational device comprising one or more of a mainframe, a personal computer, a
midrange computer, a telephony device, a server, a client computer, a handheld computer, a

laptop, a palmtop computer, etc.

The computational device 100 includes an operating system 102, a file system 104 and a
program 106. The operating system 102 may by any exemplary operating system, such as
the UNIX operating system. In an exemplary embodiment the file system 104 may comprise
a hierarchical file system in which mounts are allowed on drives, directories or
subdirectories. The program 106 may comprise an application that accesses files and

directories stored in the file system 104.

A storage administrator 108 may interact with the computational device 100 via an
exemplary command line interface or a graphical user interface and manage the file system
104. In certain embodiments, an automated computer program may perform the operations

performed by the storage administrator 108.

FIG. 2 illustrates a block diagram that shows a root directory 200 with a subdirectory
referred to as a mount directory 202 implemented in the file system 104 of the computational
device 100, in accordance with certain embodiments. The root directory 200 may include
other subdirectories 204. The mount directory 202 may include an exemplary file named
“myfile” 206 and no new file system has been mounted to the mount directory 202. In such

embodiments, the file named “myfile” 206 is accessible to the program 106.

FIG. 3 illustrates a block diagram that shows a root directory 300 with a subdirectory
referred to as a mount directory 302 implemented in the file system 104 of the computational
device 100, in accordance with certain embodiments. The root directory 300 may include
other subdirectories 304. The mount directory 202 may include an exemplary file named
“myfile” 306. In FIG. 3, a new file system has been mounted in the mount directory 302. In

such embodiments, the file named “myfile” 306 is no longer accessible to the program 106.

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

FIG. 4 illustrates a flowchart that shows first operations implemented in the computational
device 100 of FIG. 1, wherein no sentinel indicator is used, in accordance with certain

embodiments.

Control starts at block 400, in which the file system 104 has a directory called /mount
(reference numeral 302 of FIG. 3, wherein “/mount” is an exemplary notation that denotes
the mount directory 302) that was created in order to be used as a mount point for a new file
system for the program 106. The storage administrator 108 creates (at block 402) a file
system with the intent of mounting the files system using the /mount directory 302 as a

mount point

The program 106 is configured (at block 404) to perform I/O to the /mount directory 302.
The program 106 is requested (at block 406) to perform a write to a file called
/mount/myfile. The program 106 performs (at block 408) the requested write and since the
file system was not mounted, the data is written to the /mount directory (the location where

the data is written is shown by reference numeral 306 in FIG. 3).

The storage administrator 108 realizes (at block 410) that the desired new file system was
not mounted and mounts the desired file system to the /mount mount point 302. The program
106 is requested (at block 412) to perform a read of a file called /mount/myfile. The read
fails (at block 414) because the write occurred (at block 408) before the desired file system

was mounted.

FIG. 5 illustrates a block diagram that shows a root directory 500 with a subdirectory
referred to as a mount directory 502, wherein a sentinel file 504 is included in the mount
directory 502, in accordance with certain embodiments. The file myfile 508 is a file within a
new file system mounted at the mount directory 502. In certain exemplary embodiments, the
sentinel file may be a file named sentinel.dat. The root directory 500 may include other

subdirectories 506.

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

FIG. 6 illustrates a flowchart that shows second operations implemented in the
computational device 100 of FIG. 1 in which the sentinel file 504 is used, in accordance with

certain embodiments;

Control starts at block 600, in which the file system 104 has a directory called /mount 502
that was created to be used as a mount point for the program 106. The storage administrator
108 creates (at block 602) a new file system with the intent of mounting the new file system
by using the /mount directory 502 as a mount point. The storage administrator 108 creates
(at block 604) a sentinel file 504 with the predetermined name sentinel.dat in the /mount

directory 502 on the mounted new file system.

The program 106 is configured (at block 606) to perform I/O to the /mount directory 502.
The program 106 is requested (at block 608) to perform a write to a file called
/mount/myfile. The program 106 tests (at block 610) for the existence of the sentinel file
(/mount/sentinel.dat) 504. In certain embodiments, in which the new file system has been
unmounted, the sentinel file is not found (at block 612) and the write fails. An error message

is issued (at block 614) indicating the sentinel file was not found.

FIG. 7 illustrates a flowchart that shows third operations implemented in the computational
device 100 of FIG. 1 in which a sentinel file 502 is used, in accordance with certain

embodiments.

Control starts at block 700, in which the storage administrator 108 realizes from an error
message (e.g., error message generated in block 614 of FIG 6) that a desired file system was
not mounted and mounts the desired file system to the /mount 502 mount point. From block

700 control may proceed to either block 702 or block 708.

The program 106 is requested (at block 702) to perform a write to a file called
/mount/myfile. The program 106 tests (at block 704) for the existence of the sentinel file 504
(/mount/sentinel.dat). The sentinel file 504 is found (at block 706) and the write succeeds

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384

The program is requested (at block 708) to perform a read of a file called /mount/myfile. The
program tests (at block 710) for the existence of the sentinel file 504 (/mount/sentinel.dat).
The sentinel file is found (at block 712) and the read is successful.

In the operations shown in FIGs. 6 and 7, the storage administrator 108 created the sentinel
file 504 that clearly identified that location as the intended location for I/O. The testing prior
to subsequent /O operations allow the program 106 to be certain that the program was

reading from or writing to the correct location.

FIG. 8 illustrates a flowchart that shows fourth operations implemented in the computational
device 100 of FIG. 1 in which a sentinel file is used, in accordance with certain

embodiments.

Control starts at block 800 in which a new file system is mounted to a mount point 502 of an
existing file system 104 implemented in a computational system 100. A sentinel indicator
504 is stored (at block 802) in the mount point 502. In certain embodiments, the sentinel
indicator is a file and in other embodiments the sentinel indictor is a directory. Prior to
initiating an input/output (I/O) operation by a program 106, a determination is made (at
block 804) by the program 106 as to whether the sentinel indicator 504 exists. In response to
determining by the program 106 that the sentinel indicator exists, the I/O operation is
performed (at block 806) by the program 106. In certain alternative embodiments, in
response to determining by the program 10 that the sentinel indicator exists, the /0O

operation is not performed by the program 106.

In certain additional embodiments, the new file system is unmounted. Prior to initiating
another 1/0 operation by the program 106, the program 106 determines whether the sentinel
indicator 504 exists. In response to determining that the sentinel indicator 504 does not exist,

an error is returned.

In further embodiments, the existing file system is a hierarchical file system with a root
directory 500 that is a top level file system. The mount point 502 is a directory or a

subdirectory of the root directory 500. Furthermore, in response to the new file system being

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
10

mounted to the mount point, one or more previously existing files of the existing file system

are no longer visible to the program 106.

Therefore, FIGs. 1-8 illustrate certain embodiments in which a storage administrator 108
creates a sentinel file in the directory and on the file system where 1/O is desired. When a
program 106 is required to perform 1/0 to the directory, a test is performed to ensure the
existence of the sentinel. If the sentinel is found, the 1/0 is carried out. If the sentinel is not
found, the I/O is failed and a message or error code is presented to indicate that the target
location contents are not as expected based on configurations made by the storage

administrator 108.

The described operations may be implemented as a method, apparatus or computer program
product using standard programming and/or engineering techniques to produce software,
firmware, hardware, or any combination thereof. Accordingly, aspects of the embodiments
may take the form of an entirely hardware embodiment, an entirely software embodiment
(including firmware, resident software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be referred to herein as a “circuit,”
“module” or “system.” Furthermore, aspects of the embodiments may take the form of a
computer program product embodied in one or more computer readable medium(s) having

computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable storage medium would include the
following: an electrical connection having one or more wires, a portable computer diskette, a
hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage

device, or any suitable combination of the foregoing. In the context of this document, a

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
11

computer readable storage medium may be any tangible medium that can contain, or store a
program for use by or in connection with an instruction execution system, apparatus, or

device.

A computer readable signal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in baseband or as part of a carrier
wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer
readable signal medium may be any computer readable medium that is not a computer
readable storage medium and that can communicate, propagate, or transport a program for

use by or in connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oriented programming language such as Java*, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the remote computer or server. In
the latter scenario, the remote computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or a wide area network (WAN),
or the connection may be made to an external computer (for example, through the Internet

using an Internet Service Provider).

Aspects of the present invention are described below with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the

flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
12

illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices
to function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

FIG. 9 illustrates a block diagram that shows certain elements that may be included in the
system 900 in accordance with certain embodiments. The system 100 may comprise the
computational device 100, and may include a circuitry 902 that may in certain embodiments
include at least a processor 904. The system 900 may also include a memory 906 (e.g., a
volatile memory device), and storage 908. The storage 908 may include a non-volatile
memory device (e.g., EEPROM, ROM, PROM, RAM, DRAM, SRAM, flash, firmware,
programmable logic, etc.), magnetic disk drive, optical disk drive, tape drive, etc. The
storage 908 may comprise an internal storage device, an attached storage device and/or a
network accessible storage device. The system 900 may include a program logic 910
including code 912 that may be loaded into the memory 906 and executed by the processor
904 or circuitry 902. In certain embodiments, the program logic 910 including code 912 may

be stored in the storage 908. In certain other embodiments, the program logic 910 may be

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
13

implemented in the circuitry 902. Therefore, while FIG. 9 shows the program logic 910
separately from the other elements, the program logic 910 may be implemented in the

memory 906 and/or the circuitry 902.

Certain embodiments may be directed to a method for deploying computing instruction by a
person or automated processing integrating computer-readable code into a computing
system, wherein the code in combination with the computing system is enabled to perform

the operations of the described embodiments.

The terms "an embodiment"”, "embodiment”, "embodiments"”, "the embodiment", "the
embodiments”, "one or more embodiments”, "some embodiments”, and "one embodiment"
mean "one or more (but not all) embodiments of the present invention(s)" unless expressly
specified otherwise.

The terms "including", "comprising”, “having” and variations thercof mean "including but

not limited to", unless expressly specified otherwise.

The enumerated listing of items does not imply that any or all of the items are mutually

exclusive, unless expressly specified otherwise.

The terms "a", "an" and "the" mean "one or more", unless expressly specified otherwise.

Devices that are in communication with each other need not be in continuous
communication with each other, unless expressly specified otherwise. In addition, devices
that are in communication with each other may communicate directly or indirectly through

one or more intermediaries.

A description of an embodiment with several components in communication with each other
does not imply that all such components are required. On the contrary a variety of optional
components are described to illustrate the wide variety of possible embodiments of the

present invention.

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
14

Further, although process steps, method steps, algorithms or the like may be described in a
sequential order, such processes, methods and algorithms may be configured to work in
alternate orders. In other words, any sequence or order of steps that may be described does
not necessarily indicate a requirement that the steps be performed in that order. The steps of
processes described herein may be performed in any order practical. Further, some steps may

be performed simultancously.

When a single device or article is described herein, it will be readily apparent that more than
one device/article (whether or not they cooperate) may be used in place of a single
device/article. Similarly, where more than one device or article is described herein (whether
or not they cooperate), it will be readily apparent that a single device/article may be used in
place of the more than one device or article or a different number of devices/articles may be
used instead of the shown number of devices or programs. The functionality and/or the
features of a device may be alternatively embodied by one or more other devices which are
not explicitly described as having such functionality/features. Thus, other embodiments of

the present invention need not include the device itself.

At least certain operations that may have been illustrated in the figures, show certain events
occurring in a certain order. In alternative embodiments, certain operations may be
performed in a different order, modified or removed. Moreover, steps may be added to the
above described logic and still conform to the described embodiments. Further, operations
described herein may occur sequentially or certain operations may be processed in parallel.
Yet further, operations may be performed by a single processing unit or by distributed

processing units.

The foregoing description of various embodiments of the invention has been presented for
the purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed. Many modifications and variations are possible in
light of the above teaching. It is intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended hereto. The above specification,
examples and data provide a complete description of the manufacture and use of the

composition of the invention. Since many embodiments of the invention can be made

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
15

without departing from the scope of the invention, the invention resides in the claims

hereinafter appended.

* UNIX is a trademark or registered trademark of The Open Group.

* Java is a trademark or registered trademark of Sun Microsystems, Inc.

10

15

20

25

30

WO 2010/142537 PCT/EP2010/057384
16

CLAIMS

1. A method, comprising;:

mounting a new file system to a mount point of an existing file system implemented
in a computational system;

storing a sentinel indicator in the mount point;

prior to initiating an input/output (I/O) operation by a program, determining by the
program whether the sentinel indicator exists; and

in response to determining by the program that the sentinel indicator exists,

performing the I/O operation.

2. The method of claim 1, the method further comprising:

unmounting the new file system;

prior to initiating another 1/O operation by the program, determining by the program
whether the sentinel indicator exists; and

in response to determining that the sentinel indicator does not exist, returning an

error.
3. The method of claim 2, wherein the sentinel indicator is a file.
4, The method of claim 3, wherein:

the existing file system is a hierarchical file system with a root directory that is a top
level file system;

the mount point is a directory or a subdirectory of the root directory; and

in response to the new file system being mounted to the mount point, one or more

previously existing files of the existing file system are no longer visible to the program.

5. The method of claim 2, wherein the sentinel indicator is a directory.

6. A computer program product for verification of a file system location, the computer

program product comprising a computer readable storage medium having computer readable

10

WO 2010/142537 PCT/EP2010/057384
17

program code embodied therewith, the computer readable program code when executed by a

processor performing the steps of any of claims 1 to 5.

7. A system, comprising:
a memory; and
a processor coupled to the memory, wherein the processor performs operations, the

operations comprising the method of any of claims 1 to 5.

8. A method for deploying computer infrastructure by integrating computer-readable
code from a computer readable medium into the system, wherein the computer-readable
code in combination with the system is capable of performing the method of any of claims 1

to 5.

WO 2010/142537 PCT/EP2010/057384

1/9

100
\
Computational Device
102
[
Operating System
104
\ 106
(FHi'Ie Sysrt](_eml Fil :
e.g. Hierarchical File
System with mounts (Fﬁgogrgtmem
allowed on drives, accegsing
directories, or apolication)
subdirectories) bp

108
[

Storage Administrator
(or Automated Computer
Program)

FIG. 1

WO 2010/142537 PCT/EP2010/057384

2/9

root — 200
204 202
\ [
other directories mount
206
[
myfile

FIG. 2

WO 2010/142537 PCT/EP2010/057384

3/9

root — 300
304 302
\ [
other mount
subdirectories (mount point in

which a new file
system has been
mounted)

306

[
myfile
(not visible after
new file system
mounted at the
mount point)

FIG. 3

WO 2010/142537 PCT/EP2010/057384

4/9

The operating system has a directory called /mount thatwas | __ s
created to be used as a mount point for the program.

\ 4

The storage administrator creates a file system with the intent of
mounting the file system using the /mount directory as a mount ~ |— 402
point.

A\ 4

The program is configured to perform I/0 to the /mount directory. |— 404

\ 4

The program is requested to perform a write to a file called 106
/mount/myfile,

A\ 4

The program performs the requested write and since the file
system was not mounted, the data is written to the /mount — 408
directory.

A\ 4

The storage administrator realizes the desired file systemwas | __ 41q
not mounted and mounts it to the /mount mount point.

A\ 4

The program is requested to perform a read of a file called 419
/mount/myfile.

A\ 4

The read fails because the write occurred before the desired file | 414
system was mounted.

FIG. 4

WO 2010/142537 PCT/EP2010/057384

5/9

root — 500
506 502
\ [
o mount
other directories (mount point for
new file system)

508 504
\ [

Sentinel File
[Sentinel
Indicator]

(on the mounted
file system)
(e.g. sentinel.dat)

myfile

FIG. 5

WO 2010/142537

6/9

PCT/EP2010/057384

The operating system has a directory called mount that was
created to be used as a mount point for a program.

— 600

A\ 4

The storage administrator creates a new file system with the
intent of mounting the new file system using the mount directory
as a mount point.

— 602

A\ 4

The storage administrator creates a sentinel file with the
predetermined name sentinel.dat in the /mount directory on the
mounted file system.

— 604

A\ 4

The program is configured to perform I/0 to the /mount directory.

— 606

A\ 4

The program is requested to perform a write to a file called
/mount/myfile.

— 608

A\ 4

The program tests for the existence of the sentinel file
(/mount/sentinel.dat).

— 610

A\ 4

The sentinel file is not found and the write is failed.

— 612

\ 4

An error message is issued indicating the sentinel file was not
found.

— 614

FIG. 6

WO 2010/142537

PCT/EP2010/057384

700
[

The storage administrator determines that a desired file system was not
mounted and mounts the desired file system to the /mount mount point,

702
\

A

y

A

y

708
[

The program is again
requested to perform a write
to a file called /mount/myfile.

The program is requested to
perform a read of a file called
/mount/myfile.

704
\

A

y

A

y

710
[

The program tests for the
existence of the sentinel file
(/mount/sentinel.dat).

The program tests for the
existence of the sentinel file
(/mount/sentinel.dat).

706
\

A

y

A

y

712
[

The sentinel file is found and
the write succeeds.

The sentinel file is found and
the read is successful.

WO 2010/142537 PCT/EP2010/057384

/9

800
[

Mounting a new file system to a mount point of an existing file
system implemented in a computational system.

802
A 4 l

Storing a sentinel indicator in the mount point, wherein the
sentinel indicator is a file.

804
A 4 l

Prior to initiating an input/output (I/0) operation by a program,
determining by the program whether the sentinel indicator exists.

806
A 4 l

In response to determining by the program that the sentinel
indicator exists, performing the I/0 operation.

FIG. 8

WO 2010/142537

9/9

PCT/EP2010/057384

900
\
System
(Computational Device / Computer)
902
\
Circuitry
904 906
\ \
Processor(s) Memory
910
\
Program
e logc 912
[
Storage Code

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/057384

. CLASSIFICATION O 3SOUBJECT MATTER

TN G06F17

According to intemationat Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consuited during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X zmanb8 et al: "Problem with rsync,
crontab and backing up to an external
hard-drive"[Online]

19 July 2007 (2007-07-19), pages 1-4,
XP002596798

UbuntuForums

Retrieved from the Internet:
URL:http://ubuntuforums.org/printthread.ph
p?t=355030> [retrieved on 2010-08-17]

page 4

-/—

1-8

m Further documents are listed in the continuation of Box C. Iz] See patent family annex.

* Special categories of cited documents :

"A* document defining the general state of the art which is not
considered to be of particular relevance

"E* eadier document but published on or after the international e
filing date

invention

*T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 3402040,

which is cited to establish the publication date of ancther v d N
e ; & ocument of particular relevance; the claimed invention .

citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"0O* document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-

other means ments, such combination being obvious to a person skilled
°P* document published prior to the international filing date but in the art.

later than the priority date claimed '&" document member of the same patent family
Date of the actual completion of the interational search Date of mailing of the intemational search report

17 August 2010 20/10/2010

Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 3403016 Kalejs, Eriks

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/057384

C{Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Wallenstein D.: "Development Builds

of Unionfs"[Online]

1 March 2009 (2009-03-01), pages 1-5,
XP002596799

ISSN: 1934-371X

Linux Gazette :

Retrieved from the Internet:
URL:http://1inuxgazette.net/160/wallenstei
n.htm1> [retrieved on 2010-08-17]

page 1 - page 2

X Mahar R C et al: "Zenworks Content
Respitory"[Online]

6 August 2008 (2008-08-06), pages 1-2,
XP002596800

Novell Forums

Retrieved from the Internet:
URL:http://forums.novell.com/novell-produc
t-support-forums/zenworks/configuration-ma
nagement/zcm-imaging/338996-zenworks-conte
nt-respitory-print.html> :
[retrieved on 2010-08-17]

page 1

X Jones E et al: "Check if a filesystem is
mounted"[Online]

28 March 2006 (2006-03-28), pages 1-8,
XP002596801

niXdoc - nix Documentation Project
Retrieved from the Internet:
URL:http://nixforums.org/about140881-check
—if-a-filesystem-is—-mounted.html>
[retrieved on 2010-08-17]

page 3

X Nathan K et al: "How To Move SuSE Install
To A Larger Drive"[Onlinel

5 June 2005 (2005-06-05), pages 1-7,
XP002596802

WebserverTalk Forums

Retrieved from the Internet:
URL:http://www.webservertalk.com/printthre
ad.php?s=44acl9966aa3edb7e310afc0deed3f87&
threadid=1083578&perpage=17>

[retrieved on 2010-08-17]

page 5

A Korff Y et al: "Mastering FreeBSD and
OpenBSD Security"”

28 March 2005 (2005-03-28), O’Reilly ,
XP002596803

ISBN: 978-0-596-00626-6pages 37-37,

page 37

-/

Layered on Top of a Stable System by Means -

1-8

1-8

1-8

1-8

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/057384
C{Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A W0 2004/012379 A2 (DEEPFILE CORP [US]; 1-8

BONE JEFF G [US]; FUNDERBURG BRETT A [US];
JIMENEZ) 5 February 2004 (2004-02-05)
page 12 - page 36

Form PCT/ISA/210 (continuation of second sheet) (Apri 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intemnational application No

PCT/EP2010/057384
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2004012379 A2 05-02-2004 AU 2003265335 Al 16-02-2004

Form PCT/ISA/210 (patent family annex} (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

