
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0074632 A1

Krueger et al.

US 201500 74632A1

(43) Pub. Date: Mar. 12, 2015

(54)

(71)

(72)

(21)

(22)

(63)

SOFTWARE CUSTOMIZATION SYSTEMAND
METHOD

Applicant: Big Lever Software, Inc., Austin, TX
(US)

Inventors: Charles W. Krueger, Austin, TX (US);
Mark N. Jungman, Cedar Park, TX
(US)

Appl. No.: 14/540,595

Filed: Nov. 13, 2014

Related U.S. Application Data
Continuation of application No. 13/410,360, filed on
Mar. 2, 2012, now Pat. No. 8,918,754, which is a
continuation of application No. 12/273.352, filed on
Nov. 18, 2008, now Pat. No. 8,156,470, which is a
continuation of application No. 10/106,154, filed on
Mar. 26, 2002, now Pat. No. 7,543,269.

AE) ecaatic:s C.
108-/ \ Sir Definitions / - 82 v A *

/ \%. Actualore- A A f : W Product
f (G) W \ -63 f Autotiation \ A

Sofiate Production its Pidit

Requirements for a
nea product.

S8iC8
axxxxxxxxxx-xxx-xx-xx-xx-xxxxx-xx-xxxxxxx-xx-axxxx.xxxxxxyyxx.

Before

iterate

(60) Provisional application No. 60/278,786, filed on Mar.
26, 2001.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl.
CPC .. G06F 8/00 (2013.01)
USPC .. 717/100

(57) ABSTRACT

A system and method for the mass customization of software
includes a Software production line infrastructure, develop
ment environment, and actuator. The infrastructure organizes
the Software production line using a feature declarations com
ponent, a product definitions component, an automatons
component, and a partition composition component. The
development environment browses, displays, organizes,
edits, and maintains the infrastructure. The actuator actuates
the Software production line to produce custom Software
products.

-6

A 84

Declarations f fav
p Product 3s

W E. Definitions f

Atiatic;
Software Picciction life

Frodigt
8xxx xxxxxx xxxx338&saxxxxxx8aa8&xxxxxxxxxxxxxxxx

Af:

Patent Application Publication Mar. 12, 2015 Sheet 1 of 10 US 2015/0074632 A1

Conventional Sofiase toois Sich
1 - so as editors, build systems, defect

trackers, COf pile:S, debuggers,
www.rowworrows and test rai?eworks.

Configuration Management System

File System

Patent Application Publication Mar. 12, 2015 Sheet 2 of 10 US 2015/0074632 A1

M

}}eciataios Editor ---------------------------

rSeverCoint
Type 22 --

integer

verberS 2

- Delivery Options -
Members
Dealer
Factory
OverSeas

Patent Application Publication Mar. 12, 2015 Sheet 3 of 10 US 2015/0074632 A1

ODeclarations Editor
- Autolocator

-Type sesswaraswewswevowevver'weswarawaw

Bocean

ServerCount
Type
integer

Band
Type
Enteration

Delivery Options
Type
Set

Patent Application Publication Mar. 12, 2015 Sheet 4 of 10 US 2015/0074632 A1

O logic Editor X
a - Select <normaljavas when:

& Aidioicator-true

42-. Select <subjava when:
& Autolocatorialise

Add Remove. Reorder...Resume.

F.C. if

US 2015/0074632 A1 Mar. 12, 2015 Sheet 5 of 10 Patent Application Publication

-***==============

US 2015/0074632 A1 Mar. 12, 2015 Sheet 6 of 10 Patent Application Publication

US 2015/0074632 A1 Mar. 12, 2015 Sheet 7 of 10 Patent Application Publication

ondola

Patent Application Publication Mar. 12, 2015 Sheet 8 of 10 US 2015/0074632 A1

Eilities r
$ iSource Cier80s.CaineSites: c

S. Declarations
32 OEnuméa.

Bikes Europe
Pianos Canada

El Paris JS E. Rings ELFupe
Rogsts i: everydava &a

; : iair.Jaya- 85
is logic

carijava
3 no atjaya

& iogesiay:
8 : Selections.Jaya
&: tie.jaya

Cadaiidate, ava
Callava
8:verydava

8.jaya

82 Enumération
Osei-83
ShoppingCait
ye type 82

& Enlineration

assassassessesswaxxaserosmas-reworx wros

F.C.. 8

Patent Application Publication Mar. 12, 2015 Sheet 9 of 10 US 2015/0074632 A1

CActuation Summary
Actuate file automaton C:\Demos OnlineSitesroi, Deveryjaya
Selected variant factoryjava-9

Actuate file automaton C:\Demos.OnlineSitesic. Main.java
Selected variant cart.java-92

Actuate file automaton C:\DemoSOnlineSiteSrc, ivodels.jaya
Selected variant bikes.java-93

Actuate file automaton C:\DemosOnlineSiteSrc, Selections.java
Selected variant bikes.java-94

Actuate file automaton C\Demos\OnlineSitesic, tie java
Selected variant bikes.java-95

F.C. 3

US 2015/0074632 A1 Mar. 12, 2015 Sheet 10 of 10 Patent Application Publication

US 2015/0074632 A1

SOFTWARE CUSTOMIZATION SYSTEMAND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation applica
tion of U.S. patent application Ser. No. 13/410,360 filed Mar.
2, 2012 in the name of Charles W. Krueger and Mark Jung
man, entitled “Software Customization System and Method”.
which is a continuation of U.S. patent application Ser. No.
12/273,352 filed Nov. 18, 2008, now U.S. Pat. No. 8,156,470,
in the name of Charles W. Krueger and Mark Jungman,
entitled “Software Customization System and Method”.
which is a continuation of U.S. patent application Ser. No.
10/106,154 filed Mar. 26, 2002, now U.S. Pat. No. 7,543,269,
in the name of Charles W. Krueger and Mark Jungman,
entitled “Software Customization System and Method.”
which claims priority from and incorporates by reference
prior U.S. Provisional Patent Application No. 60/278,786,
filed Mar. 26, 2001. The entire contents of each of the above
mentioned applications are incorporated herein by reference.

FIELD OF THE INVENTION

0002 The present invention pertains to the creation of
Software; more particularly, the present invention pertains to
the creation of individual software products that are part of a
Software product family using a Software production line.

BACKGROUND OF THE INVENTION

0003) A software product family is a collection of almost
alike individual software products, each of which individual
Software product has some unique features and some com
mon features found in all of the individual software products
within the software product family. Software product families
are typically created to satisfy a common need shared by
many customers or market segments while at the same time
accommodating the unique requirements of individual cus
tomers or market segments for a specially tailored individual
Software product.
0004 Most software development organizations have a
need to create and maintain multiple nearly-identical soft
ware systems. For example, a mobile phone manufacturer
may have to produce hundreds of individual variations of the
Software which operates its handsets, one software variation
for each handset model and wireless service provider used by
the handset. Although most of the software for the hundreds
of combinations of handsets and wireless service providers is
virtually identical, each individual software product has
small, but extremely important, variations which enable the
operation of different handset features with the different fea
tures offered by the available array of wireless service pro
viders.
0005 Conventional approaches to developing individual
Software products have focused on creating and maintaining
a one-of-a-kind software product rather than creating a family
of nearly identical Software products. Accordingly, the use of
conventional approaches to create Software product families
including nearly-identical, but individualized, software prod
ucts has been costly, slow, and often prone to errors.
0006. One approach to reducing cost, speeding up the
process of Software creation, and reducing errors in the cre
ation of software product families is the process of software
mass customization. The process of Software mass customi

Mar. 12, 2015

Zation focuses on the means for efficiently producing and
maintaining multiple similar software products, exploiting
what the multiple similar Software products have in common,
and managing the differences among the individual Software
products. A better understanding of the process of Software
mass customization can be had by making an analogy to the
automotive industry. In the automotive industry, the manu
facturing of automobiles focuses on the use of a single pro
duction line to produce multiple similar variations of a par
ticular car model. The powerful, though subtle, essence of this
analogy to the production of multiple similar cars is the focus
on a singular means of production for software rather than
focusing on the creation of many similar individual Software
products. Once a process of software mass customization has
been established, the actual production of the individual soft
ware products is more a matter of automated instantiation to
create multiple individual software products efficiently rather
than making the many Small programming language changes
associated with the manual creation of each individual soft
ware product in a Software product family.
0007 Actual success stories of the use of software mass
customization techniques exist in Such diverse areas as the
Software used with mobile phones, e-commerce, computer
printers, diesel engines, telecom networks, enterprise soft
ware, cars, ships, and airplanes. The Software system associ
ated with each one of these examples relies on creating and
maintaining a collection of individual but similar Software
products. By using the process of software mass customiza
tion to exploit what their individual software products have in
common and to effectively manage the variation between
their various Software programs, companies have seen the
potential for major reductions in time-to-market, engineering
overhead and error rates in the creation of new almost-alike
individual software products.
0008. Many of the companies who have had success with
the use of software mass customization techniques have also
reported that the process of Software mass customization
continues to present formidable technical challenges.
Accordingly, the complexity associated with the process of
Software mass customization results in large adoption times
and efforts for establishing new software production lines.
0009 Newcomers to the process of software mass cus
tomization often believe that the process involves simply
building a single Software system and then building a collec
tion of Small variations within the single software system
using tools and techniques developed for the creation of spe
cial use software products. To date, however, no formal tools
or techniques for building and managing a large and diverse
collection of small variations in the individual software prod
ucts in a software product family have been developed.
0010. One attempt to solving the problem of building and
managing a collection of Small variations for a software prod
uct line includes the reliance on informally contrived solu
tions such as preprocessors (for example, IFDEFs), file nam
ing conventions, directory structure conventions,
configuration files, build directives, assembly Scripts, install
Scripts, and parallel configuration management branches. It
has been found, however, that these informally contrived
Solutions are not scalable; specifically, they are not manage
able beyond a small number of software product variations.
Moreover, these informal solutions are code-level mecha
nisms that are poorly Suited for the expression of product
level constraints.

US 2015/0074632 A1

0011. The problem remains, therefore, to create a robust
system and method for the creation of individual software
products in a software product family. The desired system and
method must provide for the building and managing of a large
collection of Small variations among a group of individual
software products within the software product family. The
desired system and method should also minimize technical
complexity, maximize reuse of existing software, present a
low cost to the software developer, be easy to adopt, and
enable the rapid production of individual software products
that are part of a software product family.

SUMMARY

0012. The disclosed system and method for software mass
customization provides a software developer the tools and
techniques for building and managing a collection of Small
variations among individual software products which are part
of a software product family. Technical complexity, adoption
effort, and production times are minimized by the present
invention while at the same time maximizing reuse of existing
software.
0013 The disclosed system and method for software mass
customization enables the creation of a Software production
line. Specifically, the present invention includes an infrastruc
ture which allows all files and directories for a software
product family to be stored unmodified in a commonstructure
for all individual software products within the software prod
uct family. Common data files and data file directories for the
individual software products are stored “as is using conven
tional files and directories. For the data files and data file
directories which vary among the individual software prod
ucts, a new construct is used. This new construct is called an
automaton and has two forms, a file automaton and a direc
tory automaton. The construct of an automaton is introduced
to augment the conventional notion of data files and data file
directories. A file automaton is a virtual data file that actually
appears as a different data file in each of the different software
products. Similarly, a directory automaton is a virtual data file
directory which can appear as a different data file directory in
each of the individual software products within the software
product family.
0014 Each file automaton or directory automaton con
tains an executable description for creating a real data file or
real data file directory in place of the virtual data file or virtual
data file directory it represents within the individual software
product. This executable description of the file automaton or
directory automaton is called the automaton logic. The pro
cess of executing the automaton logic to create a real data file
or a real data file directory in place of the virtual data file or
virtual data file directory is called automaton actuation.
0015 The automaton logic or the executable description
for creating a real data file or a real data file directory is
parameterized. Parameterization of the automaton logic
allows different real data files or different real data file direc
tories to be produced upon automaton actuation with different
parameter values. All of the various file automatons or direc
tory automatons are actuated with a given set of parameter
values to produce each individual software product in the
Software product family. Because each file automaton or each
directory automaton encapsulates everything needed to actu
ate itself, the file automatons and the directory automatons are
called self-configuring automatons.
0016. With each self-configuring automaton, the automa
ton logic for selecting or constructing the different variants is

Mar. 12, 2015

stored externally from the software artifacts. That is, the
self-configuring software mass customization infrastructure
does not require the contents of the source files and directories
to be modified or for the automaton logic to be inserted into
the source files and directories.
0017. Accordingly, the disclosed system and method
enables software developers who create individual software
products that are part of a software product family to create
and maintain a product line of individualized software prod
ucts with the efficiency of mass production.

DESCRIPTION OF THE DRAWINGS

0018. A better understanding of the present invention may
be had by reference to the drawing figures wherein:
0019 FIG. 1 is a schematic diagram showing the relation
ship of the disclosed software mass customization system and
method to conventional Software technology development
layers;
0020 FIG. 2 is an edit screen from the software develop
ment environment showing a collection of product features;
0021 FIG. 3 is an edit screen, similar to FIG. 2 from the
Software development environment showing a product defi
nition;
0022 FIG. 4 is an edit screen from the development envi
ronment which views the automaton logic;
0023 FIG. 5 is a schematic diagram of the high level tasks
for the proactive approach;
0024 FIG. 6 is a schematic diagram of the high level tasks
for the reactive approach:
0025 FIG. 7 is a schematic diagram of the high level tasks
for the extractive approach:
0026 FIG. 8 is a browser screen from the software devel
opment environment;
0027 FIG. 9 is a schematic showing the creation of a
customized software product; and
0028 FIG. 10 is a schematic diagram of the high level
tasks associated with the creation of a Globalization/Local
ization Software Production Line.

DESCRIPTION OF THE EMBODIMENTS

0029. The disclosed system and method for software mass
customization brings together and expands on the two basic
tenets of software mass customization which are: i) individu
alized software products, and ii) the efficiency of mass pro
duction. Unlike prior art Software mass customization sys
tems, the disclosed system and method for software mass
customization focuses on the improvement provided by the
mass production aspect of creating individualized software
products rather than on the manual creation of each individual
software product in a software product family and the
improvement provided by augmenting existing technology
and Software with Software mass customization Support
rather than requiring existing technology and Software to be
replaced.
0030. In a macro sense, the disclosed system and method
for Software mass customization is based on an infrastructure
which includes the following components:

0.031 i) Parameterized file and directory automatons
which represent virtual data files and virtual data file
directories that vary from individual software product to
individual software product within a software product
family. Each parameterized file or directory automaton
represents a virtual data file or virtual data file directory

US 2015/0074632 A1

and is inserted “in place” among the conventional data
files and data file directories within the software artifacts
common to the other individual Software products in a
software product family.

0032) ii) A mechanism for actuating each file or direc
tory automation by which each file or directory automa
ton receives parameter values and is thereby actuated to
instantiate the appropriate real data file or real data file
directory “in place” among the conventional data files
and data file directories within the software artifacts
common to the other individual Software products in a
software product family for the virtual data file or virtual
data file directory represented by the automaton.
Automaton actuation can be implemented in a variety of
different ways: One way of automaton activation is to
Select from among a collection of existing files to present
the real file. A second way of automaton actuation is to
generate programming code from Scratch. A third way is
to transform existing Source code into different forms. A
fourth way is to instantiate patterns or frameworks.
Those of ordinary skill in the art will understand that any
combination of the enumerated ways of automaton
actuation may also be used.

0033 iii) A mechanism by which the parameters that
can affect the behavior of each file or directory automa
ton can be declared.

0034) iv) A mechanism for defining the parameter val
ues that are used to actuate all of the file and directory
automatons to produce an individual software product
within a software product family. Each individual soft
ware product will have its own set of parameter values
that will actuate each file or directory automaton to
produce the desired real data files and real data file
directories in place of the virtual data files and virtual
data file directories.

0035. A still better understanding of the disclosed system
and method may be had from the following more detailed
description. The infrastructure of the present invention and
the development environment for creating a software mass
customization production line is much like an automobile
production line that is used to manufacture or produce cus
tomized variations of a single car model. Specifically, the
disclosed system and method creates a single Software pro
duction line out of which many customized variations of
individual software products can be produced.
0036. In an automobile production line, a chassis and drive

train provide the basic structure to which is added a desig
nated body style and optional features at predetermined loca
tions. In the disclosed system and method, virtual data files
and virtual data file directories are created. These virtual data
files and virtual data file directories resemble the real data
files and real data file directories which must be present in a
finished software product for it to be operational, and they are
convertible into the real data files and real data file directories
which are present in a finished software product. Further,
these virtual data files and virtual data file directories are
incorporated in with the software artifacts on which a family
of software products is based where the real data files and real
data file directories are to be located in the finished software
product. Inputs, according to a predetermined set of param
eters, are provided to the virtual data files and virtual data file
directories. These inputs create predetermined responses by
the virtual data files and virtual data file directories. Such
predetermined responses transform non-functional Software

Mar. 12, 2015

including software artifacts, virtual data files, and virtual data
file directories into a functional Software product including
software artifacts, real data files, and real data file directories.
0037 For example, considera software developer that has
manually created three different variations of a software
product for three different customers or three different market
segments. Because each individual software product cus
tomization was created under different production deadlines,
three independent copies of the software product were cre
ated in parallel. However, the parallel maintenance of these
three individual Software products rapidly grows in complex
ity because bugfixes and upgrades have to be performed three
times for three copies and because of the continuing demand
for more and more customized variations of the basic soft
ware product.
0038 According to the disclosed system and method, the
three independent variations of the software product for three
different customers or market segments would be consoli
dated into a single Software mass customization production
line. That portion of the software artifacts that is common
among all three independent variations of the Software prod
uct is factored out into a single copy. For that portion of the
Software artifacts that varies among the three independent
Software systems, the system and method of the present
invention encapsulates into automatons the differences at the
point of variation in the software artifacts, along with the
logic descriptions, for choosing among the differences in the
software artifacts at the time of production. In some prior art
software mass customization systems, the variations are
made by going back into a completed Software product with
the necessary changes to the programming code to customize
an individual Software product for a particular application.
0039. By use of the disclosed system and method, each
individual software product can now be produced using a
single software production line. Specifically, the three indi
vidual software products described above can be easily
assembled from the software production line. Maintaining
and enhancing these and other Software products is accom
plished by modifying the Software production line to accom
modate new products, requirements, or defects in existing
software products. A key difference of this invention from
other prior art Software mass customization techniques is the
shift of focus from developing and maintaining three sepa
rate, individual Software products to developing and main
taining a single production line for automatically instantiat
ing individual software products.
0040 Another key difference of this invention from other
prior art Software mass customization is that the disclosed
system and method works at the granularity of the data files
within a software program. By not intruding into existing data
files within a software program, the disclosed system and
method remains neutral to programming language, compil
ers, operating systems, and editors. Additionally, the dis
closed system and method will work equally well with data
files that contain source code, documentation, test cases,
requirements, and even binary multimedia data files.
0041 FIG. 1 illustrates where the disclosed software mass
customization layer 10 fits in relative to conventional soft
ware technology development layers. At the bottom layer is
the operating systems data file system. Configuration man
agement will extend the operating system's data file system
by providing management of data file and system versions
that change over time. The disclosed system and method

US 2015/0074632 A1

extends the operating system's data file system by providing
mass customization of system versions that may vary at fixed
points in time.
0042. Accordingly, the present invention is a method for
managing the variation that exists in a family of individual
software products. Execution of the method begins by first
creating a set of abstract dimensions in the variations in the
Software artifacts among each individual Software product.
Next, a characterization is made of where each individual
software product in the family of related software products is
with respect to the created set of abstract dimensions in the
variations in the software artifacts. Third, the locales of varia
tion of the software artifacts of each individual software prod
uct are identified and an automaton is created at each locale of
variation. Within the automaton for each locale of variation,
the variations of software artifacts are then characterized in
terms of the abstract dimensions of variation so that they may
be instantiated at the identified locales of variation of the
software artifacts in each individual software product. Instan
tiation of a Software product occurs by selecting an individual
Software product in the abstract dimensions of variation and
actuating each automaton with this software product descrip
tion.
0043. Using the method disclosed in the foregoing para
graph, an individual Software product may be customized for
an anticipated variation in the functionality of that individual
software product. Alternatively, the individual software prod
uct may be customized to respond to an unanticipated varia
tion in the functionalities of an existing software product. Or,
the existing software product may be customized by extract
ing, or reverse engineering, information from an existing
Software product.
0044) The software product created by using the disclosed
method will include all of the common data files and common
data file directories from the software production line, plus
real instantiations for each of the virtual data files and virtual
data file directories which are located at the identified locales
of variation within a software production line. The creation of
a real data file or real data file directory is triggered using a
given set of parameter values.
0045. A still better understanding of the present invention
may be had by understanding that the disclosed system and
method includes a mass customization infrastructure, a mass
customization development environment, and a mass cus
tomization actuator.
0046. The infrastructure portion of the disclosed system
and method structures the set of individual software products
to be produced into a mass customization production line.
The mass customization development environment of the
disclosed system and method includes editors and browsers
which display, create, modify, and maintain the product defi
nitions, the automatons, the partition composition, and a col
lection of mass customization infrastructure and Software
artifacts for the software production line. The mass customi
Zation actuator then activates the Software production line to
produce individual software products.
0047. The software mass customization infrastructure of
the disclosed system and method has four major components.
These components are feature declarations, product defini
tions, and automaton and partition composition.
0048. The feature declarations component models the
Scope or dimensions of variation that can be used in the
software production line. FIG. 2 displays a feature declara
tion editor 20 from the software development environment

Mar. 12, 2015

which includes a collection of feature declarations in the mass
customization infrastructure. As shown in FIG. 2, there are
declarations of four features 21, 22, 23 and 24 that can vary in
the software production line, which, as shown in FIG. 2, is an
automotive e-commerce website. Specifically, the auto loca
tor Feature 21 in FIG. 2 is a boolean parameter which indi
cates whether or not an automobile locator feature is avail
able. The server count Feature 22 indicates how many servers
are configured. The brand Feature 23 indicates the automotive
brand for the site, and the delivery options Feature 24 indi
cates which delivery options are Supported by this particular
website.

0049. The product definitions component models the indi
vidual software products that can be created from the soft
ware production line. As shown in FIG.3, there is an editor 30
from the development environment showing a product defi
nition in the infrastructure. Values are selected for each fea
ture declaration 21, 22, 23 and 24 shown in FIG. 2, indicating
the desired customized feature desired in the end product. The
software product in this example will include the auto locator
31, will operate on a 10-server configuration 32, will display
the Ford brand of vehicles 33, and will support factory and
dealer delivery options 34.
0050. The automatons component encapsulates software
artifact variants that exist in the software production line and
the automaton logic for selecting among the variants. Shown
in FIG. 4 is a logic editor 40 from the development environ
ment of the disclosed system and method, which views the
automaton logic and instantiates an individual automaton by
actuation with a product definition. In the illustrated example,
the automaton logic selects among two file variants, normal.
java 41 and stub.java 42, depending on the value of the bool
ean feature declaration auto locator.

0051. The partition composition component models the
combination of partition customization that can be composed
in the software production line.
0.052 The automaton actuator portion of the present
invention is responsible for configuring an individual soft
ware product from the Source files, declarations, definitions,
and automatons in a Software production line. Specifically,
the automaton actuator configures an individual Software
product according to a selected product definition by actuat
ing each automaton in the Software production line with prod
uct definition. For example, if the automaton actuator were
applied for the Ford product definition, as shown in FIG. 3,
the automaton logic shown in FIG. 4 would be activated to
select the normal.java variant since the auto locator value is
defined as true. By actuating all of the automatons in a soft
ware production line, a complete individualized software
product with all desired custom features can be configured.
The disclosed system and method for creating individual
Software products in a software product family can be used
according to any one of three individual approaches described
below.

0053. The first approach for using the software mass cus
tomization system and method of the present invention is the
proactive approach shown in FIG. 5. In the proactive
approach, a software developer analyzes, designs, and imple
ments a complete software mass customization production
line 10A to support the full scope of individual software
products needed in the foreseeable future. From the domain
analysis and design, a complete set of common and varying
Software artifacts, feature declarations, product definitions,

US 2015/0074632 A1

and automatons are implemented by the Software production
line 10A to produce individual software products 51, 52 and
53.
0054 The second approach 60 for using the software mass
customization system and method of the present invention is
called the reactive approach as shown in FIG. 6. In the reac
tive approach, a Software developer incrementally grows its
Software mass customization production line 10B according
to the demand for new individual software products 64, 65, 66
and 67 and new requirements for existing software products
61, 62 and 63. Common and varying Software artifacts, along
with the feature declarations, product definitions, and
automatons, are incrementally extended in reaction to the
new software requirements. This incremental approach offers
a quicker and less expensive path into Software mass customi
Zation.
0055. The third approach 70 for using the software mass
customization system and method of the present invention is
called the extractive approach. In the extractive approach, the
Software developer capitalizes on existing customized soft
ware systems 71, 72 and 73 by extracting common and vary
ing software artifacts into a single Software production line
10C. In the extractive approach, the feature declarations, soft
ware product definitions, and automatons are created as the
variations in the source code are identified during the extrac
tion. This high level of software re-use enables a software
developer to very quickly adopt a software mass customiza
tion process to produce individual software products 74, 75
and 76.
0056. The foregoing three approaches for use of the dis
closed system and method are not mutually exclusive. For
example, another approach is to bootstrap a software mass
customization effort using the extractive approach followed
by use of the reactive approach to incrementally evolve the
software production line over time.
0057. A more detailed explanation of the proactive, reac

tive and extractive approach for using the disclosed invention
follows.
0058. The proactive approach 50 to software mass cus
tomization shown in FIG. 5 is similar to the waterfall
approach for the creation of single software systems. The use
of the proactive approach 50 is appropriate when the require
ments for the set of individual software products needed,
extending to the far future, are well defined and stable. The
proactive approach 50 requires considerable up front effort;
however, this up front effort drops off sharply once the cre
ation of the software production line has been completed.
0059. The high level tasks for the proactive approach 50
are as illustrated in FIG. 5, specifically:

0060) 1. Perform a domain analysis and scoping to iden
tify the software artifact variation to be supported in the
Software production line.

0061 2. Model the production line architecture to sup
port all individual software products in the software
production line.

0062. 3. Design the common and variant parts of the
individual software product.

0063 4. Implement the common and variant parts of
each individual software product using the declarations,
definitions, and automatons of the disclosed system and
method.

0064. Once the software production line 10A has been
implemented, all that remains is to create individual Software
products 51, 52 and 53 as needed. Using this proactive

Mar. 12, 2015

approach 50, if new software products are needed, they can be
created by simply adding a new software product definition
into the infrastructure of the software production line 10A.
Maintenance and evolution are performed directly on the
single software production line 10A.
0065. The second or reactive approach 60 to software
mass customization shown in FIG. 6 is an incremental
approach. Use of the reactive approach 60 is appropriate
when the requirement for new individual software products
64, 65, 66, and 67 in the software product family is somewhat
unpredictable. For example, when unexpected software
requirements from new buyers of Software are common, the
reactive approach 60 should be used. The reactive approach
60 allows for a rapid adoption of mass customization since a
minimum number of individual Software products are incor
porated in advance.
0066. The high level tasks for incrementally adding a new
product using the reactive approach are:

0067. 1. Characterize the requirements for the new indi
vidual software products relative to what is currently
supported in the software production line 10B.

0068 2. Determine if the new individual software prod
ucts are currently within the scope of the current soft
ware production line 10B. If so, skip to step 4. If not,
proceed to step 3.

0069. 3. If the new individual software products are not
within the scope of the current software production line
10B, then perform the “delta engineering to the soft
ware production line 10B on any or all of the declara
tions, automatons, common Software, and definitions to
extend the scope of the current software production line
10B to include the new individual software product
requirements.

0070 4. Create the software product definition for the
new individual software products by selecting values for
each of the feature declaration parameters.

(0071 Use of the third or extractive approach 70 shown in
FIG. 7 to the software mass customization is appropriate
when there is an existing collection of customized individual
software products 71,72 and 73 that need to be reused for new
software products 74, 75 and 76. It is most appropriate when
the collection of individual software products 71, 72 and 73
has a significant amount of commonality and the differences
among them are consistent.
0072. It is not necessary to perform the extractive
approach 70 to software mass customization for all of the
pre-existing individual software products 71, 72 and 73 at
once. For example, a Subset of the high-payoff, actively used
individual software products might be extracted initially, and
then the remainder of individual software products incremen
tally extracted as needed.
0073. The tasks associated with the extractive approach 70
are as follows:
0074 1. Identify commonality and variation in the exist
ing individual software products 71, 72 and 73.
0075 2. Factor the commonality and variations into a
single software production line 10C by:

0.076 a. Creating a single copy of the common soft
Ware;

0.077 b. Creating feature declarations that model the
Scope of variation among the existing software products;

0078 c. Encapsulate variation points into the automa
tons;

US 2015/0074632 A1

0079 d. Program the automaton logic to map declara
tion parameter values to variant selections in the
automatons;

0080 e. Create the software product definitions for the
desired individual software products by selecting values
for each of the individual software product feature defi
nition parameters.

0081. After the software production line has been popu
lated, individual software products are created as needed
using the automaton actuator. Mass customization of indi
vidual software products now becomes the mode of opera
tion, as the focus is shifted to maintaining and enhancing the
single Software production line.
0082 One alternate embodiment of the disclosed inven
tion may include two way automaton actuation. In two way
automaton actuation the real data file or real data file directory
that is presented in the place of the virtual data file or virtual
data file directory during normal actuation can be Subse
quently modified by the software developer. The software
developer can then run the automaton actuation in reverse to
push any modification back into the automaton. The next
automaton actuation will now include the modification.
0083. Another alternative embodiment is based on the fact
that the need for parameters used for an automaton in one area
of an individual software product may be different from the
parameters needed in another area of the software product. To
prevent a large number of irrelevant parameters being avail
able for all of the automatons, the software product can be
partitioned into scopes such that only a Subset of parameters
apply to the automatons in each partition. A description for
the assembly of custom partitions into a custom product
instance is required for this alternative embodiment.
0084. There are multiple alternative embodiments for
automaton containers. Each automaton encapsulates logic
and different source code variants for actuating different real
files and real data file directories in place of the virtual data
files and virtual data file directories. An automaton container
can be implemented in a variety of different ways. Examples
of implementing an automaton container include the use of a
conventional directory, encoding all of the automaton infor
mation in a single file, extending a file system to implement
the automaton concept, and extending a configuration man
agement system to implement the automaton concept.

OPERATIONAL EXAMPLES

0085 For a still better understanding of the system and
method of the present invention, consider a company which
develops e-commerce software for retailers. One of the retail
ers sells bicycles; a second retailer sells wedding rings; and a
third retailer sells pianos. As between the three retailers, they
sell products into Europe, into the United States, and into
Canada. Each of the three retailers wants a website where
buyers can order and pay for the particular product ordered.
One of the three retailers wants a website to offer a “shopping
cart’ service where buyers can temporarily “store' purchases
between Internet purchasing sessions. The other retailers do
not want this feature on their websites. Some of the three
retailers want their products delivered to a dealer for pickup:
while others desire to offer pickup of the purchased product at
the factory.
I0086. The first step to producing individualized software
products meeting the needs of the three retailers in the
example using the present invention is to enumerate the indi
vidual software products offered to the retailers and the ways

Mar. 12, 2015

that they differ. For example, a software developer may have
different retailers who want to use different websites. The
websites will vary by the merchandise being sold, for
example, bicycles, wedding rings, and pianos; the business
location, for example, Europe, U.S., and Canada; whether the
retailers offer a shopping cart service on their website; and the
delivery arrangements for the retail product sold.
I0087 To build each one of these individual software prod
ucts, the software developer uses 20 different software com
ponents. Most of the components are common across all retail
sales applications, such as that component which manages
payment using an on-line credit card transaction. However,
other components exist in different versions of the retail soft
ware product depending on how it is used. The second thing
to be done is to list all of the common artifacts and all of the
versions of the variant artifacts and then define what artifacts
are used in each individual retail software product. Shown in
FIG. 8 is a screen 80 displaying the software development
environment. On the right side of the screen 81 are the feature
declarations for the software production line. An enumerative
variation 82 means that one value must be selected. A set
variation 83 means 0 or more values can be chosen. On the left
side of the screen 84 is the inventory of the product definitions
and the Software components that are included. The six prod
ucts listed under Definitions begin with Bikes Europe and end
with Rings, U.S. The five automatons that have different
versions in the different software products are marked with a
gear symbol. Note that automaton for main.java 85 is
expanded, showing that it comes in two variants. The logic
file contains the simple expression that associates each vari
ant of the automaton with the combination of feature decla
rations that cause it to be selected for an individual software
product. The complete list of common files that are included
in all software products are in a list at the bottom of the left
side of the screen 80.

I0088. Note that in FIG. 8, the entry “Bikes, U.S. is cho
sen. This means that the website that is going to be built is
going to be for the retail sale of bicycles in the U.S. from a
factory and where the website will offer a shopping cart
feature.

0089. As shown in FIG. 8, the “button' 86, under the
arrow, to actuate the creation of the customized software
product is about to be pressed. This causes the variants of all
the automatons appropriate to “Bikes, U.S. to be made avail
able in a workspace from which the customized individual
retail software product can be built.
0090 FIG. 9 shows what happens when the actuation of
the creation of the customized software product actually
occurs. Note that the screen shows us which variants 91, 92,
93, 94 and 95 have been selected. Herein, the version of
delivery file named “factory.java 91 has been selected, and
so forth. The software product associated with “Bikes, U.S.”
is now ready to be built.
0091. The disclosed system and method is designed to be
independent of the software developer's process for building
Software. Simply, the disclosed system and method Supplies
the correct files to build the customized software product,
which can now be greatly simplified because all concerns
about version selection are removed. The disclosed system
and method is also independent of any CM tool because it is
irrelevant where the data file versions come from. The lan
guage is independent; the disclosed system and method never
modifies or even examines the source code. The “artifacts'
actually do not have to be software at all. For example, the

US 2015/0074632 A1

“artifacts' could be chapters in product line requirement
specifications. For example, with almost no change, the fore
going description could have related to generating a require
ments document for the “Bikes, U.S. retail software product.
0092. The end result is that the disclosed system and
method produces different individualized custom software
products by assembling different collections of files, accord
ing to parameters that express possible customizations. As
previously indicated, the assembling of different collections
of files is accomplished as follows:

0093 1. A software mass customization infrastructure
consisting of special-purpose files and directories that
are added to existing software to create a Software mass
customization production line.

0094 2. A software mass customization development
environment to browse, create, organize, and maintain
the infrastructure for the Software mass customization
production line.

0.095 3. A software mass customization actuator to acti
vate the Software mass customization production line to
produce custom individual software products.

0096. A second example illustrates how the disclosed sys
tem and method is used for globalization and localization, or
internationalization, of a U.S.-Centric Software system as
shown in FIG. 10.
0097. This example is best understood by understanding
that a U.S.-Centric software product line 101 can be viewed
as a software production line 10D with no variants. That is,
the US-Centric software product 101 can serve as the initial
basis for the creation of the software production line 10D.The
process is begun by directing the disclosed system and
method to create a new software production line 10D and
thereby point to the root of the US-Centric software product
Source tree. The disclosed system and method creates the
initial infrastructure for the software production line and cre
ates empty declarations and definitions. The US-Centric soft
ware product is now a software production line 10D accord
ing to the disclosed system and method.
0098 Next, the key globalization dimensions of variation
for the software production lines are declared 102. These
dimensions may come from a combination of industry stan
dards, company standards, and from an analysis that is spe
cific to the Software product and its targeted customer base.
Typically, a system architect is responsible for creating and
maintaining the declarations for a software production line.
0099 Globalization values that may be declared include:
0100. An enumeration of specific countries to include
which countries will be selected for individual software prod
ucts;
0101. A set of religions that potential users may belong to:
0102) A boolean variable indicating whether or not to use
European currency or local currency;
0103) An integer variable expressing a taxation code:
0104. An enumeration or string that models the language
of dialect for textual display;
0105. A character to model diplomatic status or possible
immunities of a user group;
010.6 An enumeration to model the citizenship of the
users, such as U.S. citizens working in a foreign country.
0107 If the initial target collection of localized individual
software products is known initially, these can be defined
using the product definition editor 103. A named product
definition is created for each individual software product to be
instantiated from the software production line.

Mar. 12, 2015

0108. The task of defining a software product simply con
sists of selecting a value for each of the feature declarations.
0109 The task of creating a software product definition is
typically created by a system architect.
0110. The next step is to enter the source base of the
US-Centric software product where US specific areas are
identified in the source code that must be generalized to
Support other locales.
0111. The files that need to be globalized are converted
from common files to automatons using the disclosed system
and method. For example, a timesheet form in a US applica
tion may have an overflow area to compute overtime hours
worked, where in Germany this same form must provide a
warning when the legal maximum number of hours worked
during a week is being approached rather than flowing into
overtime. These two time sheet variants can be encapsulated
into a single timesheet automaton. The logic description in
this automaton is then programmed to select among the US
and German file variants using the declaration variable and
values.

0.112. After the declarations, definitions, and automatons
have been created to form a complete Software mass customi
zation production line, the localized software products 105,
106 and 107 for different regions can be produced. The actua
tion operation 104 of the disclosed system and method takes
a software product definition as input and creates a corre
sponding Software product as output.
0113. After the software production line has been estab
lished, all maintenance and evolution of the Software produc
tion line is performed on the single Software production line
rather than on individual Software products. For example, a
bug fixed once in common software artifact is then fixed for
all individual software products produced by the production
line. As requirements for new locales are introduced, the
declarations, definitions, and automatons are incrementally
extended as necessary, thereby the entire Software production
line evolves as a whole in configuration management so that
one can always go to the Software production line to reactuate
and reproduce any product that was previously shipped.
0114 Those of ordinary skill in the art will understand that
numerous other embodiments of the foregoing invention are
enabled by this disclosure. Such other embodiments shall fall
within the scope and meaning of the appended claims.
What is claimed is:

1. A system having a memory for customization of Soft
ware comprising:

a mass customization infrastructure;
a mass customization development environment; and
a mass customization actuator, wherein said mass customi

Zation infrastructure includes a feature declarations
component, a product definitions component, an
automatons component, and a partition composition
component.

2. The system as defined in claim 1, wherein said mass
customization development environment includes editors and
browsers which display, create, modify, and maintain the
Software production line.

3. The system as defined in claim 2, wherein said editor in
said mass customization development environment displays,
creates, modifies, and maintains a collection of feature dec
larations.

US 2015/0074632 A1

4. The system as defined in claim 2, wherein said editor in
said mass customization development environment displays,
creates, modifies, and maintains a collection of product defi
nitions.

5. The system as defined in claim 2, wherein said editor in
said mass customization development environment displays,
creates, modifies, and maintains automatons.

6. The system as defined in claim 2, wherein said editor in
said mass customization development environment displays,
creates, modifies, and maintains partition compositions.

7. The system as defined in claim 2, wherein said browser
in said mass customization development environment dis
plays, creates, modifies, and maintains a collection of mass
customization infrastructure and Software artifacts.

8. The system as defined in claim 1, wherein said product
definitions component of said mass customization infrastruc
ture models the individual software products that can be cre
ated from the system for mass customization of software.

9. The system as defined in claim 1, wherein said feature
declarations component of said mass customization infra

Mar. 12, 2015

structure models the dimensions of variation that can be used
in the system for mass customization of Software.

10. The system as defined in claim 1, wherein said partition
composition component of said mass customization infra
structure models the combinations of partition customiza
tions that can be composed in the system for mass customi
zation of software.

11. The system as defined in claim 1, wherein said automa
tons component of said mass customization infrastructure
encapsulates Software artifact variants.

12. The system as defined in claim 1, wherein said automa
tons component of said mass customization infrastructure
includes a logic portion which instantiates an individual
automaton by actuation with a product definition.

13. The system as defined in claim 1, wherein said mass
customization actuator configures an individual Software
product according to a selected product definition by actuat
ing each automaton in the mass customization production line
with said product definition.

k k k k k

