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A processing engine to accomplish a multiplicity of tasks
has a multiplicity of processing tribes, each tribe comprising
a multiplicity of context register sets and a multiplicity of
processing resources for concurrent processing of a multi-
plicity of threads to accomplish the tasks, a memory struc-
ture having a multiplicity of memory blocks, each block
storing data for processing threads, and an interconnect
structure and control system enabling tribe-to-tribe migra-
tion of contexts to move threads from tribe-to-tribe. The
processing engine is characterized in that individual ones of
the tribes have preferential access to individual ones of the
multiplicity of memory blocks.
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Name

Format
(TBD)

Description

0.7

program_counter{0..7]

Provides the initial PC to each of the tribes (0..7)
for the initial migration.

8.127

reserved

128

status

Specifies whether the NET module has come out
of reset and whether it is in quiescent mode or not.
The quiescent information is don’t care is the NET
has not come out of reset.

129

continue

If 1, the NET module will receive packets from
the SPI4 ingress port. If 0, the NET module will
drop the packets that it receives from the SP14
ingress port.

130

total_ports

Specifies the total number of full-duplex ports.
The valid values are 1, 2 and 4. The value 3 is
reserved.

131

port_type

Specifies the type of the ports (channelized or
non-channelized). All ports will become of the
same type.

132

internal_state_number

Software writes to this register an internal state
word number. When software reads this register, it
obtains the value associated to the internal state
word number last written.

133-220

reserved

221

egress_path_determined

Software writes in this register a value containing
the sequence number, the encoded egress channel
(if applicable), and the encoded egress port to
report that the packet still has not been completed
but its egress path information has been fully
determined.

Software is not required to write into this register
(the same functionality is obtained by the
mandatory writing into the ‘done’ configuration
register), but by doing so it helps the performance
on those applications that require an egress
interleaving degree greater than 1.

222

defauit_egress_port_0

Specifies which of the egress ports (0-3) is the
default port for those packets that came through
ingress port 0. This default port is used whenever
software requests to transmit a packet that resides
in the packet buffer with an encoded egress port of
0x1.

223

default_egress port_1

Specifies which of the egress ports (0-3) is the
default port for those packets that came through
ingress port 1. This default port is used whenever
software requests to transmit a packet that resides
in the packet buffer with an encoded egress port of
Ox1.

Fig. 4a - Partial List of Config. Registers
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224 default_egress_port_2 Specifies which of the egress ports (0-3) is the

. default port for those packets that came through
ingress port 2. This default port is used whenever
software requests to transmit a packet that resides
in the packet buffer with an encoded egress port of
Ox1.
225 default_egress_port 3 Specifies which of the egress ports (0-3) is the
default port for those packets that came through
ingress port 3. This default port is used whenever
software requests to transmit a packet that resides
in the packet buffer with an encoded egress port of
Ox1.
256 max_packet_size Specifies the maximum packet size allowed by the
NET module. The maximum packet size allowed
is 64KB. The smallest the maximum packet size
allowed, the less memory fragmentation will occur
at the packet buffer memory. The possible values
are from 0x0 (corresponding to a maximum size
of 1024 bytes) to OXFF (corresponding to 65536
bytes), with all the intermediate sizes in
increments of 1024 bytes.
257 default_egress_channel Specifies which of the 256 (0..255) is the egress
default channel. This default channel is used
whenever software requests to transmit a packet
that resides in the packet buffer with an encoded
egress channel of Ox1.
258 done ) Software writes in this register a value containing
the sequence number, the header growth delta and
the encoded egress channel to report that the
packet has been completed and it is ready for
transmission.
‘When the write occurs, the NET module will
update the status of the packet and it will transmit
as soon as it becomes the oldest packet in the
packet buffer.
259 drop Software writes in this register a value containing
the sequence number to report that the packet isno
longer valid and its data in the packet buffer can
be reused for another new packet.
‘When the write occurs, the NET module will
update the status of the packet
260 head_growth_offset Specifies the amount of space (in bytes) that the
NET will leave in front of each packet when
stored in the packet buffer.
The lower 3 bits of this register are disregarded
(they are considered to be always 0). Therefore,
software can only specify growth offsets that are a
multiple of § bytes.

261-262 reserved i
263 packet_table_packets Contains the total number of packets in the NET
(it may account for invalid packets or packets that

still have not been transmitted) and the total
number of packets that have been received but still
need to be migrated.

Fig. 4b - Partial List of Config. Registers
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264..269 reserved

270 11_selection Specifies, for each of the first 64 bytes of the
packet, whether the byte will be used for the
hashing computation (bit Q:byte0 ... bit63:byte63)
of the first-leve!l hashing engine.

271-277 reserved

278 11_position Specifies, for each of the first 64-bytes of the
packet, whether the byte will be used in the MSB
(1) or LSB (0) 8-bits of the hashing result. It is
validated with the 11_selection configuration
register.

279-285 reserved

286-289 12_selection[0..3] Equivalent to 11_selection but for each of the

. second-level hashing engines.

290-301 reserved

302-309 12_position{0..3] Equivalent to l1_position but for each of the
second-level hashing engines.

310-TBD reserved .

318 L1_skip Specifies how many LSB bits of the first-level
hashing result will be disregarded when
computing the selected second-level hashing
engine.

319-322 12_skip(0..3] Specifies how many LSB bits of each of the
second-level hashing resulits will be disregarded
when coniputing the selected tribe for initial
migration.

323-334 reserved

335-338 12 first[0..3] Specifies, for each of the second-level hashing
engines, the first tribe of the set of tribes that will
be candidates for initial migration (0: tribe 0, ...,
7:tribe 7).

339-350 - reserved

351-354 12_total[0..3] Specifies, for each of the second-level hashing
engines, the total amount of tribes that will be
candidates for initial migration (0:1 tribe, 1:2

. tribes, ... 3:8 tribes).

355-366 reserved

367-374 | perf_counter_event(0..7] Each one specifies one 64 events that can be
monitored in the NET module. Thus, a total of 8
events can be monitored simultaneously.

375-382 reserved .

383-390 | perf_counter_value(0..7] Contain the value of the performance events

- monitored.

400 islot_enable Enables/disables each of the different egress
interleaving slots. Bit 0-3 corresponds to islot0-3.

401 islot0_channels Specifies the range of channels associated to
islot0. The smallest channel number is specified in
bits 0-7 and the largest channel number in bits 16-
23.

402 islot]_channels Specifies the range of channels associated to
islotl. The smallest.channel number is specified in
bits 0-7 and the largest channel number in bits 16-
23.

Fig. 4c - Partial List of Config. Registers
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403 islot2_channels Specifies the range of channels associated to
islot2. The smallest channel number is specified in
bits 0-7 and the largest channel number in bits 16-
23.

404 islot3_channels '| Specifies the range of channels associated to
islot3. The smallest channel number is specified in
bits 0-7 and the largest channel number in bits 16-

23.
405-1023 reserved
1024-2047 Packet table Information of the 512 packet descriptors (two
configuration registers per packet). The packet
table is read only.
2048-8191 reserved .
8192-16383 GetRoom Software adds the base of this space to the

requested size in bytes to obtain the address to
access this space for a GetRoom command. The
GetRoom space is read only.

Fig. 4d - Partial List of Config. Registers
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# Description
0-3 Number of packets dropped due to interleaving protocol violation, per ingress port.
4-7 Number of bytes received per ingress port.

8-11 Number of packets dropped due to an error notification.
12-15 Number of chunks of data (1-8 bytes) transmitted out per egress port.
16-19 | Number of times an egress port is ready to accept data from the NET module (per egress
port).
20-23 | Number of times an egress port is ready to accept data from the NET module, but the NET
module has no data to provide (per egress port).
24-31 reserved
32 Number of packets dropped due to packet table being full.
33 Number of chunks of data (1-8 bytes) dropped due to packet table being full, maximum
packet size violation or packet buffer being full.
34 Number of packets dropped due to.maximum packet size violation.
35 Number of packets dropped due to ‘continue’ configuration register being 0.
36 Number of packets dropped due to packet buffer being fuil.

37 Number of accesses to the packet table due to new packet insertions.

38 Number of accesses to the packet table due to migrations.

39 Number of accesses to the packet table due to migrations that do not get served right away
(an access that does not get served for several cycles will generate as many events).

40 Number of accesses to the packet table due to packet transmissions.

41 Number of accesses to the packet table due to transmissions that do not get served right
away (an access that does not get served for several cycles will generate as many events).

42 Number of accesses to the packet table due to packet control updates.

43 Number of accesses to the packet table due to packet control updates that do not get served
right away (an access that does not get served for several cycles will generate as many
events).

44-63 | reserved
64-71 | Number of accesses to bank j (bank O:event 32 ... bank 7:event 39) of the packet buffer.
71-78 | Number of accesses to the packet buffer performed by tribe ; (tribe 0:event 40... tribe
7:event 47).
79-86 | Number of accesses to the packet buffer performed by tribe j (tribe0: event
48...tribe7:event 55) that do not get served right away (an access that does not get served
for several cycles will generate as many events).
87 Number of accesses to the packet buffer due to packet transmissions.
88 Number of accesses to the packet buffer due to packet transmissions that do not get served
right away (an access that does not get served right away for several cycles will generate as
many events). ) )
89 Number of accesses to the packet buffer from non-DMA global. (TBD)
90 Number of accesses to the packet buffer from non-DMA global that do not get served right
away (an access that does not get served right away for several cycles will generate as
many events). (TBD)
91 Number of accesses to the packet buffer from DMA global. (TBD)
92 Number of accesses to the packet buffer from DMA global that do not get served right
away (an access that does not get served right away for several cycles will generate as
many events). (TBD)

93 Number of accesses to the configuration registers, including the packet table.
94-127 | reserved

Fig. 6 - Performance Events
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Encoded egress channel
Actual egress channel
Bit 8 Bits 7-0 | Bits 7-0
0 0 Same as ingress chamel
1 | Contents of ‘default egress channel’ conf. register
2..255 reserved
1 0..255 0..255

Fig. 7 -Egress Channel Determination



Patent Application Publication Nov. 3, 2005 Sheet 11 of 52 US 2005/0243734 A1

Encoded egress port
Actual egress port
Bit5 Bits 4-0 | Bits 4-0
0 . 0 Same as ingress port
1 Contents of ‘default_egress_port_X' conf. Register,
where X==0..3 is the ingress port number
. reserved
1 0..15 0..15 (4..15 reserved).

Fig. 8 -Egress Port Determination



Patent Application Publication Nov. 3, 2005 Sheet 12 of 52 US 2005/0243734 A1

Ports Type
Channelized
Non-
channelized
1 1,2,3,4 41
2 1,2
4 1

Fig. 9 - Allowed Interleaving Degree
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MULTI-THREADED PACKET PROCESSING
ENGINE FOR STATEFUL PACKET PROCESSING

FIELD OF THE INVENTION

[0001] The present invention is in the field of high-
performance central processing units (CPUs), and pertains
more particularly to a multithreaded processor for process-
ing packets in a network environment.

CROSS-REFERENCE TO RELATED
DOCUMENTS

[0002] This application is a continuation of U.S. patent
application Ser. No. 10/254,377, filed on Sep. 24, 2002,
which claims the benefit of the following three provisional
patent applications: No. 60/325,638 filed on Sep. 28, 2001;
No. 60/341,689 filed on Dec. 17, 2001; and No. 60/388,278
filed on Jun. 13, 2002. Each of these priority documents is
incorporated in its entirety herein by this reference.

BACKGROUND

[0003] The term packet processing as used in the instant
specification refers to performing various digital operations
(processing) on packets in a packet data network, such as the
well-known Internet network, for example for the purpose of
routing said packets through a router or through a point-to-
point network. It is well known that there are multiple types
of packets, and that packets of a same type may belong to
different flows, a flow referring generally to the combination
of source and destination. As an example, all packets car-
rying information for Internet Protocol Network Telephony
events will be of the same type. Among these packets, those
that belong to a specific conversation between two particular
people at a particular time belong to the same flow.

[0004] Tt is also well known in the art that data packets, in
general, have a header portion and a data portion. The header
portion typically comprises data fields of standard digital
form and length that identify such things as the packet type,
the source, and the destination. A packet processing engine,
then, may know the type and flow for a packet by referenc-
ing the header fields.

[0005] In packet processing engines it is typically neces-
sary, when a packet is received to be processed, to determine
an appropriate rule for processing the packet. The rule is the
recipe of what to do regarding the particular packet, and the
recipe can be any one of a relatively large number of
functions, such as packet dropping (discard), forwarding to
a next hop, load balancing, encryption, and much more.
Clearly the performance of packet processing systems and
equipment is related to the ability of the system to classify
and identify packets, to select appropriate rules, and to
perform the indicated processing. Improvement in effi-
ciency, cost effectiveness and speed is always desirable.

SUMMARY

[0006] In a preferred embodiment of the present invention
a processing engine to accomplish a multiplicity of tasks is
provided, the engine comprising a multiplicity of processing
tribes, each tribe comprising a multiplicity of context reg-
ister sets and a multiplicity of processing resources for
concurrent processing of a multiplicity of threads to accom-
plish the tasks, a memory structure having a multiplicity of
memory blocks, each block storing data for processing
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threads, and an interconnect structure and control system
enabling tribe-to-tribe migration of contexts to move threads
from tribe-to-tribe. The engine is characterized in that indi-
vidual ones of the tribes have preferential access to indi-
vidual ones of the multiplicity of memory blocks.

[0007] In a preferred embodiment there is preferential
access from an individual one of the multiplicity of tribes to
an individual one of the multiplicity of memory blocks by an
individual one of a multiplicity of controlled memory ports.
Also in a preferred embodiment the multiplicity of tribes, the
multiplicity of memory blocks, and the multiplicity of
memory ports are equal in number, and each tribe has a
dedicated port to a memory block. In some embodiments
processing tasks are received sequentially, an individual task
received creating a thread, including a program counter and
context, in a first one of the multiplicity of tribes.

[0008] In some cases the thread operating in the first one
of the tribes is migrated via the interconnect structure to a
second one of the tribes before completion of the task, by
moving the program counter and at least a portion of the
context to registers in the second one of the tribes. Also in
some cases original assignment of tasks received to tribes is
at least partially dependent on distribution of processing data
among the memory blocks. The original assignment of tasks
may be at least partly software controlled, or at least partly
hardware controlled.

[0009] In some embodiments migration of a thread from
one tribe to another tribe is at least partly dependent on
distribution of processing data among the memory blocks.
The direction and timing of migration from tribe to tribe may
be at least partly software controlled, or at least partly
hardware controlled.

[0010] In a preferred embodiment the processing engine is
implemented at a first node in a data packet network wherein
the tasks are generated by receipt of data packets and
processing the packets for translation to a second node in the
network. The packet network may be the Internet network.

[0011] In another aspect of the invention a method for
concurrently processing a multiplicity of tasks is provided,
the method comprising the steps of (a) implementing in a
single processing engine a multiplicity of processing tribes,
each tribe comprising a multiplicity of context register sets
and a multiplicity of processing resources for concurrent
processing of a multiplicity of threads to accomplish the
tasks; (b) providing to the processing engine a memory
structure having a multiplicity of memory blocks, each
block storing data for processing threads, the memory
blocks connected to the tribes in a way that individual ones
of the tribes have preferential access to individual ones of
the multiplicity of memory blocks; (c) connecting the tribes
through an interconnect structure and control system
enabling tribe-to-tribe migration of contexts to move threads
from tribe-to-tribe; and (d) initiating a thread, including a
program counter and context in registers, in a first one of the
multiplicity of tribes for each task received.

[0012] In a preferred embodiment, in step (b), preferential
access from an individual one of the multiplicity of tribes to
an individual one of the multiplicity of memory blocks is
provided by an individual one of a multiplicity of controlled
memory ports. Also in a preferred embodiment, in step (b),
the multiplicity of tribes, the multiplicity of memory blocks,
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and the multiplicity of memory ports are equal in number,
and each tribe has a dedicated port to a memory block.
Processing tasks may be received sequentially.

[0013] In a preferred embodiment there may further be a
step wherein the thread operating in the first one of the tribes
is migrated via the interconnect structure to a second one of
the tribes before completion of the task associated with the
thread, by moving the program counter and at least a portion
of the context to registers in the second one of the tribes.

[0014] In some cases, in step (d), original assignment of
tasks received to tribes is at least partially dependent on
distribution of processing data among the memory blocks.
The assignment may be largely hardware controlled, or
largely software controlled.

[0015] Insome cases migration of a thread from one tribe
to another tribe may be at least partly dependent on distri-
bution of processing data among the memory blocks, and the
direction and timing may be either largely hardware con-
trolled, or largely software controlled.

[0016] In a preferred embodiment of the invention the
engine is implemented at a first node in a data packet
network wherein the tasks are generated by receipt of data
packets and processing the packets for translation to a
second node in the network. The data packet network may
be the Internet network.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is an architectural overview for a packet
processing engine in an embodiment of the present inven-
tion.

[0018] FIG. 2 is a memory map for the packet processing
engine in an embodiment of the present invention.

[0019] FIG. 3 illustrates detail of the address space for the
packet processing engine in an embodiment of the present
invention.

[0020] FIGS. 4a through FIG. 4d comprise a list of
configuration registers for a packet processing engine
according to an embodiment of the present invention.

[0021] FIG. 5 illustrates hashing function hardware for
the packet processing engine in an embodiment of the
present invention.

[0022] FIG. 6 is a table that lists performance events for
the packet processing engine in an embodiment of the
present invention.

[0023] FIG. 7 lists egress channel determination for the
packet processing engine in an embodiment of the present
invention.

[0024] FIG. 8 lists egress port determination for the
packet processing engine in an embodiment of the present
invention.

[0025] FIG. 9 indicates allowed degree of interleaving for
the packet processing engine in an embodiment of the
present invention.

[0026] FIG. 10 is an illustration of Global block archi-
tecture in an embodiment of the invention.

[0027] FIG. 11 is an expanded view showing internal
components of the Global block.
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[0028] FIG. 12 is an illustration of a Routing block in an
embodiment of the invention.

[0029] FIG. 13 is a table indicating migration protocol
between tribes.

[0030] FIG. 14 is a block diagram of the Network Unit for
an embodiment of the invention.

[0031] FIG.15is a diagram of a Port Interface block in the
Network Unit in an embodiment.

[0032] FIG. 16 is a diagram of a Packet Loader Block in
the Network Unit in an embodiment of the invention.

[0033] FIG. 17 is a diagram of a Packet Buffer Control
Block in an embodiment.

[0034] FIG. 18 is a diagram of a Packet Buffer Memory
Block in an embodiment.

[0035] FIG. 19 is a table illustrating the interface between
a Tribe and the Interconnect Block.

[0036] FIG. 20 is a table illustrating the interface between
the Network Block and the Interconnect Block.

[0037] FIG. 21 is a table illustrating the interface between
the Global Block and the Interconnect Block.

[0038] FIG. 22 is a diagram indicating migration protocol
timing in the Interconnect Block.

[0039] FIG. 23 is a table illustrating the interface between
a Tribe and a Memory Interface block in an embodiment of
the invention.

[0040] FIG. 24 is a table illustrating the interface between
the Global Block and a Memory Interface block in an
embodiment of the invention.

[0041] FIG. 25 is a table illustrating the interface between
a Memory Controller and a Memory Interface block in an
embodiment of the invention.

[0042] FIG. 26 shows tribe to memory interface timing in
an embodiment of the invention.

[0043] FIG. 27 shows tribe memory interface to controller
timing.

[0044] FIG. 28 shows tribe memory interface to Global
timing.

[0045] FIG. 29 shows input module stall signals in a
memory block.

[0046] FIG. 30 is a table illustrating the interface between

a Tribe and a Memory Block in an embodiment of the
invention.

[0047] FIG. 31 is a table illustrating the interface between
a Tribe and the Network Block in an embodiment of the
invention.

[0048] FIG. 32 is a table illustrating the interface between
a Tribe and the Interconnect block in an embodiment of the
invention.

[0049] FIG. 33 is a block diagram of an embodiment of
the invention.

[0050] FIG. 34 is a Tribe microarchitecture block dia-
gram.
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[0051] FIG. 35 is shows a fetch pipeline in a tribe in an
embodiment of the invention.

[0052] FIG. 36 is a diagram of a Stream pipeline in tribe
architecture.

[0053] FIG. 37 is a stream pipeline, indicating operand
write.

[0054] FIG. 38 is a stream pipeline, indicating branch
execution.

[0055] FIG. 39 illustrates an execute pipeline.
[0056]

[0057] FIG. 41 illustrates a matching matrix for the arbi-
tration problem.

[0058] FIG. 42 illustrates arbiter stages.
[0059] FIG. 43 illustrates deadlock resolution.
[0060] FIG. 44 is an illustration of a crossbar module.

[0061] FIG. 45 illustrates the tribe to memory interface
modules.

[0062] FIG. 46 illustrates the input module data path.
[0063] FIG. 47 Illustrates a write buffer module.
[0064] FIG. 48 illustrates the return module data path.

[0065] FIG. 49 is an illustration of a request buffer and
issue module.

FIG. 40 illustrates interconnect modules.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

[0066] Overview of Porthos Multi-Threaded Packet Pro-
cessing Engine

[0067] In a preferred embodiment of the present invention
a multithreaded packet processing engine that the inventors
term the Porthos chip is provided for stateful packet pro-
cessing at bit rates up to 20 Gbps in both directions. FIG. 1
is an architectural overview for a packet processing engine
101 in an embodiment of the present invention.

[0068] A two bi-directional network port 102 is provided
with maximum input and output rates of 10 Gbps each.
Packet Buffer 103 is a first-in-first-out (FIFO) buffer that
stores individual packets from data streams until it is deter-
mined whether the packets should be dropped, forwarded
(with modifications if necessary), or transferred off chip for
later processing. Packets may be transmitted from data
stored externally and may also be created by software and
transmitted.

[0069] In preferred embodiments, processing on packets
that are resident in the chip occurs in stages, with each stage
associated with an independent block of memory. In the
example of FIG. 1 here are eight stages 104, labeled (0-7),
each associated with a particular memory block 105, also
labeled (0-7).

[0070] Each stage 104, called by the inventors a tribe, can
execute up to 32 software threads simultaneously. A soft-
ware thread will typically, in preferred embodiments of the
invention, execute on a single packet in one tribe at a time,
and may jump from one tribe to another.
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[0071] A two HyperTransport interface 106 is used to
communicate with host processors, co-processors or other
Porthos chips.

[0072] In preferred embodiments of the invention each
tribe executes instructions to accomplish the necessary
workload for each packet. The instruction set architecture
(ISA) implemented by Porthos is similar to the well-known
64-bit MIPS-IV ISA with a few omissions and a few
additions. The main differences between the Porthos ISA
and MIPS-IV are summarized as follows:

[0073] 1. Memory Addressing and Register Size

[0074] The Porthos ISA contains 64-bit registers, and
utilizes 32-bit addresses with no TLB. There is no 32-bit
mode, thus all instructions that operate on registers operate
on all 64-bits. The functionality is the same as the well-
known MIPS R4000 in 64-bit mode. All memory is treated
as big-endian and there is no mode bit that controls endi-
anness. Since there is no TLB, there is no address transla-
tion, and there are no protection modes implemented. This
means that all code has access to all regions of memory. This
would be equivalent to a MIPS processor where all code was
running in kernel mode and the TLB mapped the entire
physical address space. The physical address space of
Porthos is 32-bits, so the upper 32 bits of a generated 64-bit
virtual address are ignored and no translation takes place.
There are no TLB-related CP0 registers and no TLB instruc-
tions.

[0075] 2. Omitted Instructions

[0076] In preferred embodiments there is no floating-point
unit in the Porthos chip, and therefore no floating-point
instructions. However the floating-point registers are imple-
mented. Four instructions that load, store, and move data
between the regular registers and the floating-point registers
(CP1 registers) are implemented (LDC1, SDC1, DMFCI,
DMTC1). No branches on CP 1 conditions are implemented.
Coprocessor 2 registers are also implemented along with
their associated load, store and move instructions (LDC2,
SDC2, DMFC2, DMTC2). The unaligned load and store
instructions are not implemented. The CACHE instruction is
not implemented.

[0077] 3. Synchronization support has been enhanced

[0078] The SC, SCD, LL and LLD instructions are imple-
mented. Additionally, there is an ADDM instruction that
atomically adds a value to a memory location and returns the
result. In addition there is a GATE instruction that stalls a
stream to preserve packet dependencies. This is described in
more detail in a following section on flow gating.

[0079] 4. Timers and Interrupts are changed

[0080] External events and timer interrupts are treated
such that new threads are launched. These global events are
not thread-specific and are thus not delivered to an active
thread. Thus, a thread has no way to enable or disable these
events itself, they are configured globally. This is explained
in detail in a section below on timers and interrupts.
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[0081] 5. New Set of CP0O Registers

Cp7 Sequence Number
CP21 Tribe/Stream Number
CP22 FlowID

CP23 Gate Vector

[0082] 6. Thread control instructions

DONE Terminates a thread
FORK Forks a new thread
NEXT Thread migration

[0083] 7. Special Purpose ALU Instructions

[0084] Support for string search, including multiple par-
allel byte comparison, has been provided for in new instruc-
tions. In addition there are bit field extract and insert
instructions. Finally, an optimized ones-complement add is
provided for TCP checksum acceleration.

[0085] 8. Memory Map

[0086] Porthos has eight ports 107 (FIG. 1) to external
memory devices. Each of these ports represents a distinct
region of the physical address space. All tribes can access all
memories, although there is a performance penalty for
accessing memory that is not local to the tribe in which the
instructions are executed. A diagram of the memory map is
shown in FIG. 2.

[0087] The region of configuration space is used to access
internal registers including packet buffer configuration,
DMA configuration and HyperTransport port configuration
space. More details of the breakdown of this space are
provided later in this document.

[0088] 9. Tribe Migration

[0089] A process in embodiments of the present invention
by which a thread executing on a stream in one tribe is
transferred to a stream in another tribe is called migration.
When migration happens, a variable amount of context
follows the thread. The CPU registers that are not transferred
are lost and initialized to zero in the new tribe. Migration
may occur out of order, but it is guaranteed to preserve
thread priority as defined by a SeqNum register. Note,
however, that a lower priority thread may migrate ahead of
a higher priority thread if it has a different destination tribe.

[0090] A thread migrating to the tribe that it is currently in
is treated as a NOP. A thread may change its priority by
writing to the SeqNum register.

[0091] The thread migration instruction: NEXT specifies a
register that contains the destination address and an imme-
diate that contains the amount of thread context to preserve.
All registers that are not preserved are zeroed in the desti-
nation context. If a thread migrates to the tribe it is already
in, the registers not preserved are cleared.

[0092] Flow Gating

[0093] Flow gating is a unique mechanism in embodi-
ments of the present invention wherein packet seniority is
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enforced by hardware through the use of a gate instruction
that is inserted into the packet processing workload. When
a gate instruction is encountered, the instruction execution
for that packet is stalled until all older packets of the same
flow have made progress past the same point. Software
manually advances a packet through a gate by updating a
GateVector register. Multiple gates may be specified for a
given packet workload and serialization occurs for each gate
individually.

[0094] Packets are given a sequence number by the packet
buffer controller when they are received and this sequence
number is maintained during the processing of the packet.

[0095] A configurable hardware pre-classifier is used to
combine specified bytes from the packet and generate a
FlowID number from the packet itself. The FlowID is
initialized by hardware based on the hardware hash function,
but may be modified by software. The configurable hash
function is also be used to select which tribe a packet is sent
to. Afterward, tribe to tribe migration is under software
control.

[0096] A new instruction is utilized in a preferred embodi-
ment of the invention that operates in conjunction with three
internal registers. In addition to the FlowID register and the
PacketSequence register discussed above, each thread con-
tains a GateVector register. Software may set and clear this
register arbitrarily, but it is initialized to O when a new thread
is created for a new packet. A new instruction, named GATE,
is implemented. The GATE instruction causes execution to
stall until there is no thread with the same FlowlID, a
PacketSequence number that is lower, and with a GateVector
in which any of the same bits are zero. This logic serializes
all packets within the same flow at that point such that
seniority is enforced.

[0097] Software is responsible for setting a bit in the
Gate Vector register when it leaves the critical section. This
will allow other packets to enter the critical section. The
GateVector register represents progress through the work-
load of a packet. Software is responsible for setting bits in
this register manually if a certain packet skips a certain gate,
to prevent younger packets from unnecessarily stalling. If
the GateVector is set to all 1s, this will disable flow gating
for that packet, since no younger packets will wait for that
packet. Note that forward progress is guaranteed since the
oldest packet in the processing system will never be stalled
and when it completes, another packet will be the oldest
packet.

[0098] In a preferred embodiment a seniority scheduling
policy is implemented such that older packets are always
given priority for execution resources within a processing
element. One characteristic of this strictly implemented
seniority scheduling policy is that if two packets are execut-
ing the exact same sequence of instructions, a younger
packet will never be able to overtake an older packet. In
certain cases, the characteristic of no overtaking may sim-
plify handling of packet dependencies in software. This is
because a no-overtaking processing element enforces a
pipelined implementation of packet workloads, so the oldest
packet is always guaranteed to be ahead of all younger
packets. However, a seniority based instruction scheduler
and seniority based cache replacement can only behave with
no overtaking if packets are executing the exact same
sequence of instructions. If conditional branches cause pack-
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ets to take different paths, a flow gate would be necessary.
Flow gating in conjunction with no-overtaking processing
elements allow a clean programming model to be presented
that is efficient to implement in hardware.

[0099] Event Handling

[0100] Events can be categorized into three groups: trig-
gers from external events, timer interrupts, and thread-to-
thread communication. In the first two groups, the events are
not specific to any specific physical thread. In the third
group, software can signal between two specific physical
threads.

[0101] Packet Buffer Overview

[0102] In this section the following nomenclature is used:
[0103] Port—Physically independent full-duplex
interface

[0104] Channel—Tag associated to each of the pack-
ets that arrive or leave through a port.

[0105] Interleaving degree—The maximum number
of different packets or frames that are in the process
of being received or transmitted out.

[0106] The packet buffer (103FIG. 1) is an on-chip 256 K
byte memory that holds packets while they are being pro-
cessed. The packet buffer is a flexible FIFO that keeps all
packet data in the order it was received. Thus, unless a
packet is discarded, or consumed by the chip (by transfer
into a local memory), the packet will be transmitted in the
order that it was received. The packet buffer architecture
allows for an efficient combination of pass-through and
re-assembly scenarios. In a pass-through scenario, packets
are not substantially changed; they are only marked, or
modified only slightly before being transmitted. The payload
of the packets remains substantially the same. Pass-through
scenarios occur in TCP-splicing, monitoring and traffic
management applications. In a re-assembly scenario, pack-
ets must be consumed by the chip and buffered into memory
where they are re-assembled. After re-assembly, processing
occurs on the reliable data stream and then re-transmission
may occur. Re-assembly scenarios occur in firewalls and
load balancing. Many applications call for a combination of
pass-through and re-assembly scenarios

[0107] The Packet Buffer module in preferred embodi-
ments interacts with software in the following ways:

[0108] Providing the initial values of some GPRs and
CPO registers at the time a thread is scheduled to start
executing its workload.

[0109] Satisfying the requests to the packet buffer
memory and the shared memory

[0110] Satisfying the requests to the configuration
registers, for instance

[0111] Hash function configuration
[0112] Packet table read requests

[0113] Packet status changes (packet to be
dropped, packet to be transmitted out)

[0114] Performance counters reads

[0115] Allocating space in the packet buffer for soft-
ware to construct packets.
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[0116] Frames of packets arrive to the Packet Buffer
through a configurable number of ingress ports and leave the
Packet Buffer through the same number of egress ports. The
maximum ingress/egress interleave degree depends on the
number and type of ports, but it does not exceed 4.

[0117] The ingress/egress ports can be configured in one
of the following six configurations (all of them full duplex):

[0118]
[0119]
[0120]
[0121]
[0122]
[0123]

1 channelized port

2 channelized ports

4 channelized ports

1 non-channelized port
2 non-channelized ports
4 non-channelized ports

[0124] The channelized port is intended to map into an
SPI4.2 interface, and the non-channelized port is intended to
map into a GMII interface. Moreover, for the 1-port and
2-port channelized cases, software can configure the egress
interleaving degree as follows:

[0125] 1 channelized port: egress interleave degree of
1, 2,3 or 4.

[0126] 2 channelized ports: egress interleave degree
of 1 or 2 per port.

[0127] Software is responsible to complete the processing
of the oldest packets that the Packet Buffer module keeps
track of in a timely manner, namely before:

[0128] 1. The subsequent newest packets fill up the
packet buffer so that no more packets can be fit into the
buffer. At 300 MHz core frequency, peak rate of ingress
data of 10 Gbps and a packet buffer size of 256 KB, this
will occur in approximately 200 microseconds; and

[0129] 2. There are 512 total packets in the system, from
the oldest to the newest, no matter whether packets in
between the oldest and the newest have been dropped
(or DMA out to external memory) by software. Other-
wise the Packet Buffer module will drop the incoming
frames.

[0130] If software does not complete the packets before
any of the previous two events occurs, the Packet Buffer
module will start dropping the incoming packets until both
conditions are no longer met. Note that in this mode of
dropping packet data, no flow control will occur on the
ingress path, i.e. the packet will be accepted at wire speed
but the packets will never be assigned to any tribe, nor its
data will be stored in the packet buffer. More details on
packet drops is provided below.

[0131] Packet Buffer Address Space

[0132] Two regions of the Porthos chip 32-bit physical
address space are controlled directly by the Packet Buffer
module. These are shown in FIG. 3:

[0133] the packet buffer memory: 256 KB of memory
where the packets are stored as they arrive. Software
is responsible to take them out of this memory if
needed (for example, in applications that need re-
assembly of the frames)
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[0134] the configuration register space: 16 KB (not
all used) that contains the following sections:

[0135] the configuration registers themselves: are
used to configure some functionality of the Packet
Buffer module.

[0136] the packet table: contains status informa-
tion for each of the packets being kept track of.

[0137] the get room space: used for software to
request consecutive chunks of space within the
packet buffer.

[0138] Accesses to the Packet Buffer Address Space

[0139] Software can perform any byte read/write, half-
word (2-byte) read/write, word (4-byte) read/write or double
word (8-byte) read/write to the packet buffer. Single quad-
word (16-byte) and octo-word (32-byte) read requests are
also allowed, but not the single quad-word and octo-word
writes. To write 2 or 4 consecutive (in space) double words,
software has to perform, respectively, 2 or 4 double-word
writes. The Packet Buffer will not guarantee that these
consecutive writes will occur back to back; however, no
other access from the same tribe will sneak in between the
writes (but accesses from other tribes can).

[0140] Even though the size of the packet buffer memory
is 256 KB, it actually occupies 512 KB in the logical address
space of the streams. This has been done in order to help
minimizing the memory fragmentation that occurs incoming
packets are stored into the packet buffer. This mapping is
performed by hardware; packets are always stored consecu-
tively into the 512 KB of space from the point of view of
software.

[0141] Software should only use the packet buffer to read
the packets that have been stored by the Packet Buffer
module, and to modify these packets. The requests from the
8 tribes are treated fairly; all the tribes have the same priority
in accessing the packet buffer.

[0142] Accesses to the Configuration Register Physical
Address Space

[0143] The configuration registers are logically organized
as double words. Only double word reads and writes are
allowed to the configuration register space. Therefore, if
software wants to modify a specific byte within a particular
configuration register, it needs to read that register first, do
the appropriate shifting and masking, and write the whole
double word back.

[0144] Writes to the reserved portion of the configuration
register space will be disregarded. Reads within this portion
will return a value of 0.

[0145] Some bits of the configuration registers are
reserved for future use. Writes to these bits will be disre-
garded. Reads of these bits will return a value of 0.

[0146] Unless otherwise noted, the configuration registers
can be both read and written. Writes to the packet table and
to the read-only configuration registers will be disregarded.

[0147] Software should change the contents of the con-
figuration registers when the Packet Buffer is in quiescent
mode, as explained below, and there are no packets in the
system, otherwise results will be undefined. Software can
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monitor the contents of the ‘packet_table_packets’ configu-
ration register to figure out whether the Packet Buffer is still
keeping packets or not.

[0148] Configuration Register List

[0149] All the configuration registers have an after-reset
value of 0x0 unless otherwise specified. FIGS. 4a-4d com-
prise a table listing all of the configuration registers. The
following sections provide more details on some of the
configuration registers.

[0150] Hashing Function

[0151] FIG. 5 illustrates the hash function hardware struc-
tured into two levels, each containing one (first level) or four
(second level) hashing engines. The result of the hashing
engine of the first level is two-fold:

[0152] a 16-bit value, named the flow identifier (or
flowld for short). This value will be provided to the
tribe as part of the initial migration of the packet.
Software may use this value, for example, as an
initial classification of the packet into a flow.

[0153] a 2-bit value, that is used by the hardware to
select the result of one of the 4 hashing functions that
compose the second level of the hashing hardware.

[0154] Each of the four hashing functions in the second
level generates a 3-bit value that corresponds to a tribe
number. One of these four results is selected by the first
level, and becomes the number of the tribe that the packet is
going to initially migrate into.

[0155] All four hashing engines in the second level are
identical, and the single engine in the first level is almost
also the same as the ones in the second level. Each hashing
engine can be configured independently. The following is
the configuration features that are common to all the hashing
engines:

[0156] select vector [0 . . . 1. .. 63] configuration
register: each bit of this vector determines whether
byte i of the packet will be selected to compute the
result of the hashing engine (1) or not (0).

[0157] position vector [0 . . .1 ... 63] configuration
register: the 16-bit result of the hashing engine is
computed using two 8-bit XOR functional units, one
for the upper 8-bits and one for the lower 8-bits. In
the case that byte i was selected by the select vector,
bit i in the position vector determines whether the
byte will be used to compute the lower 8 bits of the
16-bit flowld result (0) or the upper 8 bits (1). If the
byte was not selected in the select vector, the corre-
sponding bit in the position vector is a don’t care.

[0158] For the first level hashing engine, there exists a skip
configuration register that specifies how many LSB bits of
the 16-bit result will be skipped to determine the chosen
second level hashing engine. If the skip value is, for
instance, two, then the second level hashing engine will be
chosen using bits [2 . . . 3] of the 16-bit result. Note that the
skip configuration register is only used to select the second
level hashing function and it does not modify the 16-bit
result that becomes the flowld value.

[0159] For each of the second level hashing engines there
also exists a skip configuration register performing the same
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manipulation of the result as in the first level. After this
shifting of the result, another manipulation is performed
using two other configuration registers; the purpose of this
manipulation is to generate a tribe number out of a set of
possible tribe numbers. This total number of tribes in this set
is a power of 2 (i.e. 1, 2, 4 or 8), and the set can start at any
tribe number. Example of sets are [0,1,2,3], [1,2,3,4], [2,3],
[7],[0,1,2,3,4,5,6,7], [4,5,6,7], [6,7,0,1], [ 7,0,1,2], etc. This
manipulation is controlled by two additional configuration
registers, one per each of the second-level hashing engines:

[0160] first: 3-bit value that specifies which is the first
tribe of the set (0: tribe 0, . . . 7: tribe 7)

[0161] total: 2-bit vector that specifies how many
consecutive tribes the set has (0:1 tribe, 1:2 tribes,
2:4 tribes, 3:8 tribes)

[0162] The maximum depth that the hashing hardware will
look into the packet is 64 bytes from the start of the packet.
If the packet is smaller than 64 bytes and more bytes are
selected by the select vectors, results will be undefined.

[0163] Software should be careful in configuring the hash-
ing function hardware since only non-variant bytes across all
the packets of the same flow should be selected to perform
the hashing computation; otherwise, different flow identifi-
ers for the packets of the same flow might be generated.

[0164] Quiescent Mode

[0165] The Packet Buffer module is considered to be in
quiescent mode whenever it is not receiving (and accepting)
any packet and software has written a 0 in the ‘continue’
configuration register. Note that the Packet Buffer can be in
quiescent mode and still have valid packets in the packet
table and packet buffer. Also note that all the transmission-
related operations will be performed normally; however any
incoming packet will be dropped since the ‘continue’ con-
figuration register is zero.

[0166] When the contents of the ‘continue’ configuration
register toggles from 0 to 1, the Packet Buffer module will
perform the following operation:

[0167] any new incoming packet that starts arriving
after the setting of the ‘continue’ configuration reg-
ister takes place physically will be accepted (it may
be eventually dropped for other reasons as explaied
below).

[0168] When the toggling is from 1 to 0, the following
operation takes place:

[0169] any packet that was currently being received
when the clearing of the ‘continue’ configuration
register occurs will be fully received.

0170] any new incoming packet that starts arrivin
y gp g
after the setting of the configuration register takes
place will be fully dropped.

[0171] Software should put the Packet Buffer module in
quiescent mode whenever it wants to modify configurable
features (note that the Packet Buffer comes out of reset in
quiescent mode). The following are the steps software
should follow:

[0172] 1. Write a O into the ‘continue’ configuration
register.
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[0173] 2. Monitor the ‘status’ register until bit 1 is set.
When this occurs, the quiescent state has been entered.

[0174] 3. Configure the desired feature

[0175] 4. Write a 1 into the ‘continue’ configuration
register to allow new incoming packets to be accepted.

[0176] If the above steps are followed, there will be no
packets being received when the O to 1 transition happens on
the ‘continue’ configuration register. This is not true if
software does not wait for quiescent mode before setting the
‘continue’ configuration register; in this case, the Packet
Buffer may keep receiving the packet it was receiving when
the 1 to O transition took place.

[0177] Performance Counters

[0178] There are a total of 128 performance events in the
Packet Buffer module (63 defined, 65 reserved) that can be
monitored by software. Out of these events, a total of 8 can
be monitored at the same time. a 48-bit counter is assigned
to one particular event and increments the value of the
counter by the proper quantity each time the event occurs.
Events are tracked by hardware every cycle.

[0179] Software can configure which event to monitor in
each of the 8 counters. The contents of the counters are made
visible to software through a separate set of configuration
registers.

[0180] FIG. 6 is a table showing the performance events
that can be monitored.

[0181]

[0182] Software can probe the internal state of the Packet
Buffer module using the ‘internal_state_number’ configura-
tion register. When software reads this configuration regis-
ter, the contents of some internal state are provided. The
internal state that is provided to software is yet TBD. It is
organized in 64-bit words, named internal state words.
Software writes an internal state word into the ‘internal-
_state_number’ configuration register previously to reading
the same configuration register to get the contents of the
state. This feature is intended only for low level debugging.

Internal State Probes

[0183] Egress Channel Determination

[0184] When software writes into the ‘done’ or ‘egress-
_path_determined’ configuration register it provides, among
other information, the egress channel associated to the
transmission. This channel ranges from 0 to 255, and soft-
ware actually provides a 9-bit quantity, named the encoded
egress channel, that will be used to compute the actual
egress channel. FIG. 7 is a table that specifies how the actual
egress channel is computed from the encoded egress chan-
nel.

[0185] The egress channel information is only needed in
the case of channelized ports. Otherwise, this field is tretaed
as a don’t care.

[0186] Egress Port Determination

[0187] When software writes into the ‘done’ or ‘egress-
_path_determined’, it provides, along with other informa-
tion, the egress port associated to the transmission. This port
number ranges from 0 to 3 (depending on how the Packet
Buffer module has been configured), and software actually
provides a 5-bit quantity, named the encoded egress port,
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that will be used to compute the actual egress port. FIG. 8
is a table that shows how the actual egress port is computed
from the encoded egress port.

[0188] Completing and Dropping Packets

[0189] Software eventually has to decide what to do with
a packet that sits in the packet buffer, and it has two options:

[0190] Complete the packet: the packet will be trans-
mitted out whenever the packet becomes the oldest
packet in the packet buffer.

[0191] Drop the packet: the packet will be eventually
removed from the packet buffer.

[0192] In both cases, the memory that the packet occupies
in the packet buffer and the entry in the packet table will be
made available to other incoming packets as soon as the
packet is fully transmitted out or dropped. Also, in both
cases, the Packet Buffer module does not guarantee that the
packet will be either transmitted or dropped right away.
Moreover, there is also no upper limit on the time the packet
might sit in the packet buffer before it gets transmitted out
or dropped. An example of a large period of time between
software requests a packet to be transmitted and the actual
start of the transmission occurs in an egress-interleave of 1
case when software completes a packet that is not the oldest
one, and the oldest packet is not completed nor dropped for
a long time.

[0193] Software completes and drops packets by writing
into the ‘done’ and ‘drop’ configuration registers, respec-
tively. The information provided in both cases is the
sequence number of the packet. For the completing of
packets, the following information is also provided:

[0194] Header growth offset: an 10-bit value that
specifies how many bytes the start of the packet has
either grown (positive value) or shrunk (negative
value) with respect the original packet. The value is
encoded in 2’s complement. If software does not
move the start of the packet, this value should be 0.

[0195] Encoded egress channel.
[0196] Encoded egress port.

[0197] The head of a packet is allowed to grow up to 511
bytes and shrink up to the minimum of the original packet
size and 512).

[0198] Software should either complete or drop the
packet. Results will be undefined if multiple completions/
drops occur for the same packet. Moreover, there is no
guarantee that the packet data stored in the packet buffer will
be coherent after software has completed or drop the packet.

[0199] Egress Path Determination

[0200] The egress path information (egress port and, in
case of channelized port, the egress channel) is mandatory
and needs to be provided when software notifies that the
processing of a particular packet has been completed. How-
ever, software can at any time communicate the egress path
information of a packet, even if the processing of the packet
still has not been completed. Software does this by writing
into the ‘egress_path_determination’ configuration register
the sequence number of the packet, the egress port and, if
needed, the egress channel.
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[0201] Of course, the packet will not be transmitted out
until software writes into the ‘done’ command, but the early
knowledge of the egress path allows the optimization of the
scheduling of packets to be transmitted out in the following
cases:

0202 1-port channelized with egress interleave of 2,
1% g
3 or 4.

[0203] 2-port with egress interleave of 1 or 2
[0204] 4-port with egress interleave of 1

[0205] Note that even if software notified the egress path
information through the ‘eagress_path_determination’ con-
figuration register, it needs to provide it again when notify-
ing the completion of the processing through the ‘done’
configuration register.

[0206] GetRoom Command

[0207] Software can transmit a packet that it has generated
through a GetRoom mechanism. This mechanism works as
follows:

[0208] Software requests some space to be set aside
in the packet buffer. This is done through a regular
read to the GetRoom space of the configuration
space. The address of the load is computed by adding
the requested size in bytes to the base of the Get-
Room configuration space.

[0209] ThePacket Buffer module will reply to the
load:

[0210] Unsuccessfully: it will return a ‘1’ in the
MSB bit and ‘0’ in the rest of the bits

[0211] Successfully: it will return in the 32 L.SB
bits the physical address of the start of the space
that has been allocated, and in bits [47.32] the
corresponding sequence number associated to that
space.

[0212] Software, upon the successful GetRoom com-
mand, will construct the packet into the requested
space.

[0213] When the packet is fully constructed, software
will complete it though the packet complete mecha-
nism explained before.

[0214] Note that for software-created packets, it is
expected the delta to be always O when the packet is
completed since the header growth offset is not taken into
account when the size is allocated.

[0215] Configuring the Number and Type of Ports

[0216] Software can configure the number of ports,
whether they are channelized or not, and the degree of
interleaving. All the ports will have the same channelization
and interleaving degree properties (ie it can no happen that
one port is channelized and another port not).

[0217] A port is full duplex, thus there is the same number
of ingress and egress ports. FIG. 9 shows six different
configurations in terms of number of ports and type of port
(channelized/non-channelized). For each configuration, it is
shown the interleaving degree allowed per port (which can
also be configured if more than an option exists). The
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channelization and interleaving degree properties applies to
both the ingress and egress paths of the port.

[0218] Software determines the number of ports by writ-
ing into the ‘total_ports’ configuration register, and the type
of ports by writing into the ‘port_type’ configuration regis-
ter.

[0219] For the 1-port and 2-port channelized cases, soft-
ware can configure the degree of egress interleaving. The
ingress interleaving degree can not be configured since it is
determined by the sender of the packets, but in any case it
can not exceed 4 in the 1-port channelized case and 2 in the
2-port channelized case; for the other cases, it has to be 1
(the Packet Buffer module will silently drop any packet that
violates the maximum ingress interleaving degree restric-
tion).

[0220] The egress interleaving degree is configured
through the ‘islot_enabled’ and ‘islot_channel 0 . . . 3’
configuration registers. An “islot” stands for interleaving
slot, and is associated to one packet being transmitted out,
across all the ports. Thus, the maximum number of islots at
any time is 4 (for the 1-port channelized case, all 4 islots are
used when the egress port is configured to support an
interleaving degree of 4; for the 1-port case, up to 4 packets
can be simultaneously being transmitted out—one per
port—). Note that the number of enabled islots should
coincide with the number of ports times the egress inter-
leaving degree.

[0221] Notification about how many ports there are is
made through the ‘total_ports’ configuration register. It will
also be notified about the type of the ports (all have to be of
the same type) through the ‘port_type’ configuration regis-
ter.

[0222] For channelized (ie SPI4.2) ports, software will
configure a range of channel numbers that will be transmit-
ted in each of the 4 outbound “interleaving slots” (“islot” for
short). This configuration is performed through the
‘islot_channels 0°, ..., ‘islot_channels_3’. For example, if
there is one single SPI4.2 port and

[0223] islot_channels_0: 0-63

[0224] islot_channels 1: 64-127
[0225] islot_channels 2: 128-191
[0226] islot_channels 3: 192-255

[0227] then the output packet data may have, for example,
channels 0, 54, 128 and 192 interleaved (or channels 0, 65,
190, 200, etc.) but it will never have channels 0 and 1
interleaved.

[0228] For the 2-port SPI4.2 scenario, islot0 and islotl are
assigned to port 0, and islot2 and islot3 are assigned to port
1. Thus, the maximum interleaving degree per port is 2. With
the same channel range example above, port 0 will never see
channels 128-255, and it will never see channels 70 and 80
interleaved. The following configuration is a valid one that
covers all the channels in each egress port:

[0229] islot0_channels: 0-127
[0230] islotl_channels: 128-255
[0231] islot2_channels: 0-127
[0232] islot3_channels: 128-255
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[0233] Note that if software fails to cover a particular
channel with an islot assigned to the channel and packets
with that particular channel have to be transmitted to that
port, results will be undefined.

[0234] Software can also disable the islots to force no
interleaving on the SPI4.2 ports. This is done through the
‘islot_enable’ configuration register. For example, in the
1-port SPI4.2 case, if ‘islot_enable’ is 0x4 (islot2 enabled
and the rest disabled), then an interleaving of just 1 will
happen on the egress port, and for the range of channels
specified in the ‘islot2_channels’ configuration register.

[0235] For the 4-port GMII case, the channel-range asso-
ciated to each of the islots is meaningless since a GMII port
is not channelized. An interleaving degree of 1 will always
occur at each egress port.

[0236] Software can complete all packets in any order,
even those that will change its ingress port or channel. There
is no need for software to do anything special when com-
pleting a packet with a change of its ingress port or channel,
other than notifying the new egress path information through
the ‘done’ configuration register.

[0237]

[0238] When packets have been fully received by the
Packet Buffer module and they have been fully stored into
the packet buffer memory, the first migration of those
packets into one of the tribes will be initiated. The migration
process consists of a request of a migration to a tribe, waiting
for the tribe to accept the migration, and providing some
control information of the packet to the tribe. This informa-
tion will be stored by the tribe in some software visible
registers of one of the available streams.

Initial Migration

[0239] The Packet Buffer module assigns to each packet a
flow identification number and a tribe number using the
configurable hashing hardware, as described above. The
packets will be migrated to the corresponding initial tribes in
exactly the same order of arrival. This order of arrival is
across all ingress ports and, if applicable, all channels. If a
packet has to be migrated to a tribe that has all its streams
active, the tribe will not accept the migration. The Packet
Buffer module will keep requesting the migration until the
tribe accepts it.

[0240] After the migration has taken place, the following
registers are initialized in one of the streams of the tribe:

[0241] PC: initialized with the value in the corre-
sponding 32-bit program_counter configuration reg-
ister. Note that all the streams within a tribe that are
activated due to an initial migration will start execut-
ing code at the same initial program counter.

[0242] CP0.22: the flow identification number, a 16-bit
value obtained by the hashing hardware.

[0243] CPO0.7: the sequence number, a 16-bit value that
contains the order of arrival of the packet. If a packet A fully
arrived right after a packet B, the sequence number of A will
be the sequence number of B plus 1 (assuming no other
packet from other port completed nor a GetRoom command
successfully happened in between). The sequence number
wraps around at OxFFFE.

[0244] GPR.30: the ingress port (bits 9-10) and channel of
the packet (bits 0-7).
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[0245] GPR.31: the 32-bit logical address where the
packet resides. This address points to the first byte of the
packet. If the NET module left space at the front of the
packet (specified by the header_growth_offset configuration
register), this address still points to the first byte that arrived
of the packet, not to the first byte of the added space.

[0246] Hardware-Initiated Packet Drops
[0247] There are two types of packet drops:

[0248] Software-initiated drops: software explicitly
requests a particular packet to be dropped.

[0249] Hardware-initiated drops: a packet is dropped
because there is no space to store the packet or its
control information.

[0250] Furthermore, the cause of a hardware-initiated drop
could be one of the following:

[0251] The packet buffer is full. If the occupancy of
the packet buffer when a new packet starts arriving
is such that it cannot be guaranteed that a maximum-
size packet could be fit in, the hardware will drop
that incoming packet.

[0252] The packet table is full. If the table that is used
to store the packet descriptors (control information)
of the packets is full when a new packet starts
arriving, the hardware will drop that incoming
packet. The packet table is considered to be full
when there are less than 4 entries available in the
packet table upon a packet arrival.

[0253] The ‘continue’ configuration register is 0. The
Packet Buffer module comes out of reset with a 0 in
the ‘continue’ configuration register. Until software
writes a 1 in there, any incoming packet will be
dropped.

[0254] Interleaving degree violation. If an ingress
port violates the maximum degree of packet inter-
leaving that the NET supports.

[0255] The size of the packet being received exceeds
the maximum allowed packet size. The maximum
packet size that can be accepted is 65536 bytes.
Software can override this maximum size to a lower
value, from 1 KB to 64 KB, always in increments of
1K (see configuration register. ‘max_packet_size’)".
If an incoming packet is detected that it may be over
the maximum packet size allowed when the next
valid data of the packet arrives, the packet is forced
to finish right away and the rest of the data that
eventually will come from that packet will be
dropped by the hardware. Therefore, a packet that
exceeds the maximum allowed packet size will be
seen by software as a valid packet of a size that
varies between the maximum allowed size and the
maximum allowed size minus 7 (since up to 8 valid
bytes of packet data can arrive every cycle).

[0256] The ingress port notifies that the packet cur-
rently being received has an error. This notification
can occur at any time during the reception of the
packet.

[0257] Note that entire packets are dropped. When a
packet is dropped by hardware, there is no interrupt gener-
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ated. Software can check at any given time the total number
of packets that have been dropped due to each of the
hardware-initiated causes by monitoring specific perfor-
mance events.

[0258] Porthos Instruction Set

[0259] The Porthos instruction set in a preferred embodi-
ment of the present invention is as follows:

ALU
Arithmetic
ADD, ADDU, SUB, SUBU, ADDI, ADDIU,
SLT, SLTU, SLTI, SLTIU
DADD, DADDU, DSUB, DSUBU, DADDI, DADDIU,
Logical
AND, OR, XOR, NOR, ANDI, ORI, XORI, NORI
Shift
SLL, SRL, SRA, SLLV, SRLV, SRAV,
DSLL, DSRL, DSRA, DSLLYV, DSRLV, DSRAV, DSLL32, DSRL32
Multiply/Divide
MULT, MULTU, DIV, DIVU,
DMULT, DMULTU, DDIV, DDIVU
Memory
Load
LB, LH, LHU, LW, IWU, LD
Store
SB, SH, SW, SD
Synchronization
LL, LLD, SC, SCD
SYNC
ADDM
Control
Branch
BEQ, BNE, BLEZ, BGTZ, BLTZ, BGEZ, BITZAL, BGEZAL
Jump
J, JR, JAL, JALR
Trap
TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEIU, TLTI, TLTIU, TEQI, TNEI
Miscellaneous
SYSCALL, BREAK, ERET, NEXT, DONE, GATE, FORK
Miscellaneous
MFHI, MTHI, MFLO, MTLO,
MTC0, MFCO

[0260] CPO Registers

[0261] The CPO registers in a preferred embodiment of the
invention are as follows:

[0262] Config

[0263] TribeNum, StreamNum (CP0 Register 21)
[0264] Status

[0265] EPC

[0266] Cause

[0267] FlowID (CPO Register 22)

[0268]
[0269]

GateVector (CPO Register 23)
SeqNum (CPO Register 7)
Microarchitecture Description of the Global Block
of the Porthos Chip
[0270] Overview of the Global Block

[0271] Referring again the FIG. 1, a Global Unit 108
provides a number of functions, which include hosting
functions and global memory functions. Further, intercon-
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nections of global unit 108 with other portions of the Porthos
chip are not all indicated in FIG. 1, to keep the figure
relatively clear and simple. Global block 108, however, is
bus-connected to Network Unit and Packet Buffer 103, and
also to each one of the memory units 105.

[0272] The global (or “GBL”) block 106 of the Porthos
chip is responsible for the following functions:

[0273] Implements a memory controller for external
EPROM

[0274]

[0275] Provides input and output paths for the gen-
eral purpose I/Os

[0276] Satisfies external JTAG commands

[0277] Generates interrupts as a result of HT, GPIO
or JTAG activity

[0278] Interfaces with the network block to satisfy
HyperTransport requests to packet buffer memory

Interfaces with two HyperTransport IP blocks

[0279] Provides a path for memory interconnection
among the different local memories of the tribes

[0280] Nomenclature for Global Block processes:

[0281] Request: an access from a source to a desti-
nation to obtain a particular address (read request) or
to modify a particular address (write request)

[0282] Response: a petition from a source to a des-
tination to provide the requested data (in case of a
read request) or to acknowledge that the request has
been fulfilled (in case of a write request)

[0283] Transaction: composed of the request initiated
by the source A to destination B and the correspond-
ing response initiated by the source B to the desti-
nation A. Note that a transaction is always composed
of a request and a response; if the request is for a
write, the response will provide just an acknowledge
that the write has been fulfilled.

[0284] FIG. 10 is a top-level module diagram of the GBL
block 108.

[0285] The GBL is composed of the following modules:

[0286] Local memory queues 1001 (LMQ): there is
one LMQ per each local memory block. The LMQ
contains the logic to receive transactions from the
attached local memory to another local memory, and
the logic to send transactions from a local memory to
the attached local memory.

[0287] Routing block 1002 (RTN): routes requests
from the different sources to the different destina-
tions.

[0288] EPROM controller 1003 (EPC): contains the
logic to interface with the external EPROM and the
RTN

[0289] HyperTransport controller 1004 (HTC): there
is one HTC per HyperTransport IP block.

[0290] General purpose I/O controller 1005 (IOC):
contains the logic to receive activity from the GPIO
input pins and to drive the GPIO output pins.
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[0291] JTAG controller 1006 (JTC): contains the
logic to convert JTAG commands to the correspond-
ing requests to the different local memories.

[0292] Interrupt handler 1007 (INT): generates inter-
rupts to the tribes as a result of HT, JTAG or GPIO
activity

[0293] Network controller 1008 (NTC): logic that
interfaces to the network block to satisfy HT com-
mands that affect the packet buffer memory without
software intervention.

[0294] TLocal Memory Queues block 1001 (LMQ)

[0295] Block 1001 contains the logic to receive transac-
tions from the attached local memory to another local
memory, and the logic to send transactions from a local
memory to the attached local memory. FIG. 11 is an
expanded view showing internal components of block 1001.

[0296] Description of LMO 1001:

[0297] IMAQ block 1001 receives requests and responses
from the local memory block. A request/response contains
the following fields (the number in parentheses is the width
in bits):

[0298] wvalid (1): asserted when the local memory
block sends a request or response. If de-asserted, the
rest of the fields are “don’t care”.

[0299] data (64): the data associated to a write
request or a read response; otherwise (read request or
write response) is “don’t care”.

[0300] stream (5): in case of a request, this field
contains the number of the stream within the tribe
that performs the request to the local memory. In
case of a response, this field contains the same value
received on the corresponding request.

[0301] regdest (5): in case of a read request, this field
contains the register number where the requested
data will be stored. In case of a response, this field
contains the same value received on the correspond-
ing request.

[0302] type (3): specifies the type of the request
(signed read, unsigned read, write) or response
(signed read, unsigned read, write).

[0303] address (32): in case of a request, this field
contains the physical address associated to the read
or write. In case of a response, contains the same
value received on the corresponding request.

[0304] IMQ block 1001 looks at the type field to figure
out into which of the input queues the access from the local
memory will be inserted into.

[0305] The LMQ block will independently notify to the
local memory when it can not accept more requests or
responses. The LMQ block guarantees that it can accept one

more request/response when it asserts the request/response
full signal.

[0306] The LMQ block sends requests and responses to
the local memory block. A request/response contains the
same fields as the request/response received from the local
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memory block. However the address bus is shorter (23 bits)
since the address space of each of the local memories is 8
MB.

[0307] The requests are sent to the local memory in the
same order are received from the RTN block. Similarly for
the responses. When there is an available request and an
available response to be sent to the local memory, the LMQ
will give priority to the response. Thus, newer responses can
be sent before than older requests.

[0308] Routing Block 1002 (RTN)

[0309] This block contains the paths and logic to route
requests from the different sources to the different destina-
tions. FIG. 12 shows this block (interacting only to the LMQ
blocks).

[0310] Description

[0311] The RTN block 1002 contains two independent
routing structures, one that takes care of routing requests
from a LMQ block to a different one, and another one that
routes responses from a LMQ block to a different one. The
two routing blocks are independent and do not communi-
cate. The RTN can thus route a request and a response
originating from the same LMQ in the same cycle.

[0312] The result of routing of a request/response from a
LMQ to the same LMQ is undefined.

[0313] Microarchitecture Description of the Network
Block 103 of the Porthos Chip

[0314] Overview

[0315] The network (or “NET”) block 103 (FIG. 1) of the
Porthos chip is responsible for the following functions:

[0316] Receiving the packets from 1, 2 or 4 ports and
storing them into the packet buffer memory.

[0317] Notifying one of the tribes that a new packet
has arrived, and providing information about the
packet to the tribe.

[0318] Satisfying the read and write requests to the
packet buffer memory performed by the different
tribes and the global block.

[0319] Keeping track of the status of a packet.

0320] Monitoring the oldest packet to each of the
g p
egress ports and sending it out to the corresponding
port if it has already been processed

[0321] Providing a DMA mechanism to the tribes to
transfer data out of the packet buffer memory and
into the external global memory.

[0322] The NET block will always consume the data that
the ingress ports provide at wire speed (up to 10 Gbps of
aggregated ingress bandwidth), and will provide the pro-
cessed packets to the corresponding egress ports at the same
wire speed. The NET block will not perform flow control on
the ingress path.

[0323] The data will be dropped by the NET block if the
packet buffer memory can not fit in any more packets, or the
total number of packets that the network block keeps track
of reaches its maximum of 512, or there is a violation by the
SPI4 port on the maximum number of interleaving packets
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that it sends, or there is a violation on the maximum packet
size allowed, or software requests incoming packets to be
dropped.

[0324] Newly arrived packets will be presented to the
tribes at a rate no lower than a packet every 5 clock cycles.
This provides the requirement of assigning a 40-byte packet
to one of the tribes (assuming that there are available streams
in the target tribe) at wire speed. The core clock frequency
of the NET block is 300 MHz.

[0325] Frames of packets arrive to the NET through a
configurable number of ingress ports and leave the NET
through the same number of egress ports. The maximum
ingress/egress interleave degree depends on the number and
type of ports, but it does not exceed 4.

[0326] The ingress/egress ports can be configured in one
of the following six configurations (all of them full duplex):

[0327]
[0328]
[0329]
[0330]
[0331]
[0332]

1 channelized port

2 channelized ports

4 channelized ports

1 non-channelized port
2 non-channelized ports
4 non-channelized ports

[0333] The channelized port is intended to map into an
SPI4.2 interface, and the non-channelized port is intended to
map into a GMII interface. Moreover, for the 1-port and
2-port channelized cases, software can configure the egress
interleaving degree as follows:

[0334] 1 channelized port: egress interleave degree of
1, 2,3 or 4.

[0335] 2 channelized ports: egress interleave degree
of 1 or 2 per port.

[0336] The requirement of the DMA engine is to provide
enough bandwidth to DMA the packets out of the packet
buffer to the external memory (through the global block) at
wire speed.

[0337] Block Diagram

[0338] FIG. 14 shows the block diagram of the NET block
103. The NET block is divided into 5 sub-blocks, namely:

[0339] PortInterface (PIF): responsible for receiving
the packets on the different ingress ports (1,2 or 4)
and deciding to which of the 4 ingress interleaving
slots the data of the packet belongs to, and respon-
sible for interfacing with the egress ports also on the
egress path.

[0340] PacketLoader (PLD): responsible for:

[0341] Applying a hash function to the packet
being received for the purpose of flow identifica-
tion and for deciding to which tribe the packet will
be eventually assigned to

[0342] Deciding where to store the packet into the
packet buffer, and performing all the necessary
writes
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[0343] Allocating an entry in the packet table with
the control information of the newly arrived
packet

[0344] Providing the information of newly arrived
packets, in the order of arrival across all ingress
ports, to the different tribes for processing

[0345] Maintaining the status of each of the pack-
ets in the packet table, in particular, whether the
packets have been completely processed by the
tribes or not yet.

[0346] Monitoring the oldest packet in the packet
table to decide what to do with it (skip it if the
packet is not valid—ie software has explicitly
requested to the NET block to drop the packet—;
transmit it out to the corresponding egress port if
the packet has been completed; or nothing if the
packet is still active), and do this for each of the
egress interleaving slots.

[0347] PacketBufferController (PBC): its function is
to provide some buffering for the requests of each of
the sources of accesses to the packet buffer memory,
and perform the scheduling of these requests to the
different banks of the packet buffer memory. The
different sources are: the network ingress path, the
network egress path, the DMA engine (TBD), the
global block and the 8 tribes. The scheduler imple-
ments a fixed priority scheme in the order listed
before (ingress path having the highest priority). The
8 tribes are treated fairly among them.

[0348] PacketBufferMemory (PBM): it contains the
packet buffer memory, divided into 8 interleaved
banks. Performs the different accesses that the PBC
has scheduled to each of the banks, and routes the
result to the proper source. This block also performs
the configuration register reads and writes, thus
interacting with the different sub-blocks to access the
corresponding configuration register.

[0349] The following sections provide detailed informa-
tion about each of the blocks in the Network block. The main
datapath busses are shown in bold and they are 64-bit wide.
Moreover, all busses are unidirectional. Unless otherwise
noted, all the signals are point-to-point and asserted high.

[0350] All outputs of the different sub-blocks (PIF, PLD,
PBM and PBC) are registered.

[0351] Portlnterface block 1401 (PIF)

DETAILED DESCRIPTION

[0352] The PIF block has two top-level functions: ingress
function and egress function. FIG. 15 shows its block
diagram.

[0353]

[0354] The ingress function interfaces with the SPI4.2/
GMII ingress port, with the PacketLoader (PLD) and with
the PacketBufferMemory (PBM).

Ingress Function

13
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[0355] SPI4.2/GMII port

[0356] From a SPI4.2/GMII port, it receives the following
information:

[0357] Valid (1): if asserted, validates the rest of the
inputs. It specifies that SPI4 is sending valid data in
the current cycle.

[0358] Data (64): contains the 64 bits of packet data
provided by the SPI4. This 64-bit vector is logically
divided into 8 bytes.

[0359] End_of packet (1): if asserted, it specifies that
valid data is the last data of the packet.

[0360] Last_byte (3): pointer to the last valid MSB byte in
‘data’. If all 8 bytes are valid, ‘last_byte’ is 7; if only 1 byte
is valid, ‘last_byte’is 0. If 1 or more bytes are valid, they are
right aligned (first valid byte is byte0, then bytel, etc.). It can
not occur that, for example, byte 0 and 2 are valid, but not
byte 1. In other words, if the data is not the end of the packet,
then ‘last_byte’ should be 3; if the data is the end of the
packet, then ‘last_byte’ can take any value.

[0361] Channel (8): the channel associated to the
packet data received. The SPI4 protocol allows up to
256 channels. This field is a don’t care in case of a
GMII port.

[0362] Every cycle, a port may send data (of a single
packet only). But packets can arrive interleaved (in cycle X,
packet data from a packet can arrive, and in cycle x+1 data
from a different—or same—packet may arrive). The ingress
function will know to which of the packets being received
the data belongs to by looking at the channel number. Note
that packets can not arrive interleaved in a GMII port.

[0363] In a SPI4.2 port, up to 256 packets (matching the
number of channels) can be interleaved. However, the
Porthos chip will only handle up to 4. Therefore, any packet
interleaving violation will be detected and the corresponding
packet data will be dropped by the ingress function.

[0364] The ingress function monitors the packets and the
total packet data dropped due to the interleaving violation.

[0365] The number of total ports is configurable by soft-
ware. There can be 1, 2 or 4 ingress ports. In case of a single
SPI4.2 port, the maximum interleaving degree is 4. In case
of 2 SPI4.2 ports, the maximum interleaving degree is 2 per
port. In the case of 4 ports, no interleaving is allowed in each
port.

[0366] For SPI4.2 ports, when valid data of a packet
arrives, the ingress function performs an associative search
into a 4-entry table (the channel_slot table). Each entry of
these table (called slot), corresponds to one of the packets
that is being received. Each entry contains two fields: active
(1) and channel (8). If the associative search finds that the
channel of the incoming packet matches the channel value
stored in one of the active entries of the table, then the packet
data corresponds to a packet that is being received. If the
associative search does not find the channel in the table, then
two situations may occur:

[0367] There is at least one non-active entry in the
portion of the table associated to the ingress port: in
this case, the valid data received is the start of a new
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packet. The entry is marked as active and the incom-
ing channel is stored into that entry.

[0368] All the entries in the portion of the table
associated to the ingress port are active. This implies
a protocol violation and the packet data will be
dropped. The hardware sets a Xth bit in a 256-bit
array (where X is the incoming channel number)
called violating_channels.

[0369] For the 1-SPI4 port, all the 4 entries of the table are
available for the port; for the 2-SPI4 port, the first 2 entries
are allocated for port 0, and the second two entries for port
1, thus forcing a maximum ingress interleaving degree of 2
per port.

[0370] The incoming channel associated to every valid
data is looked up in the violating_channels array to figure
out whether the packet data needs to be dropped (ie whether
the valid data corresponds to a packet that, when it first
arrived, violated the interleave restriction). If the corre-
sponding bit in the violating_channels is 0, then the channel
is looked up in the channel_slot table, otherwise the packet
data is dropped. If the packet data happens to be the last data
of the packet, the corresponding bit in the violating_chan-
nels array is cleared.

[0371] There is no flow control between the SPI4 ingress
port and the ingress function.

[0372] PLD interface:

[0373] If the packet data is not dropped, it is inserted into
a 2-entry FIFO. Each entry of this FIFO contains the
information that came from the SPI4 ingress port: data (64),
end_of packet (1), last_byte (3), channel (8), and informa-
tion generated by the ingress function: slot (2), start_of-
_packet (1).

[0374] Only valid packet data of packets that comply with
interleave restriction will be stored into the FIFO. If the
FIFO is not empty, the contents of the head entry of the FIFO
are provided to the PLD and the head entry is removed.

[0375] Alogic exists that will monitor the head of each of
the 4 fifos and will send valid data to the PLD in a
round-robin fashion. This logic is capable of sending up to
8 bytes of valid data to the PLD per cycle. At a core
frequency of 300 MHz, it implies that the network block can
absorb packet data at a peak close to 20 Gbps.

[0376] There is no flow control between the ingress func-
tion and the PLD block. This implies that the aggregated
bandwidth of across all ingress ports should be less than 19.2
Gbps (for 300 MHz core frequency operation).

[0377] There are no configuration registers affecting the
ingress function.

[0378] Performance events 0-11 are monitored by the
ingress function.

[0379] Egress Function

[0380] The egress function interfaces with the egress
ports, the PacketLoader (PLD) and the PacketBuffer-
Memory (PBM).
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[0381] PBM interface

[0382] The egress function receives packet data from the
PBM of packets that reside in the packet buffer. There is an
independent interface for each of the egress interleaving
slots, as follows:

[0383] Walid (1): if asserted, validates the rest of the
inputs. It specifies that valid data is sent in the
current cycle or not.

[0384] Data (64): contains the 64 bits of packet data
provided. This 64-bit vector is logically divided into
8 bytes.

[0385] End_of packet (1): if asserted, it specifies that
valid data is the last data of the packet.

[0386] Last_byte (3): pointer to the last valid MSB byte in
‘data’. If all 8 bytes are valid, ‘last_byte’ is 7; if only 1 byte
is valid, ‘last_byte’ is 0. If 1 or more bytes are valid, they are
right aligned (first valid byte is byte0, then bytel, etc.). It can
not occur that, for example, byte 0 and 2 are valid, but not
byte 1. In other words, if the data is not the end of the packet,
then ‘last_byte’ should be 3; if the data is the end of the
packet, then ‘last_byte’ can take any value.

[0387] Port (2): the outbound port.

[0388] Channel (8): the outbound channel associated
to the packet data. Meaningless if the egress port is
not channelized.

[0389] Atotal of up 4 FIFOs, one associated to each egress
interleaving slots, store the incoming information. Each
FIFO has 8 entries. Whenever the number of occupied
entries in the PBM FIFO is 5 or more, a signal is provided
to the PBC block as a mechanism of flow control. xx There
could be at most 5 chunks of packet data already read and
in the process of arriving to the egress function.

[0390] Egress Port Interface:

[0391] A logic exists that will look at the head of each of
the 4 FIFOs and, in a round-robin fashion, will send the valid
data to the corresponding egress port. Note that if 4 egress
ports exist, then there is a 1-to-1 correspondence between a
fifo and a port. If 2 channelized ports exist, then the
round-robin logic is applied between fifo 0 and fifo 1 for port
0 and fifo2 and fifo3 for port 1. In the case of 2 non-
channelized ports, either islot 0 or islot 1 is disabled (imply-
ing that either fifo 0 or fifo 1 is empty), and similarly for
islot2 and islot3 (for fifo 2 and fifo 3). In the case of 1
channelized port, the round robin prioritization is applied
among all the fifos; for the 1 non-channelized port case, all
except one fifo should be empty.

[0392] The round robin logic works in parallel for each of
the egress ports.

[0393] The valid contents of the head of the FIFO that the
prioritization logic chooses are sent to the corresponding
egress port. This information is structured in the same fields
as in the ingress port interface. There is an extra 1-bit signal
from the egress port to egress function, ‘advance’ that is used
for flow control between the port and the egress function in
case the egress port can not accept data. If this is the case,
the port de-asserts ‘advance’. Whenever ‘advance’ is
asserted, the egress function is allowed to send valid data to
the port. If de-asserted, the egress function will not send any
valid data, even though there might be valid data ready to be
sent. If the egress port de-asserts ‘advance’ in cycle X, it still
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may receive valid packet data in cycle x+1 since the
‘advance’ signal is assumed to be registered at the port side.

[0394] The egress function could send valid packet data at
a peak rate of 8 bytes per cycle, which translates approxi-
mately to 19.2 Gbps (@ 300 MHz core frequency). Thus, a
mechanism is needed for a port to provision for flow control.

[0395] No configuration registers exist in this subblock.

[0396] Performance events 12-23 are monitored by the
egress function.

[0397] PacketLoader block 1402 (PIF)
[0398] Detailed Description

[0399] The PIF block performs four top-level functions:
packet insertion, packet migration, packet transmission and
packet table access. FIG. 16 shows its block diagram.

[0400] Packet Insertion Function

[0401] This function interfaces with the Portlnterface
(PIF) and PacketBufferController (PBC). The function is
pipelined (throughput 1) into 3 stages (0, 1 and 2).

[0402] Stage 1:

[0403] Packet data is received from the PLD along with
the slot number that the PLD computed. If the packet data
is not the start of a new packet (this information is provided
by the PLD), the slot number is used to look up a table
(named slot_state) that contains, for each entry or slot,
whether the packet being received has to be dropped. There
are three reasons why the incoming packet has to be
dropped, and all of them happened when the first data of the
packet arrived at Stage A of the PLD:

[0404] The ‘continue’ configuration register was 0.

[0405] The total number of entries in the packet table
(that holds the packet descriptors) was more than
508.

[0406] The packet buffer memory (that holds the data
of the packets) was not able to guarantee the storage
of a packet of the maximum allowed size.

[0407] If the packet data is the start of the packet, some
logic decides whether to drop the packet or not. If any of the
above three conditions holds, the packet data is dropped and
the slot entry in the slot_table is marked so that future packet
data that arrives for that packet is also dropped.

[0408] This guarantees that the whole packet will be
dropped, no matter whether the above conditions hold or not
when any of the rest of the data of the packet arrives.

[0409] For the purpose of determining at stage 1 whether
the packet table is full or not, the threshold number of entries
is 512 (the maximum number of entries) minus the maxi-
mum packets that can be received in an interleaved way,
which is 4. Therefore, if the number of entries when the first
data of the packet arrives is more than 508, the packet will
be dropped.

[0410] To determine whether the packet buffer will be able
to hold the packet or not, some state is looked up that
contains information regarding how full the packet buffer is.
Based on this information, the decision to drop the packed
due to packet buffer space is performed. To understand how
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this state is computed, first let us describe how the packet
buffer is logically organized by the hardware to store the
packets.

[0411] The 256 KB of the packet buffer are divided into
four chunks (henceforth named sectors) of 64 KB. Sector 0
starts at byte 0 and ends at byte OXFFFE, and sector 3 starts
at byte 0x30000 and ends at byte 0x3FFFF. The number of
sectors matches the number of maximum packets that at any
given time can be in the process of being received.

[0412] As will be seen later on, when the packet first
arrives, it is assigned one of the sectors, and the packet will
be stored somewhere in that sector. That sector becomes
active until the last data of the packet is received. No other
packet will be assigned to that sector if it is active.

[0413] Thus, when a new packet arrives and all the sectors
are active, then the packet will not be able to be stored.
Another reason why the packet might not be accepted is if
the total available space in each of the non-active sectors is
smaller than the maximum allowed packet size. This maxi-
mum allowed packet size is determined by the ‘max_pack-
et_size’ configuration register, and it ranges from 1 KB to 64
KB, in increments of 1 KB. When the start of a new packet
is received, no information regarding the size of the packet
is provided up front (the NET block is protocol agnostic, and
no buffering of the full packet occurs to determine its size).
Therefore, it has to be assumed that the size of the packet is
the maximum size allowed in order to figure out whether
there is enough space in the sector or not to store the packet.

[0414] In stage 1, the information of whether each sector
is active or not, and whether each sector can accept a
maximum size packet or not is available. This information is
then used to figure out whether the first data of the packet
(and eventually the rest of the data) has to be dropped.

[0415] In stage 1, the logic maintains, for all the packets
being received, the total number of bytes that have been
received so far. This value is compared with the allowed
maximum packet size and, if the packet size can exceed the
maximum allowed size when the next valid data of the
packet arrives, the packet is forced to finish right away (its
end_of_packet bit is changed to 1 when sent to stage 2) and
the rest of the data that eventually will come from that
packet will be dropped. Therefore, a packet that exceeds the
maximum allowed packet size will be seen by software as a
valid packet of a size that varies between the maximum
allowed size and the maximum allowed size minus 7 (since
up to 8 valid bytes of packet data can arrive every cycle). No
additional information is provided to software (no interrupt
or error status).

[0416] Some information from PLD is propagated into
stage 2: valid, start_of packet, data, port, channel, slot,
error, and the following results from stage 1: revised end-
_of packet, current_packet_size. If the packet data is
dropped in stage 0, no valid information is propagated into
stage 2.

[0417] Stage 2:

[0418] In this stage, the state information for each of the
four sectors is updated, and the hashing function is applied
to the packet data.

[0419] When the first data of a packet arrives at stage 2, a
non-active sector (guaranteed by stage 1 to exist) is assigned
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to the packet. The sector that is less occupied is chosen. This
is done to minimize the memory fragmentation that occurs
at the packet buffer. This implies that some logic will
maintain, for each of the sectors, the total number of 8-byte
chunks that the sector holds of packets that are kept in the
network block (ie packets that have been received but not yet
migrated, packets that are being processed by the tribes, and
packets that have been processed but still not been trans-
mitted or dropped).

[0420] Each of the four sectors is managed as a FIFO.
Therefore, a tail and head pointer are maintained for each of
them. The incoming packet data will be stored at the position
within the sector pointed by the tail pointer.

[0421] The head and tail pointers point to double words (8
bytes) since the incoming data is in chunks of 8 bytes.

[0422] The tail pointer for the first data of the packet will
become (after converted to byte address and mapped into the
global physical space of Porthos) the physical address where
the packet starts, and it will be provided to one of the tribes
when the packet is first migrated (this will be covered on the
migration function).

[0423] The tail pointer of each a sector is incremented
every time a new valid packet data has arrived (of a packet
assigned to that sector). Note that the tail pointer may wrap
around and start at the beginning of the sector. This implies
that the packet might physically be stored in a non-consecu-
tively manner (but with at most one discontinuity, at the end
of the sector). However, as it will be seen as part of the stage
3 logic, a re-mapping of the address is performed before
providing the starting address of the packet to software.

[0424] Whenever valid data of a packet is received, the
occupancy for the corresponding sector is incremented by
the number of bytes received. Whenever a packet is removed
from the packet buffer (as will be seen when the transmis-
sion function is explained) the occupancy is decremented by
the amount of bytes that the packet was occupying in the
packet buffer.

[0425] In stage 2 the hashing function is applied to the
incoming packet data. The hashing function and its configu-
ration is explained above. The hashing function applies to
the first 64 bytes of the packet. Therefore, when a chunk of
data (containing up to 8 valid bytes) arrives at stage 2, the
corresponding configuration bits of the hashing function
need to be used in order to compute the partial hashing
result.

[0426] The first-level hashing function and all the second-
level hashing functions are applied in parallel on the packet
data received.

[0427] Both partial hashing results and the configuration
bits to apply to the next chunk of valid bytes are kept for
each of the four ingress interleaving slots.

[0428] 1In this state, if there is a pending GetRoom com-
mand, it is served. The GetRoom command is generated by
software by writing into the ‘get_room’ configuration reg-
ister, with the offset of the address being the amount of space
that software requests. The NET will search for a chunk of
consecutive space of that size (rounded to the nearest 8-byte
boundary) in the packet buffer. The result of the command
will be unsuccessful if:
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[0429]
table

[0430] there is no space available in the packet buffer
to satisfy the request

there are no available entries in the packet

[0431] A pending GetRoom command will be served only
if there is no valid data in State 2 from ingress and there is
no valid data in Stage 1 that corresponds to a start of packet.

[0432] The following information is provided to stage 3:
valid, data, port, channel, slot, end of packet, start of packet,
size of the packet, the dword address, error, get room result,
and the current result of the first level of hashing function.

[0433] Stage 3:

[0434] In stage 3, the valid packet data is sent to the PBC
in order to be written into the packet buffer, and, in case the
valid data corresponds to the end of a packet, a new entry in
the packet table is written with the descriptor of the packet.

[0435] If the packet data is valid, the 64-bit data is sent to
the PBC using the double word address (that points to a
double word within the packet buffer). All the 8 bytes will
be written (even if less than 8 bytes are actually valid). The
PBC is guaranteed to accept this request for write into the
packet buffer. There is no flow control between the PBC and
stage 3.

[0436] If the valid data happens to be the last data of a
packet, a new entry in the packet table is initialized with the
packet descriptor. Stage 1 guaranteed that there would be at
least one entry in the packet table.

[0437] The packet table entries are managed like a FIFO,
and the entry number corresponds to the 9 LSB bits of the
sequence number, a 16-bit value that is assigned by stage 3
to each packet. Thus, it is not possible that two packets exist
with a sequence number having the 9 LSB bits the same.

[0438] The packet descriptor is composed of the following
information:

[0439] Dword address (16): the “expanded” dword
address within the packet buffer where the first 8
bytes of the packet reside. The expanded dword
address consists on performing the following
manipulation of the original dword address com-
puted in stage 2:

[0440] Bit[15] becomes bit[14]
[0441] Bit[14] becomes bit[13]
[0442] Bif[13] becomes 0

[0443] This expanded dword address is compressed back
following the inverse procedure when the packet is trans-
mitted out (as will be explained in the transmission func-
tion).

[0444] Tribe (3): the tribe number to which the packet will
be first migrated into. This value is derived from the second
level hashing result generated in stage A and after applying

in stage 3 some of the configuration bits of the hashing
function.

[0445] Flowld (16): the result of the first level of the
hashing function, computed in stage 2.

[0446] Sequence number (16): the value that is assigned
by stage 3 to each packet at the end of the packet, ie when
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the packet has fully been received. After a sequence number
has been provided, the register that contains the current
sequence number is incremented. The sequence number
wraps around at OxFFFE.

[0447] Inbound port (2): the port number associated to the
incoming packet.

[0448] Inbound channel (8): the channel number associ-
ated to the incoming packet.

[0449] Outbound port (5): this field will be eventually
written with the software-provided value when the ‘done’ or
‘egress_path_determined’ configuration registers are writ-
ten. At stage 3, this field is initialized to O.

[0450] Outbound channel (9): this field will be eventually
written with the software-provided when the ‘done’ or
‘egress_determined’ configuration registers are written. At
stage 3, this field is initialized to 0.

[0451] Status (2): it is initialized with 1 (Active). This
status will eventually change to either O (Invalid) if software
requests the packet to be dropped, or to 2 (Done) if software
requests the packet to be transmitted out.

[0452] Size (19): the size in bytes of the packet. The
maximum allowed size is the size of a sector, ie 65536 bytes
(but software can override the maximum allowed size to a
lower value with the ‘max_packet_size’ configuration reg-
ister).

[0453] Header growth delta (8): initialized with 0. Even-
tually this field will contain the amount of bytes that the head
of the packet has grown or shrunk, and it will be provided
by software when the packet is requested to be transmitted
out.

[0454] Scheduled (1): specifies whether the egress path
information is known for this packet. At stage 3, this bit is
initialized to O (ie not scheduled).

[0455] Launch (1): bit that indicates whether the packet
will be presented to one of the tribes for processing. At stage
3, this bit is initialized to 1 (ie the packet will be provided
to one of the tribes for processing).

[0456] Error (1); bit that indicates that the packet arrived
with an error notification from the ingress port.

[0457] The following are the valid combination of the
‘launch’ and ‘error’ bits in the packet descriptor:

[0458] launch=1, error=0. The normal case in which
an error-free packet arrives and the NET block will
eventually migrate into a tribe.

[0459] launch=0, error=0. A packet descriptor origi-
nated through a GetRoom command (explained later
on). The packet associated to the descriptor will not
be migrated.

[0460] launch=0, error=1. A packet arrived with an
error notification. The packet is allowed to occupy
space in the packet buffer and packet table for
simplicity reasons (since the error can come in the
middle of the packet, it is easier to let the packet
reside in the already allocated packet buffer than
recovering that space; besides, errors are rare, so the
wasted space should have a minimal impact). The
packet descriptor is marked with an Invalid status,
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and therefore the space that it occupies in the packet
buffer will be eventually reclaimed when the packet
descriptor becomes the oldest one controlled by one
of the egress interleaving slots.

[0461]

[0462] The descriptor will be read at least twice: once by
the migration function to get some of the information and
provide it to the initial tribe, and by the transmit logic, to
figure out whether the packet needs to be transmitted out or
dropped.

[0463] And the descriptor will be (partially) written at
least once: when software decides what to do with the packet
(transmit it out or drop it). The path and channel information
(for the egress path) might be written twice if software
decides to notify this information to the NET block before
it notifies the completion of the packet.

launch=1, error=1. Will never occur.

[0464] Configuration Register Interface

[0465] The following configuration registers are read and/
or written by the packet insertion function:

[0466] ‘max_packet_size’: to cap the maximum
packet size in order to minimize the memory frag-
mentation in the packet buffer.

[0467] ‘continue’: if O, the new incoming packets
will be dropped.

[0468] ‘packet_table_packets’: the total number of
packets that the packet table keeps track of.

[0469] ‘status’: specifies whether the network block
is in reset mode and whether it is in quiescent mode.

[0470] Hashing engine configuration registers

[0471] First level
11_skip)

[0472] Second level (12_selection[O . . . 3], 12_posi-
tion[0 . . . 3], 12_skip[O . . . 3], 12_first[O . . . 3],
12 _total[0 . . . 3])

(11_selection,  11_position,

[0473] Performance events numbers 32-36 are monitored
by the packet insertion function.

[0474] Packet Migration Function

[0475] The purpose of this function is to monitor the
oldest packet in the packet table that still has not been
migrated into one of the tribes and perform the migration.
The migration protocol is illustrated in the table of FIG. 13.

[0476] This function keeps a counter with the number of
packets that have been inserted into the packet table but still
have not been migrated. If this number is greater than 0, the
state machine that implements this function will request to
read the oldest packet (pointer by the ‘oldest to process’
pointer). When the requested information is provided by the
packet table access function (explained later on) the packet
migration function requests the interconnect block to
migrate a packet into a particular tribe (the tribe number was
stored into the packet table by the packet insert function).
When the interconnect accepts the migration, the packet
migration function will send, in 3 consecutive cycles, infor-
mation of the packet that one of the streams of the selected
tribe will store in some general purpose and some CP0
registers.



US 2005/0243734 Al

[0477] The following information is provided in each of
the 3 cycles in which data is transferred from the packet
migration function to the interconnect block (all the infor-
mation is available from the information stored in the packet
table by the packet insertion function):

[0478] First cycle:

[0479] PC (32): address where the stream of the
tribe will start executing instructions

[0480] FlowlId (16): the result of the first level of
hashing

[0481] Second cycle:
[0482] Sequence number (16)
[0483] Third cycle:

[0484] Address (32): physical address where the first
packet of the packet resides.

[0485] Ingress port (2): the ingress port of the packet.
[0486] Ingress channel (8): the ingress channel of the
packet.

[0487] Note that the same amount of information could be
sent in only two cycles, but the single write port of the
register file of the stream along with the mapping of this
information into the different GPR and CPO registers,
requires a total of 3 cycles.

[0488] The migration interface with the interconnect block
is pipelined in such a way that, as long as the interconnect
always accepts the migration, every cycle the packet migra-
tion function will provide data. This implies that a migration
takes a total of 3 cycles.

[0489] To maintain the 3-cycle throughput, there is a state
machine that always tries to read the oldest packet to be
migrated and put it into a 4-entry FIFO. Another state
machine will consume the entries in this FIFO and perform
the 3-cycle data transfer and complying with the Intercon-
nect protocol. The FIFO is needed to squash the latency in
accessing the packet table. As it will be seen later on when
describing the packet table access function, requests per-
formed by the packet migration function to the packet table
might not be served right away. FIG. 13 shows a timing
diagram of the interface between the packet migration
function and the Interconnect module. The ‘last’ signal is
asserted by the packet migration function when sending the
information in the second data cycle. If the Interconnect
does not grant the request, the packet migration function will
keep requesting the migration until granted.

[0490] The migration protocol suffers from the following
performance drawback: if the migration request is to a tribe
x that can not accept the migration, the migration function
will keep requesting for this migration, even if the following
migration is available for request to a different tribe that
would accept it. With a different, more complex interface,
migrations could occur in a different order other than the
order of arrival of packets into the packet table, improving
the overall performance of the processor.
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[0491] The following configuration registers are read and/
or written by the packet migration function:

[0492] ‘program counter[0...7]: the initial PC from
where the stream that will be associated to the packet
will start fetching instructions.

[0493] Packet Transmission Function

[0494] The purpose of this function is to monitor the
oldest packet that the packet table keeps track and decide
what to do based on its status (drop it or transmit it). This is
performed for each of the four egress interleaving slots.

[0495] There is an independent state machine associated to
each of the four egress interleaving slots. Each state machine
has a pointer to the oldest packet it keeps track of. When
appropriate, each state machine requests to a logic to read
the entry pointed by its pointer. The logic will schedule the
different requests in a round-robin fashion and whenever the
packet table access function allows it.

[0496] Whenever software requests to transmit or drop the
oldest packet in the packet table a bit (name oldest_touched)
is set. Whenever the state machine reads the entry pointed by
its pointer, it resets the bit (logic exists to prevent both the
set and reset at the same time).

[0497] The state machine will read the entry pointed by its
pointer whenever the total number of packet in the table is
greater than 1 and

[0498] 1. ‘oldest_touched’ is 1, or

[0499] 2. the previous packet read was dropped or
transmitted out (‘oldest_processed’=1).

[0500] This algorithm prevents the state machine to con-
tinuously reading the entry of the packet table with the
information of the oldest packet, thus saving power.

[0501] The result of the reading of the packet table is
presented to all of the state machines, so each state machine
needs to figure out whether the provided result is the
requested one (by comparing the entry number of the request
and result). Moreover, in the case that the entry was indeed
requested by the state machine, it might occur that the packet
descriptor is not controlled by it since each state machine
controls a specific egress port, and for channelized ports, a
specific range of channels. In the case that the requested
entry is not controlled by the state machine, it is skipped and
the next entry is requested (the pointer is incremented and
wrapped around at 512 if needed).

[0502] The port that each state machine controls is fixed
given the contents of the ‘total_ports’ configuration register,
as follows:
[0503] total_ports=1. All state machines control port

0

[0504] total_ports=2. State machine 0 and 1 control
port 0, and state machines 2 and 3 control port 1.

[0505] total_ports=4. There is a 1-to-1 correspon-
dence between state machine and port. Any other
value of ‘total_ports’ will render undefined results.

[0506] The range of channels that each state machine
controls is provided by the ‘islot0_channels’, ,,.
‘islot3_channels’ configuration registers.

[0507] The status field of the packet descriptor indicates
what to do with the packet: drop (status is invalid), transmit
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(status is done), scheduled (the egress path information is
known) or nothing (status is active).

[0508] 1If the packet descriptor is controlled by the state
machine, then:

[0509] if the status field is invalid, the state machine
will update the pointer (it will be incremented by 1),
and it will decrement the occupancy figure of the
sector in which the packet resides by the size of the
packet, including the offset for header growth, if any.
It will also set the ‘oldest_processed’ bit and decre-
ment the total number of packets.

[0510] if the status field is completed, the state
machine will start requesting the PBC to read the
packet memory, and it will perform as many reads as
necessary to completely read out the packet. These
requests are requested to a logic that receives these
requests from all the state machines, and will sched-
ule them to the PBC in a round robin fashion. If this
logic can not schedule the request of a particular
state machine or if the PBC can not accept the
requests, it will let the state machine know, and the
state machine will need to hold the generation of the
requests until the logic can schedule the requests.
The request to the PBC includes the following infor-
mation:

[0511] the address of the double word to be read
out from the packet buffer

[0512]

[0513] whether the request is for the last data of the
packet or not

[0514] which bytes are valid

[0515] if the packet is not completed, the state
machine will take no action and will wait until
software resolves the corresponding packet by either
writing into the ‘done’ or ‘drop’ configuration reg-
ister.

the channel number and port number

[0516] If the packet descriptor is not controlled by the
state machine, then

[0517] if the status field is invalid or completed, the
state machine skips the packet, and the next entry is
requested.

[0518] if the status field not completed and the
‘scheduled’ bit is 1, the state machine also skips the
packet and reads the next entry.

[0519] if the status field not completed and the
‘scheduled’ bit is 0, the state machine will take no
action and will wait until software resolves the
corresponding packet by either writing into the
‘done’ or ‘drop’ configuration register, or until soft-
ware notifies the egress path information by writing
into the ‘egress_path_determination’ configuration
register.

[0520] Any request to the packet buffer will go to the PBC
sub-block, and eventually the requested data will arrive to
the PIF sub-block. Part of the request to the PBC contains
the state machine number, or egress interleaving slot num-
ber, so that the PIF sub-block can enqueue the data into the
proper FIFO.
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[0521] When a read request is performed (up to 8 bytes
worth of valid data), the occupancy of the corresponding
sector is decremented by the number of valid bytes. When all
the necessary read requests have been done, the ‘oldest_pro-
cessed’ bit is set and the total number of packets is decre-
mented.

[0522] The ‘oldest_processed’ bit is reset when a new
packet table entry is read. The following configuration
registers are read and/or written by the packet migration
function:

[0523] ‘default_egress_channel’: this is the egress
channel in case the encoded egress channel in the
packet descriptor is 0x1.

[0524] ‘to_transmit_ptr’: the pointer to the oldest
packet descriptor in the packet table

[0525] ‘head_growth_space’: the amount of space
reserved for each packet so that its head can grow.
This information is needed by the packet transmis-
sion function to correctly update the occupancy
figure when a packet is dropped or transmitted out.

[0526] There are no performance events associated to
packet transmission function.

[0527] Packet Table Access Function

[0528] The purpose of this function is to schedule the
different accesses to the packet table. The access can come
from the packet insertion function, the packet migration
function, the packet transmission function, and from soft-
ware (through the PBM interface).

[0529] This function owns the packet table itself. It has
512 entries; therefore, the maximum number of packets that
can be kept in the network block is 512. See the packet
insertion function for the fields in each of the entries. The
table is single ported (every cycle only a read or a write can
occur). Since there are several sources that can request
accesses simultaneously, a scheduler will arbitrate and select
one request at a time.

[0530] The scheduler has a fixed-priority scheme imple-
mented, providing the highest priority to the packet inser-
tions from the packet insertion tribe. Second highest priority
are the requests from software through the PBM interface,
followed by the requests from the packet migration function
and finally the requests from the packet transmit function.
The access to the packet table takes one cycle, and the result
is routed back to the source of the request.

[0531] The requests from software to the packet table can
be divided into two types:

[0532] Direct accesses. The packet table is part of the
address space; software can perform reads and writes
to it.

[0533] Indirect accesses. Whenever software writes
into the ‘drop’ or ‘done’ configuration registers, the
hardware generates a write access to appropriate
packet table entry with the necessary information to
update the status of the packet.

[0534] All the reads/writes performed by software to the
configuration registers of the PLD block are handled by the
packet table access function. The only configuration regis-
ters not listed above are:
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[0535] ‘done’: software writes in this register to
notify that the processing of the packet is completed.
The sequence number, egress channel and head
growth delta are provided.

[0536] ‘drop’: software writes in this register to
notify that a packet has to be dropped. The sequence
number is provided.

[0537] Performance events numbers 37-43 are monitored
by the packet table access function.

[0538] PacketBufferController Block 1403 (PBC)

[0539] The PBC block performs two top-level functions:
requests enqueuing and requests scheduling. The requests
enqueuing function buffers the requests to the packet buffer,
and the requests scheduling performs the scheduling of the
oldest request of each source into the 8 banks of the packet
memory. FIG. 17 shows its block diagram.

[0540] Requests Enqueuing Function

[0541] The purpose of this function is to receive the
requests from all the different sources and put them in the
respective FIFOs. There are a total of 10 sources (8 tribes,
packet stores from the ingress path, packet reads from the
egress path) [and DMA and tribe-like requests from the GLB
block—TBD]. Only one request per cycle is allowed from
each of the sources.

[0542] With the exception of the requests from the ingress
path (named ‘network in’) all the requests from the other
sources are enqueued into corresponding FIFOs. The request
from the ingress path is stored in a register because the
scheduling function (described later) will always provide
priority to these requests and, therefore, they are guaranteed
to be served right away.

[0543] All the FIFO’s have 2 entries each, and whenever
they get 1 or 2 entries with valid requests, a signal is sent to
the corresponding source for flow control purposes.

[0544] For the requests coming from the tribes [and the
GLB DMA and tribe-like requests—TBD] block, the
requests enqueuing function performs a transformation of
the address as follows:

[0545] 1If the address falls into the configuration reg-
ister space containing the configuration registers and
the packet table), the upper 18 bits of the address are
zero’ed out (only the 14 LSB bits are kept, which
correspond the configuration register number). The
upper 1024 configuration registers correspond to the
512 entries in the packet table (2 consecutive con-
figuration registers compose one entry).

[0546] If the address falls into the packet buffer
space, the address is modified as follows:

[0547] Bit 16 becomes Bit 17
[0548] Bit 17 becomes Bit 18
[0549] Bit 19 is reset.

[0550] This is done to convert the 512 KB logical space of
the packet buffer that software sees to the physical 256 KB
space. Also, a bit is generated into the FIFO that specifies
whether the access is to the packet buffer or the configura-
tion register space.
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Nov. 3, 2005

[0551] This function does not affect or is affected by any
configuration register.

[0552] Performance events numbers 64-86 and 58 are
monitored by the packet insertion function.

[0553] Requests Scheduling Function

[0554] This function looks at the oldest request in the
FIFOs and schedules them into the 8 banks of the packet
memory. The goal is to schedule as many requests (up to 8,
one per bank). It will also schedule up to one request per
cycle that access the configuration register space.

[0555] The packet buffer memory is organized in 8 inter-
leaved banks. Each bank is then 64 KB in size and its width
is 64 bits. The scheduler will compute into which bank the
different candidate requests (the oldest requests in each of
the FIFOs and the network in register) will access. Then, it
will schedule one request to each bank, if possible.

[0556] The scheduler has a fixed-priority scheme imple-
mented as follows (in order of priority):

[0557]
[0558]
[0559]

[0560] Tribe requests. The tribe requests are treated
fairly among themselves. Even banks will pick the
access of the tribe with the lowest index, whereas
odd banks will pick the access of the tribe with the
highest index. Since the accesses of a tribe are
expected to be usually sequential, consecutive
accesses will visit consecutive banks, thus providing
a balanced priority to each tribe.

Ingress requests
Egress requests

Global requests—TBD

[0561] Whenever a tribe or GBL request accesses the
configuration register space, no other configuration space
access will be scheduled from any of the tribes of GBL until
the previous access has been performed.

[0562] This function does not get affected nor affects any
configuration register.

[0563] Performance events numbers 32-39, 48-55, 57 and
59 are monitored by the packet insertion function

[0564] PacketBufferMemory block 1404 (PBM)

[0565] The purpose of this block is to perform the request
to the packet buffer memory or the configuration register
space. When the result of the access is ready, it will route the
result (if needed) to the corresponding source of the request.
The different functions in this block are the configuration
register function and the result routing function. FIG. 18
shows its block diagram.

[0566] The packet buffer is part of this block. The packet
buffer is 256 KB in size and it is physically organized in 8
interleaved banks, each bank having one 64-bit port. There-
fore, the peak bandwidth of the memory is 64 bytes per
cycle, or 2.4 G bytes/sec.

[0567] Configuration Register Function

[0568] The PBC scheduled up to 1 request to the configu-
ration register space. This function serves this request. If the
configuration register number falls into the configuration
registers that this function controls (‘perf_counter_event[O .
.. 7J’and ‘perf_counter_value[0 . . . 7]), this function
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executes the request; otherwise, the request is broadcast to
both the PIF and PLD blocks. One of them will execute the
request, whoever controls the corresponding configuration
register.

[0569] This function keeps track of the events that the PIF,
PLD and PBC blocks report, and keeps a counter for up to
8 of those events (software can configure which ones to keep
track).

[0570] Result Routing Function

[0571] The result routing function has the goal of receiv-
ing the result of both the packet memory access and the
configuration register space access and rout it to the source
of the request.

[0572] To do that, this function stored some control infor-
mation of the request, which is later on used to decide where
the result should go. The possible destinations of the result
of the request are the same sources of requests to the PBC
with the exception of the egress path (network out requests)
that do not need confirmation of the writes.

[0573] The results come from the packet buffer memory
and the configuration register function.

[0574] No performance events nor configuration registers
are associated to this function.

Interconnect Block of the Porthos Chip
[0575] Overview

[0576] The migration interconnect block of the Porthos
chip (see FIG. 1, clement 109) arbitrates stream migration
requests and directs migration traffic between the network
block and the 8 tribes. It also resolves deadlocks and handles
events such as interrupts and reset.

[0577]

[0578] Interface names follow the convention SD_name,
where S is source block code and D is destination block
code. The block codes are:

[0579] T: Tribe
[0580]
[0581] G: Controller

[0582] FIG. 19 is a table providing Interface to tribe #
(ranging from 0 to 7), giving name and description.

[0583] FIG. 20 is a table providing Interface to Network
block, with name and description.

[0584] FIG. 21 is a table providing interface to global
block, with name and description.

[0585] Tribe full codes are:

Interfaces

I: Migration interconnect

[0586] TRIBE_FULL 3

[0587] TRIBE_NEARLY FULL 2
[0588] TRIBE_HALF FULL 1
[0589] TRIBE_EMPTY 0

[0590] Migration Protocol Timing

[0591] A requester sends out requests to the interconnect,
which replies with grant signals. If a request is granted, the
requester sends 64-bit chunks of data, and finalizes the
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transaction with a finish signal. The first set of data must be
sent one cycle after “grant.” The signal “last” is sent one
cycle before the last chunk of data, and a new request can be
made in the same cycle. This allows the new data transfer to
happen right after the last data has been transferred.

[0592] Arbitration is ongoing whenever the destination
tribe is free. Arbitration for a destination tribe is halted when
“grant” is asserted and can restart one cycle after “last” is
asserted for network-tribe/interrupt-tribe migration, or the
same cycle as “last” for tribe-tribe migration.

[0593] There is a race condition between the “last” signal
and the “full” signal. The “last” signal can be sent as soon
as one cycle after “grant” while the earliest “full” arrives 4
cycles after “grant” from tribe. To avoid this race condition
and prevent overflow, the “almost full to full” is used for 3
cycles after a grant for a destination tribe.

[0594] The Network-Tribe/Tribe-tribe migration protocol
timing is shown in FIG. 22.

[0595]

[0596] FIG. 40 illustrates interconnect modules. The
interconnect block consists of 3 modules. An Event module
collects event information and activate a new stream to
process the event. An Arbiter module performs arbitration
between sources and destinations. A Crossbar module
directs data from sources to destinations.

[0597] Arbiter
[0598] Arbitration Problem

Interconnect Modules

[0599] There are 11 sources of requests, the 8 tribes, the
network block, the event handling module and transient
buffers. Each source tribe can make up to 7 requests, one for
each destination tribe. The network block, event handling
module, and transient buffers each can make one request to
one of the 8 tribes.

[0600] 1If there’s a request from transient buffers to a tribe,
that request has the highest priority and no arbitration is
necessary for that tribe. If transient buffers are not making
request, then arbitration is necessary.

[0601] FIG. 41 illustrates a matching matrix for the arbi-
tration problem. Each point is a possible match, with 1
representing a request, and X meaning illegal match (a tribe
talking to itself). If a source is busy, the entire row is
unavailable for consideration in prioritization and appear as
zeroes in the matching matrix. Likewise, an entire column is
zeroed out if the corresponding destination is busy.

[0602] The arbiter needs to match the requester to the
destination in such a way as to maximize utilization of the
interconnect, while also preventing starvation.

[0603] A round-robin prioritizing scheme is used in an
embodiment. There are two stages. The first stage selects
one non-busy source for a given non-busy destination. The
second stage resolves cases where the same source was
selected for multiple destinations.

[0604] At the end of the first stage, a crossbar mux selects
can be calculated by encoding the destination columns. At
the end of the second stage, the “grant” signals can be
calculated by OR-ing the entire destination column.
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[0605] Each source and each destination has a round-robin
pointer. This points to the source or destination with the
highest priority. The round-robin prioritization logic begin
searching for the first available source or destination begin-
ning at the pointer and moving in one direction.

[0606] FIG. 42 illustrates arbiter stages. The arbitration
scheme described above is “greedy,” meaning it attempts to
pick the requests that can proceed, skipping over sources and
destinations that are busy. In other words, when a connection
is set up between a source and a destination, the source and
destination are locked out from later arbitration. With this
scheme, there are cases when the arbiter starves certain
context. It could happen that two repeated requests, with
overlapping transaction times, can prevent other requests
from being processed. To prevent this, the arbitration oper-
ates in two modes. The first mode is “greedy” mode as
described above. For each request that cannot proceed, there
is a counter that keeps track of the number of times that
request has been skipped. When the counter reaches a
threshold, the arbitration will not skip over this request, but
rather wait at the request until the source and destination
become available. If multiple requests reach this priority for
the same source or destination, then one-by-one will be
allowed to proceed in a strict round-robin fashion. The
threshold can be set via the Greedy Threshold configuration
register.

[0607] Utilization

[0608] Utilization of the interconnect depends on the
nature of migration. If only one source is requesting all
destinations (say tribe0 wants tribe1-7) or if all sources are
requesting one destination, then the maximum utilization is
12.5% (1 out of 8 possible simultaneous connections). If the
flow of migration is unidirectional, (say network to tribe0,
tribe0 to tribel, ete.), then the maximum utilization is 100%.

[0609] Deadlock Resolution

[0610] FIG. 43 illustrates deadlock resolution. Deadlock
occurs when the tribes in migration loops are all full, i.e.
tribe 1 requests migration to tribe 2 and vice versa and both
tribes are full. The loops can have up to 8 tribes.

[0611] To break a deadlock, Porthos uses two transient
buffers in the interconnect, with each buffer capable of
storing an entire migration (66 bits times maximum migra-
tion cycles). The migration request with both source and
destination full (with destination wanting to migrate out) can
be sent to a transient buffer. The transient stream becomes
highest priority and initiate a migration to the destination,
while at the same time the destination redirect a migration to
the second transient buffer. Both of these transfers need to be
atomic, meaning no other transfer is allowed to the desti-
nation tribe and the tribe is not allowed to spawn new stream
within itself. This process is indicated to the target tribe by
the signal IT_transient_swap_valid_#. The migrations into
and out of a transient buffers use the same protocol as
tribe-tribe migrations.

[0612] This method begins by detecting only possibility of
deadlock and not the actual deadlock condition. It allows
forward progress while looking for the actual deadlock,
although there maybe cases where no deadlock is found. It
also substantially reduces the hardware complexity with
minimal impact on performance.
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[0613] A migration that uses the transient buffers will
incur an average of 2 migration delays (a migration delay is
the number of cycles needed to complete a migrate). The
delays don’t impact performance significantly since the
migration is already waiting for the destination to free up.

[0614] Using transient buffers will suffice in all deadlock
situations involving migration:

[0615] Simple deadlock loops involving 2 to 8 tribes

[0616] Multiple deadlock loops with 1 or more
shared tribes

[0617] Multiple deadlock loops with no shared tribe
[0618] Multiple deadlock loops that are connected

[0619] In the case of multiple loops, the transient buffers
will break one loop at a time. The loop is broken when the
transient buffers are emptied.

[0620] Hardware deadlock resolution cannot solve the
deadlock situation that involve software dependency. For
example, a tribe in one deadlock loop waits for some result
from a tribe in the another deadlock loop that has no tribe in
common with the first loop. Transient buffers will service the
first deadlock loop and can never break that loop.

[0621] Event Module

[0622] Upon hardware reset, an event module spawns a
new stream in tribe 0 to process reset event. This reset event
comes from global block. The reset vector is PC=0x
BFC00000.

[0623] Event module spawns a new stream via the inter-
connect logic based on external and timer interrupts. The
default interrupt vector is 0x80000180.

[0624] Each interrupt is maskable by writing to Interrupt
Mask configuration registers in configuration space. There
are two methods an interrupt can be directed. In the first
method, the interrupt is directed to any tribe that is not
empty. This is accomplished by the event module making
requests to all 8 destination tribes. When there is a grant to
one tribe, the event module stops making requests to the
other tribes and start a migration for the interrupt handling
stream. In the second method, the interrupt is being directed
to a particular tribe. The tribe number for the second method
as well as which method are specified using Interrupt
Method configuration registers for each interrupt.

[0625] The event module has a 32-bit timer which incre-
ments every cycle. When this timer matches the Count
configuration register, it activates a new stream via the
migration interconnect.

[0626] The interrupt vectors default to 0x80000180 and
are changeable via Interrupt Vector configuration registers.

[0627] External interrupt occurs when the external inter-
rupt pin is asserted. If no thread is available to accept the
interrupt, the interrupt is pending until a thread becomes
available.

[0628] 1In order to reserve some threads for event-based
activations, migrations from network to a tribe can be
limited. These limits are set via Network Migration Limit
configuration registers (there is one per tribe). When the
number of threads in a tribe reaches it’s corresponding limit,
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new migrations from network to that tribe are halted until the
number of threads drops below the limit.

[0629] Crossbar Module

[0630] FIG. 44 is an illustration of the crossbar module.
This is a 10 inputs, 8 outputs crossbar. Each input is
comprised of a “valid” bit, 64-bit data, and a “last” bit. Each
output is comprised of the same. For each output, there’s a
corresponding 4-bit select input which selects one of 10
inputs for that particular output. Also, for each output,
there’s a 1-bit input which indicates whether the output port
is being selected or busy. This “busy” bit is ANDed with the
selected “valid” and “last” so that those signals are valid
only when the port is busy. The output is registered before
being sent to the destination tribe.

[0631] Performance Counters

[0632] With performance counters the performance of the
interconnect can be determined. An event is selected by
writing to the Interconnect Event configuration registers
(one per tribe) in configuration space. Global holds the
selection via the selection bus, and the tribe memory inter-
face returns to global the selected event count every cycle
via the event bus. The events are:

[0633] Total number of requests and total number of
grants in a period of time

[0634] Number of requests and number of grants for
each destination in a period of time

[0635] Average time from request to grant overall

[0636] Average time from request to grant for each
destination

[0637] Average time from request to grant for each
source

[0638] Average migration time overall
[0639] Average migration time per destination

[0640] Average migration time per source Configu-
ration Registers

[0641] The configuration registers for interconnect and
their memory locations are:

Interrupt Masks 0x70000800
Interrupt Pending 0x70000804
Timer 0x70000808
Count 0x70000810
Timer Interrupt Vector 0x70000818
External Interrupt Vector 0x70000820
Greedy Threshold 0x70000828
Network Migration Limit 0x70000830

Memory Interface Block Porthos Chip
[0642] Overview

[0643] This section describes the microarchitecture of the
memory interface block, which connects the memory con-
troller to the tribe and the global block. FIG. 45 illustrates
the tribe to memory interface modules.
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[0644] Interfaces

[0645] Interface names follow the convention SD_signal, ,
name, where S is source block code and D is destination
block code. The block codes are:

[0646] T: Tribe
[0647] M: Tribe memory interface
[0648] L: Tribe memory controller
[0649] G: Controller
[0650] FIG. 23 is a table illustrating Interface to Tribe.

[0651]

[0652] FIG. 25 is a table illustrating interface to Tribe
Memory Controller.

FIG. 24 is a table illustrating interface to Global.

[0653] Request types (not command type) are:

MEM__UREAD
MEM__SREAD
MEM_ WRITE
MEM__UREAD_ RET
MEM__SREAD_ RET
MEM__WRITE__RET
MEM__ERROR__RET

N oy k= O

[0654] Memory size codes are:

MEM_SIZE_8
MEM__SIZE_16
MEM__SIZE_ 32
MEM__SIZE_ 64
MEM__SIZE_ 128
MEM__SIZE_ 256

RN = O

[0655] Interface Timings

[0656] Tribe to tribe memory interface timing:

[0657] Tribe sends all memory requests to tribe memory
interface. The request can be either access to tribe’s own
memory or to other memory space. If a request accesses
tribe’s own memory, the request is saved in the tribe
memory interface’s request queue. Else, it is sent to global
block’s request queue. Each of these queues have a corre-
sponding full signal, which tells tribe block to stop sending
request to the corresponding memory space.

[0658] A request is valid if the valid bit is set and must be
accepted by the tribe memory interface block. Due to the one
cycle delay of the full signal, the full signal must be asserted
when there’s one entry left in the queue.

[0659]
timing.

FIG. 26 illustrates tribe to tribe memory interface

[0660] Tribe memory interface to controller timing:

[0661] This interface is different from other interfaces in
that if memory controller queue full is asserted, the memory
request is held until the full signal is de-asserted.
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[0662] FIG. 27 illustrates tribe memory interface to con-
troller timing Tribe memory interface to global timing:

[0663] Tribe memory interface can send request or return
over the transaction bus (MG_transaction*). Global can
send request or return over the GM_transaction set of
signals.

[0664] FIG. 28 illustrates tribe memory interface to global
timing

[0665] Tribe Memory Interface Block Modules

[0666] Input Module:

[0667] This module accepts requests from tribe and glo-
bal. If the request from tribe has address that falls within the
range of tribe memory space, the request is valid and can be
sent to request queue module. If the request has address that
falls outside that range, the request is directed to the global
block. The tribe number is tagged to the request that goes to
global block.

[0668] Global block only send valid request to a tribe if the
request address falls within the range of that tribe’s memory
space.

[0669] The input module selects one valid request to send
to request buffer, which has only one input port. The
selection is as follows:

[0670] Pick saved tribe request if there are 2 saved
requests and an incoming tribe request, or if there’s
only saved tribe request

[0671] Else pick saved global request if there’s only
saved global request

[0672] Else pick incoming tribe request if it exists
[0673] Else pick incoming global request if it exists

[0674] The module sends flow control signals to tribe and
global:

[0675] Stall tribe requests if there’s incoming global
request

[0676] Stall global requests if there’s incoming tribe
request

[0677] Save global input if input is not selected during
mux selection and saved input slot is free. Else keep old
saved input. Similarly for tribe input.

[0678] FIG. 29 illustrates input module stall signals
[0679] FIG. 46 illustrates the input module data path.
[0680] Request buffer and issue module:

[0681] FIG. 49 is an illustration of a request Buffer and
Issue Module. There are 16 entries in the queue. When there
iS a new request, the address and size of the request is
compared to all the addresses and sizes in the request buffer.
Any dependency is saved in the dependency matrix, with
each bit representing a dependency between two entries.
When an entry is issued to memory controller, the corre-
sponding dependency bits are cleared in the other entries.

[0682] The different dependencies are:

[0683] Write-after-write: the second write overwrites
data written by the first write, so the second write is
not allowed to be processed before the first write.
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[0684] Write-after-read: The read should not be
affected by the write. Thus, the write is not be
allowed to be processed before the read.

[0685] Read-after-write: If there are not enough bytes
in the writebuffer to forward to the read, then there’s
no forwarding and the read is not allowed to be
processed before the write.

[0686] For read-after-read, if there’s no write to the same
address between the reads, the reads can be reordered.

[0687] Each entry has:
[0688] 1-bit valid
[0689] 27-bit byte address
[0690] 3-bit size code of read data requested
[0691] 5-bit stream number
[0692] 3-bit tribe number
[0693] 5-bit register destination (read)
[0694] 64-bit data (write)
[0695] 16-bit dependency vector

[0696] This module also reorders and issues the requests
to the memory controller. The reordering is necessary so that
the memory bus is better utilized. The reordering algorithm
is as follows:

[0697] 1If an entry is dependent on another entry, it is
not considered for issue until the dependency is
cleared.

[0698] Find all entries with address in a bank differ-
ent from any issued request in the previous n cycles,
where n is the striping distance (i.e. 8 for RLDRAM
at 300 MHz).

[0699] Separate the eligible entries into reads and
writes

[0700] Try to issue up to x number of the same type
(read or write) before switching to another type. If
the other type is not available, continue issuing the
same type.

[0701] Save the bank number of the issued request in
history table.

[0702] A count register keeps track of the number of valid
entries. If the number reaches a watermark level, both the
MT _int_request_queue_full and MG_req_transaction_full
signals are asserted.

[0703] Write buffer:
[0704] FIG. 47 Illustrates a write buffer module.

[0705] The write buffer stores 16 latest writes. If subse-
quent read is to one of these addresses, then the data stored
in the write buffer can be forwarded to the read.

[0706] Each entry has:
[0707] 8-bit valid bits (one for each byte of data)
[0708] 32-bit address
[0709] 64-bit data
[0710] 4-bit LRU
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[0711] When there is a new read, the address of the read
is compared to all the addresses in the write buffer. If there
is a match, the data from the buffer can be forwarded.

[0712] When there is a new write, the address of the write
is compared to all the addresses in the write buffer. If there
is a match, the write data replaces the write buffer data. If
there’s no match, the write data replaces one of the write-
buffer entry. The replacement entry is picked based on LRU
bits, described below.

[0713] To prevent frequent turning over of writebuffer
entries, only writes from local tribe are allowed to replace an
entry. Writes from other tribes are only used to overwrite an
entry with the same address.

[0714] LRU field indicates how recent the entry has been
accessed. The higher the number, the less recently used. A
new entry has LRU value of zero. Everytime there is an
access to the same entry (forward from the entry or over-
write of entry), the value is reset to zero while the other
entries’ LRU are increased by one. When a LRU value
reaches maximum, it is unchanged until the entry is itself
being accessed.

[0715] The replacement entry is picked from the entries
with the higher LRUs before being picked from entries with
lower LRUs.

[0716] Return Module:

[0717] There are 3 possible sources for returns to tribe:
tribe memory, global, and forwarding. Returns from tribe
memory bound for tribe are put into an 8 entry queue.
Memory tag information arrives first from the request queue.
If it’s a write return, it can be returned to tribe immediately.
Ifit’s a read, it must wait for the read data returning from the
tribe memory.

[0718] 1If global is contending for the return to tribe bus,
memory block asserts MG_rsp_transaction_full signal to
temporarily stop the response from global so tribe memory
returns and/or forwarded returns bound for tribe can pro-
ceed.

[0719] There are 2 possible sources for returns to global:
tribe memory and forwarding. These must contend with tribe
requests for the transaction bus. Returns from tribe memory
bound for global are put into another set of 8 entry queue.
This queue is the similar to the queue designated for returns
to tribe.

[0720] If tribe is contending for the return to global bus,
memory block asserts MT_ext_request_queue_full signal to
stop the external requests from tribe so tribe memory returns
and/or forwarded returns bound for global block can pro-
ceed.

[0721] All memory accesses are returned to the original
tribe that made the requests. Writes are returned to acknowl-
edge completion of writes. Reads are returned with the read
data. Returned information include the information send
with the request originally. These are stream, regdest, type,
size, offset, and data. Offset is lower 3 bits of the original
address. Regdest, offset, size and data are relevant only for
reads.

[0722] Stream, regdeset, size and offset are unchanged in
all returns. Type is changed to the corressponding return
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type. If there is ECC uncorrectable error or non-existing
memory error, the type MEM_ERROR_RET is returned
with read return.

[0723] Read data results are 64-bit aligned, so the tribe
needs to perform shifting and sign-extension if needed to get
the final results.

[0724]
[0725] Tribe Memory Configuration Registers

FIG. 48 illustrates the return module data path.

[0726] The memory controllers are configured by writing
to configuration registers during initialization. These regis-
ters are mapped to configuration space beginning at address
0x70000000. Global must detect the write condition and
broadcast to all the tribe memory blocks. It needs to assert
the GM_initialize_controller while placing the register
address and data to be written on the memory transaction
bus. Please see Denali specification for descriptions of
controller registers.

[0727] Assumptions about Memory Controller

[0728] Memory controller IP is expected to have the
following functionalities: ECC is enabled, so read-modify-
write is included for unaligned accesses

[0729] 8-entry ingress queue (data and command)

[0730] 1-entry egress queue

[0731] Can process up to 256-bit memory requests.

[0732] Doesn’t include reordering or forwarding fea-
tures.

[0733] Performance Counters

[0734] This block generates event counts for performance
counters. The event is selected by writing to Tribe MI Event
configuration registers (one per tribe) in configuration space.
Global holds the selection via the selection bus, and the tribe
memory interface returns to global the selected event count
every cycle via the event bus. The events counted are:

[0735]
[0736]
[0737]
[0738]
[0739]
[0740]
[0741]

length of request queue
length of return queue
write/read issued

forwarded from write buffer
global request stall

global response stall

tribe request stall

Tribe Block Microarchitecture Porthos Chip
[0742] Overview

[0743] A Tribe block 104 (See FIG. 1) contains a multi-
threaded pipeline that implements the processing of instruc-
tions. It fits into the overall Porthos chip microarchitecture
as shown in FIG. 33. The Tribe microarchitecture is shown
in FIG. 34, which illustrates the modules that implement the
Tribe and the major data path connections between those
modules.

[0744] A Tribe contains an instruction cache and register
files for 32 threads. The tribe block interfaces with the
Network block (for handing packet buffer reads and writes),
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the Interconnect block (for handling thread migration) and
the Memory block (for handling local memory reads and
writes).

[0745] Interfaces

[0746] FIG. 30 shows interface to the Memory block.
[0747] FIG. 31 shows interface to the Network block.
[0748] FIG. 32 shows interface to the Interconnect block.
[0749] Tribe Detailed Description

[0750] The Tribe block conists of three decoupled pipe-

lines. The fetch logic and instruction cache form a fetch unit
that will fetch from two threads per cycle according to thread
priority among the threads that have a fetch available to be
performed. The Stream block within the Tribe contains its
own state machine that sequences reads and writes to the
register file and executes certain instructions. Finally the
scheduler, global ALU and memory modules form an
execute unit that schedules operations based on global
priority among the set of threads that have an instruction
available for scheduling. At most one instruction per cycle
is scheduled from any given thread. Globally, up to three
instructions can be scheduled in a single cycle, but some
instructions can be fully executed within the Stream block,
not requiring global scheduling. Thus, the maximum rate of
instruction execution is actually determined by the fetch
unit, which can fetch up to eight instructions each cycle. A
sustained execution rate of five to six instructions per cycle
is expected.

[0751] TIostruction Fetch

[0752] The instruction fetch mechanism fetches four
instructions from two threads for a total fetch bandwidth of
eight instructions. The fetch unit includes decoders so that
four decoded instructions are delivered to two different
stream modules in each cycle. There is a 16 K byte instruc-
tion cache shared by all threads that is organized as 1024
lines of 16 bytes each, separated into four ways of 256 lines.
The fetch mechanism is pipelined, with the tags accessed in
the same cycle as the data. The fetch pipeline is illustrated
in FIG. 35. In an alternative embodiment, the tag read for all
ways is pipelined with the data read for only the way that
that contains valid data. This increases the overall fetch
pipeline by one cycle, but it would significantly reduce the
amount of power and the wiring required to support the
instruction cache.

[0753] Stream Modules

[0754] The Stream modules (one per stream for a total of
32 within the Tribe block) are responsible for sequencing
reads and writes to the register files, executing branch
instructions, and handling certain other arithmetic and logic
operations. A Stream module receives two decoded instruc-
tions at a time from the Fetch mechanism and saves them for
later processing. One instruction is processed at a time, with
some instructions taking multiple cycles to process. Since
there is only a single port to the register file, all reads and
writes must be sequenced by the Stream block. The basic
pipeline of the Stream module is shown in FIG. 36. Note
that in cases where only a single operand needs to be read
from the register file, the instruction would be available for
global scheduling with only a single RF read stage. Each
register contains a ready bit that is used to determine if the
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most recent version of a register is in the register file, or it
will be written by an outstanding memory load or ALU
instruction.

[0755] Writes returning from the Network block and the
Memory block must also be sequenced to the register file.
The register write sequencing pipeline of the Stream block
is shown in FIG. 37. When a memory instruction, or an
instruction for the global ALU is encountered, the operation
matrix, or OM, register is updated to reflect a request to the
global scheduling and execute mechanism.

[0756] Branch instructions are executed within the Stream
module as illustrated in FIG. 38. Branch operands can come
from the register file, or can come from outstanding memory
or ALU instructions. The branch operand registers are
updated in the same cycle in which the write to the register
file is scheduled. This allows the execution of the branch to
take place in the following cycle. Since branches are
delayed, the instruction after the branch instruction must be
processed before the target of the branch can be fetched. The
carliest that a branch delay slot instruction can be processed
is the same cycle that a branch is executed. Thus, a fetch
request can be made at the end of this cycle at the earliest.
The processing of the delay slot instruction would occur
later than this if it was not yet available from the Fetch
pipeline.

[0757] Scheduling and Execute

[0758] The scheduling and execute modules schedule up
to three instructions per cycle from three separate streams
and handle register writes back to the stream modules. The
execute pipeline is shown in FIG. 39. Streams are selected
based on what instruction is availabe for execution (only one
instruction per stream is considered a candidate), and on the
overall stream priority. Once selected, a stream will not be
able to selected in the following cycle since there is a
minimum two cycle feedback to the Stream block for
preparing another instruction for execution.

[0759] Thread Migration

[0760] The thread migration module is responsible for
migrating threads into the Tribe block and out of the Tribe
block. A thread can only be participating in migration if it is
not activlely executing instructions. During miration, a
single register read or write per cycle is processed by the
Stream module and sent to the Interconnect block. A migra-
tion may contain any number of registers. When an inactive
stream is migrated in, all registers that are not explicitly
initialized are set invalid. An invalid register will always
return O if read. A single valid bit per register allows the
register file to behave as if all registers are initialized to zero
when a thread is initialized.

[0761] In an alternative embodiment, thread migration is
automatic and under hardware control. Hardware in each of
the tribes monitors the frequency of accesses to a remote
local memory vs. accesses to its own local memory. If a
certain threshold is reached, or based on a predictive algo-
rithm, the thread is automatically migrated by the hardware
to another tribe for which a higher percentage of local
accesses will occur. In this case migration is transparent to
software.
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[0762] Thread Priority and Flow Gating

[0763] Thread priority (used for fetch scheduling and
execute scheduling) are maintained by the “LStream” mod-
ule. This module also maintains a gateability vector used to
implement FlowGating. The LStream module is responsible
for determining for each thread whether or not it should stall
upon the execution of a “GATE” instruction, or should stall.
This single bit per thread is exported to each Stream block.
Any time a change is made to any CPO register that can
potentially affect gateability, the LStream module will
export all 0’s on its gateability vector (indicating no thread
can proceed past a GATE), until a new gateability vector is
computed. Changes that affect gateability are rare. They are
as follows:

[0764] 1. A new thread is created, it will be migrated
in with its own sequence number, gate vector and
flow ID register;

[0765] 2.An existing thread is deactivated, either due
to a DONE instruction or a NEXT instruction
(migration out to another tribe);

[0766] 3. A thread explicitly updates one of its gate-
ability CPO registers (sequence number, gate vector,
flow ID)using the MTCO instruction.

[0767] Debugging and Performance Monitoring

[0768] The Tribe block contains debugging hardware to
assist software debugging and performance counters to
assist in architecture modeling.

[0769] All of the above description and teaching is specific
to a single implementation of the present invention, and it
should be clear to the skilled artisan that there are many
alterations and amendments that might be made to the
example provided, without departing from the spirit and
scope of the invention. For example, the aggressively multi-
threaded architecture may be accomplished with more or
fewer tribes. Many unique and novel features stand alone
without the limitation of a tribe architecture at all. Intercon-
nection and communication among the many parts of the
Porthos chip may be accomplished in a variety of ways
within the spirit and scope of the invention.

[0770] In addition to the above, in some embodiments of
the Porthos chip a portion of the packet buffer memory can
be configured as “shared” memory for all the tribes. This
portion will not be used by the logic that decides where the
incoming packet will be stored into. Therefore, this portion
of shared memory is available for the tribes for any storage
purpose. In addition the ports to the packet buffer can be
used for both types of accesses (to packet data and to the
shared portion).

[0771] In some embodiments software can configure the
size of the shared portion of the packet buffer. One imple-
mentation of this configuration mechanism allows software
to set aside either half, one fourth or none of the packet
buffer as shared memory. The shared memory can be used to
store data that is global to all the processing cores, but it can
also be divided into the different cores so that each core has
its own space, thus no mutually exclusive operation is
needed to allocate memory space.

[0772] In some embodiments the division of the shared
space into the different processing cores and/or threads may
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provide storage for the stack of each thread. For those
threads in which life corresponds to the life of the packet, the
header growth offset mechanism may be used to provide
storage space for the stack. For those threads that operate on
more than a packet, or that need the stack after completing
and sending out the processed packet, a persistent space is
needed for the stack; for these threads, space in the external
memory (long latency) or in the shared portion of the packet
buffer (short latency) is required.

[0773] Further to the above, in some embodiments the
header growth offset mechanism is intended for software to
have some empty space at the beginning of the packet in
case the header of the packet has to grow in a few bytes.
Note that software may also use this mechanism to guaran-
tee that there is space at the end of a packet A by using the
header growth offset space that will be set aside for a future
incoming packet B that will be stored after packet A. Even
if packet B has still not arrived, software can use the space
at the end of packet A since it is guaranteed that either that
space has still not been assigned to any packet, or will be
assigned to packet B without modifying its content when
this occurs. The header growth offset can also be shared
among the incoming packet B and the packet stored right
above A, as long as the upper space of the growth offset used
as tail growth offset of packet A does not overlap with the
lower space of the growth offset used as head growth offset
of packet B.

[0774] There are similarly many other alterations that may
be made within the spirit and scope of the invention.

What is claimed is:
1. A method implemented by a multi-threaded packet
processing engine, comprising:

executing a particular thread to process a particular
packet, wherein the particular packet is part of a flow,
wherein the flow comprises one or more other packets,
wherein the other packets are processed by one or more
other threads, and wherein the particular packet has a
particular seniority relative to the other packets in the
flow;

reaching, by the particular thread, a particular stage of
execution;

determining whether there are any threads that are pro-
cessing more senior packets in the flow that have not
yet progressed beyond the particular stage of execution;
and

in response to a determination that there is at least one
thread that is processing a more senior packet in the
flow that has not yet progressed beyond the particular
stage of execution, stalling execution of the particular
thread.

2. The method of claim 1, further comprising:

in response to a determination that there is no thread that
is processing a more senior packet in the flow that has
not yet progressed beyond the particular stage of execu-
tion, allowing the particular thread to proceed with
entering the particular stage of execution.

3. The method of claim 1, wherein a thread has progressed
beyond the particular stage of execution if that thread has
entered and exited the particular stage of execution.

4. The method of claim 1, wherein determining whether
there are any threads that are processing more senior packets
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in the flow that have not progressed beyond the particular
stage of execution comprises:

checking a value of a particular portion of a gateability
vector, wherein the particular portion is associated with
the particular thread.

5. The method of claim 1, wherein determining whether
there are any threads that are processing more senior packets
in the flow that have not yet progressed beyond the particular
stage of execution comprises:

determining whether there are any threads that are pro-

cessing one or more of the other packets in the flow.

6. The method of claim 5, wherein determining whether

there are any threads that are processing more senior packets

in the flow that have not yet progressed beyond the particular
stage of execution further comprises:

in response to a determination that there are one or more
threads that are processing one or more of the other
packets in the flow, determining whether any of those
threads are processing packets in the flow that are more
senior than the particular packet.

7. The method of claim 6, wherein determining whether
there are any threads that are processing more senior packets
in the flow that have not yet progressed beyond the particular
stage of execution further comprises:

in response to a determination that there are one or more
threads that are processing packets in the flow that are
more senior than the particular packet, determining
whether any of those threads have not yet progressed
beyond the particular stage of execution.
8. The method of claim 1, wherein reaching the particular
stage of execution comprises:

executing a gate instruction that causes the particular
thread to determine whether there are any threads that
are processing more senior packets in the flow that have
not yet progressed beyond the particular stage of execu-
tion.
9. A method implemented by a multi-threaded packet
processing engine, comprising:

executing a first thread to process a first packet, wherein
the first packet is part of a flow, and wherein the first
packet has a seniority relative to other packets in the
flow;

executing a second thread to process a second packet,
wherein the second packet is part of the same flow, and
wherein the second packet is less senior than the first
packet;

reaching, by the second thread, a particular stage of
execution;

determining whether the first thread has progressed
beyond the particular stage of execution; and

in response to a determination that the first thread has not
yet progressed beyond the particular stage of execution,
stalling execution of the second thread.
10. The method of claim 9, wherein determining whether
the first thread has progressed beyond the particular stage of
execution comprises:

determining whether the first thread has entered and
exited the particular stage of execution.
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11. The method of claim 9, wherein the first packet has a
first flow ID, wherein the second packet has a second flow
ID which is the same as the first flow ID, and wherein
determining whether the first thread has progressed beyond
the particular stage of execution comprises:

comparing the second flow ID with the first flow ID to
determine whether the first and second packets are from
the same flow.
12. The method of claim 11, wherein the first packet has
a first seniority indicator and the second packet has a second
seniority indicator, and wherein determining whether the
first thread has progressed beyond the particular stage of
execution further comprises:

comparing the second seniority indicator with the first
seniority indicator to determine whether the first packet
is more senior than the second packet.

13. The method of claim 12, wherein the first thread has
an associated first execution progress indicator and the
second thread has an associated second execution progress
indicator, and wherein determining whether the first thread
has progressed beyond the particular stage of execution
further comprises:

processing the first and second execution progress indi-
cators to determine whether the first thread has pro-
gressed beyond the particular stage of execution.
14. The method of claim 13, wherein the first thread has
a first gate vector register associated therewith, wherein the
second thread has a second gate vector associated therewith,
wherein the first execution progress indicator is stored in the
first gate vector register and the second execution progress
indicator is stored in the second gate vector register, and
wherein processing the first and second execution progress
indicators comprises:

accessing the first and second gate vector registers to
obtain the first and second execution progress indica-
tors; and

comparing the first and second execution progress indi-
cators.
15. The method of claim 9, wherein determining whether
the first thread has progressed beyond the particular stage of
execution comprises:

checking a value of a particular portion of a gateability
vector, wherein the particular portion is associated with
the second thread.
16. The method of claim 9, wherein reaching the particu-
lar section of instructions comprises:

executing a gate instruction that causes the second thread
to determine whether the first thread has progressed
beyond the particular stage of execution.
17. The method of claim 16, wherein determining whether
the first thread has progressed beyond the particular stage of
execution comprises:

determining whether the first thread has entered and
exited the particular stage of execution.
18. A multi-threaded packet processing engine, compris-
ing:

a first set of processing resources for executing a first
thread to process a first packet, wherein the first packet
is part of a flow, and wherein the first packet has a
seniority relative to other packets in the flow; and
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a second set of processing resources for executing a
second thread to process a second packet, wherein the
second packet is part of the same flow, and wherein the
second packet is less senior than the first packet, the
second set of processing resources comprising an
instruction execution mechanism, the instruction
execution mechanism executing the second thread until
a particular stage of execution is reached, and upon
reaching the particular stage of execution, the instruc-
tion execution mechanism determining whether the
first thread has progressed beyond the particular stage
of execution, and in response to a determination that the
first thread has not yet progressed beyond the particular
stage of execution, the instruction execution mecha-
nism causing execution of the second thread to stall.

19. The packet processing engine of claim 18, wherein the
first and second sets of processing resources are separate and
distinct.

20. The packet processing engine of claim 18, wherein the
instruction execution mechanism executes a gate instruction
when it reaches the particular stage of execution, the gate
instruction causing the instruction execution mechanism to
determine whether the first thread has progressed beyond the
particular stage of execution, and to stall execution of the
second thread if the first thread has not yet progressed
beyond the particular stage of execution.

21. The packet processing engine of claim 20, wherein the
gate instruction is a processor-level instruction.

22. The packet processing engine of claim 18, wherein the
instruction execution mechanism determines whether the
first thread has progressed beyond the particular stage of
execution by determining whether the first thread has
entered and exited the particular stage of execution.

23. The packet processing engine of claim 18,

wherein the first set of processing resources comprises a
first ID register for storing a first flow ID associated
with the first packet;

wherein the second set of processing resources comprises
a second ID register for storing a second flow ID
associated with the second packet; and

wherein the instruction execution mechanism determines
whether the first thread has progressed beyond the
particular stage of execution by, at least, comparing the
first and second flow ID’s to determine whether the first
and second packets are from the same flow.

24. The packet processing engine of claim 18,

wherein the first set of processing resources comprises a
first ID register for storing a first flow ID associated
with the first packet, and a first seniority register for
storing a first seniority indicator associated with the
first packet;

wherein the second set of processing resources comprises
a second ID register for storing a second flow ID
associated with the second packet, and a second senior-
ity register for storing a second seniority indicator
associated with the second packet; and

wherein the instruction execution mechanism determines
whether the first thread has progressed beyond the
particular stage of execution by, at least, comparing the
first and second flow ID’s to determine whether the first
and second packets are from the same flow, and com-
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paring the first and second seniority indicators to deter-
mine whether the first packet is more senior than the
second packet.

25. The packet processing engine of claim 18,

wherein the first set of processing resources comprises a
first ID register for storing a first flow ID associated
with the first packet, a first seniority register for storing
a first seniority indicator associated with the first
packet, and a first progress register for storing a first
execution progress indicator associated with the first
thread;

wherein the second set of processing resources comprises
a second ID register for storing a second flow ID
associated with the second packet, a second seniority
register for storing a second seniority indicator associ-
ated with the second packet, and a second progress
register for storing a second execution progress indi-
cator associated with the second thread; and

wherein the instruction execution mechanism determines
whether the first thread has progressed beyond the
particular stage of execution by, at least, comparing the
first and second flow ID’s to determine whether the first
and second packets are from the same flow, comparing
the first and second seniority indicators to determine
whether the first packet is more senior than the second
packet, and processing the first and second execution
progress indicators to determine whether the first thread
has progressed beyond the particular stage of execu-
tion.

26. The packet processing engine of claim 25, wherein the
first progress register is a first gate vector register, and
wherein the second progress register is a second gate vector
register.

27. The packet processing engine of claim 25, wherein the
first and second ID registers, the first and second seniority
registers, and the first and second execution progress regis-
ters are dedicated, processor-level registers.

28. The packet processing engine of claim 27, wherein the
first and second sets of processing resources are separate and
distinct.

29. The packet processing engine of claim 18, wherein the
instruction execution mechanism determines whether the
first thread has progressed beyond the particular stage of
execution by checking a value of a particular portion of a
gateability vector, wherein the particular portion is associ-
ated with the second thread.

30. A method implemented by a multi-threaded packet
processing engine, comprising:

executing a first thread to process a first packet, the first
packet having a seniority relative to other packets;

executing a second thread to process a second packet,
wherein the second packet is less senior than the first
packet;

reaching, by the second thread, a particular stage of
execution;

determining whether the first thread has progressed
beyond the particular stage of execution; and

in response to a determination that the first thread has not
yet progressed beyond the particular stage of execution,
stalling execution of the second thread.
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31. The method of claim 30, wherein determining whether
the first thread has progressed beyond the particular stage of
execution comprises:

determining whether the first thread has entered and
exited the particular stage of execution.
32. The method of claim 30, wherein the first packet has
a first seniority indicator and the second packet has a second
seniority indicator, and wherein determining whether the
first thread has progressed beyond the particular stage of
execution comprises:

comparing the second seniority indicator with the first
seniority indicator to determine whether the first packet
is more senior than the second packet.

33. The method of claim 32, wherein the first thread has
an associated first execution progress indicator and the
second thread has an associated second execution progress
indicator, and wherein determining whether the first thread
has progressed beyond the particular stage of execution
further comprises:

processing the first and second execution progress indi-
cators to determine whether the first thread has pro-
gressed beyond the particular stage of execution.
34. The method of claim 33, wherein the first thread has
a first gate vector register associated therewith, wherein the
second thread has a second gate vector associated therewith,
wherein the first execution progress indicator is stored in the
first gate vector register and the second execution progress
indicator is stored in the second gate vector register, and
wherein processing the first and second execution progress
indicators comprises:

accessing the first and second gate vector registers to
obtain the first and second execution progress indica-
tors; and

comparing the first and second execution progress indi-
cators.
35. The method of claim 30, wherein determining whether
the first thread has progressed beyond the particular stage of
execution comprises:

checking a value of a particular portion of a gateability
vector, wherein the particular portion is associated with
the second thread.
36. The method of claim 30, wherein reaching the par-
ticular section of instructions comprises:

executing a gate instruction that causes the second thread
to determine whether the first thread has progressed
beyond the particular stage of execution.
37. The method of claim 36, wherein determining whether
the first thread has progressed beyond the particular stage of
execution comprises:

determining whether the first thread has entered and
exited the particular stage of execution.
38. A multi-threaded packet processing engine, compris-
ing:

a first set of processing resources for executing a first
thread to process a first packet, the first packet having
a seniority relative to other packets; and

a second set of processing resources for executing a
second thread to process a second packet, wherein the
second packet is less senior than the first packet, the
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second set of processing resources comprising an
instruction execution mechanism, the instruction
execution mechanism executing the second thread until
a particular stage of execution is reached, and upon
reaching the particular stage of execution, the instruc-
tion execution mechanism determining whether the
first thread has progressed beyond the particular stage
of execution, and in response to a determination that the
first thread has not yet progressed beyond the particular
stage of execution, the instruction execution mecha-
nism causing execution of the second thread to stall.

39. The packet processing engine of claim 38, wherein the
first and second sets of processing resources are separate and
distinct.

40. The packet processing engine of claim 38, wherein the
instruction execution mechanism executes a gate instruction
when it reaches the particular stage of execution, the gate
instruction causing the instruction execution mechanism to
determine whether the first thread has progressed beyond the
particular stage of execution, and to stall execution of the
second thread if the first thread has not yet progressed
beyond the particular stage of execution.

41. The packet processing engine of claim 40, wherein the
gate instruction is a processor-level instruction.

42. The packet processing engine of claim 38, wherein the
instruction execution mechanism determines whether the
first thread has progressed beyond the particular stage of
execution by determining whether the first thread has
entered and exited the particular stage of execution.

43. The packet processing engine of claim 38,

wherein the first set of processing resources comprises a
first seniority register for storing a first seniority indi-
cator associated with the first packet;

wherein the second set of processing resources comprises
a second seniority register for storing a second seniority
indicator associated with the second packet; and

wherein the instruction execution mechanism determines
whether the first thread has progressed beyond the
particular stage of execution by, at least, comparing the
first and second seniority indicators to determine
whether the first packet is more senior than the second
packet.

44. The packet processing engine of claim 38,

wherein the first set of processing resources comprises a
first seniority register for storing a first seniority indi-
cator associated with the first packet, and a first
progress register for storing a first execution progress
indicator associated with the first thread;

wherein the second set of processing resources comprises
a second seniority register for storing a second seniority
indicator associated with the second packet, and a
second progress register for storing a second execution
progress indicator associated with the second thread;
and

wherein the instruction execution mechanism determines
whether the first thread has progressed beyond the
particular stage of execution by, at least, comparing the
first and second seniority indicators to determine
whether the first packet is more senior than the second
packet, and processing the first and second execution
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progress indicators to determine whether the first thread
has progressed beyond the particular stage of execu-
tion.

45. The packet processing engine of claim 44, wherein the
first progress register is a first gate vector register, and
wherein the second progress register is a second gate vector
register.

46. The packet processing engine of claim 44, wherein the
first and second ID registers, the first and second seniority
registers, and the first and second execution progress regis-
ters are dedicated, processor-level registers.

Nov. 3, 2005

47. The packet processing engine of claim 46, wherein the
first and second sets of processing resources are separate and
distinct.

48. The packet processing engine of claim 38, wherein the
instruction execution mechanism determines whether the
first thread has progressed beyond the particular stage of
execution by checking a value of a particular portion of a
gateability vector, wherein the particular portion is associ-
ated with the second thread.



