(54) 发明名称
偏光板及其制造方法

(57) 摘要
本发明提供了一种偏光板及其制造方法。该
制造偏光板的方法，包括：提供偏光层，在偏光\n层的一侧形成第一透光层，第一透光层具有第二
力(T1)；在偏光层的另一侧形成第二透光层，
以形成偏光膜，其中第二透光层具有第二张力
(T2)；干燥偏光膜；以及在偏光膜的第二透光层
上形成保护层，保护层具有第三张力(T3)。其中，
第一张力、第二张力及第三张力在上述步骤中加
以控制，使得张力比不大于一预定值以控制偏光
板的翘曲程度，张力比与第一张力、第二张力及第
三张力的关系为：TR = (T1/T2)/T3。根据本发明
的偏光板包括偏光层、第一透光层、第二透光层以
及保护层。
权利要求书

1. 一种制造偏光板的方法，包括：
 提供一偏光层；
 在所述偏光层的一侧形成第一透光层，所述第一透光层具有第一张力 T1；
 在所述偏光层的另一侧形成第二透光层，以形成一偏光膜，其中所述第二透光层具有
 第二张力 T2；
 干燥所述偏光膜；以及
 在所述偏光膜的所述第二透光层上形成保护层，所述保护层具有第三张力 T3。
 其中，在上述步骤中控制所述第一张力、所述第二张力以及所述第三张力，以使一张力
 比 TR 不大于一预定值以控制所述偏光板的翘曲程度，所述张力比与所述第一张力、所述第
 二张力及所述第三张力的关系为：TR = T1/T2/T3。

2. 根据权利要求 1 所述的方法，其中，当所述第二透光层的厚度对所述第一透光层的
 厚度的比值为约 0.882 至约 1.16 时，所述张力比 TR 不大于 0.0132。

3. 根据权利要求 2 所述的方法，其中，通过控制所述张力比 TR 不大于 0.0132，使得所
 述偏光板在幅宽方向的翘曲值小于所述张力比 TR 大于 0.0132 时的所述偏光板在幅宽方向
 的翘曲值。

4. 根据权利要求 1 所述的方法，其中，当所述第二透光层的厚度对所述第一透光层的
 厚度的比值为约 1.666 至约 2.486 时，所述张力比 TR 不大于 0.0056。

5. 根据权利要求 4 所述的方法，其中，通过控制所述张力比 TR 不大于 0.0056，使得所
 述偏光板在延伸方向的翘曲值不小于 0。

6. 根据权利要求 1 所述的方法，其中，所述提供一偏光层的步骤包括：
 提供一亲水性高分子膜；
 染色所述亲水性高分子膜；以及
 延伸所述染色后的亲水性高分子膜以形成所述偏光层。

7. 根据权利要求 6 所述的方法，其中，所述提供所述亲水性高分子膜的步骤包括提供
 一聚乙烯醇膜。

8. 根据权利要求 6 所述的方法，其中，所述染色所述亲水性高分子膜的步骤包括：
 将所述亲水性高分子膜浸泡在一水溶液中；以及
 将所述亲水性高分子膜浸泡在含碘与硼酸的水溶液中。

9. 根据权利要求 1 所述的方法，其中，所述在所述偏光层的一侧形成所述第一透光层
 的步骤还包括提供第一涂层以卷出所述第一透光层，以及提供第一压合滚轮组以贴合所述
 第一透光层与所述偏光层，其中通过所述第一滚轮及所述第一压合滚轮组分别对所述第一
 透光层施以一应力使得所述第一透光层具有所述第一张力。

10. 根据权利要求 1 所述的方法，其中，所述在所述偏光层的另一侧形成所述第二透光
 层的步骤还包括提供第二滚轮以卷出所述第二透光层，以及提供第一压合滚轮组以贴合所
 述第二透光层与所述偏光层，其中通过所述第二滚轮及所述第一压合滚轮组分别对所述第
 二透光层施以一应力使得所述第二透光层具有所述第二张力。

11. 根据权利要求 1 所述的方法，其中，所述在所述偏光膜的所述第二透光层上形成所
 述保护层的步骤还包括提供第三滚轮以卷出所述保护层，以及提供第二压合滚轮组以贴合
 所述保护层与所述偏光膜，其中通过所述第三滚轮及所述第二压合滚轮组分别对所述保护
12. 根据权利要求 1 所述的方法，其中，在所述偏光层的一侧形成所述第一透光层以及在所述偏光层的另一侧形成所述第二透光层的所述步骤中，所述第一透光层及所述第二透光层的材料包含三醋酸纤维素、聚对苯二甲酸乙二醇酯或聚碳酸酯。

13. 根据权利要求 1 所述的方法，其中，在所述偏光层的另一侧形成所述第二透光层的所述步骤中，包括形成具有光学镀层的所述第二透光层，且所述光学镀层包含硬膜、抗反射膜、低反射膜、抗眩膜或抗静电膜。

14. 根据权利要求 1 所述的方法，其中，在所述偏光层的一侧形成所述第一透光层的步骤后，还包括在所述第一透光层上形成光学层，且所述光学层包含反射膜、半透反射膜、相位差膜、视觉补偿膜或增亮膜。

15. 根据权利要求 1 所述的方法，其中，在所述偏光片的所述第二透光层上形成所述保护层的步骤后，还包括在所述第一透光层上形成感压胶层及离型层。

16. 一种偏光板，包括：

- 偏光层；
- 第一透光层，位于所述偏光层的一侧；
- 第二透光层，位于所述偏光层的另一侧，其中所述第一透光层及所述第二透光层形成于所述偏光层之前，所述第一透光层具有第一张力 T1 且所述第二透光层具有第二张力 T2；以及
- 保护层，位于所述第二透光层上，其中所述保护层形成于所述第二透光层之前，所述保护层具有第三张力 T3。

其中，所述第一张力、所述第二张力与所述第三张力具有一张力比 TR，其关系式为：

\[TR = T1/T2/T3 \]

且所述偏光板通过控制所述张力比 TR 不大于一预定值来控制翘曲程度。

17. 根据权利要求 16 所述的偏光板，其中，当所述第二透光层的厚度对所述第一透光层的厚度比值为约 0.882 至约 1.16 时，所述张力比 TR 不大于 0.0132。

18. 根据权利要求 17 所述的偏光板，其中，由于所述张力比 TR 不大于 0.0132，使得所述偏光板在宽度方向的翘曲值小于所述张力比 TR 大于 0.0132 时的所述偏光板在宽度方向的翘曲值。

19. 根据权利要求 16 所述的偏光板，其中，当所述第二透光层的厚度对所述第一透光层的厚度比值为约 1.666 至约 2.486 时，所述张力比 TR 不大于 0.0056。

20. 根据权利要求 19 所述的偏光板，其中，所述张力比 TR 不大于 0.0056，使得所述偏光板在延伸方向的翘曲值不小于 0。

21. 根据权利要求 16 所述的偏光板，其中，所述第一透光层的厚度为约 40 μm。

22. 根据权利要求 16 所述的偏光板，其中，所述偏光层为经过延伸的亲水性高分子膜。

23. 根据权利要求 16 所述的偏光板，其中，所述偏光层为含碘的聚乙烯醇膜。

24. 根据权利要求 16 所述的偏光板，其中，所述第一透光层及所述第二透光层的材料包含三醋酸纤维素、聚对苯二甲酸乙二醇酯或聚碳酸酯。

25. 根据权利要求 16 所述的偏光板，其中，所述第二透光层包含光学镀层，且所述光学镀层包含硬膜、抗反射膜、低反射膜、抗眩膜或抗静电膜。

26. 根据权利要求 16 所述的偏光板，还包括在所述第一透光层上的光学层，且所述光
学层包含反射膜、半穿透反射膜、相位差膜、视角补偿膜或增亮膜。

27. 根据权利要求 16 所述的偏光板，还包括一黏着层，介于所述偏光层与所述第一透光层之间，且所述黏着层由亲水性的聚乙烯醇树脂形成。

28. 根据权利要求 16 所述的偏光板，还包括在所述第一透光层上的感压胶层及离型层。
偏光板及其制造方法

技术领域
[0001] 本发明总体上涉及一种偏光板及其制造方法，更特别地，涉及一种可控制翘曲程度的偏光板及其制造方法。

背景技术
[0002] 近年来由于液晶屏幕的可视面积变大，所要求的对比度增加，其所需要的偏光板也需具有较高的质量。而不管大小尺寸还是大尺寸的液晶屏幕均需要厚度较薄的偏光板来达到其质量轻薄的要求。
[0003] 然而偏光板变薄后，当面板厂进行液晶玻璃上的偏光板片贴时，常会发生一些问题，例如翘曲、剥离（peeling）、产生气泡或工艺重复性差等问题，尤其以具有两片不同厚度的三醋酸纤维薄膜（TAC）的偏光板的翘曲问题更为严重。以32寸以上的TV面板来说，在后段面板制造时，若要使用薄型化偏光板常会导至翘曲或工艺重复性不佳。这些问题大都是因为偏光板薄型化所导致，而针对大尺寸偏光板而言，如何使其厚度与工艺重复性达到巧妙平衡是目前一重要的课题。
[0004] 已知改善翘曲的方法有用薄膜结构替换红外光谱仪（FTIR），针对偏光板两侧的三醋酸纤维薄膜中增塑剂的含量比例监测，由此控制不易翘曲的偏光板的生产状况。然而，此测量方法会因为取样位置的差异与仪器误差范围的精确度上的困扰，使得此方法并不可行。另外，已知也有利用使具有不同翘曲方向的TAC膜与偏光层粘合，或是在控制材料厚度及贴合前的滚轮与贴合轮的距离成一比值且控制此比值小于60，由此抑制了所制造的偏光板的翘曲，然而此法因其操作机制的不同，在不同条件下的经常无法获得佳效的再现性。
[0005] 因此，需要可在不增加工艺困难度的情况下，优选是不变动机器设备的情况下，提供一种可生产不易发生翘曲或不易发生负翘的偏光板及其形成的方法。

发明内容
[0006] 本发明的一个方面在于提供一种制造偏光板的方法，以在不增加工艺困难度的情况下，使所生产的偏光板可有效地降低翘曲变形现象。
[0007] 在一实施例中，本发明提供了一种制造偏光板的方法，包括：提供偏光片；在偏光片的一侧形成第一透光层，第一透光层具有第一张力（T1）；在偏光片的另一侧形成第二透光层，以形成偏光板，其中第二透光层具有第二张力（T2）；干燥偏光板，以及在偏光板的第二透光层上形成保护层，保护层具有第三张力（T3）。其中，第一张力、第二张力及第三张力在上述步骤中被加以控制，以使一力比（tension ratio, TR）不大于一预定值以控制偏光板的翘曲程度，张力比与第一张力、第二张力及第三张力的关系为：\(TR = (T1/T2)/T3 \)。
[0008] 在前述实施例中，当第二透光层的厚度对第一透光层的厚度比值为约0.882至约1.16时，张力比（TR）不大于0.0132。且通过控制张力比（TR）不大于0.0132，使得偏光板在幅宽方向（traversedirection, TD）的翘曲值小于张力比（TR）大于0.0132时的偏光板在幅宽方向的翘曲值。
说明书

在前述实施例中，当第二透光层的厚度对第一透光层的厚度比值约为 1.666 至约 2.486 时，张力比（TR）不大于 0.0056。且通过控制张力比（TR）不大于 0.0056，使得偏光板在一定延伸方向（machinedirection，MD）的翘曲值不小于 0。

根据本发明的制造偏光板的方法，其中，当该第二透光层的厚度对该第一透光层的厚度的比值为约 0.882 至约 1.16 时，该张力比（TR）不大于 0.0132。

根据本发明的制造偏光板的方法，其中，通过控制张力比（TR）不大于 0.0132，使得该偏光板在一宽宽方向的翘曲值小于该张力比（TR）大于 0.0132 时的该偏光板在一定宽方向的翘曲值。

根据本发明的制造偏光板的方法，其中，当该第二透光层的厚度对该第一透光层的厚度的比值为约 1.666 至约 2.486 时，该张力比（TR）不大于 0.0056。

根据本发明的制造偏光板的方法，其中，通过控制张力比（TR）不大于 0.0056，使得该偏光板在一延伸方向的翘曲值不小于 0。

根据本发明的制造偏光板的方法，其中，该提供一偏光层的步骤包括：提供一亲水性高分子膜；染色该亲水性高分子膜，以及延伸该染色后的亲水性高分子膜以形成该偏光层。

根据本发明的制造偏光板的方法，其中，该提供该亲水性高分子膜的步骤包括提供一聚乙烯醇（polyvinyl alcohol）膜。

根据本发明的制造偏光板的方法，其中，该染色该亲水性高分子膜的步骤包括：将该亲水性高分子膜浸泡在一水溶液中，以及将该亲水性高分子膜浸泡在含碘与硼酸的水溶液中。

根据本发明的制造偏光板的方法，其中，在该偏光层的一侧形成该第一透光层的步骤还包括提供第一滚轮以卷出该第一透光层，以及提供第一压合滚轮组以贴合该第一透光层与该偏光层，其中通过该第一滚轮及该第一压合滚轮组分别对该第一透光层施以一应力使得该第一透光层具有该第一张力。

根据本发明的制造偏光板的方法，其中，在该偏光层的另一侧形成该第二透光层的步骤还包括提供第二滚轮以卷出该第二透光层，以及提供第二压合滚轮组以贴合该第二透光层与该偏光层，其中通过该第二滚轮及该第二压合滚轮组分别对该第二透光层施以一应力使得该第二透光层具有该第二张力。

根据本发明的制造偏光板的方法，其中，在该偏光膜的该第二透光层上形成该保护层的步骤还包括提供第三滚轮以卷出该保护层，以及提供第二压合滚轮组以贴合该保护层与该偏光膜，其中通过该第三滚轮及该第二压合滚轮组分别对该保护层施以一应力使得该保护层具有该第三张力。

根据本发明的制造偏光板的方法，其中，在该偏光层的一侧形成该第一透光层及在该偏光层的另一侧形成该第二透光层的步骤中，该第一透光层及该第二透光层的材质包含三醋酸纤维素（triacetylcellulose，TAC）、聚对苯二甲酸乙二醇酯（polyethyleneterephthalate，PET）或聚碳酸酯（polycarbonate，PC）。

根据本发明的制造偏光板的方法，其中，在该偏光层的另一侧形成该第二透光层的步骤中，包括形成具有光学镀层的该第二透光层，且该光学镀层包含硬镀膜（hard-coating film）、抗反射膜（anti-reflection film）、低反射膜（low reflection film）。
film）、抗眩膜（anti-glare film）或抗静电膜（anti-static film）。

根据本发明的制造偏光板的方法，其中在于该偏光层的一侧形成该第一透光层的步骤后，还包括在该第一透光层上形成光学层的步骤，且该光学层包含反射膜、半穿透反射膜、相位差膜、视角补偿膜或增亮膜。

根据本发明的制造偏光板的方法，其中在于该偏光膜的该第二透光层上形成保护层的步骤后，还包括在该第一透光层上形成感压胶层及离型层的步骤。

本发明的另一方面提供了一种偏光板，尤其是撕去离型膜后不易发生负翘现象的偏光板。

在一实施例中，本发明提供了一种偏光板，包括：偏光层、第一透光层、第二透光层及保护层。第一透光层位于偏光层的一侧，而第二透光层位于偏光层的另一侧，其中第一透光层及第二透光层形成于偏光层之前，第一透光层具有第一张力（T1），而第二透光层具有第二张力（T2）。保护层位于第二透光层上，其中保护层形成于第二透光层之前，保护层具有第三张力（T3）。其中，第一张力，第二张力与第三张力具有一张力比（TR），其关系式为：TR = (T1 / T2) / T3 + 1，且偏光板通过控制张力比（TR）不等于一预定值来控制翘曲程度。

根据本发明的偏光板，其中，当该第二透光层的厚度对该第一透光层的厚度比值为约0.882至约1.16时，该张力比（TR）不大于0.0132。

根据本发明的偏光板，其中，由于该张力比（TR）不大于0.0132，使得该偏光板在一幅宽方向的翘曲值小于该张力比（TR）大于0.0132时的该偏光板在一幅宽方向的翘曲值。

根据本发明的偏光板，其中，当该第二透光层的厚度对该第一透光层的厚度比值为约1.666至约2.486时，该张力比（TR）不大于0.0056。

根据本发明的偏光板，其中，该张力比（TR）不大于0.0056，使得该偏光板在一延伸方向的翘曲值不小于0。

根据本发明的偏光板，其中，该第一透光层的厚度为约40μm。

根据本发明的偏光板，其中，该偏光层为经过延伸的亲水性高分子膜。

根据本发明的偏光板，其中，该偏光层为含磷的聚乙烯醇膜。

根据本发明的偏光板，其中，第一透光层及该第二透光层的材质包含三醋酸纤维素、聚对苯二甲酸乙二醇酯或聚碳酸酯。

根据本发明的偏光板，其中，该第二透光层包含一光学镀层，该光学镀层包含硬镀膜、抗反射膜、低反射膜、抗眩膜或抗静电膜。

根据本发明的偏光板，还包括在该第一透光层上的光学层，且该光学层包含反射膜、半穿透反射膜、相位差膜、视角补偿膜或增亮膜。

根据本发明的偏光板，还包括一黏着层，介于该偏光层与该第一透光层之间，且该黏着层由亲水性的聚乙烯醇树脂形成。

根据本发明的偏光板，还包括在该第一透光层上的感压胶层及离型层。

附图说明

图1为示出了根据本发明的一实施例的形成偏光板的方法的流程图。

图2为示出了根据本发明的一实施的偏光板的剖面示意图。
说明书

具体实施方式

在下面将参照附图详细地描述本发明优选的实施例。然而，可以理解，本发明提供了多种适当的新颖概念、可以特定内容的广泛变化予以具体化。在此所讨论的特定实施例仅为制造及使用本发明的特定方式的说明，但并非以限定本发明的范围。

参考图1，其示出了在根据本发明的实施例中制造一偏光板的方法的流程图。首先参考步骤110，提供一偏光层。此处提供一偏光层的步骤包括提供一亲水性高分子膜（步骤112），然后染色该亲水性高分子膜（步骤114），接着延伸该染色后的亲水性高分子膜（步骤116），最后再将染色延伸后的亲水性高分子膜烘干以形成一偏光层。在此需注意的是，步骤112,114和116优选连续进行而不分开完成。在此实施例中，亲水性高分子膜优先地为聚乙烯醇膜，更优选地为聚合度2400的聚乙烯醇膜，而且经步骤112至116所形成的偏光层的厚度一般在20至35μm之间，偏光度优选地为99.9%以上，且单体穿透率在41%以上。

此外，在步骤114中，染色亲水性高分子膜的步骤还包括在25-35℃之间的温度下将聚乙烯醇胶液浸泡在水溶液中，接着浸泡在含碘与硼酸的水溶液中，以形成含碘的聚乙烯醇膜。此处将聚乙烯醇胶液浸泡在水溶液中是通过水溶液膨胀聚乙烯醇膜，因此当将膨胀后的聚乙烯醇膜浸泡在含碘与硼酸的水溶液中时，可快速地进行碘染色并将碘离子固定于聚乙烯醇膜中。在此实施例中，含碘与硼酸的水溶液可为含有硼酸和碘化钾的水溶液，其中硼酸的浓度在约3.0%～5.5wt%之间，碘化钾的浓度在2.0～6.0wt%之间。然而，本发明并不限于此，本领域的普通技术人员应当理解，本发明也可将膨胀后的聚乙烯醇膜浸泡在含有染料和硼酸等药剂的水溶液中，以形成含碘的聚乙烯醇膜。

接着，参照步骤120及图2，图2为根据本发明的一实施例所形成的偏光板20的剖面示意图。如图所示，在上述步骤所形成的偏光层210（如含碘的聚乙烯醇膜）上，接着在偏光层210的一侧形成第一透光层220，以及在偏光层210的另一侧形成第二透光层230，以形成一偏光板200。然而，本领域的普通技术人员应当了解，形成第一透光层220及第二透光层230的步骤也可颠倒，优选地为同时形成于偏光层210的两侧。一般而言，透光层用以保护偏光层，避免其断裂破损造成生产上的困扰，因此一般又将透光层称为保护层或保护膜等。其中第一透光层220和第二透光层230的材质包含三醋酸纤维素、聚对苯二甲酸乙二醇酯或聚碳酸酯等。在此实施例中，第一透光层220和第二透光层230以分别具有第一张力（T1）和第二张力（T2）的三醋酸纤维膜为例进行说明，然而，第一透光层和第二透光层的数量、材质及厚度也可视实际设计需求而变化，并不限于本实施例中所例示的。

在形成偏光板200后，将该偏光板200进行干燥（步骤130），该干燥步骤一般利用红外线烘烤或热风干燥等。然而，因为干燥步骤一般会造成偏光层（如聚乙烯醇胶）的内缩，且不同的干燥条件会有不同的尺寸变化量，因此干燥步骤除可为一次干燥外，优选使用多次干燥步骤由此调整其尺寸变化量。在一实施例中，本发明利用具有多区段可调控温度
和出风量的烘箱进行偏光膜 200 的干燥，例如在 50-80℃的烘箱中烘烤约 2-5 分钟，且此温度及烘烤时间可依实际情况及睫毛速度等因素进行调整。干燥后的偏光膜 200，如步骤 140，接着在偏光膜 200 的第二透光层 230 上形成具有第三张力 (T3) 的保护层 240，以保护第二透光层 230 在后续的生产流程中不会产生刮伤、压伤等的缺点。保护层 240 为已知具有易撕型粘着剂的对苯二甲酸乙二醇酯或聚乙烯醇 (polyethylene, PE) 等，在此不再赘述。另外，在实际实施中，也可接着在偏光膜 200 的第一透光层 220 上形成感压胶层及离型层，以形成偏光板 20，如步骤 150 所示。其中在后续将偏光板片贴在液晶玻璃上时，将会撕除离型层，以使感压胶层有效的片贴在显示装置中的液晶玻璃上。

[0049] 参照图 3，根据本发明的一优选具体实施例进一步提供制造偏光板 20 的方法的生产工艺示意图。在实施例中，本发明提供偏光层 210、第一透光层 220、第二透光层 230 及保护层 240 使形成如图 2 所示的偏光板 20 的结构。在另一实施例中，本发明另外提供第一滚轮 310、第二滚轮 320、第一压合滚轮组 330、第三滚轮 340、第二压合滚轮组 350 及烘箱 360 以连续式生产偏光板 20。如图所示，本发明通过第一滚轮 310 以卷出第一透光层 220，及通过第二滚轮 320 以卷出第二透光层 230，并以第一压合滚轮组 330 将第一透光层 220 和第二透光层 230 贴合在偏光层 210 的两侧上，以形成多层堆栈的偏光膜 200。在另一实施例中，在第一压合滚轮组 330 将第一透光层 220 和第二透光层 230 贴合于偏光层 210 的两侧时，也可同时在第一透光层 220 与偏光层 210 之间加入水凝胶层 (例如，PVA 水凝胶)，以增加两层间的粘着性。同理，也可在第二透光层 230 和偏光层 210 之间加入相同或不同的水凝胶层，以增加两层间的粘着性。

[0050] 接着，将此多层堆栈的偏光膜 200（可含有水凝胶层）在 50-80℃的烘箱 360 中烘烤约 3-5 分钟，以干燥偏光膜 200。然而，本领域技术人员应理解偏光膜 200 在烘箱 360 中的烘烤温度及时间等条件，均可依实际烘箱长度、生产机速、进风量、干燥程度等有所调整，且此烘烤温度条件优选为多段式温度梯度，例如 5 段式烘箱温度变化。其后，利用第三滚轮 340 卷出保护层 240，并用第二压合滚轮组 350 将保护层 240 贴合于第二透光层 230 上，以形成如图 2 所示的偏光板 20。

[0051] 其中，通过调整第一滚轮 310 的卷出速度及第一压合滚轮组 330 的转动速度与滚轮间隙大小，使贴合前的第一透光层 220 具有第一张力 (T1)。同样地，通过调整第二滚轮 320 的卷出速度及第一压合滚轮组 330 的转动速度与滚轮间隙大小，使贴合前的第二透光层 230 具有第二张力 (T2)。另一方面，贴合前的保护层 240 也可通过调整第三滚轮 340 的卷出速度与第二压合滚轮组 350 的转动速度与滚轮的压合间隙，使保护层 240 具有第三张力 (T3)。由实验结果可知，偏光板 20 的翘曲程度可通过在第一张力 (T1)、第二张力 (T2) 及第三张力 (T3) 加以控制，使一张力比 (TR) 不大于一预定值，以达到翘曲程度的控制。其中，张力比 (TR) 与第一张力 (T1)、第二张力 (T2) 及第三张力 (T3) 的关系为：\(TR = (T1 / T2) / T3 \)。

[0052] 如前所述，通过控制张力比 (TR) 不大于一预定值时，可对偏光板的翘曲程度进行控制。其中由实验结果得知，当第二透光层 230 的厚度对第一透光层 220 的厚度比值为约为 0.882，至约 1.16 时，张力比 (TR) 优选为不大于 0.0132。当第二透光层 230 的厚度对第一透光层 220 的厚度比值为约 1.666 至约 2.486 时，张力比 (TR) 为不大于 0.0056。举例来说，当第一透光层 220 与第二透光层 230 均厚为厚度约 80 μm 的三醋酸纤维膜 (TAC) 时，优选
地控制张力比（TR）不大于 0.0132，使得连续式生产的偏光板 20 在一宽度方向的翘曲值不小于张力比（TR）大于 0.0132 时的偏光板 20 在一宽度方向（TD）的翘曲值。在另一范例说明中，第一透光层 220 与第二透光层 230 可分别为厚度不同的三醋酸纤维膜（TAC），例如分别为约为 40 μm 与约 80 μm，其中通过控制张力比（TR）不大于 0.0056 时，使得偏光板 20 在一延伸方向的翘曲值不小于 0，即没有翘曲。

[0053] 为使本发明的叙述更加详尽与完备，参照图 4，本发明定义沿着参考标号 490 的箭头所指示的卷轴方向为延伸方向（MD），且此方向与偏光层 210 的延伸方向相同；并定义垂直延伸方向的方向为幅宽方向（TD），即偏光膜 200 两侧的宽度方向。另外定义偏光膜 200 或偏光板 20 朝保护层 240 方向的翘曲为正翘（即翘曲值大于 0），而朝第一透光层 220 方向的翘曲为负翘（即翘曲值小于 0）。

[0054] 参照图 5，示出了根据本发明的方法所形成的偏光板 50 的剖面示意图。在本发明的另一实施例中，如图 5 所示，本发明的第二透光层 530 可包括基材 532 及在基材 532 上的光学镀层 534。基材 532 可为前述的三醋酸纤维膜（TAC），而光学镀层 534 通常为厚度 3~8 μm 的硬镀膜、抗反射膜、低反射膜、抗眩膜或抗静电膜等，以涂布的方式形成在透明基材 532 上，用以作为一般偏光板的表面处理，可加强偏光板硬度以防止日常生活无意的刮伤或避免光线被过度集中让使用者观看时感觉不适。此外，本领域技术人员应当理解，一般具有光学镀层 534 的偏光膜，接续可在第一透光层 220 上形成滤压较材 550 和离型材 560，以形成一偏光板 50。由实验结果得知，具有光学镀层 534 的第二透光层 530 所形成的偏光板 50，同样可通过在生产工艺中控制张力比（TR）不大于一定预定值，来控制偏光板 50 的翘曲程度，如前所述，第二透光层 530 和第一透光层 220 的厚度比将决定该张力比（TR）的适用范围，在此不再赘述。

[0055] 图 6 为在本发明另一实施例中的一种偏光板 60 的剖面示意图。如图 6 所示，偏光板 60，例如大尺寸偏光板，包括偏光层 210，以及在偏光层 210 的两侧的第一透光层 220 和第二透光层 230。其中，在偏光层 210 和第一透光层 220 及/或第二透光层 230 之间可包含厚度非常薄的黏着层 615（一般小于 1 μm）。而且，当第一透光层 220 和第二透光层 230 为三醋酸纤维膜时，一般可先经由注塑处理程序，以改变三醋酸纤维膜表面的亲水性（接触角），以便使黏着层 615 形成于上。在此实施例中，黏着层 615 以亲水性聚乙烯醇树脂形成，一般称为水凝胶（hydrogel），用以接着偏光层 210 和第一透光层 220 及/或第二透光层 230 使其不会分离。由此此黏着层 615 相对于偏光板 60 整体厚度而言非常薄，一般对偏光板 60 的翘曲程度影响不大，因此偏光板 60 同样可经由控制第一透光层 220、第二透光层 230 及保护层 240 的第一张力、第二张力及第三张力的张力比，来控制翘曲值，在此不再赘述。

[0056] 此外，偏光板 60 可选择性地包含在第一透光层 220 上的光学层 655。如图 6 所示，在此实施例中，光学层 655 形成于第一透光层 220 上，且光学层 655 可视需求设计为反射膜、半穿透反射膜、相位差膜、视窗补偿膜、增亮膜或其组合。换句话说，当光学层 655 为视窗补偿膜时，则偏光板 60 可为视窗补偿的偏光板；当光学层 655 为反射膜时，则偏光板 60 可为反射型的偏光板。

[0057] 另外，为使本发明的目的、特征能更明显易懂，下面特举实例作详细说明如下：

[0058] 实例说明
[0059] 提供聚乙烯醇膜，在温度约 25～35℃的水槽中进行膨润，然后将膨润后的聚乙烯醇膜放进具有 3.0～5.5wt%的硼酸与 2.0～6.0wt%的碘化钾的水溶液中，同时以 3～7 倍的延伸倍率进行延伸，以形成一偏光层 210。且所形成的偏光层 210 一般为厚度 20～35μm 的含碘的聚乙烯醇膜，其单体穿透率达 43%以上，且偏光度达 99.9%以上。
[0060] 接下来，将经过皂化处理的第一透光层 220 及第二透光层 230（例如，三醋酸纤维膜），通过水凝胶粘合于偏光层 210 的上下两侧，并在烘烤过程后将保护层 240 贴合于第二透光层 230 上。下列表 1 提供第一透光层 220 及第二透光层 230 的厚度条件及不同的张力比（TR）贴合的条件。
[0061] 表 1

<table>
<thead>
<tr>
<th>编号</th>
<th>张力比（TR）</th>
<th>第一透光层厚度（μm）</th>
<th>第二透光层厚度（μm）</th>
<th>是否有光学镀层</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0072</td>
<td>40</td>
<td>83</td>
<td>有</td>
</tr>
<tr>
<td>2</td>
<td>0.0052</td>
<td>40</td>
<td>83</td>
<td>有</td>
</tr>
<tr>
<td>3</td>
<td>0.0042</td>
<td>40</td>
<td>83</td>
<td>有</td>
</tr>
<tr>
<td>4</td>
<td>0.0042</td>
<td>40</td>
<td>80</td>
<td>无</td>
</tr>
<tr>
<td>5</td>
<td>0.0040</td>
<td>40</td>
<td>80</td>
<td>无</td>
</tr>
<tr>
<td>6</td>
<td>0.0136</td>
<td>80</td>
<td>80</td>
<td>无</td>
</tr>
<tr>
<td>7</td>
<td>0.0109</td>
<td>80</td>
<td>80</td>
<td>无</td>
</tr>
<tr>
<td>8</td>
<td>0.090</td>
<td>80</td>
<td>83</td>
<td>有</td>
</tr>
<tr>
<td>9</td>
<td>0.0079</td>
<td>80</td>
<td>83</td>
<td>有</td>
</tr>
<tr>
<td>10</td>
<td>0.0040</td>
<td>80</td>
<td>80</td>
<td>无</td>
</tr>
</tbody>
</table>

[0063] 将上述编号 1～10 所完成的偏光板，参考图 4 的方式，沿着幅宽方向（TD）进行偏光板取样，样品的长宽各约 300mm 及 230mm，并先以标尺测量偏光板四个角落的翘曲值。测量时将样品置于平板玻璃上，测量其 MD (1,3) 和 TD (2,4) 方向的翘曲值并取其平均值，测量结果如表 2 所示。
[0064] 表 2
[0065]
<table>
<thead>
<tr>
<th>编号</th>
<th>张力比 (TR)</th>
<th>MD(1,3) 翘曲平均值 (mm)</th>
<th>TD(2,4) 翘曲平均值 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0072</td>
<td>-6.50</td>
<td>4.80</td>
</tr>
<tr>
<td>2</td>
<td>0.0052</td>
<td>1.0</td>
<td>6.02</td>
</tr>
<tr>
<td>3</td>
<td>0.0042</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>4</td>
<td>0.0042</td>
<td>19.5</td>
<td>11.8</td>
</tr>
<tr>
<td>5</td>
<td>0.0040</td>
<td>7.35</td>
<td>8.65</td>
</tr>
<tr>
<td>6</td>
<td>0.0136</td>
<td>-1.4</td>
<td>106.5</td>
</tr>
<tr>
<td>7</td>
<td>0.0109</td>
<td>6.2</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>0.090</td>
<td>9.2</td>
<td>31.5</td>
</tr>
<tr>
<td>9</td>
<td>0.0079</td>
<td>8.6</td>
<td>4.15</td>
</tr>
<tr>
<td>10</td>
<td>0.0040</td>
<td>7.35</td>
<td>8.65</td>
</tr>
</tbody>
</table>

[0066] 由上述实验结果及实验趋势线可知, 当第一透光层及第二透光层的厚度不均匀 (例如约 1：2), 通过控制张力比 (TR) 不大于约 0.0056, 使得偏光板在延伸方向 (MD) 的翘曲值不小于 0。当第一透光层及第二透光层的厚度接近 (例如约 1：1) 时, 通过控制张力比 (TR) 不大于约 0.0132, 可使偏光板在幅宽方向 (TD) 的翘曲值小于张力比 (TR) 大约 0.0132 时的偏光板在幅宽方向 (TD) 的翘曲值。且第二透光层是否具有光学镀层并不影响实验结果。

[0067] 本发明在此虽以第一透光层及第二透光层的厚度比值为约 1：1 和约 1：2 为例进行说明, 然而本领域的技术人员应该了解, 本发明在其它的厚度比值条件下 (例如约 1：3, 1：4 等), 也可通过控制张力比 (TR) 不大于一预定值, 来控制偏光板的翘曲程度。

[0068] 以上所述仅为本发明的优选实施例而已, 并非用以限定本发明的专利保护范围；凡其它未脱离本发明所披露的精神下所完成的等同改变或修饰, 均应包含在下述的专利保护范围内。

[0069] 主要组件符号说明

<table>
<thead>
<tr>
<th>数字</th>
<th>符号</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50,60</td>
<td>偏光板</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>偏光膜</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>偏光层</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>第一透光层</td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>第二透光层</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>保护层</td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>第一滚轮</td>
</tr>
<tr>
<td>320</td>
<td></td>
<td>第二滚轮</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[0074]</td>
<td>330</td>
<td>第一压合滚轮组</td>
</tr>
<tr>
<td>[0075]</td>
<td>350</td>
<td>第二压合滚轮组</td>
</tr>
<tr>
<td>[0076]</td>
<td>530</td>
<td>第二透光层</td>
</tr>
<tr>
<td>[0077]</td>
<td>534</td>
<td>光学镀层</td>
</tr>
<tr>
<td>[0078]</td>
<td>560</td>
<td>离型层</td>
</tr>
<tr>
<td>[0079]</td>
<td>655</td>
<td>光学层</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>第三滚轮</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>烘箱</td>
</tr>
<tr>
<td></td>
<td>532</td>
<td>基材</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>感压胶层</td>
</tr>
<tr>
<td></td>
<td>615</td>
<td>黏着层</td>
</tr>
</tbody>
</table>
图 1
图 4