一发光轮及具有该发光轮的投影装置

一种发光轮包含转盘以及长光长转换层，转盘具有相对的第一表面及第二表面。第一表面形成涂布区及非涂布区，转盘具有凹陷部，凹陷部形成与第二表面的第一表面的非涂布区内，光波长转换层形成于第一表面的涂布区内。另外，本发明进一步揭露一具有此发光轮的投影装置，发光轮的转盘在旋转时，转盘上的凹陷部可带动周围的气体扰动，使得光波长转换层的温度可有效地下降。同时，转盘在转动时能平衡稳定，且由于凹陷部的设置使转盘具有较大的散热面积。
1. 一种荧光轮，包含一转盘、一光波长转换层以及一启动装置；其中

该转盘为一金属转盘，该金属转盘连接于该启动装置与一夹具之间，该启动装置用以启动该金属转盘转动，该金属转盘具有相对的一第一表面及一第二表面，该第一表面形成一涂布区及一非涂布区，该金属转盘具有至少一凹陷部，该凹陷部形成于该金属转盘的该第二表面或者该金属转盘的该第一表面的该非涂布区内，该凹陷部的深度小于该金属转盘的最大厚度。

该光波长转换层形成于所述金属转盘的该第一表面的该涂布区内，用以转换一光束的光波长。

2. 如权利要求1所述的荧光轮，其特征在于，该转盘具有一透光区。

3. 如权利要求1所述的荧光轮，其特征在于，该光波长转换层具有一第一光波长转换物质及一第二光波长转换物质，分别用以将该光束转换为一第一波长转换光束及一第二波长转换光束。

4. 如权利要求1所述的荧光轮，其特征在于，该涂布区形成于该第一表面的外缘。

5. 如权利要求1所述的荧光轮，其特征在于，该凹陷部为一圆形凹陷部、一矩形凹陷部或者一曲形凹陷部。

6. 如权利要求1所述的荧光轮，其特征在于，该转盘的最大厚度为0.85毫米，且该转盘的最小厚度为0.5毫米。

7. 一种投影装置，包含一发光单元、一荧光轮、一光阑、一投影镜头以及一启动装置，其中

该发光单元用以发射一光束，

该荧光轮配置于该光束的传递路径上，该荧光轮包含一转盘、一光波长转换层，其中

该转盘为一金属转盘，该金属转盘连接于该启动装置与一夹具之间，该启动装置用以启动该金属转盘转动，该金属转盘具有相对的一第一表面及一第二表面，该第一表面形成一涂布区及一非涂布区，该金属转盘具有至少一凹陷部，该凹陷部形成于该金属转盘的第二表面或者该金属转盘的该第一表面的该非涂布区内，该凹陷部的深度小于该金属转盘的最大厚度，以及

该光波长转换层设置于该涂布区内，用以将该光束转换为一光波长转换光束，使得该光束及该波长转换光束混合而形成一混合光束。

该光阑配置于该混合光束的传递路径上，用以将该混合光束调变为一影像光束，以及该投影镜头配置于该影像光束的传递路径上。

8. 如权利要求7所述的投影装置，其特征在于，还包含一盖体，用以容置该荧光轮。

9. 如权利要求7所述的投影装置，其特征在于，该涂布区具有一透光区，用以供该光束穿出。

10. 如权利要求7所述的投影装置，其特征在于，该光波长转换层具有一第一光波长转换物质及一第二光波长转换物质，分别用以将该光束转换为一第一波长转换光束及一第二波长转换光束。

11. 如权利要求7所述的投影装置，其特征在于，该涂布区形成于该第一表面的外缘。

12. 如权利要求7所述的投影装置，其特征在于，该凹陷部为一圆形凹陷部、一矩形凹陷部或者一曲形凹陷部。
13. 如权利要求7所述的投影装置，其特征在于，该转盘的最大厚度为0.85毫米，且该转盘的最小厚度为0.5毫米。
说明书

荧光轮及具有该荧光轮的投影装置

技术领域
[0001] 本发明是有关于一种荧光轮装置，尤其是有关于一种具有散热结构的荧光轮。

背景技术
[0002] 投影装置为常见的光电显示装置，被广泛应用于生活娱乐、学术讲演、商务展示等场合。依照其显示原理，投影系统可分为阴极射线管（Cathode-Ray Tube，CRT）投影装置、液晶显示（Liquid Crystal Display，LCD）投影装置、数位光处理（Digital Light Processing，DLP）投影装置及硅基液晶（Liquid Crystal on Silicon，LCoS）投影装置等类别。其中，数位光处理投影装置因具有亮度高、色彩逼真、回应速率高、装置轻薄矮小等优点，而深受欢迎及喜爱，占据当前投影系统产品之主要市场。
[0003] 数位光处理投影装置采用数位微镜晶片（Digital Micro-mirror Device，DMD）对光源进行调制，再经投影光学系统成像于一屏幕。其中，单片式或双片式数位光处理投影装置通常采用荧光轮（Color Wheel）对光源进行色彩分离并实现色彩显示。在较佳的情况下，荧光轮的设计能够使投影装置所投影出的显示画面具有宽广的色域（color gamut），高亮度（brightness）以及理想的白平衡（white balance）。
[0004] 荧光轮系由荧光粉及转盘所组成，随着转盘转动使得涂布于转盘上的荧光粉受光面积变大。但是，荧光轮的荧光粉在转动时可能会沾附灰尘而导致其光学效率降低。因此，荧光轮大多被设置在一密闭的腔体内，以避免灰尘的进入。然而，现行高亮度的需求因而使用高能量的光束的光源，但高能量光束将导致荧光粉因温度升高而使光学效率降低并造成腔体内的温度因而上升。同时，荧光粉的涂布用胶的耐温规格也较低，因此当荧光粉的温度过高时，荧光粉的涂布用胶也会有烧焦的疑虑。
[0005] 目前，已有一些专利可降低荧光轮运转时的温度，例如美国专利第7018051号以及美国公开专利第20130169938号等。但是，上述专利的技术特征多半利用在转盘上制造多个孔洞或在转盘上增加特定结构，使得荧光轮的转盘在旋转可带动腔体内的气体流动而加速转盘的散热。但，由于转盘的结构特征大幅改变会造成转盘在转动时动平衡不稳定，且当转盘具多个孔洞时，转盘本身可散热的面积也会因而减少。此外，上述专利的转盘结构在制作上同时存在着加工性复杂问题。

发明内容
[0006] 本发明提供了一种荧光轮，以解决先前技术所具有的问题。
[0007] 根据本发明一实施例，其揭露了一种荧光轮包含转盘以及光波长转换层。转盘具有相对的第一表面及第二表面。第一表面形成涂布区及非涂布区。转盘具有至少一凹陷部，凹陷部形成于第二表面或第一表面的非涂布区内，光波长转换层形成于第一表面的涂布区内。
[0008] 在本发明一实施例中，荧光轮还包含启动装置，启动装置连接转盘用以启动转盘转动。
在本发明一实施例中，涂布区具有出光孔。光波长转换层具有第一光波长转换物质及第二光波长转换物质，分别用以将光束转换为第一光波长转换光束及第二光波长转换光束。在本发明一实施例中，涂布区形成于第一表面的外缘。在本发明一实施例中，凹陷部为圆形凹陷部、矩形凹陷部或者曲形凹陷部。在本发明一实施例中，转盘的最大厚度为0.85毫米，且转盘的最小厚度为0.5毫米。根据本发明另一实施例，一种投影装置包含发光单元、荧光轮、光阀以及投影镜头。发光单元用以发射一光束。荧光轮配置于光束的传递路径上。荧光轮包含转盘以及光波长转换层。转盘具有相对的第一表面及第二表面。第一表面形成涂布区及非涂布区。转盘具有凹陷部，凹陷部形成于第二表面或第一表面的非涂布区内。光波长转换层设置于涂布区内，用以将光束转换为波长转换光束，使得光束及波长转换光束混合而形成混合光束。光阀配置于混合光束的传递路径上，用以将混合光束调变为一影像光束。投影镜头配置于影像光束的传递路径上。在本发明另一实施例中，投影装置还包含盖体，用以容置荧光轮。在本发明另一实施例中，荧光轮还包含启动装置，启动装置连接转盘用以启动转盘转动。在本发明另一实施例中，涂布区具有出光孔，用以供光束穿出。在本发明另一实施例中，光波长转换层具有第一光波长转换物质及第二光波长转换物质，分别用以将光束转换为第一光波长转换光束及第二光波长转换光束。在本发明另一实施例中，涂布区形成于第一表面的外缘。在本发明一实施例中，凹陷部为圆形凹陷部、矩形凹陷部或者曲形凹陷部。在本发明一实施例中，转盘的最大厚度为0.85毫米，且转盘的最小厚度为0.5毫米。本发明实施例的荧光轮的转盘在旋转时由于转盘上的凹陷部可带动周围的气体扰动，使得光波长转换层的温度可有效地下降。同时，由于转盘的结构没有大幅改变且无额外开孔的设计，使得转盘在转动时动平衡稳定，且由于凹陷部的设置可使转盘具有较大的散热面积。

附图说明
为让本发明之叙述和其他目的、特征、优点与实施例能更明显易懂，附图说明如下：图1系绘示依照本发明一实施例的一种投影装置的示意图。图2系绘示依照本发明另一实施例的一种荧光轮的主视图。图3系绘示依照图2的荧光轮的后视图。图4系绘示依照图3的荧光轮沿剖面线4-4’的剖视图。图5系绘示依照本发明再一实施例的一种荧光轮的主视图。图6系绘示依照本发明再一实施例的一种荧光轮的后视图。图7系绘示依照本发明再一实施例的一种荧光轮的后视图。
具体实施方式

[0031] 有关本发明之前述及其他技术内容、特点与功效，在以下配附图一则较佳实施例的详细说明中，将可清楚的呈现。以下实施例中所提到的方向用语，例如：上、下、左、右、前或后等，仅是附图的方向，因此，使用的方向用语是用来说明并非用来限制本发明。

[0032] 请参照图1，其绘示依照本发明一实施例的一种投影装置的示意图。如图1所示，投影装置10包含发光单元102、荧光轮100、光阀104以及投影镜头106。投影装置10的发光单元102发射出的光束20可经由荧光轮100、光阀104以及投影镜头106的处理后，投影至一屏幕（图未示）上。

[0033] 发光单元102用以发射一光束20。在本实施例中，发光单元102可为一发光二极体（light emitting diode）或一雷射光源（laser source），但不以此为限。举例来说，发光单元102可为一蓝光雷射，但不以此为限。

[0034] 荧光轮100配置于光束20的传递路径上，用以将光束20转换为波长转换光束，还可使得光束20及波长转换光束混合而形成混合光束30。也就是说，发光单元102发出的光束20可经由荧光轮100改变其光波长，而形成其他颜色的光束。然而，关于荧光轮100进一步的结构特征，将由图2～7进行相关叙述。另外，为避免荧光轮100沾附灰尘而导致其光学效率降低，投影装置10可设置一盖体103，用以将荧光轮100容置于内，由盖体103所形成的腔体内103a内，进一步地叙述，盖体103可为一具高热传导率的盖体，藉以将腔体103a内高温透过热交换而传导出腔体103a外部。举例来说，盖体103可为一金属盖体，但不以此为限。

[0035] 由于光阀104配置于混合光束30的传递路径上，在光束20经由荧光轮100而形成混合光束30后，混合光束30可通过光阀104而变为一影像光束40。影像光束40可在通过配置于影像光束40的传递路径上的投影镜头106后，投影至一屏幕（图未示）上。经由荧光轮100的高速转动，使得使用者可因视觉暂留而看见多种颜色合成的影像画面。

[0036] 应了解到，本实施例所述的荧光轮100的数量以及所设置的位置为仅示例，非用以限制本发明。另外，在本实施例中，发光单元102与光阀104之间的光传递路径上还可以配置其他光学元件。举例来说，这些光学元件如是透镜与反射镜或其他光学元件，作为传递光束20或混合光束30之用，但不以此为限。同时，投影镜头106内同样地可设置其他光学元件于内，但不以此为限。

[0037] 请同时参照图2及图3，图2系绘示依照本发明另一实施例的一种荧光轮100的主视图，图3系绘示依照图2的荧光轮100的后视图。荧光轮100包含转接110以及光波长转换层120，其中光波长转换层120系形成于转接110上。本实施例所述之荧光轮100可应用于图1所示的投影装置10。此外，荧光轮100还包含启动装置130，启动装置130透过一夹具132而连接转接110，启动装置130在接收电源后可用以启动转接110转动。举例来说，启动装置130可为一马达，但不以此为限。

[0038] 请参照图1，转接110具有相对的第一表面112以及第二表面114。请参照图2，第一表面112形成涂布区112a及非涂布区112b，其中涂布区112a系用以供光波长转换层120设置于其上。另外，同样参照图1可知，第一表面112为转接110面对发光单元102的表面，但不以此为限。在其他实施例中，发光单元与荧光轮之间具有许多光学元件以改变光束的行进路径，使得第一表面可不需面对发光单元。
请参照图3，在本实施例中，转盘110可为一金属转盘或其他高热传导率之材料，进一步的叙述，转盘110可为不锈钢、铝、钢或陶瓷、石墨等，而不以此为限。另外，转盘110具有至少一凹陷部116，在本实施例中，凹陷部116形成于第二表面114，但不以此为限。当转盘110转动时，凹陷部116可扰动腔体103a内的气流，以加速转盘110的热传导效率。在本实施例中，凹陷部116可为圆形凹陷部，但不以此为限。在其他实施例中，凹陷部116也可具有其他形状。

光波长转换层120形成于第一表面112的涂布区112a内。此外，转盘110还包括一透光区113，用以供光束20穿过转盘110，例如为透光的扩散片或玻璃片等。在本实施例中，透光区113可为一透光孔由第一表面112穿至第二表面114，用以供光束20穿出，但不以此为限。另外，在本实施例中，涂布区112a形成于第一表面112的外缘，但不以此为限。在本实施例中，在涂布区112a上的光波长转换层120具有第一光波长转换物质122及第二光波长转换物质124，分别用以将光束20转换为第一波长光束及第二波长光束。应了解，光波长转换层120不仅限定其具有两种光波长转换物质，在其他实施例中，光波长转换层120也可具有两种以上的光波长转换物质。举例来说，光波长转换层120可由荧光粉所形成，且第一光波长转换物质122及第二光波长转换物质124分别为不同颜色的荧光粉，用以激发出不同颜色的光束，但不以此为限。举例来说，当发光单元102（请参照图1）为一蓝光雷射时，光波长转换层120的第一光波长转换物质122为可激发出绿光的荧光粉且第二光波长转换物质124为可激发出黄光的荧光粉。在一些实施例中，还可进一步设置一可激发出红光的荧光粉（图未示）使得投影装置10（请参照图1）可显示蓝、绿、红三种颜色的画面。当蓝、绿、红三种颜色的画面按照顺序且以非常快的速度被投射出来时，使用者可因视觉残留而看见由蓝、红、绿三种颜色合成的画面。

请参照图1以及图3，由于雷射的高能量光束激发荧光粉时，会使得腔体103a内的温度会升高，为避免光波长转换层120受高温影响，转盘110的凹陷部116在转盘110转动时可扰动腔体103a内的气体，以加快盖体103（请参照图1）及转盘110之间进行热交换的效率，使得光波长转换层120的温度可有效地下降。另外，凹陷部116的设置也同时增加了转盘110的散热面积。根据测试结果，当转盘110的凹陷部116为复数个且其数量为20时，光波长转换层120转动时的温度相较于转盘110未设置凹陷部的荧光粉的光波长转换层转动时的温度低约10℃。在本实施例中，凹陷部116为复数个且由转盘110的中心放射状的向外设置，但不以此为限。

请参照图4，其绘制示意照图3的荧光粉100沿剖面线4～4’的剖视图。如图4所示，本实施例的具有凹陷部116的转盘110的最大厚度T1为0.85毫米，而转盘110的最大厚度T2为0.5毫米，使得转盘110在转动时可保持稳定的动平衡状态。应了解，转盘110的厚度不以此为限。另外，转盘110的凹陷部116的深度d可为0.35毫米，但不以此为限。在其他实施例中，凹陷部116为复数个时，凹陷部116可分别具有不同深度，但不以此为限。

请参照图5～7，图5系绘示依照本发明再一实施例的一种荧光粉100a的主视图，图6系绘示依照本发明再一实施例的一种荧光粉100b的后视图，图7系绘示依照本发明再一实施例的一种荧光粉100c的后视图。在图5所示的实施例中，凹陷部116形成于第一表面112的非涂布区112b内。在图6所示的实施例中，凹陷部116a为矩形的凹陷部。在图7所示的实施例中，凹陷部116b为曲形的凹陷部。由上述可知，凹陷部116/116a/116b也可形成于第二表面。
114或第一表面112的非涂布区112b内。另外，凹陷部116/116a/116b的形状不以上述为限。
[0044] 由上述本发明实施例可知，应用本发明具有以下优点。本发明实施例的荧光轮的转盘在旋转时由于转盘上的凹陷部可带动周围的气体扰动，使得光波长转换层的温度可有效地下降。同时地，由于转盘的结构没有大幅改变且无额外开孔的设计，使得转盘在转动时动平衡稳定，且由于凹陷部的设置可使转盘具有较大的散热面积。另外，转盘增加凹陷部可减少转盘重量，减轻启动装置的负荷，以延长启动装置的寿命。
[0045] 虽然本发明已以实施方式揭露如上，然其并非用以限定本发明，任何本领域技术人员，在不脱离本发明之精神和范围内，当可作各种之更动与润饰，因此本发明之保护范围当视后附之权利要求所界定者为准。另外本发明的任一实施例或权利要求不须达成本发明所揭露之全部目的或优点或特点。摘要部分和标题仅是用来辅助专利文件搜寻之用，并非用来限制本发明之权利范围。此外，本说明书或权利要求中提及的“第一”、“第二”等用语仅用以命名元件(element)的名称或区别不同实施例或范围，而并非用来限制元件数量上的上限或下限。
[0046] 附图标记列表
[0047] 10:投影装置
[0048] 100:荧光轮
[0049] 100a:荧光轮
[0050] 100b:荧光轮
[0051] 100c:荧光轮
[0052] 102:发光单元
[0053] 103:盖体
[0054] 103a:腔体
[0055] 104:光阑
[0056] 106:投影镜头
[0057] 110:转盘
[0058] 112:第一表面
[0059] 112a:涂布区
[0060] 112b:非涂布区
[0061] 113:出光孔
[0062] 114:第二表面
[0063] 116:凹陷部
[0064] 116a:凹陷部
[0065] 116b:凹陷部
[0066] 120:光波长转换层
[0067] 122:第一光波长转换物质
[0068] 124:第二光波长转换物质
[0069] 130:启动装置
[0070] 132:夹具
[0071] 20:光束
[0072] 30:混合光束
[0073] 40:影像光束
图1
图4
图5