The invention relates to a means of supporting tools and parts within reach of an automobile mechanic while he is working on the engine or adjacent mechanism while the hood of the automobile is in raised position. The means aforesaid has combined therewith a fender protective covering which also serves as a support for receptacles or the like in which the tools or articles are placed.

As is well known, when an automobile mechanic is working on the engine or mechanism aforesaid, he ordinarily has need for use of various tools, and is usually constantly removing and replacing parts. Almost invariably he works while leaning over the top of one of the front fenders, and in order to avoid scratching or otherwise marring the finish he will cover the fender with a suitable cloth. Frequently the mechanic will place the tools or parts on the cloth, or on some portion of the engine or mechanism; however, such a support is not dependable or convenient nor will the mechanic always recall just where he had placed the tool or part.

An object of the invention is to provide a means of the character described which will serve to support the tools or parts in a manner to be readily accessible to the mechanic at or adjacent the particular mechanism on which he may be working.

Another object of the invention is to provide a means of the character described which may be supported by the fender without danger of marring the surfaces thereof or providing an obstruction thereon while in use.

A further object of this invention is to provide a means of the type referred to which is operatively associated with a protective working cover adapted to overlie a large surface area of the fender so as to protect the latter from grease, scratches or the like normally caused by the mechanic leaning on or over the fender.

Yet another object of the invention is to provide a device of the aforesaid character in which the working cover serves to support the tool holding means in their proper operative positions, and in which means are provided for releasably maintaining the cover in position over the fender notwithstanding the weight of the tools, etc. tending to dislodge the cover.

Still another object of my invention is to provide a device of the character described in which the tool holding means may be selectively positioned relative to its supporting cover so as to permit movement thereof to substantially any desired position within the engine compartment.

The invention possesses other objects and features of advantage, some of which, with the foregoing, will be set forth in the following description of the preferred form of the invention which is illustrated in the drawing accompanying and forming part of the specification. It is to be understood, however, that variations in the showing made by the said drawing and description may be adopted within the scope of the invention as set forth in the claims.

Referring to said drawing:

Figure 1 is a perspective view of the working cover and tool holder of the present invention shown in operative position on an automobile.

Figure 2 is a transverse cross sectional view of the apparatus shown in Figure 1.

Figure 3 is a cross sectional view taken substantially on the line 3—3 of Figure 2.

Figure 4 is a plan view of the device with portions of the cover portion thereof being broken away.

As shown in the drawing, the device of the present invention generally comprises a protective cover 11 adapted to be positioned on the fender 16 of a car, a stationary article receiving member 12 positioned within the engine compartment when the cover 11 is so disposed, an adjustably positioned article receiving member 13, likewise situated within the engine area, and securing means 14 to releasably hold the device on said fender.

The cover 11 is of generally rectangular form and of a size sufficiently large to cover the major portion of the fender in order to protect the finish of said fender from grease or oil that may be on a mechanic’s clothes or hands and to provide a padded protection against scratching or marring of the fender surface from contact with metal objects such as fasteners on the mechanic’s clothing, tools, or automotive parts that might otherwise come in contact with the fender. In accordance therewith, the cover 11 is constructed of a pliable type of material, such as plastic or leatherette, the under surface of which is soft and felt-like and which is adapted to be positioned directly upon the fender surface, while the exposed outer surface of the cover is grease and water repellent. It will be understood that while the drawing illustrates the cover as a single thickness of material of the character hereinabove described, it could also be constructed of two pieces of pliable material, one being a soft, non-scratching material such as a flannel type cotton or sponge rubber and the other being a water and grease repellent material such as leatherette or plastic and bonded together to form a substantially single unit.

As seen in Figure 1, the cover 11 is placed over the fender 16 so that the outer longitudinal edge 17 thereof extends substantially horizontally and adjacent to the bottom of the downwardly depending portion of the fender, being secured thereto by means later to be described. The opposed longitudinal edge 18 of the cover extends into the engine compartment a short distance along a vertical wall 19 defining a side wall of the engine compartment.

The article receiving member 12 is preferably provided support by means of a pocket 21 formed integrally with the cover 11 intermediate the ends thereof or secured to same as by stitching, and positioned adjacent the edge 18, said pocket being generally rectangular in shape and adapted to receive in close fitting engagement a rigid receptacle 22 of metal, plastic or the like which is open at the top for insertion or withdrawal of certain of the mechanic’s tools. It will be noted that when the cover is installed on the fender, the member 12 will be positioned against the wall 19 and below the upper surface of the fender so as to be readily accessible yet out of the way of the mechanic when the latter is leaning on the fender.

Due to the positioning and manner of support of the receptacle 22, particularly when filled with tools, parts or the like, the weight thereof would normally tend to cause the cover 11 to slide over the fender surface towards and into the engine compartment. Accordingly, to prevent such movement and consequent displacement of the receptacle, the securing means 14 is utilized. As here shown such means includes a flexible strap 23 of elastic or like material which comprises two converging arms 24, the distal ends of which are secured as by rivets or the like in spaced relation to the opposite ends of a longitudinally extending wall 26 of the receptacle 22. The opposite ends of said arms are secured as by stitching to one end of a member 27, the free end
of which passes through an aperture or slot 28 provided in the upper portion of a hook 29. As shown in Figure 2, the hook 29 is provided with a rubber covering 31 to prevent scratching or marring of the fender thereby. The hook may be selectively adjusted longitudinally of the member 27 by sliding said hook up or down on the member where it passes through the aperture 28. The area of the aperture is small enough to materially compress the cross-sectional portion of the member 27 passing there-through, thereby frictionally maintaining the hook in position.

In operation, when the cover 11 is placed over the fender, the edge 18 is first positioned so the pocket 21 is disposed within the engine compartment; then the strap 23 is arranged to overlire the cover with the member 27 extending downwardly, and the hook 29 may then be slipped under the fender edge to effectively secure the cover in position.

It will be noted that the strap 23 may be made entirely of an elastic material or, as one alternative, the arms 24 could be leather or the like while only the member 27 was elastic in order to provide a simple yet rapid means of securing the device on the fender notwithstanding the differences of contours and varying heights of fenders on different makes of cars.

As an important feature of the present invention the adjustable tool or article supporting member 13, previously mentioned, is operatively carried by the cover 11 but arranged for movement relative thereto. In this manner the member may be selectively positioned to a desired location within the engine compartment for facilitating work on a particular portion of the mechanism within such compartment. As here illustrated, the adjustable member 13 is in the form of an open top receptacle which extends interiorly of the motor compartment and is mounted by means of an extensible element 32 to the receptacle 22. The element 32 comprises a member 33 generally rectangular in cross section, the distal end of which is welded or otherwise secured to an upper medial portion of one wall of the receptacle 13. The free end of the member 33 is adapted to slide within a sleeve 36, one end of which is pivotally mounted as at 37 to an upper central portion of a longitudinally extending wall 38 of the receptacle 22.

It will be appreciated that the pliable nature of the pocket 21 will not provide a completely rigid support for the two receptacles 22 and 13, especially when they contain tools and parts. More particularly, the weight of the receptacle 13 will tend to angularly position the receptacle 22 within the limitations of the pocket 21 as illustrated in Figure 2. Such angular displacement would be transferred to the receptacle 13 in a greater degree due to the element 32 itself possessing a certain amount of flexibility. In order to prevent such undesirable positioning of and to maintain the receptacle 13 in a substantially horizontal plane the distal end portion of the member 33 is bent upwardly and welded to the side of the receptacle 13 as hereinabove described, such end portion defining an angle of about 80 degrees with the other portions of the member.

It should be noted that the receptacle 13 and member 33 can be completely disengaged from the sleeve 36 for placement in the receptacle 22 to facilitate compact storing of the device when not in use.

What is claimed is:

1. A device of the character described comprising a generally planar ribbed protective cover having a medial portion adapted to overlire the upper surface of a fender of a vehicle, a first end portion adapted to extend into the engine compartment to overlire the inner fender wall and a second opposed end portion adapted to overlire the outer exposed fender wall, said cover being provided with a pocket secured to said first end portion, an article receiv- ing receptacle carried in said pocket so as to be positioned entirely within the engine compartment adjacent the inner fender wall, a flexible strap overliring said cover and including a pair of converging arms having respective distal ends thereof secured in spaced relation to one another to said receptacle, a band member connected to converging ends of said arms, and an adjustable hook element carried on the free end of said band member for releasably engaging the lower outer edge of said outer fender wall adjacent said second end portion of said cover.

2. A device as set forth in claim 1 further defined by a second article receiving receptacle adapted to be freely supported within said engine compartment, an extensible element including a slidable member having a distal end secured to said second receptacle, a sleeve in slidable engagement with the free end of said slidable member, and pivot means connecting an end of said sleeve to said first named article receiving receptacle.

3. A device of the character described comprising a generally planar ribbed protective cover having a medial portion adapted to overlire the upper surface of a fender, a first end portion adapted to overlire the outer exposed surface of the fender, and a second opposed end portion adapted to overlire a wall between the fender and engine compartment of a vehicle, said second portion having plant means for supporting an open-topped receptacle in a position adjacent the surface of the second portion wherein the top opening of the receptacle is pointed toward said medial portion, a receptacle supported in said position by said plant means, and securing means attached to said receptacle and overliring said cover member with the distal end of the securing means relative to said receptacle adapted to releasably engage the lower edge of the outer fender wall.

4. A device as set forth in claim 3, further defined by a second receptacle, and means operatively connecting said second receptacle in substantially parallel laterally spaced relation to said first receptacle for adjustingly positioning the former relative to the latter.

5. A device of the character described comprising a protective cover adapted to overlire a fender of a vehicle with one end portion thereof adapted to extend into the engine compartment thereof and to overlire the inner fender wall and to overlire the outer exposed surface of the fender, said first end portion having a plant pocket opening toward the second end portion, a rigid receptacle removably disposed within said pocket and adapted to be positioned entirely within the engine compartment adjacent the inner fender wall when the cover is operatively positioned to overlire a fender, and adjustable length securing strap means secured to said receptacle and loosely overliring said cover, said strap means including at its distal end relative to said receptacle releasable engagement means for releasably engaging the lower edge of an outer fender wall.

References Cited in the file of this patent

UNITED STATES PATENTS

2,047,325 
2,119,072 
2,460,934 
2,491,009 
2,501,227 
2,797,932 

Jones 
Cohen 
Petross 
Lawrence 
Martin et al. 
Ambrose

July 14, 1936 
May 31, 1938 
Feb. 1, 1949 
Dec. 13, 1949 
May 23, 1950 
July 2, 1957