wo 2017/184353 A1 |00 0O O R0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2017/184353 Al

26 October 2017 (26.10.2017) WIPQ|PCT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/54 (2006.01) GO6F 9/445 (2006.01) kind of national protection available): AE, AG, AL, AM,
GOG6F 9/455 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(21) International Application Number: €A, CH, CL, €N, €O, CR, €U, €Z, DE, DJ, DK, DM, DO,

PCT/US2017/026445 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,

(22) International Filing Date: KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME, MG,
06 April 2017 (06.04.2017) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

- . PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
62/324,832 19 April 2016 (19.04.2016) Us kind of regional protection available). ARIPO (BW, GH,
15/339,891 31 October 2016 (31.10.2016) US GM,KE, LR, LS, MW,MZ,NA,RW, SD, SL, ST, SZ, TZ,
15/339,877 31 October 2016 (31.10.2016) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(71) Applicant: DRQPBOX, INC. [US/US]; 333 Brannan EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Street, San Francisco, CA 94107 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM.

(72) Inventors: LOPYREV, Anton; 333 Brannan Street, San TR), OAPI(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Francisco, CA 94107 (US). GILL, Prabhdeep; 333 Bran- KM, ML, MR, NE, SN, TD, TG).
nan Street, San Francisco, CA 94107 (US). RAJU, Ashok;

333 Brannan Street, San Francisco, CA 94107 (US). Published:

74

MENDIOLA, Ian; 333 Brannan Street, San Francisco, CA
94107 (US).

Agent: CHU, Chia-Hsin; DLA Piper LLP US, 2000 Uni-
versity Avenue, East Palo Alto, CA 94303 (US).

with international search report (Art. 21(3))

(54) Title: AUTOMATICALLY UPDATING A HYBRID APPLICATION

s 1024, 1029,

// \\
. N
! QB i
I AY
/ g
\ 1]

B /
&

102

e 1091, 1082,

Content Management System 106

Communications Interface 120

User Interface Module 122

Account Management Module 124

Authenticator Module 126

Content Item Management Module 128

Sharing Module 130

Synchronization Module 132

Analytics Module 134

3
Content
Storage

160

User
Account
Database
150

FIG. 1

1091

100

(57) Abstract: Disclosed are systems, methods, and non-transitory comput-
er-readable storage media for automatically updating a hybrid web application. In
some implementations, a computing device can be configured with a hybrid ap-
plication that includes a native layer and a web view. The native layer can provide
access to native features of the computing device while the web view can provide
web client features, such as graphical user interfaces and server communication
functionality. When the hybrid application is invoked, the native layer can load
a resource bundle from local storage. The resource bundle can include the web
code needed to present the web view graphical user interface, manage application
data, and/or facilitate communication with the web server. To update the hybrid
application, the application can download an updated resource bundle from the
web server and reload the web code from the resource bundle.

WO 2017/184353 PCT/US2017/026445

AUTOMATICALLY UPDATING A HYBRID APPLICATION

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to United States Provisional Application Serial
No. 62/324,832, filed April 19, 2016, the content of which is incorporated herein by

reference in its entirety.

BACKGROUND

[0002] Much of today’s computer technology is built within websites accessible through
web clients. For example, some websites and web clients provide for content creation,
collaboration, and storage. However, purely web based systems have limitations. For
example, in order for the user to use the web client to create new content items, the user’s
computing device must be online and connected to the content creation website.
Moreover, web clients are limited with respect to interactions with the user’s computing
device. For example, web clients have limits on the types of interactions and/or amount
of data that the web client can store on the user’s computing device. However, writing
native client side code that performs the same functions as the web client without the
limitations would be a burdensome task. Thus, it would be beneficial to have a hybrid
client application that can avoid the limitations of the web client while also being able to

operate while the user’s device is offline.

SUMMARY

[0003] Additional features and advantages of the disclosure will be set forth in the
description which follows, and in part will be obvious from the description, or can be
learned by practice of the herein disclosed principles. The features and advantages of the
disclosure can be realized and obtained by means of the instruments and combinations
particularly pointed out in the appended claims. These and other features of the disclosure
will become more fully apparent from the following description and appended claims, or

can be learned by the practice of the principles set forth herein.

[0004] Disclosed are systems, methods, and non-transitory computer-readable storage

media for automatically updating a hybrid web application. In some implementations, a

WO 2017/184353 PCT/US2017/026445

computing device can be configured with a hybrid application that includes a native layer
and a web view. The native layer can provide access to native features of the computing
device while the web view can provide web client features, such as graphical user
interfaces and server communication functionality. When the hybrid application is
invoked, the native layer can load a resource bundle from local storage. The resource
bundle can include the web code needed to present the web view graphical user interface,
manage application data, and/or facilitate communication with the web server. To update
the hybrid application, the application can download an updated resource bundle from the

web server and reload the web code from the resource bundle.

[0005] Disclosed are systems, methods, and non-transitory computer-readable storage
media for providing access to a hybrid web application offline. In some implementations,
a computing device can be configured with a hybrid application that includes a native
layer and a web view. The native layer can provide access to native features of the
computing device while the web view can provide web client features, such as graphical
user interfaces and server communication functionality. When the computing device is
offline and the hybrid application is invoked, the native layer can load from local storage
a resource bundle including the web code needed to present the web view graphical user
interface, and/or facilitate communication with the web server. Similarly, when the
computing device is offline, the hybrid application can load previously stored content
items into the web view from local storage through the native layer so that the user can

work with the content items offline.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The above-recited and other advantages and features of the disclosure will
become apparent by reference to specific embodiments thereof which are illustrated in
the appended drawings. Understanding that these drawings depict only example
embodiments of the disclosure and are not therefore to be considered to be limiting of its
scope, the principles herein are described and explained with additional specificity and

detail through the use of the accompanying drawings in which:

[0007] FIG. 1 shows an example configuration of devices and a network in accordance

with some embodiments;

WO 2017/184353 PCT/US2017/026445

[0008] FIG. 2 is a block diagram of an example system for updating a hybrid application

and providing access to a hybrid application offline;

[0009] FIG. 3 is a block diagram of an example system that provides a native bridge

between the native layer and web view of a hybrid application,;

[0010] FIG. 4 is a component interaction diagram illustrating an example process for

updating a hybrid application;

[0011] FIG. 5 is a component interaction diagram illustrating an example process for

native file storage in hybrid application;

[0012] FIG. 6 is a component interaction diagram illustrating an example process for

working offline in hybrid application;
[0013] FIG. 7 is an example process for updating a hybrid application;
[0014] FIG. 8 is an example process for providing access to a hybrid application offline;

[0015] FIG. 9A shows an example possible system embodiment for implementing

various embodiments of the present technology; and

[0016] FIG. 9B shows an example possible system embodiment for implementing

various embodiments of the present technology.

DETAILED DESCRIPTION

[0017] Various embodiments of the disclosure are discussed in detail below. While
specific implementations are discussed, it should be understood that this is done for
illustration purposes only. A person skilled in the relevant art will recognize that other
components and configurations may be used without parting from the spirit and scope of

the disclosure.

[0018] The disclosed technology addresses the need in the art for a self-updating hybrid

mobile application that can be used even when the hosting mobile device is offline.

[0019] With respect to implementing various embodiments of the disclosed technology,
an example system configuration 100 is shown in FIG. 1, wherein electronic devices
communicate via a network for purposes of exchanging content and other data. The

system can be configured for use on a wide area network such as that illustrated in FIG.

WO 2017/184353 PCT/US2017/026445

1. However, the present principles are applicable to a wide variety of network
configurations that facilitate the intercommunication of electronic devices. For example,
each of the components of system 100 in FIG. 1 can be implemented in a localized or

distributed fashion in a network.

[0020] In system 100, a user can interact with content management system 106 (e.g., an
online synchronized content management system) through client devices 102, 102, ...,
102, (collectively “102”) connected to network 104 by direct and/or indirect
communication. Content management system 106 can support connections from a variety
of different client devices, such as: desktop computers; mobile computers; mobile
communications devices, e.g. mobile phones, smart phones, tablets; smart televisions;
set-top boxes; and/or any other network enabled computing devices. Client devices 102
can be of varying type, capabilities, operating systems, etc. Furthermore, content

management system 106 can concurrently accept connections from and interact with

multiple client devices 102.

[0021] A user can interact with content management system 106 via a client-side
application installed on client device 102; In some embodiments, the client-side
application can include a content management system specific component. For example,
the component can be a stand-alone application, one or more application plug-ins, and/or
a browser extension. However, the user can also interact with content management
system 106 via a third-party application, such as a web browser, that resides on client
device 102; and is configured to communicate with content management system 106. In
either case, the client-side application can present a user interface (UI) for the user to
interact with content management system 106. For example, the user can interact with the
content management system 106 via a client-side application integrated with the file

system or via a webpage displayed using a web browser application.

[0022] Content management system 106 can enable a user to store content items, as well
as perform a variety of content management tasks, such as retrieve, modify, browse,
and/or share the content items. Furthermore, content management system 106 can enable
a user to access the content from multiple client devices 102. For example, client device

102; can upload content to content management system 106 via network 104. Later, the

WO 2017/184353 PCT/US2017/026445

same client device 102; or some other client device 102; can retrieve the content from

content management system 106.

[0023] To facilitate the various content management services, a user can create an
account with content management system 106. User account database 150 can maintain
the account information. User account database 150 can store profile information for
registered users. In some cases, the only personal information in the user profile can be a
username and/or email address. However, content management system 106 can also be
configured to accept additional user information such as birthday, address, billing

information, etc.

[0024] User account database 150 can include account management information, such as
account type (e.g. free or paid), usage information, (e.g. file edit history), maximum
storage space authorized, storage space used, content storage locations, security settings,
personal configuration settings, content sharing data, etc. Account management module
124 can be configured to update and/or obtain user account details in user account
database 150. The account management module 124 can be configured to interact with

any number of other modules in content management system 106.

[0025] An account can be used to store content items, such as digital data, documents,
text files, audio files, video files, etc., from one or more client devices 102 authorized on
the account. The content items can also include collections for grouping content items
together with different behaviors, such as folders, playlists, albums, etc. For example, an
account can include a public folder that is accessible to any user. The public folder can be
assigned a web-accessible address. A link to the web-accessible address can be used to
access the contents of the public folder. In another example, an account can include: a
photos collection that is intended for photos and that provides specific attributes and
actions tailored for photos; an audio collection that provides the ability to play back audio
files and perform other audio related actions; or other special purpose collection. An
account can also include shared collections or group collections that are linked with and
available to multiple user accounts. The permissions for multiple users may be different

for a shared collection.

WO 2017/184353 PCT/US2017/026445

[0026] The content items can be stored in content storage 160. Content storage 160 can
be a storage device, multiple storage devices, or a server. Alternatively, content storage
160 can be a cloud storage provider or network storage accessible via one or more
communications networks. Content management system 106 can hide the complexity and
details from client devices 102 so that client devices 102 do not need to know exactly
where or how the content items are being stored by content management system 106. In
some embodiments, content management system 106 can store the content items in the
same collection hierarchy as they appear on client device 102; However, content
management system 106 can store the content items in its own order, arrangement, or
hierarchy. Content management system 106 can store the content items in a network
accessible storage (NAS) device, in a redundant array of independent disks (RAID), etc.
Content storage 160 can store content items using one or more partition types, such as

FAT, FAT32, NTFS, EXT2, EXT3, EXT4, HFS/HFS+, BTRFS, and so forth.

[0027] Content storage 160 can also store metadata describing content items, content
item types, and the relationship of content items to various accounts, collections, or
groups. The metadata for a content item can be stored as part of the content item or can
be stored separately. In one variation, each content item stored in content storage 160 can

be assigned a system-wide unique identifier.

[0028] Content storage 160 can decrease the amount of storage space required by
identifying duplicate content items or duplicate segments of content items. Instead of
storing multiple copies, content storage 160 can store a single copy and then use a pointer
or other mechanism to link the duplicates to the single copy. Similarly, content storage
160 can store content items more efficiently, as well as provide the ability to undo
operations, by using a content item version control that tracks changes to content items,
different versions of content items (including diverging version trees), and a change
history. The change history can include a set of changes that, when applied to the original

content item version, produce the changed content item version.

[0029] Content management system 106 can be configured to support automatic
synchronization of content items from one or more client devices 102. The

synchronization can be platform agnostic. That is, the content items can be synchronized

WO 2017/184353 PCT/US2017/026445

across multiple client devices 102 of varying type, capabilities, operating systems, etc.
For example, client device 102; can include client software, which synchronizes, via a
synchronization module 132 at content management system 106, content in client device
102;’s file system with the content in an associated user account. In some cases, the client
software can synchronize any changes to content in a designated collection and its sub-
collections, such as new, deleted, modified, copied, or moved content items or
collections. The client software can be a separate software application, can integrate with
an existing content management application in the operating system, or some
combination thereof. In one example of client software that integrates with an existing
content management application, a user can manipulate content items directly in a local
collection, while a background process monitors the local collection for changes and
synchronizes those changes to content management system 106. Conversely, the
background process can identify content items that have been updated at content
management system 106 and synchronize those changes to the local collection. The client
software can provide notifications of synchronization operations, and can provide
indications of content statuses directly within the content management application.
Sometimes client device 102; may not have a network connection available. In this
scenario, the client software can monitor the linked collection for content item changes
and queue those changes for later synchronization to content management system 106
when a network connection is available. Similarly, a user can manually start, stop, pause,

or resume synchronization with content management system 106.

[0030] A user can view or manipulate content via a web interface generated and served
by user interface module 122. For example, the user can navigate in a web browser to a
web address provided by content management system 106. Changes or updates to content
in the content storage 160 made through the web interface, such as uploading a new
version of a content item, can be propagated back to other client devices 102 associated
with the user’s account. For example, multiple client devices 102, each with their own
client software, can be associated with a single account and content items in the account

can be synchronized between each of the multiple client devices 102.

[0031] Content management system 106 can include a communications interface 120 for

interfacing with various client devices 102, and can interact with other content and/or

WO 2017/184353 PCT/US2017/026445

service providers 109;, 109,, ..., 109, (collectively “109”) via an Application Program
Interface (API). Certain software applications can access content storage 160 via an API
on behalf of a user. For example, a software package, such as an app running on a
smartphone or tablet computing device, can programmatically make calls directly to
content management system 106, when a user provides credentials, to read, write, create,
delete, share, or otherwise manipulate content. Similarly, the API can allow users to

access all or part of content storage 160 through a web site.

[0032] Content management system 106 can also include authenticator module 126,
which can verify user credentials, security tokens, API calls, specific client devices, and
so forth, to ensure only authorized clients and users can access content items. Further,
content management system 106 can include analytics module 134 module that can track
and report on aggregate file operations, user actions, network usage, total storage space
used, as well as other technology, usage, or business metrics. A privacy and/or security
policy can prevent unauthorized access to user data stored with content management

system 106.

[0033] Content management system 106 can include sharing module 130 for managing
sharing content publicly or privately. Sharing content publicly can include making the
content item accessible from any computing device in network communication with
content management system 106. Sharing content privately can include linking a content
item in content storage 160 with two or more user accounts so that each user account has
access to the content item. The sharing can be performed in a platform agnostic manner.
That is, the content can be shared across multiple client devices 102 of varying type,
capabilities, operating systems, etc. The content can also be shared across varying types

of user accounts.

[0034] In some embodiments, content management system 106 can be configured to
maintain a content directory identifying the location of each content item in content
storage 160. The content directory can include a unique content entry for each content

item stored in the content storage.

[0035] A content entry can include a content path that can be used to identify the location

of the content item in a content management system. For example, the content path can

WO 2017/184353 PCT/US2017/026445

include the name of the content item and a folder hierarchy associated with the content
item. For example, the content path can include a folder or path of folders in which the
content item is placed as well as the name of the content item. Content management
system 106 can use the content path to present the content items in the appropriate folder

hierarchy.

[0036] A content entry can also include a content pointer that identifies the location of
the content item in content storage 160. For example, the content pointer can include the
exact storage address of the content item in memory. In some embodiments, the content
pointer can point to multiple locations, each of which contains a portion of the content

item.

[0037] In addition to a content path and content pointer, a content entry can also include
a user account identifier that identifies the user account that has access to the content
item. In some embodiments, multiple user account identifiers can be associated with a
single content entry indicating that the content item has shared access by the multiple

user accounts.

[0038] To share a content item privately, sharing module 130 can be configured to add a
user account identifier to the content entry associated with the content item, thus granting
the added user account access to the content item. Sharing module 130 can also be
configured to remove user account identifiers from a content entry to restrict a user

account’s access to the content item.

[0039] To share content publicly, sharing module 130 can be configured to generate a
custom network address, such as a uniform resource locator (URL), which allows any
web browser to access the content in content management system 106 without any
authentication. To accomplish this, sharing module 130 can be configured to include
content identification data in the generated URL, which can later be used to properly
identify and return the requested content item. For example, sharing module 130 can be
configured to include the user account identifier and the content path in the generated
URL. Upon selection of the URL, the content identification data included in the URL can

be transmitted to content management system 106 which can use the received content

WO 2017/184353 PCT/US2017/026445

identification data to identify the appropriate content entry and return the content item

associated with the content entry.

[0040] In addition to generating the URL, sharing module 130 can also be configured to
record that a URL to the content item has been created. In some embodiments, the
content entry associated with a content item can include a URL flag indicating whether a
URL to the content item has been created. For example, the URL flag can be a Boolean
value initially set to O or false to indicate that a URL to the content item has not been
created. Sharing module 130 can be configured to change the value of the flag to 1 or true

after generating a URL to the content item.

[0041] In some embodiments, sharing module 130 can also be configured to deactivate a
generated URL. For example, each content entry can also include a URL active flag
indicating whether the content should be returned in response to a request from the
generated URL. For example, sharing module 130 can be configured to only return a
content item requested by a generated link if the URL active flag is set to 1 or true. Thus,
access to a content item for which a URL has been generated can be easily restricted by
changing the value of the URL active flag. This allows a user to restrict access to the
shared content item without having to move the content item or delete the generated
URL. Likewise, sharing module 130 can reactivate the URL by again changing the value
of the URL active flag to 1 or true. A user can thus easily restore access to the content

item without the need to generate a new URL.

[0042] While content management system 106 is presented with specific components, it
should be understood by one skilled in the art, that the architectural configuration of
system 106 is simply one possible configuration and that other configurations with more

or fewer components are possible.

[0043] FIG. 2 is a block diagram of an example system 200 for updating a hybrid
application and providing access to a hybrid application offline. For example, system
200 can correspond to system 100 of FIG. 1. System 200 can include content

management system 106, as described above.

[0044] In some implementations, content management system 106 can include content

authoring module 202. For example, content authoring module 202 can provide features

10

WO 2017/184353 PCT/US2017/026445

for creating content items and/or collaborating on content items. A user of system 200
can, for example, use a web browser to access content authoring module 202. Content
authoring module 202 can deliver client resource bundle 204 to the web browser on the
user’s device. Client resource bundle 204 can include web code (e.g., HTML, JavaScript,
etc.) for presenting a client interface of content authoring module 202. For example,
client resource bundle 204 can include web code that causes the browser to present a text
editing graphical user interface (e.g., a word processor) that the user can interact with to
view and/or edit a textual content item. After the user creates or edits a content item using
content authoring module 202, content authoring module 202 can store the created or
edited content item in content storage 160. After the content item is stored in content
storage 160, the content item can be synchronized between user devices, shared with
other users and/or managed by content management system 106 similarly to other content

items, as described above with reference to FIG. 1.

[0045] In some implementations, system 200 can include mobile device 210. For
example, mobile device 210 can correspond to client device 102; of FIG. 1. In some
implementations, mobile device 210 can include content authoring application 212. For
example, instead of using a browser based web client to access content authoring module
202, as described above, the user of mobile device 210 can download and install content
authoring application 212 on mobile device 210 to access the features and/or

functionality provided by content authoring module 202.

[0046] In some implementations, content authoring application 212 can be a hybrid
mobile application. For example, content authoring application 212 can include native
layer 214. Native layer 214 can be an executable object compiled for execution on a
particular computing platform. For example, native layer 214 can be compiled or built
for execution on mobile device 210 (e.g., built for the operating system, processor,
chipset, etc.) or devices having a similar configuration as mobile device 210. Because
native layer 214 is built to run on mobile device 210, native layer 214 can have access to
system functions and features of mobile device 210 that a browser based client does not
while also performing better than non-native software. For example, while a browser
based client of content authoring module 202 may be restricted as to which native or

system functions the browser based client can access or the size of files that the browser

11

WO 2017/184353 PCT/US2017/026445

based client can store, native layer 214 does not have those same restrictions because the
native layer is built to interact natively with the operating system of mobile device 210 to

access the system functions of mobile device 210.

[0047] In some implementations, content authoring application 212 can include web
view 216. For example, web view 216 can be a web browser that is bundled inside of
native layer 214. Native layer 214 can, for example, be a container for web view 216.
Thus, web view 2016 can read, interpret, compile, and/or execute web code and/or
technologies, such as HTML, JavaScript, cascading style sheets, etc., to generate
graphical user interfaces, communicate with web servers, and perform other web client
functions. The specific functionality of web view 216 depends on the web code loaded by

web view 216.

[0048] Continuing the content authoring example above, a user of mobile device 210 can
invoke content authoring application 212 to create, edit, collaborate on, or otherwise
interact with content items. For example, when content authoring application 212 is

invoked on mobile device 210, the code in native layer 214 can be executed.

[0049] Upon invocation of content authoring application 212, native layer 214 can load
client resource bundle 220. For example, instead of downloading client resource bundle
204 from content management system 106 each time the user invokes content authoring
application 212, content authoring application 212 can download and store a local copy
of client resource bundle 204 (e.g., local client resource bundle 220). For example, client
resource bundle 220 can be downloaded and stored on mobile device when content
authoring application 212 is initially downloaded and installed on mobile device 212.
Subsequently, content authoring application 212 can automatically download and store
updates to client resource bundle 220 when updates are available from content
management system 106, as described further below. Storing a local copy of client
resource bundle 220 can, for example, facilitate offline use of content authoring

application 212, as described further below.

[0050] In some implementations, client resource bundle 220 can include native
configuration 222. For example, native configuration 222 can identify the current version

of content authoring application 212 installed on mobile device 210. Native

12

WO 2017/184353 PCT/US2017/026445

configuration 222 can include a URL for receiving new messages from the web code
executed by web view 216 (described further below). Native configuration 222 can
identify resources needed to run the identified version of content authoring application

212.

[0051] In some implementations, client resource bundle 220 can include resources 226.
For example, resources 226 can include the files (e.g., web code files, JavaScript files,
HTML files, images, icons, etc.) containing the computer instructions for executing web
view 216. For example resources 226 can include the resources necessary for running the
web client for content authoring module 202 in web view 216. For example, the web
client run in web view 216 can be similar to the web client run in a web browser.
However, instead of being executed within the web browser, the web client (or portions
of the web client) can be run within native layer 214 of content authoring application 212
thereby allowing the web client access to native features, functions, application

programming interfaces, etc., of mobile device 210.

[0052] In some implementations, client resource bundle 220 can include native wrapper
228. For example, native wrapper 228 can be an HTML file that is loaded into the web
view 216 to boot up content authoring application 212. For example, upon invocation of
content authoring application 212, native layer 214 can be executed. Native layer 214
can include instructions for executing web view 216. When web view 216 is executed by
native layer 214, web view 216 can load native wrapper 228 (e.g., an HTML file) that
includes instructions for loading resources 226 (e.g., JavaScript) from client resource
bundle 228. Resources 226 can include instructions (e.g., JavaScript instructions, HTML
instructions, CSS instructions, etc.) for presenting graphical user interfaces (e.g., a
content editor interface), managing application data, and/or communicating with content
authoring module 202 of content management system 106. Thus, web view 216 can
present graphical user interfaces, manage application data, etc., even when mobile device

210 is offline and not connected to content authoring module 202.

[0053] In some implementations, mobile device 210 can include content storage 220.
For example, to facilitate use of content authoring application 212 while mobile device

210 is offline and not connected to content authoring module 202 of content management

13

WO 2017/184353 PCT/US2017/026445

system 106, content authoring application 212 can download authored content from
content management system 106. For example, when connected to content authoring
module 202 through network 104, content authoring application 212 can request from
content authoring module 202 content items that have been created, edited, and/or
managed by content authoring module 202. When the requested content items are
received by content authoring application 212, content authoring application 212 can
store the content items in content storage 220. Later, when content authoring application
212 is invoked while mobile device 210 is offline and not connected to content authoring
module 202, content authoring application 212 can allow the user to view and/or interact
with content items in content storage 220 using the content authoring interfaces provided
by web view 216. Thus, content authoring application 212 can provide access to the web

client interfaces and/or online content even when mobile device 210 is offline.

[0054] FIG. 3 is a block diagram of an example system 300 that provides a native bridge
between the native layer and web view of a hybrid application. For example, native
bridge 302 can include a global variable (e.g., “Bridge”), an empty iframe (e.g., HTML
inline frame), and a native bridge protocol for conveying messages between native layer

214 and web view 216.

[0055] In some implementations, content authoring application 212 can use a global
variable to send messages from native layer 214 to web view 216. For example, when
web view 216 loads and executes the web code in resource bundle 220, the web code
(e.g., JavaScript) can create a global variable (e.g., “Bridge”) for sending messages
between native layer 214 to web view 216 (e.g., the web code running in the web view).
Native layer 214 can, for example, send messages to web view 216 by generating a string
encoded with the message to be sent to web view 216 and saving the string in the global
variable (e.g., using a JavaScript function call). When native layer 214 stores the
message in the global variable, web view 216 can be notified that the value of the global
variable has changed. Web view 216 can then read the message and perform an operation

in response to receiving the message.

[0056] In some implementations, content authoring application 212 can use an empty

HTML iframe to send messages from web view 216 to native layer 214. For example,

14

WO 2017/184353 PCT/US2017/026445

when web view 216 loads and executes the web code in resource bundle 220, the web
code (e.g., JavaScript) can create an empty iframe for notifying native layer 214 that a
new message has been sent from web view 216. Web view 216 can, for example, send
messages to native layer 214 by generating a string encoded with the message to be sent
to native layer 214 and saving the string in the global variable (e.g., using a JavaScript
function call). When web view 216 stores the message in the global variable, web view
216 can notify native layer 214 that the value of the global variable has changed by
navigating the iframe to a predefined URL (e.g., “data:// QUEUE MESSAGE 7).
Native layer 214 can intercept the navigation to the predefined URL and interpret the
navigation as a notice that a new message is available from web view 216. Native layer
214 can then read the message from the global variable (e.g., using a JavaScript function
call) and perform an operation in response to receiving the message. Thus, although
content authoring application 212 is built from heterogeneous layers implemented using
different technologies (e.g., native layer 214 implemented in native code and web view
216 implemented in non-native web code), these different layers are able to achieve

bidirectional communication using native bridge 302, as described above.

[0057] In some implementations, content authoring application 212 can be configured to
use native layer 214 for system interfacing features and web view 216 (e.g., defined by
web code in resource bundle 220) for user and network interfacing features. For
example, native layer 214 can be configured to perform local data storage and retrieval
functions for content authoring application 212 using native APIs of mobile device 210.
For example, when a user creates a new content item using the content authoring features
of web view 216, web view 216 can send a message to native layer 216 through native
bridge 302 to cause native layer 214 to store the newly created content item to local
content storage 220. In some implementations, web view 216 can convert the content
item to a string and send the string to native layer 214 for storage using native bridge 302,
as described above. Thus, even if the size of the newly created content item exceeds the
data storage size limitations imposed on web technologies, the new content item can be
stored to local storage 220 because the data storage operation is being performed by

native layer 214 using native APIs of mobile device 210.

15

WO 2017/184353 PCT/US2017/026445

[0058] In some implementations, web view 216 can be configured to manage user
interfaces and communicate with content management system 106. For example,
because web view 216 is implemented using various web technologies, such as
JavaScript, HTML, cascading style sheets, etc., the user interfaces for content authoring
application 212 are easier to create by developers. Moreover, since the web technologies
are platform independent, the web code used by web view 216 can be written once (e.g.,
per version of the application) and used across a variety of computing platforms.
Additionally, since the web code is provided using client resource bundle 220, software
updates can be performed by simply replacing client resource bundle 220 and without
reinstalling or updating native layer 214 of content authoring application 212. Thus,
interactions between content authoring application 212 and mobile device 210 can be
performed using efficient native interfaces, while core graphical user interfaces, the core
application data model, and network communications can be performed using easy to use

(and reuse) and easy to implement web technologies.

[0059] In some implementations, native bridge 302 can implement a native bridge
protocol for handling a variety of message types. For example, while the data type of the
messages exchanged between native layer 214 and web view 216 is a string, the string
can be encoded with data describing specific message types and corresponding payloads.
For example, the native bridge protocol can include a “get content item” message type for
getting a content item by identifier and type. Web view 216 can, for example, generate a
message string that identifies the message type (e.g., “getltem”), specifies an identifier

for the content item (e.g., “contentltem1”, string identifier, URL, etc.), and specifies a

type for the content item (e.g., “note”). For example, the message string can look like the
following: “getltem: contentltem1, note.” Web view 216 can store the string in the
global variable (e.g., “Bridge”) and navigate the empty iframe to the predefined URL
(e.g., “data:;// QUEUE MESSAGE 7) to notify native layer 214 that a new message
has been sent by web view 216 (e.g., sent by the web technology running in web view

216).

[0060] In some implementations, native layer 214 can intercept the navigation of the
empty iframe to the predefined URL and retrieve the message from the global variable in

response to the navigation. Native layer 214 can parse the message string to determine

16

WO 2017/184353 PCT/US2017/026445

the operation requested by web view 216. For example, native layer 214 can parse the
string to determine that web view 216 is requesting that native layer 214 get a content
item associated with the specified identifier and/or content item type. Native layer 214
can retrieve the content item matching the specified identifier and/or content item type
from local content storage 220. Native layer 214 can encode the content item into a
message string that identifies the content item and includes the content of the content
item (e.g., “contentltem1: content”). Native layer 214 can store the message string in the
global variable, as described above. After native layer 214 stores the message string in
the global variable, web view 216 can receive a notification that the value of the global
variable has changed. Web view 216 can obtain the message string from the global

variable and parse the message string to obtain the requested content item.

[0061] Similarly, native bridge 302 can provide for getting all items of a specified
content item type. For example, web view 216 can send a message (e.g., “getAllltems:
type”) to native layer 214 to get all content items corresponding to a specified content
item type (e.g., “note”). Native layer 214 can find all content items in content storage 220
corresponding to the specified content item type and send the found content items to web

view 216 using native bridge 302, as described above.

[0062] In some implementations, native bridge 302 can provide a mechanism that allows
web view 216 to store content items to local content storage 220 using native layer 214.
For example, the native bridge protocol can define messages for storing a content item to
local content storage 220 and/or updating a content item in local content storage 220. The
store and update messages can include a content item identifier, a content item type, and
a value. The value can include the content of the identified content item to be stored or
updated. These messages can be encoded into message strings, as described above. For
example, to store a new content item, web view 216 can generate a string that includes
the message type, the content item identifier, the content item type, and the content value
(e.g., “setltem: contentltem?2, note, content”). To store an update to a content item, web
view 216 can generate a string that includes the message type, the content item identifier,
the content item type, and the content value (e.g., “updateltem: contentltem?2, note,
content”). Web view 216 can send the message string to native layer 214 using the native

bridge protocol described above. Upon receipt of the message from web view 216, native

17

WO 2017/184353 PCT/US2017/026445

layer 214 can perform the requested storage or update operation to store or update the
specified content item in content storage 220 based on content parsed from the received

message.

[0063] In some implementations, native bridge 302 can provide a mechanism that allows
web view 216 to delete content items from local content storage 220 using native layer
214. For example, the native bridge protocol can define messages for deleting a content
item from local content storage 220 (e.g., “removeltem”) and/or deleting all content items
from local content storage 220 (e.g., “clear”). The remove item message can include a
content item identifier and/or a content item type. The clear message has no parameters.
In response to receiving a message string from web view 216 indicating that web view
216 1s requesting deletion of a content item (e.g., “removeltem: contentltem3, note”),
native layer 214 can delete the specified content item from local content storage 220. In
response to receiving a message string from web view 216 indicating that web view 216
is requesting deletion of all content items (e.g., “clear”), native layer 214 can delete the
all content items from local content storage 220. Thus, native bridge 302 can implement
protocols for communicating between web view 216 and native layer 214 so that the web
technologies of web view 216 can take advantage of native API access available to native

layer 214.

[0064] FIG. 4 is a component interaction diagram illustrating an example process 400 for
updating a hybrid application. For example, a user can invoke (402) content authoring
application 212. Upon invocation of content authoring application 402, native layer 214
can load (404) web view 216. For example, web view 216 can be a JavaScript engine,
web browser, etc., contained within content authoring application 212 and/or within
native layer 214. The functionality provided by web view 216 is defined by web code
(e.g., JavaScript, HTML, CSS, etc.) that is loaded into web view 216. For example, web
view 216 can load (406) local resource bundle 220 using native wrapper 228 and execute
web code to present a graphical user interface and/or provide other functionality as

defined by resources 226 (e.g., JavaScript files, HTML files, etc.).

[0065] After loading the local resource bundle, web view 216 can create (408) the native

bridge to facilitate communication between web view 216 and native layer 214. For

18

WO 2017/184353 PCT/US2017/026445

example, resources 226 can include web code (e.g., JavaScript) that creates a global
variable for communicating between web view 216 and native layer 214. The web code
can create the iframe that is used by web view 216 to notify native layer 214 that a new
message is available from web view 216. After the bundle is loaded and the native bridge
is created, web view 216 can use the native bridge to send (410) a connection established
message to native layer 214 indicating that web view 216 has been successfully initiated

and that the native bridge is operational.

[0066] In some implementations, web view 216 can determine whether a software update
is available for web view 216. For example, web view 216 can send a message (412) to
content authoring module 202 of content management system 106 to request version
update information. For example, the request can be a specific request for current version
information. The request can be part of another request for information. For example,
web view 216 can request a content item from content authoring module 202. The header
of the content item request can include information identifying the version of content
authoring application 212 installed on mobile device 210. When web view 216 loads
resource bundle 220, web view 216 can obtain the version information for local resource
bundle 220 from native configuration 222. Web view 216 can send the version
information (e.g., version identifier) for local resource bundle 220 to content authoring
module 202. Content authoring module 202 can determine whether the version of local
resource bundle 220 matches (e.g., corresponds to, is the same as, etc.) the current
version of resource bundle 204 on content management system 106. When the versions
match (e.g., local resource bundle 220 corresponds to the latest version of resource
bundle 204), content authoring module 202 can send a message to web view 216

indicating that local resource bundle 220 is the most up to date version available.

[0067] When the versions do not match (e.g., local resource bundle 220 is out of date),
content authoring module 202 can send a message (414) to web view 216 that includes
the native configuration file for client resource bundle 204. As described above, the
native configuration file can include a version identifier for the updated version of
content authoring application 210, and a list of resources for the updated version of
content authoring application 210. In some implementations, the list of resources can

include for each resource a resource identifier (e.g., name, URL, etc.) and/or a timestamp

19

WO 2017/184353 PCT/US2017/026445

corresponding to the last update to the resource. After receiving the updated native
configuration file, web view 216 can request (e.g., through native bridge 302) that native

layer 214 store (416) the native configuration file to local storage on mobile device 210.

[0068] In some implementations, web view 216 can determine (418) which individual
resources in client resource bundle 220 on mobile device 210 should be updated. For
example, after receiving the updated native configuration file from content authoring
module 202, web view 216 can compare the updated native configuration file to local
native configuration file 222 to determine which resources have been changed. For
example, web view 216 can compare the respective timestamps of each resource to
determine whether the timestamps differ between the updated native configuration file
and local native configuration file 222. When web view 216 identifies a resource where
the timestamp in local native configuration file 222 differs from the updated native
configuration file or when web view 216 identifies a resource in the updated native
configuration file that does not exist in local native configuration file 222, then web view
216 can request (420) the identified resource from content authoring module 202. For
example, web view 216 can make multiple requests for updated or new resources
depending on how many resource updates are identified in the updated native
configuration file. Updating resources individually rather than updating the entire client
resource bundle provides for more efficient use of bandwidth (e.g., only changed files are

transmitted) and allows for resuming the update if the network connection is interrupted.

[0069] In some implementations, web view 216 can receive (422) the updated resource
from content authoring module 202. For example, web view 216 can receive an updated
resource in response to each resource request. After receiving a resource update (e.g.,
after each resource is received or after all resources are received), web view 216 can
request (e.g., through native bridge 302) that native layer 214 store each resource in local

storage on mobile device 210.

[0070] In some implementations, web view 216 can dynamically update web view 216
with the updated resources while web view 216 is running. For example, after storing the
updated resources (e.g., now local client resource bundle 220) to local storage, web view

216 can reload local client resource bundle 220 to load the updated resources and execute

20

WO 2017/184353 PCT/US2017/026445

the updated web code. For example, web view 216 can reload client resource bundle 220
when performing a navigation operation (e.g., to a new web page, URL, etc.) so that the
transition appears seamless to the user. After loading the updated resource, web view 216
can, for example, present an updated graphical user interface having new functionality for
the user to use. Thus, content authoring application 212 can be updated while continuing
to run and without needing to update the native code in native layer 214. Moreover, by
storing client resource bundle 220 locally on mobile device 210, client authoring

application 212 can be used by the user even when mobile device 210 is offline.

[0071] FIG. 5 is a component interaction diagram illustrating an example process 500 for
native file storage in a hybrid application. For example, a user can invoke (502) content
authoring application 212. Upon invocation of content authoring application 402, native
layer 214 can load (504) web view 216. For example, web view 216 can be a JavaScript
engine, web browser, etc., contained within content authoring application 212 and/or
within native layer 214. The functionality provided by web view 216 is defined by web
code (e.g., JavaScript, HTML, CSS, etc.) that is loaded into web view 216. For example,
web view 216 can load (506) local resource bundle 220 using native wrapper 228 and
execute web code to present a graphical user interface and/or provide other functionality

as defined by resources 226 (e.g., JavaScript files, HTML files, etc.).

[0072] After loading the local resource bundle, web view 216 can create (508) the native
bridge to facilitate communication between web view 216 and native layer 214. For
example, resources 226 can include web code (e.g., JavaScript) that creates a global
variable for communicating between web view 216 and native layer 214. The web code
can create the iframe that is used by web view 216 to notify native layer 214 that a new
message is available from web view 216. After the bundle is loaded and the native bridge
is created, web view 216 can use the native bridge to send (510) a connection established
message to native layer 214 indicating that web view 216 has been successfully initiated

and that the native bridge is operational.

[0073] After web view 216 is running (e.g., as indicated by the connection established
message), native layer 214 can send a message (512) to web view 216 (e.g. through the

native bridge) to cause web view 216 to load a content item list. For example, the

21

WO 2017/184353 PCT/US2017/026445

content item list can include content items created and/or managed by content authoring
application 212. The content item list can be loaded as part of the initialization process of
content authoring application 212 so that web view 216 can present the list to the user so
that the user can select content items to edit using content authoring application 212. The
content item list can be loaded so that web view 216 can update content items stored

locally in content storage 220.

[0074] In response to receiving the load content item list message from native layer 214,
web view 216 can request (514) the content item list from content authoring module 202
of content management system 106. In response (516), content authoring module 202 can
send a list of content items associated with the user and available for editing with (e.g.,

compatible with) content authoring application 212.

[0075] In some implementations, web view 216 can update local content storage 220
with content items in the received content item list. For example, after web view receives
the content item list from content authoring module 202, web view 216 can request (e.g.,
through the native bridge) a local content item list (518) from native layer 214. The local
content item list can, for example, include a list of content items associated with content
authoring application 212 and stored locally in content storage 220. Native layer 214 can
generate the local content item list and send the content item list (520) to web view 216

through the native bridge.

[0076] After receiving the local content item list and the server content item list (e.g.,
from content authoring module 202), web view 216 can compare the two lists to
determine (522) which content items have been added, modified, or deleted from content
management system 106. For example, when the local content item list includes a
particular content item and the server content item list does not, web view 216 can send a

request (523) to native layer 214 to remove (e.g., delete) the particular content item.

[0077] When the local content item list does not include a particular content item that is
included in the server content item list, web view 216 can send a message (524) to
content authoring module 202 requesting the particular content item. Content authoring
module 202 can respond by sending (526) the requested content item to web view 216.

Similarly, when a timestamp for a particular content item in the local content item list

22

WO 2017/184353 PCT/US2017/026445

does not match the corresponding content item in the server content item list, web view
216 can send a message (524) to content authoring module 202 requesting updates for the
particular content item. Content authoring module 202 can respond by sending (526) the
requested content item updates to web view 216. Web view 216 can, in turn, send a
message (528) to native layer 214 through the native bridge to store or update the
particular content item in local content storage 220. In response to receiving the message
from web view 216, native layer 214 can store or update (530) the content item in local
content storage 220. Thus, content authoring application 212 can keep the content items
stored in local content storage 220 updated so that content authoring application 212 can
provide for offline access to the content items associated with content authoring

application 212.

[0078] FIG. 6 is a component interaction diagram illustrating an example process 600 for
working offline in a hybrid application. For example, a user can invoke (602) content
authoring application 212. Upon invocation of content authoring application 402, native
layer 214 can load (604) web view 216. For example, web view 216 can be a JavaScript
engine, web browser, etc., contained within content authoring application 212 and/or
within native layer 214. The functionality provided by web view 216 is defined by web
code (e.g., JavaScript, HTML, CSS, etc.) that is loaded into web view 216 from client
local resource bundle 220. For example, web view 216 can load (606) local resource
bundle 220 using native wrapper 228 and execute web code to present a graphical user
interface and/or provide other functionality as defined by resources 226 (e.g., JavaScript

files, HTML files, etc.).

[0079] After loading the local resource bundle, web view 216 can create (608) the native
bridge to facilitate communication between web view 216 and native layer 214. For
example, resources 226 can include web code (e.g., JavaScript) that creates a global
variable for communicating between web view 216 and native layer 214. The web code
can create the iframe that is used by web view 216 to notify native layer 214 that a new
message is available from web view 216. After the bundle is loaded and the native bridge
is created, web view 216 can use the native bridge to send (610) a connection established
message to native layer 214 indicating that web view 216 has been successfully initiated

and that the native bridge is operational.

23

WO 2017/184353 PCT/US2017/026445

[0080] After web view 216 is running (e.g., as indicated by the connection established
message), native layer 214 can send a message (512) to web view 216 (e.g., through the
native bridge) to cause web view 216 to load a content item list. For example, the
content item list can include content items created and/or managed by content authoring
application 212. The content item list can be loaded as part of the initialization process of
content authoring application 212 so that web view 216 can present the list to the user so
that the user can select content items to edit using content authoring application 212. The
content item list can be loaded so that web view 216 can update content items stored

locally in content storage 220.

[0081] However, instead of requesting a content item list from content authoring module
202 as described in process 500, web view 216 can determine (614) that mobile device
210 is offline and/or content authoring module 202 is unreachable. In response to
determining that content authoring module 202 is unreachable, web view 216 can send a
message (616) through the native bridge to native layer 214 requesting that native layer
214 send web view 216 a local content item list identifying the content items stored
locally in content store 220. Native layer 214 can generate a list of locally stored content
items associated with content authoring application 212 and send the list to web view 216
through the native bridge. After receiving the local content item list, web view 216 can
present the local content item list on a graphical user interface presented by web view
216 according to the instructions provided by resources 226 of client resource bundle 220

on mobile device 210.

[0082] In some implementations, web view 216 can present a local content item. For
example, after presenting the list of local content items, web view 216 can receive a user
selection of a content item from the list of local content items. In response to receiving
the selection, web view 216 through local bridge 302 can request the selected content
item from native layer 214. Native layer 214 can obtain the requested content item from
local content storage 220 and send (626) the requested local content item to web view
216. After receiving the requested local content item, web view 216 can present (628) the
local content item for review and/or editing by the user of content authoring application
212. Thus, even though mobile device 210 is oftline and/or content authoring module 202

is unreachable, web view 216 can still present graphical user interfaces, present content

24

WO 2017/184353 PCT/US2017/026445

items, and/or perform other operations because everything needed to execute (e.g., run,
present, operate, etc.) web view 216 and present content items is stored locally on mobile

device 210.

[0083] FIG. 7 is an example process 700 for updating a hybrid application. For example,
process 700 can update the web code of the hybrid application while the hybrid

application is running and without modifying the native code of the hybrid application.

[0084] At step 702, mobile device 210 can execute native software corresponding to a
hybrid application installed on the mobile device. For example, the native software can
correspond to native layer 214, described above. The native software can be platform-
specific in that the software can be compiled and/or built for a specific operating system,

processor, or system configuration used or implemented by mobile device 210.

[0085] At step 704, mobile device 210 can obtain a resource bundle for the hybrid
application stored on mobile device 210. For example, when the hybrid application is
installed on mobile device 210, the installation can include storing on mobile device 210
a resource bundle that includes the resources needed to execute a web view within the

hybrid application.

[0086] At step 706, mobile device 210 can load web code from the resource bundle into
the hybrid application. For example, the web code can include various platform
independent web technologies, such as HTML, JavaScript, CSS, etc. The native software
can include a web engine (e.g., web browser, JavaScript engine, compiler, interpreter,
etc.) that can read, compile, and/or execute the web code. Mobile device 210 can load the
web code from the resource bundle into the web engine when the hybrid application is
initialized by loading a web page (e.g., a local native wrapper HTML file) that references

the resources in the resource bundle.

[0087] At step 708, mobile device 210 can execute the web code. For example, the web
engine in the native software can read, compile and/or execute the web code (e.g., web
view 216) to present graphical user interfaces, manage and/or manipulate data, and
communicate with web servers, such as content authoring module 202 of content

management system 106.

25

WO 2017/184353 PCT/US2017/026445

[0088] At step 710, mobile device 210 can obtain resource bundle update information
from a network resource. For example, when the hybrid application communicates with
a corresponding web server, the hybrid application can send version information
identifying the version of the hybrid application running on mobile device 210. When the
web server receives the version information, the web server can determine whether the
version of the hybrid application on mobile device 210 corresponds to the latest version
of the hybrid application at the web server. When the version of the hybrid application
on mobile device 210 does not match the latest version of the application on the web
server, the web server can send an updated resource bundle to the hybrid application. For
example, the web server can send configuration data identifying the latest version of the
hybrid application and the resources corresponding to the latest version of the hybrid

application.

[0089] At step 712, mobile device 210 can update the web code of the hybrid application
based on the resource bundle update while leaving the native software unchanged. For
example, the mobile device 210 can determine which resources in the resource bundle are
out of date based on the configuration data. Mobile device 210 can then request the
resources that are required to update the hybrid application, as described above. Mobile
device 210 can replace the out of date resources in the local resource bundle stored on

mobile device 210 with the newly updated resources.

[0090] At step 714, mobile device 210 can execute the updated web code from the
updated resource bundle. For example, the web engine can reload the resource bundle
and execute the updated web code in the updated resources to allow the user to access the
updated features of the hybrid application. Thus, mobile device 210 can update the hybrid
application while the hybrid application is running and without modifying the native

software of the hybrid application.

[0091] FIG. 8 is an example process 800 for providing access to a hybrid application
offline. For example, by storing the web code, resources, and/or content items locally on
mobile device 210, a hybrid application that typically depends on obtaining the web code,
resources, and/or content items from a network resource can be executed by mobile

device 210 even when mobile device 210 is not connected to a network.

26

WO 2017/184353 PCT/US2017/026445

[0092] At step 802, mobile device 210 can invoke a native layer of the hybrid application
on the mobile device. For example, the native layer can correspond to native layer 214,
described above. The native layer can include platform-specific software in that the
software can be compiled and/or built for a specific operating system, processor, or

system configuration used or implemented by mobile device 210.

[0093] At step 804, mobile device 210 can load a web view into the application from
storage on mobile device 210. For example, the web view can correspond to web view
216, described above. The web view can include a web engine implemented using native
software in native layer 214 and web code that is executed by the web engine to provide
functionality, features, etc., to the hybrid application. The web code can be loaded into
the web engine from a local resource bundle so that the hybrid application can function
even when mobile device 210 is not connected to a network or corresponding network

SCIver.

[0094] At step 806, mobile device 210 can receive a request for a content item stored on
a network server. For example, the hybrid application can receive user input requesting
to view or edit a content item stored on the network server. The native layer of the hybrid
application can request that the web view download content items from the network
server to update the content items stored locally on mobile device 210, as described

above.

[0095] At step 808, mobile device 210 can determine that the mobile device cannot
connect to the network server. For example, the hybrid application (e.g., web view 216)
can determine that mobile device 210 is not connected to a network and/or that the

network server is unreachable.

[0096] At step 810, mobile device 210 can request a locally stored version of the
requested content item from the native layer of the hybrid application. For example, in
response to determining that the network server is unreachable, web view 216 can send a
message to native layer 214 requesting the content item from local storage on mobile

device 210.

27

WO 2017/184353 PCT/US2017/026445

[0097] At step 812, mobile device 210 can obtain a locally stored version of the
requested content item. For example, native layer 214 can obtain the locally stored

version of the requested content item from local content storage 220.

[0098] At step 814, mobile device 210 can send the locally stored version of the
requested content item to web view 216. For example, native layer 214 can send the
locally stored version of the requested content item to web view 216 through native
bridge 302. Native layer 214 can, for example, encode the content item (e.g., content
item identifier and contents) into a message string and send the message string to web

view 216 using native bridge 302, as described above.

[0099] At step 816, mobile device 210 can present the requested content item on a
display of mobile device 210. For example, after web view 216 receives the requested
content item, web view 216 can present the content item on a graphical user interface
generated according to the web code loaded from the local resource bundle on mobile

device 210.

[00100] 9A and FIG. 9B show example possible system embodiments. The more
appropriate embodiment will be apparent to those of ordinary skill in the art when
practicing the present technology. Persons of ordinary skill in the art will also readily

appreciate that other system embodiments are possible.

[00101] FIG. 9A illustrates a conventional system bus computing system
architecture 900 wherein the components of the system are in electrical communication
with each other using a bus 905. Example system 900 includes a processing unit (CPU or
processor) 910 and a system bus 905 that couples various system components including
the system memory 915, such as read only memory (ROM) 920 and random access
memory (RAM) 925, to the processor 910. The system 900 can include a cache of high-
speed memory connected directly with, in close proximity to, or integrated as part of the
processor 910. The system 900 can copy data from the memory 915 and/or the storage
device 930 to the cache 912 for quick access by the processor 910. In this way, the cache
can provide a performance boost that avoids processor 910 delays while waiting for data.
These and other modules can control or be configured to control the processor 910 to

perform various actions. Other system memory 915 may be available for use as well. The

28

WO 2017/184353 PCT/US2017/026445

memory 915 can include multiple different types of memory with different performance
characteristics. The processor 910 can include any general purpose processor and a
hardware module or software module, such as module 1 932, module 2 934, and module
3 936 stored in storage device 930, configured to control the processor 910 as well as a
special-purpose processor where software instructions are incorporated into the actual
processor design. The processor 910 may essentially be a completely self-contained
computing system, containing multiple cores or processors, a bus, memory controller,

cache, etc. A multi-core processor may be symmetric or asymmetric.

[00102] To enable user interaction with the computing device 900, an input device
945 can represent any number of input mechanisms, such as a microphone for speech, a
touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input,
speech and so forth. An output device 935 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some instances, multimodal systems can
enable a user to provide multiple types of input to communicate with the computing
device 900. The communications interface 940 can generally govern and manage the user
input and system output. There is no restriction on operating on any particular hardware
arrangement and therefore the basic features here may easily be substituted for improved

hardware or firmware arrangements as they are developed.

[00103] Storage device 930 is a non-volatile memory and can be a hard disk or
other types of computer readable media which can store data that are accessible by a
computer, such as magnetic cassettes, flash memory cards, solid state memory devices,
digital versatile disks, cartridges, random access memories (RAMs) 925, read only

memory (ROM) 920, and hybrids thereof.

[00104] The storage device 930 can include software modules 932, 934, 936 for
controlling the processor 910. Other hardware or software modules are contemplated.
The storage device 930 can be connected to the system bus 905. In one aspect, a
hardware module that performs a particular function can include the software component
stored in a computer-readable medium in connection with the necessary hardware
components, such as the processor 910, bus 905, display 935, and so forth, to carry out

the function.

29

WO 2017/184353 PCT/US2017/026445

[00105] FIG. 9B illustrates a computer system 950 having a chipset architecture
that can be used in executing the described method and generating and displaying a
graphical user interface (GUI). Computer system 950 is an example of computer
hardware, software, and firmware that can be used to implement the disclosed
technology. System 950 can include a processor 910, representative of any number of
physically and/or logically distinct resources capable of executing software, firmware,
and hardware configured to perform identified computations. Processor 910 can
communicate with a chipset 960 that can control input to and output from processor 910.
In this example, chipset 960 outputs information to output 965, such as a display, and can
read and write information to storage device 970, which can include magnetic media, and
solid state media, for example. Chipset 960 can also read data from and write data to
RAM 975. A bridge 980 for interfacing with a variety of user interface components 985
can be provided for interfacing with chipset 960. Such user interface components 985 can
include a keyboard, a microphone, touch detection and processing circuitry, a pointing
device, such as a mouse, and so on. In general, inputs to system 950 can come from any

of a variety of sources, machine generated and/or human generated.

[00106] Chipset 960 can also interface with one or more communication interfaces
990 that can have different physical interfaces. Such communication interfaces can
include interfaces for wired and wireless local area networks, for broadband wireless
networks, as well as personal area networks. Some applications of the methods for
generating, displaying, and using the GUI disclosed herein can include receiving ordered
datasets over the physical interface or be generated by the machine itself by processor
910 analyzing data stored in storage 970 or 975. Further, the machine can receive inputs
from a user via user interface components 985 and execute appropriate functions, such as

browsing functions by interpreting these inputs using processor 910.

[00107] It can be appreciated that example systems 900 and 950 can have more
than one processor 910 or be part of a group or cluster of computing devices networked

together to provide greater processing capability.

[00108] For clarity of explanation, in some instances the present technology may

be presented as including individual functional blocks including functional blocks

30

WO 2017/184353 PCT/US2017/026445

comprising devices, device components, steps or routines in a method embodied in

software, or combinations of hardware and software.

[00109] Any of the steps, operations, functions, or processes described herein may
be performed or implemented by a combination of hardware and software modules, alone
or in combination with other devices. In an embodiment, a software module can be
software that resides in memory of a client device and/or one or more servers of a content
management system and perform one or more functions when a processor executes the
software associated with the module. The memory can be a non-transitory computer-

readable medium.

[00110] In some embodiments the computer-readable storage devices, mediums,
and memories can include a cable or wireless signal containing a bit stream and the like.
However, when mentioned, non-transitory computer-readable storage media expressly

exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.

[00111] Methods according to the above-described examples can be implemented
using computer-executable instructions that are stored or otherwise available from
computer readable media. Such instructions can comprise, for example, instructions and
data which cause or otherwise configure a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. Portions of computer resources used can be accessible over a network. The
computer executable instructions may be, for example, binaries, intermediate format
instructions such as assembly language, firmware, or source code. Examples of
computer-readable media that may be used to store instructions, information used, and/or
information created during methods according to described examples include magnetic or
optical disks, flash memory, USB devices provided with non-volatile memory, networked

storage devices, and so on.

[00112] Devices implementing methods according to these disclosures can
comprise hardware, firmware and/or software, and can take any of a variety of form
factors. Typical examples of such form factors include laptops, smart phones, small form
factor personal computers, personal digital assistants, and so on. Functionality described

herein also can be embodied in peripherals or add-in cards. Such functionality can also be

31

WO 2017/184353 PCT/US2017/026445

implemented on a circuit board among different chips or different processes executing in

a single device, by way of further example.

[00113] The instructions, media for conveying such instructions, computing
resources for executing them, and other structures for supporting such computing

resources are means for providing the functions described in these disclosures.

[00114] Although a variety of examples and other information was used to explain
aspects within the scope of the appended claims, no limitation of the claims should be
implied based on particular features or arrangements in such examples, as one of ordinary
skill would be able to use these examples to derive a wide variety of implementations.
Further and although some subject matter may have been described in language specific
to examples of structural features and/or method steps, it is to be understood that the
subject matter defined in the appended claims is not necessarily limited to these described
features or acts. For example, such functionality can be distributed differently or
performed in components other than those identified herein. Rather, the described
features and steps are disclosed as examples of components of systems and methods

within the scope of the appended claims.

32

WO 2017/184353 PCT/US2017/026445

CLAIMS

What is claimed is:

1. A method comprising:

storing, by a computing device, a software application in memory of the computing
device, where the software application includes a native component and a resource
bundle, where the native component is generated using technologies native to the
computing device, and where the resource bundle includes non-native web code
defining a web view for the software application;

receiving, by the computing device, user input selecting the software application;

in response to receiving the user input, executing, by the computing device, the native
component of the software application;

upon execution of the native component, loading, by the computing device, web code
from the stored resource bundle into the native component to generate the web
view;

presenting the web view on a display of the computing device;

receiving, by the computing device from a server device, update data describing a latest
version of the resource bundle; and

while the software application continues to execute:

automatically updating, by the computing device, the stored resource bundle to
correspond to the latest version of the resource bundle based on the update data;

automatically reloading, by the computing device, web code from the updated resource
bundle into the native component to generate an updated web view; and

presenting the updated web view on a display of the computing device.

2. The method of claim 1, further comprising:

determining, by the computing device, a first version identifier for the stored resource
bundle;

sending, by the computing device, a message from the web view to the server device
including the first version identifier, where the server device determines whether
the first version identifier corresponds to the latest version of the resource bundle;

and

33

WO 2017/184353 PCT/US2017/026445

receiving the update data when the first version identifier is different than a second

version identifier corresponding to the latest version of the resource bundle.

3. The method of claim 1, further comprising:

determining, based on the update data, that the latest version of the resource bundle
includes an updated version of a first resource in the stored resource bundle;

receiving the updated version of the first resource from the server device; and

replacing a stored version of the first resource with the updated version of the first

resource on the computing device.

4. The method of claim 3, further comprising:

after replacing the stored version of the first resource with the updated version of the first
resource and while the software application continues to execute, reloading the web
code from the stored resource bundle, including the updated version of the first
resource, into the native component to generate an updated web view; and

presenting the updated web view on a display of the computing device.

5. The method of claim 1, wherein the native component continues to execute while the

stored resource bundle is updated on the computing device.

6. The method of claim 1, wherein the native component remains unchanged when the

stored resource bundle is updated on the computing device.

7. The method of claim 4, wherein the updated version of the first resource is received by
the web view, and further comprising:

receiving, by the native component, the update version of the first resource from the web
view when the web view navigates to a particular web address; and

storing, by the native component, the updated version of the first resource received from

the web view in the stored resource bundle.

34

WO 2017/184353 PCT/US2017/026445

8. A non-transitory computer readable medium including one or more sequences of
instructions that, when executed by one or more processors, cause the processors to
perform operations comprising:

storing, by a computing device, a software application in memory of the computing
device, where the software application includes a native component and a resource
bundle, where the native component is generated using technologies native to the
computing device, and where the resource bundle includes non-native web code
defining a web view for the software application;

executing, by the computing device, the native component of the software application;

upon execution of the native component, loading, by the computing device, web code
from the stored resource bundle into the native component to generate the web
view;

presenting the web view on a display of the computing device;

receiving, by the computing device from a server device, update data describing a latest
version of the resource bundle; and

while the software application continues to execute:

automatically updating, by the computing device, the stored resource bundle to
correspond to the latest version of the resource bundle based on the update data;

automatically reloading, by the computing device, web code from the updated resource
bundle into the native component to generate an updated web view; and

presenting the updated web view on a display of the computing device.

9. The non-transitory computer readable medium of claim 8, wherein the instructions
cause the processors to perform operations comprising;

determining, by the computing device, a first version identifier for the stored resource
bundle;

sending, by the computing device, a message from the web view to the server device
including the first version identifier, where the server device determines whether
the first version identifier corresponds to the latest version of the resource bundle;

and

35

WO 2017/184353 PCT/US2017/026445

receiving the update data when the first version identifier is different than a second

version identifier corresponding to the latest version of the resource bundle.

10. The non-transitory computer readable medium of claim 8, wherein the instructions
cause the processors to perform operations comprising;

determining, based on the update data, that the latest version of the resource bundle
includes an updated version of a first resource in the stored resource bundle;

receiving the updated version of the first resource from the server device; and

replacing a stored version of the first resource with the updated version of the first

resource on the computing device.

11. The non-transitory computer readable medium of claim 10, wherein the instructions
cause the processors to perform operations comprising;

after replacing the stored version of the first resource with the updated version of the first
resource and while the software application continues to execute, reloading the web
code from the stored resource bundle, including the updated version of the first
resource, into the native component to generate an updated web view; and

presenting the updated web view on a display of the computing device.

12. The non-transitory computer readable medium of claim 8, wherein the native
component continues to execute while the stored resource bundle is updated on the

computing device.

13. The non-transitory computer readable medium of claim 8, wherein the native
component remains unchanged when the stored resource bundle is updated on the

computing device.
14. The non-transitory computer readable medium of claim 11, wherein the updated

version of the first resource is received by the web view, and wherein the

instructions cause the processors to perform operations comprising:

36

WO 2017/184353 PCT/US2017/026445

receiving, by the native component, the update version of the first resource from the web
view when the web view navigates to a particular web address; and
storing, by the native component, the updated version of the first resource received from

the web view in the stored resource bundle.

15. A system comprising:

one or more processors; and

a non-transitory computer readable medium including one or more sequences of
instructions that, when executed by the one or more processors, cause the
processors to perform operations comprising:

storing, by the system, a software application in memory of the computing device, where
the software application includes a native component and a resource bundle, where
the native component is generated using technologies native to the computing
device, and where the resource bundle includes non-native web code defining a web
view for the software application;

executing, by the system, the native component of the software application;

upon execution of the native component, loading, by the system, web code from the
stored resource bundle into the native component to generate the web view;

presenting the web view on a display of the computing device;

receiving, by the system from a server device, update data describing a latest version of
the resource bundle; and

while the software application continues to execute:
based on the update date, determining one or more resources in the resource bundle
to update;
obtaining the one or more resources from the server device;

automatically updating, by the system, the stored resource bundle to include the one or
more resources;

automatically reloading, by the system, web code from the updated resource bundle into
the native component to generate an updated web view; and

presenting the updated web view on a display of the computing device.

37

WO 2017/184353 PCT/US2017/026445

16. The system of claim 15, wherein the instructions cause the processors to perform
operations comprising:

determining, by the system, a first version identifier for the stored resource bundle;

sending, by the computing device, a message from the web view to the server device
including the first version identifier, where the server device determines whether
the first version identifier corresponds to the latest version of the resource bundle;
and

receiving the update data when the first version identifier is different than a second

version identifier corresponding to the latest version of the resource bundle.

17. The system of claim 15, wherein the instructions cause the processors to perform
operations comprising:

determining, based on the update data, that the latest version of the resource bundle
includes an updated version of a first resource in the stored resource bundle;

receiving the updated version of the first resource from the server device; and

replacing a stored version of the first resource with the updated version of the first

resource on the computing device.

18. The system of claim 17, wherein the instructions cause the processors to perform
operations comprising:

after replacing the stored version of the first resource with the updated version of the first
resource and while the software application continues to execute, reloading the web
code from the stored resource bundle, including the updated version of the first
resource, into the native component to generate an updated web view; and

presenting the updated web view on a display of the computing device.

19. The system of claim 15, wherein the native component continues to execute while the

stored resource bundle is updated on the computing device.

20. The system of claim 15, wherein the native component remains unchanged when the

stored resource bundle is updated on the computing device.

38

WO 2017/184353

e 1021, 102, ..., 102p,

—

1/10

.~

PCT/US2017/026445

- 1091, 109, ..., 109p,

100

Content Management System 10

Communications Interface 120

User Interface Module 122

Account Management Module 124

Authenticator Module 126

Content Item Management Module 128

Sharing Module 130

Synchronization Module 132

Analytics Module 134

Account Content

Database
150

Storage
160

FIG. 1

WO 2017/184353 PCT/US2017/026445
2/10

Content Management System
106
Content Authoring 200
Modde e)
202
Client Resource
Bundle
204
S Network
104 Mobile Device 210
Content Storage =
160 Content Authoring App
~—— 212
Native Layer | Content
n4 I Storage
— 220
Web View
216
FIG. 2
Client Resource Bundle 220
Native Native
. Resources
Config. Wrapper 8

202 228

WO 2017/184353

PCT/US2017/026445
3/10
Mobile Device 210
Content Authoring App
212
Web View — Native Layer
g \\J\lat|ve Bridge @ s
A
Y
Content Storage
220

FIG. 3

300

WO 2017/184353 PCT/US2017/026445
4/10
Content Authori W
. . , ontent AUthorin
Native Layer | Content Authoring App | Web View J
214 12 216 Mode
— — — 202
Invoke 402
—> Load 404)
Load Local Resource
Bundle & Present Ul 406
‘_
Create Native
Connection Established 410 | Bridge 408
<
Check Resource Bundle Version 412
>
Store Resource Bundle Config 416 P Resource Bundie Conf 414 FIG. 4
<
Determine Resource
Updates 418
‘_
Get Resource 420
>
Resource 422
Store Resource 424 <
Reload Local Resource Bundle
& Present Updated Ul 426
‘_

WO 2017/184353 PCT/US2017/026445
5/10
Content Authori i
. . , ontent AUthorin
Native Layer | Content Authoring App | Web View J
214 12 216 Mode
— — — 202
Invoke 502
—> Load 504)
Load Local Resource
Bundle & Present Ul 506
Create Native
Connection Established 510 | Bridge 308
<
Load Content ftem List 312 > Get Content ftem List 514
g
Content item List 516
Get Content item List 518 € e e L R FIG. 5
o
Content Item List 520 .
Determine Content ltem
Updates 522
Remove Content Item 523
< Get Content item 524 .
Content item 526
p Store/update Content ltem 528 <
Store Content temto
Local Storage 530

PCT/US2017/026445

Content Authoring
Module
202

WO 2017/184353
6/10
Native Layer | Content Authoring App | Web View
214 212 216
Invoke 602
—> Load 604)
Load Local Resource
Bundle & Present Ul 606
Create Native
Connection Established 810 | Bridge 608
<
Load Content Item List §12 >
Determine Offline 614
Get Content Item List §16
<
Local Content ltem List 618
Present Content
ftem List 620
Receive Selection of
Get Content Item 624 ¢ Content lem 522
<
Local Content ltem 626 >
Present Local
Content ltem 628
4_

600

FIG. 6

WO 2017/184353

FIG. 7

7/10

PCT/US2017/026445

Execute Native Software Corresponding
to an Application on a Mobile Device

!

Obtain a Resource Bundle Stored on the
Mobile Device

Load Web Code from the Resource
Bundle into the Application

706

Execute the Web Code

\ 4

Obtain Resource Bundle Update
Information from a Network Resource

Update the Web Code Based on the
Resource Bundle Update While Leaving
the Native Software Unchanged

Execute the Updated Web Code from the
Resource Bundle Update

714

700

WO 2017/184353

FIG. 8

8/10

PCT/US2017/026445

Invoke Native Layer of Application on
Mobile Device

!

Load Web View Into Application from
Storage on Mobile Device

Receive Request for Content ltem Stored
on Network Server

Determine That Mobile Device Cannot
Connect to Server

| 808

v

Request Locally Stored Version of
Requested Content Item From Native
Layer

Obtain Locally Stored Version of
Requested Content Item

y

Send Locally Stored Version of
Requested Content Item to Web View

814

Present Requested Content Item on
Display of Mobile Device

816

800

WO 2017/184353 PCT/US2017/026445
9/10

900—\'
930
9451 Storage Device —j—
Input Device [e— 930
MOD 1)
915 920 925 934
5 5 5 MOD 2 S
9351 5—936
Output Device fe— | Memory ROM RAM MOD 3
940
1 Communication
Interface 905

910
M2 Cache fe—{ Processor)

FIG. 9A

WO 2017/184353

985N

User Interface
Components

980,

Bridge [¢——»

965 5™ Output Device

FIG. 98

PCT/US2017/026445
10/10
950
Processor (N ~910 ‘)
i
90
Y ;
. Communications
Chipset [e— " o NI
I 11
R NI
Y

Storage Device

_NoT0

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/026445

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/54 GO6F9/455
ADD.

GO6F9/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

abstract
paragraphs [0009],
[0034], [0048],

[0077],

[0025] ,
[0051],

[0033],
[0052],
[0086]; figures 1-3,5,10

X US 2015/281353 Al (MAHKOVEC ZIGA [US] ET 1-20
AL) 1 October 2015 (2015-10-01)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 July 2017

Date of mailing of the international search report

17/07/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kingma, Ype

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/026445
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2015281353 Al 01-10-2015 AU 2014235853 Al 13-08-2015
AU 2016225864 Al 29-09-2016
EP 2976871 Al 27-01-2016
JP 2016518653 A 23-06-2016
US 2014289360 Al 25-09-2014
US 2015281353 Al 01-10-2015
US 2016366222 Al 15-12-2016
WO 2014153540 Al 25-09-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report

