
(12) United States Patent
Maor et al.

USOO904.3924B2

(10) Patent No.: US 9,043,924 B2
(45) Date of Patent: *May 26, 2015

(54) METHOD AND SYSTEM OF RUNTIME
ANALYSIS

(71) Applicant: Seeker Security Ltd., Herzlia Pituach
(IL)

(72) Inventors: Ofer Maor, Tel-Aviv (IL); Eran Tamir,
Motza Elite (IL); Tamir Shavro, Herzlia
(IL); Mor Griv, Ramat-HaSharon (IL)

(73) Assignee: Seeker Security Ltd., Herzlia Pituach
(IL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 14/274,804

(22) Filed: May 12, 2014

(65) Prior Publication Data

US 2014/0331327 A1 Nov. 6, 2014

Related U.S. Application Data
(63) Continuation of application No. 13/515,538, filed as

application No. PCT/IL2010/001059 on Dec. 14,
2010, now Pat. No. 8,726,394.

(60) Provisional application No. 61/352,412, filed on Jun.
8, 2010, provisional application No. 61/286,401, filed
on Dec. 15, 2009.

(51) Int. Cl.
H04L 29/06 (2006.01)
G06F II/36 (2006.01)
G06F 2/57 (2013.01)

(52) U.S. Cl.
CPC H04L 63/1433 (2013.01); G06F II/3688

(2013.01); G06F2I/577 (2013.01); G06F
222 1/033 (2013.01)

108

204

(58) Field of Classification Search
USPC .. 726/25
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,072,800 B1 7/2006 Fernandez et al.
2004, OO15762 A1 1/2004 Klotz et al.
2005/0055325 A1 3/2005 Dutt et al.
2007,0192863 A1 8/2007 Kapoor et al.
2007/0214503 A1 9, 2007 Shulman et al.
2008/O120305 A1 5/2008 Sima et al.

(Continued)

OTHER PUBLICATIONS

Advisory Action Before the Filing of an Appeal Brief Dated May 5,
2014 From the US Patent and Trademark Office Re. U.S. Appl. No.
13/515,545.

(Continued)

Primary Examiner — Minh Dinh
Assistant Examiner — Devin Almeida

(57) ABSTRACT

A method and a system for detecting one or more security
Vulnerabilities. The method comprises providing test instruc
tions for an application, Such as a web application or a client
server application, adding test code to a code segment of the
application according to the test instructions, sending at least
one message to the application according to the test instruc
tions at runtime thereof, monitoring test information pertain
ing to at least one reaction of the application to the at least one
message during an execution of the test code, performing an
analysis of the at least one reaction, and detecting a presence
or an absence of at least one security Vulnerability according
to the analysis.

21 Claims, 17 Drawing Sheets

O

ested unit

22

23

Analyzer Set
Breakpoints

Read
Debug
Info:mation

US 9,043,924 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0209567 A1
2008.O295178 A1
2009.0089869 A1
2012fO255O23 A1
2012fO260344 A1

OTHER PUBLICATIONS

8, 2008 Lockhart et al.
11/2008 Beresniewicz
4/2009 Varghese
10/2012 Maor et al.
10/2012 Maor et al.

International Preliminary Report on Patentability Dated Jun. 28.
2012 From the International Bureau of WIPO Re. Application No.
PCT/IL2010/01059.
International Preliminary Report on Patentability Dated Jun. 28.
2012 From the International Bureau of WIPO Re. Application No.
PCT/IL2010/01060.
International Search Report and the Written Opinion Dated Apr. 13,
2011 From the International Searching Authority Re. Application
No. PCT, IL2010/O1059.

International Search Report and the Written Opinion Dated Mar. 30.
2011 From the International Searching Authority Re. Application
No. PCTIL2010/01060.
Notice of Allowance Dated Mar. 13, 2014 From the US Patent and
Trademark Office Re. U.S. Appl. No. 13/515,538.
Official Action Dated Dec. 6, 2013 From the US Patent and Trade
mark Office Re. U.S. Appl. No. 13/515,545.
Official Action Dated Nov. 14, 2013 From the US Patent and Trade
mark Office Re. U.S. Appl. No. 13/515,538.
Official Action Dated Mar. 18, 2013 From the US Patent and Trade
mark Office Re. U.S. Appl. No. 13/515,538.
Official Action Dated Mar. 19, 2013 From the US Patent and Trade
mark Office Re. U.S. Appl. No. 13/515,545.
Google "Multiple CRLF Injection / HTTP Response Splitting Vul
nerabilities in Google AdWords'. Google, Debasis Mohanty, 2 p.
Dec. 14, 2006.
Huang et al. "A Testing Framework for Web Application Security
Assessment”. Computer Networks, 48: 739-761, 2005.
Official Action Dated Oct. 14, 2014 From the US Patent and Trade
mark Office Re. U.S. Appl. No. 13/515,545.

US 9,043,924 B2 Sheet 2 of 17 May 26, 2015 U.S. Patent

??un p??Se L

10||

5575557 UOISS9S
90€. ZOZ

US 9,043,924 B2 Sheet 3 of 17 May 26, 2015 U.S. Patent

U.S. Patent May 26, 2015 Sheet 4 of 17 US 9,043,924 B2

^--- Connecting to a tested unit
having a tested application

303
is :- x - Selecting a test session | | Selecting application data 1

i

304 Preparing code according to
--- selected test session/application

data

305
- ----- -> Executing the tested application

NO

306
--> Sending testing requests

307
N Monitoring debugging data

308 w
a Analyzing debugging data

Last testing y-YE S
session? -
s - 309 310 -

* Update status/report
FIG. 4A

US 9,043,924 B2 Sheet 5 Of 17 May 26, 2015 U.S. Patent

9/17

?uÐUuuOJ?AuÐ UO??nO3X3 epoo uueu6Oud

U.S. Patent May 26, 2015 Sheet 6 of 17 US 9,043,924 B2

Connecting to a tested unit
having a tested application

- 3O3
a Selecting a test session Selecting application data 1

441 Preparing profiling object
a according to selected test

session/application data

NO 305
--> Executing the tested application

www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.

442 injecting instruction to program
Code environment

443 A A

Monitoring the program Code
environment

444 www.www.www.www.www.www.www.www.www.www.wwwwmm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm-mm
s Logging and analyzing :

monitored data

Last testing
C r > - session? - YES

- 309

FIG. 4C r

U.S. Patent May 26, 2015 Sheet 7 Of 17 US 9,043,924 B2

:oxooooooooo;21 byes: : OxOOOOOO29 Ox00 byte
ioninnonia hia: injected Content Scheme. Ox0000002a 0x00 byte
o te 3. (OxOOOOOO2b) OX28 byte
:0000 ye : (OxOOOOOO2c Ox12 byte
Oooooooooo to be 38 Tae face. ; OxOOOOOO2d Ox00 byte
:000004 000 bytes; race type-long 64bis). (OxOOOOOO2e Ox00 byte steelerg is (OxOOOOOO2f Ox0a byte

0x00000030 Ox28 byte
call System.Console::WriteLine

0x00000031 Ox10 byte
0x00000032. 0x00 byte
0x00000033 0x00 byte
0x00000034 0x0a byte
0x00000035 OX21 byte
OxOOOOOO36 Ox2c byte
OxOOOOOO37 0x00 byte
0x00000038 0x10 byte

OxOOOOOOO6 0x00 by
;IOXOOOOOOO7 0x00 by
0x000000080x00 by

-Ox00000009. Ox28 bytes
:OxOOOOOOOa 0x12 by
;IOxOOOOOOOb) 0x00 by
OxOOOOOOOc 0x00 byte

e

e

e

OxOOOOOOO5 0x00 byte i:
sk : Class token I Function token Line no. I

: 21 23 18 2
e &

e

i.

-Ox0000000) 0x0a byte :--------------------------- OxOOOOOO39 Ox00 byte
OXOOOOOOOel Ox00 byte - NO2 0x0000003a 0x00 byte
OxOOOOOOOf OX2 byte 0x0000003b OXOO byte
OxOOOOOOOOx04 byte 0x0000003c. Ox00 byte
OxOOOOOO1 0x00 byte OxOOOOOO3d Ox00 byte
OxOOOOOO12 Ox10 byte Ox0000003e Ox28 byte
OxOOOOOO13 Ox00 byte 0x0000003f Ox12 byte
38. E. Ox0000004O Ox00 byte UX XUU byte
OxOOOOOO16 0x00 byte O. C.
OxOOOOOO17 Ox00 byte 0x00000043 0x00 byt OxOOOOOO18 Ox28 byte 65
0x00000019 0x12 byte Ox00000044) OX21 byte
0x0001a OXOO bye Ox00000045 0x32 byte
0x0000001b) 0x00 byte OxOOOOOO46. Ox00 byte
OxOOOOOO1C 0x0a byte i Ox00000047 OX10 byte
OX00000910 OX20Y1e - distr"Hello World Ox00000048 0x00 byte
Exists Ox00000049 0x00 byte
i. OX0000004a) 0x00 byte
OXOOOOOO2 0x70 byte Ox0000004b) 0x00 byte

OX0000004c. Ox00 byte OXOOOOOO22 OX2 byte
S. OX18 E. OX0000004d OX28 byte
OxOOOOOO24 Ox00 byte Ox0000004e. Ox12 byte
OxOOOOOO25 Ox10 byte OxOOOOOO4f Ox00 byte
OxOOOOOO26 Ox00 byte OXOOOOOO50 0x00 byte
OxOOOOOO27 0x00 byte Ox00000051 0x0a byte
OxOOOOOO28 Ox00 byte FIG. 4D 0x00000052 Ox2a f

U.S. Patent May 26, 2015 Sheet 9 Of 17 US 9,043,924 B2

s

U.S. Patent May 26, 2015 Sheet 10 of 17

Connecting to a tested unit
having a tested application

Setting debug operators in a
plurality of tiers

- > Executing the tested application

y
NO 305

406 Monitoring request traffic
among application Components

307

is a Analyzing debugging data

Last testings
is session? -

is - 309

US 9,043,924 B2

FIG. 5B soccessessee.

55:+

U.S. Patent

US 9,043,924 B2 U.S. Patent

U.S. Patent May 26, 2015 Sheet 13 of 17 US 9,043,924 B2

s
9.
9.
a
S
D
e

89 "SDI

US 9,043,924 B2 U.S. Patent

US 9,043,924 B2 Sheet 15 Of 17

QUIBUJQSMU

May 26, 2015 U.S. Patent

US 9,043,924 B2 Sheet 16 of 17 May 26, 2015 U.S. Patent

C19

|

ZZ$7

US 9,043,924 B2 Sheet 17 Of 17 May 26, 2015 U.S. Patent

US 9,043,924 B2
1.

METHOD AND SYSTEM OF RUNTIME
ANALYSIS

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 13/515,538 filed on Jun. 13, 2012, which is a
National Phase of PCT Patent Application No. PCT/IL2010/
001059 having International filing date of Dec. 14, 2010,
which claims the benefit of priority of U.S. Provisional Patent
Application Nos. 61/352,412 filed on Jun. 8, 2010 and
61/286,401 filed on Dec. 15, 2009. The contents of the above
applications are all incorporated herein by reference.

FIELD AND BACKGROUND OF THE
INVENTION

The present invention, in some embodiments thereof,
relates to a method and a system for security assessment of
web applications and services and, more particularly, but not
exclusively, to a method and a system for runtime security
assessment of web applications and services.

Computer security issues are becoming more widespread
as an ever-increasing number of diverse computer applica
tions are developed. Problems such as viruses, worms, root
kits, spyware, and theft are plaguing the population of com
puter users and web services. Additionally, as the Internet
connects more people to each other, it also is fueling security
problems because confidential information is more easily
compromised, see U.S. Patent Application Publication No.
2008/0244261 filed on Mar. 29, 2007.

In their attempt to address Web application security, Scott
and Sharp selected three types of security vulnerabilities they
believed to be particularly important: form modification,
SQL injection, and cross-site scripting (XSS), see D. Scott, R.
Sharp, Abstracting application-level Web security, in: The
11th International Conference on the World Wide Web,
Honolulu, Hi, May 2002, pp.396–407 and D. Scott, R. Sharp,
Developing secure Web applications, IEEE Internet Comput
ing 6 (6) (2002) 38-45, which are incorporated herein by
reference. They also suggested that form modification is often
used in conjunction with other forms of attacks, for example,
structured query language (SQL) injection. SQL injection
and XSS account for the majority of Web application security
Vulnerabilities, see M. Curphey, D. Endler, W. Hau, S. Taylor,
T. Smith, A. Russell, G. McKenna, R. Parke, K. McLaughlin,
N. Tranter, A. Klien, D. Groves, I. By-Gad, S. Huseby, M.
Eizner, R. McNamara, Aguide to building secure Web appli
cations. The Open Web Application Security Project V.1.1.1,
September 2002, which is incorporated herein by reference.

Different methods and systems have been developed for
detecting and preventing web application security Vulner
abilities. For example, U.S. Patent Application Publication
No. 2007/0074188, filed on Mar. 29, 2007, describes meth
ods, Software tools and systems for analyzing software appli
cations, e.g., Web applications, are described. A Software
application to be analyzed is transformed into an abstract
representation which preserves its information flow proper
ties. The abstract interpretation is evaluated to identify secu
rity Vulnerabilities using, for example, type qualifiers to asso
ciate security levels with variables and/or functions in the
application being analyzed and type state checking. Runtime
guards are inserted into the application to secure identified
security vulnerabilities. Another example is described in U.S.
Patent Application Publication No. 2008/0209567, filed on
Feb. 15, 2008 that describes security assessment and security
Vulnerability testing of Software applications is performed

10

15

25

30

35

40

45

50

55

60

65

2
based at least in part on application metadata in order to
determine an appropriate assurance level and associated test
plan that includes multiple types of analysis. Steps from each
test are combined into a “custom' or “application-specific'
workflow, and the results of each test may then be correlated
with other results to identify potential security vulnerabilities
and/or faults. Another example is described in U.S. Patent
Application Publication No. 2008/0295178, filed on May 24,
2007 that describes a web application receives a user input
with a SQL injection attack string that references a function.
The application generates a corresponding statement based
on the user input string, which the application sends to a
database server. Upon receiving the statement, the database
server executes the statement that invokes the referenced
function. When invoked, the referenced function stores a
value. The presence of the stored value indicates that the
database server invoked the function. Storing the value
indicative of the function invocation identifies a security Vul
nerability of the web application to SQL injection attacks,
since the function reference is introduced solely through user
input and function invocation is not intended by the applica
tion. This provides proof of SQL injection security vulner
ability of the application.

SUMMARY OF THE INVENTION

According to some embodiments of the present invention
there is provided a method for detecting one or more security
Vulnerabilities. The method comprises providing test instruc
tions for an application being a web application or a client
server application, adding test code which include at least one
debug operator and/or instructions which are injected to the
program code environment to a code segment of the applica
tion according to the test instructions, sending at least one
message to the application according to the test instructions at
runtime thereof, monitoring test information, such as debug
ging and/or profiling information pertaining to at least one
reaction of the application to the at least one message during
an execution of the test code, performing an analysis of the at
least one reaction, and detecting a presence or an absence of
at least one security Vulnerability according to the analysis.

Optionally, the at least one security vulnerability is
selected from a group consisting of a structured query lan
guage (SQL) injection, a directory traversal, a lightweight
directory access protocol (LDAP) Injection, an extensible
markup language (XML) path (XPath) injection, operating
system (OS) commanding, a simple mail transport protocol
(SMTP) injection, carriage return line feed (CRLF) injection,
a cross site Scripting (XSS), log file injection, improper
logout, username?password enumeration, no session expira
tion, and detailer error messages.

Optionally, the test information includes data describing an
influence of the at least one message on the code execution of
the application at the runtime.

Optionally, the method comprises repeating the method
with additional test instructions instead of the test instruc
tions.
More optionally, the repeating is performed in each of a

plurality of testing sessions; further comprising adding the at
least one security Vulnerability to a report in each the testing
session.
More optionally, the additional test instructions are

selected according to the presence or the absence.
More optionally, the repeating is performed in each of a

plurality of testing sessions, each the testing session being
selected according to a model defining a plurality of connec
tions among the plurality of testing sessions.

US 9,043,924 B2
3

More optionally, the model is defined by at least one of a
graph and a state machine.
More optionally, each the testing session being selected

according an outcome of a previous testing session.
Optionally, the method further comprises establishing a

connection to with an application and using the connection
for identifying the at least one reaction, the providing being
performed according to the identifying.

Optionally, the method comprises providing a model defin
ing a plurality of connections among a plurality of testing
session records outlining at least a portion of the test instruc
tions; wherein at least the sending and the monitoring are
repetitively performed in a plurality of testing sessions
selected according to the model and defined according to a
group of the plurality of testing session records.
More optionally, at least one member of the group is

selected according to an outcome of at least one of the plu
rality of testing sessions.

Optionally, the method comprises monitoring behavioral
changes of an original code of the application at the runtime
period and performing the detecting according to the changes.

Optionally, the sending comprises using a dummy user
having a unique address for opening a page having injected
data.

Optionally, the detecting comprises detecting a code seg
ment posing the security vulnerability in the code of the
application.

Optionally, the method comprises presenting the code seg
ment to a user.

Optionally, the method comprises generating an exploit
module to the security vulnerability and providing the exploit
module to a user.

Optionally, the method comprises generating a report
including the exploit module so as to allow the demonstrating
of the security vulnerability.
More optionally, the report includes at least one of a Vul

nerable page screenshot that allows viewing the final result of
the security Vulnerability and a set of step-by-step instruc
tions that define how to reproduce the security vulnerability.
More optionally, the generating is performed according to

a set of instructions that is based on a behavior of the security
Vulnerability.

Optionally, the detecting comprises identifying a function
ality of a validation/sanitation filter.
More optionally, the identifying is performed by identify

ing an attack not filtered by the validation/sanitation filter.
Optionally, the providing comprises selecting data appli

cation record describing an interface data pertaining to the
application from a plurality of data application records and
generating the at least one message according to the data
application.

Optionally, the monitoring comprises tracking whether a
certain string is modified at the runtime.
More optionally, the string is a member of a group consist

ing of a string provided by the at least one message, at least a
portion of a string that function as an input of an executed
code of the application, and an output of the application.

Optionally, the monitoring comprises tracking a runtime
exception at the runtime, the detecting being performed
according to the runtime exception.

Optionally, the application having a plurality of application
components in a plurality of network nodes. The adding com
prises adding test code to each application component. The
monitoring comprises monitoring message traffic between
the plurality of application components.

According to some embodiments of the present invention
there is provided a system for detecting at least one security

10

15

25

30

35

40

45

50

55

60

65

4
Vulnerability at runtime. The system comprises a repository
storing test instructions, a network interface for sending at
least one message to an application according to the test
instructions at runtime thereof, the application being a web
application or a client server application, a code interface for
adding test code to a code segment of the application accord
ing to the test instructions and receiving test information
pertaining to at least one reaction of the application to the at
least one message during an execution of the test code, and a
testing unit for detecting at least one security Vulnerability
according to an analysis of the at least one reaction.

Optionally, the repository stores a plurality of testing ses
sion records defining at least a portion of the test instructions,
the network interface being configured for sending a plurality
of messages in a plurality of testing sessions, each the mes
sage being generated according to a different member of a
group of the plurality of testing session records.

Optionally, the code interface comprises a code flow
tracker that facilitates a code coverage aggregation, the test
ing unit detects the at least one security Vulnerability accord
ing to an analysis if the code coverage aggregation.

Optionally, the code interface comprises a code flow
tracker that compares code flow outlines of a multiparameter
message with different parameter combinations, the testing
unit detects the at least one security Vulnerability by an analy
sis of an executed code generated in response to the multi
parameter message.
More optionally, the system further comprises a model

defining a plurality of connection among the plurality of
testing session records, the group being gradually generated
at the runtime according to the plurality of connection.

Optionally, the repository stores a plurality of testing ses
sion records, further comprising an analyzer configured for
managing a testing process by dynamically selecting at least
one of the plurality of testing sessions according to the test
information, the at least one message being defined according
to the at least one testing session.

According to some embodiments of the present invention
there is provided a method for detecting one or more security
Vulnerabilities. The method comprises a) providing a plural
ity of testing session records each defining a test session for a
security Vulnerability assessment and a model defining a plu
rality of connections among the testing session records, b)
testing an application according to one of the plurality of
testing session records, the application being a web applica
tion oraclient server application, c) performing an analysis of
a reaction of the application to the test session during the
execution of the application, d) selecting an additional of the
plurality of testing session records according to the model in
the light of the analysis, and e) repeating the b) and c) where
the testing being held according to the additional testing
session.

Optionally, the analysis is of performed according to data
aggregated during a previous testing session where the testing
is held according to a previous testing session.

According to some embodiments of the present invention
there is provided a method for detecting at least one security
Vulnerability. The method comprises providing test instruc
tions for an application having a plurality of application com
ponents in a plurality of network nodes and adding test code,
for example at least one debug operator and/or profiling
object as described below, to a code segment of each appli
cation component according to the test instructions, sending
at least one message to the application according to the test
instructions at runtime thereof. The method further includes
monitoring code flow among the plurality of application com
ponents by test information pertaining to at least one reaction

US 9,043,924 B2
5

of the application to the at least one message during an execu
tion of test code and performing an analysis of the at least one
reaction. This allows detecting a presence oran absence of at
least one security Vulnerability according to said analysis.

Unless otherwise defined, all technical and/or scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which the
invention pertains. Although methods and materials similar
or equivalent to those described herein can be used in the
practice or testing of embodiments of the invention, exem
plary methods and/or materials are described below. In case
of conflict, the patent specification, including definitions, will
control. In addition, the materials, methods, and examples are
illustrative only and are not intended to be necessarily limit
ing.

Implementation of the method and/or system of embodi
ments of the invention can involve performing or completing
selected tasks manually, automatically, or a combination
thereof. Moreover, according to actual instrumentation and
equipment of embodiments of the method and/or system of
the invention, several selected tasks could be implemented by
hardware, by software or by firmware or by a combination
thereofusing an operating system.

For example, hardware for performing selected tasks
according to embodiments of the invention could be imple
mented as a chip or a circuit. AS Software, selected tasks
according to embodiments of the invention could be imple
mented as a plurality of software instructions being executed
by a computer using any Suitable operating system. In an
exemplary embodiment of the invention, one or more tasks
according to exemplary embodiments of method and/or sys
tem as described herein are performed by a data processor,
Such as a computing platform for executing a plurality of
instructions. Optionally, the data processor includes a volatile
memory for storing instructions and/or data and/or a non
Volatile storage, for example, a magnetic hard-disk and/or
removable media, for storing instructions and/or data.
Optionally, a network connection is provided as well. A dis
play and/or a user input device such as a keyboard or mouse
are optionally provided as well.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described,
by way of example only, with reference to the accompanying
drawings. With specific reference now to the drawings in
detail, it is stressed that the particulars shown are by way of
example and for purposes of illustrative discussion of
embodiments of the invention. In this regard, the description
taken with the drawings makes apparent to those skilled in the
art how embodiments of the invention may be practiced.

In the drawings:
FIG. 1 is a schematic illustration of architecture of a runt

ime testing system that is connected to an exemplary tested
unit, according to Some embodiments of the present inven
tion;

FIG. 2 is a schematic illustration of the runtime testing
system and the tested unit of FIG. 1 in which optional com
ponents of the runtime testing system are described, accord
ing to Some embodiments of the present invention;

FIG. 3 is a schematic illustration of an exemplary model
defining connections between exemplary testing session
records, according to Some embodiments of the present
invention;

FIG. 4A is a flowchart of a method for testing security
Vulnerabilities of a web application, according to some
embodiments of the present invention:

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 4B is a schematic illustration of a security vulnerabil

ity profiling object include instructions which are injected to
a program code execution environment, according to some
embodiments of the present invention:

FIG. 4C is a flowchart of a another method for testing
security Vulnerabilities of a web application, according to
Some embodiments of the present invention;

FIGS. 4D-4E is an exemplary script depicting the injection
and monitoring in a program code execution environment,
according to some embodiments of the present invention;

FIG. 5A is a schematic illustration of an exemplary tested
application having a three tierarchitecture and connected to a
code flow tracker, according to some embodiments of the
present invention;

FIG. 5B is a flowchart of a method for testing security
Vulnerabilities in multi tier web applications, according to
Some embodiments of the present invention;
FIGS.5C and 5D depicts samples of a web services request

as identified on tier X and tier X-1 taken according to some
embodiments of the present invention; and

FIGS. 6A-6E are screenshots of a graphical user interface
(GUI) for allowing a user to control a testing process, monitor
the testing process, and/or receive data from the testing pro
cess, according to some embodiments of the present inven
tion.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

The present invention, in Some embodiments thereof,
relates to a method and a system for security assessment of
web applications and services and, more particularly, but not
exclusively, to a method and a system for runtime security
assessment of web applications and services.

According to some embodiments of the present invention,
there is provided a method and a system for detecting one or
more security Vulnerabilities of a tested application, Such as
SQL injection and XSS, by monitoring profiling and/or
debugging data that is generated at runtime as a reaction to
tampered messages. The method includes providing test
instructions which are adapted to the web application. The
method further includes adding profiling objects and/or one
or more debug operators, such as breakpoints and hooks, to a
code segment of the web application according to the adapted
test instructions. Now, one or more messages, such as HTTP
requests, are sent to the web application, optionally via a web
server, according to the adapted test instructions. The mes
sages are sent during a runtime period of the tested applica
tion. Debugging information pertaining to a reaction, which
may be referred to as a response, of the web application to the
messages is monitored during an execution of the debug
operator. This allows performing an analysis of the reaction
and detecting, accordingly the presence or the absence of one
or more security vulnerabilities.

Optionally, a plurality of messages is sent in a plurality of
consecutive testing sessions. In Such a manner, the reactions
of the web application to the plurality of messages may be
aggregated to allow a comprehensive analysis of the web
application behavior. Optionally, the different testing ses
sions are dynamically selected during the runtime of the web
application. As outlined above and described below debug
ging data which is indicative of the reaction of the web appli
cation to received messages is analyzed during the runtime of
the web application. In Such a manner, new test sessions may
be selected during the course of a multi session test. In Such a
manner, an adaptive multi session test that is changed accord
ing to the behavior of the web application may be formed.

US 9,043,924 B2
7

Optionally, the testing sessions are held according to a model
outlining the connection among a plurality of possible testing
sessions, such as a connected graph or a tree graph or a state
machine. In Such a manner, a different set of messages may be
automatically selected for testing different web applications
in runtime.

Optionally, the outcome of different testing sessions are
recorded and presented to a system operator, optionally in a
report. Optionally, an exploit module is generated for each of
the detected security vulnerabilities. The exploit module is
provided to the operator, allowing her to evaluate the security
Vulnerabilities by herself.

According to Some embodiments of the present invention,
there is provided a system for detecting security vulnerabili
ties in runtime. The system includes a repository for storing
test instructions, a network interface for sending messages to
a web application according to the test instructions during a
runtime period thereof, and a code interface for adding pro
filing objects and/or debug operators to a code segment of the
web application according to the test instructions. The code
interface is further designed for receiving debugging infor
mation pertaining to the reaction of the web application to the
messages during an execution of the profiling objects and/or
debug operators. Optionally, the debugging information
includes data describing an influence of the messages on the
Syntax of code execution of the web application at runtime.
The code interface and the network interface allow a testing
unit to detect one or more security Vulnerabilities according
to an analysis of the behavior of the web application. Option
ally, the testing unit receives the reaction of the web applica
tion to the messages. The reaction may be gathered using the
profiling objects and/or debug operators, for example as
described below. Optionally, the system includes one or more
tracker modules of gathering various reactions and reactions
of the tested application to the messages.

Before explaining at least one embodiment of the invention
in detail, it is to be understood that the invention is not nec
essarily limited in its application to the details of construction
and the arrangement of the components and/or methods set
forth in the following description and/or illustrated in the
drawings and/or the Examples. The invention is capable of
other embodiments or of being practiced or carried out in
various ways.

Reference is now made to FIG. 1, which is a schematic
illustration of architecture of a runtime testing system 108
that is connected to an exemplary tested unit 100, according to
Some embodiments of the present invention.
The tested unit 100 executes one or more web applications,

web services, and/or databases, for brevity referred to herein
as a tested application 102, which are designed to allow
remote access via a communication network, Such as the
Internet or intranet. It should be noted that the runtime testing
system 108 may be used for testing web applications which
have been developed in various environment, including but
not limited to Java, .NET. Transact SQL (T-SQL), and Pro
cedural Language (PL)/SQL. Optionally, the tested unit 100
includes a web server 101, such as Apache, MicrosoftTM
IISTM, and WebSphereTM, and a runtime environment 103,
such as Java Virtual Machine (JVM) and Common Language
Runtime (CLR), which the standards thereofare incorporated
herein by reference. The runtime environment 103 is used by
an application server 104, such as Jboss Seam, Weblogic
Tomcat, and Websphere. The application server 104 allows
executing the tested application 102.
The runtime testing system 108 includes a network inter

face 106 that that is optionally designed to communicate with
the tested application 102 via the web server 101, optionally

10

15

25

30

35

40

45

50

55

60

65

8
via a network port. Optionally, the network interface 106
includes a scripting engine, as described below. It should be
noted that the network interface 106 may include any type of
HTTP client, for example a component generating HTTP
requests and allows executing a flow of HTTP requests.

In some embodiments, the tested application is a Client/
Server application. For performing the test with a client/
server application, the HTTP client should be replaced with a
clientable to reproduce the client requests, and allow sending
modified client requests. Such client requests may be done by
means of Web Services/Simple Object Access Protocol
(SOAP), Remote Method Invocation (RMI), Distributed
Component Object Model (DCOM), and/or any otherform of
standard or proprietary communication protocol. When per
forming client/server testing, the tester described below uti
lizes such a client to emulate the client requests and modifies
them with attack vectors. The runtime analyzer analyzes the
code execution in an identical manner to the one done in web
applications.

This connection allows the runtime testing system 108 to
transmit messages to the tested unit 100 and to receive
responses therefrom, for example hypertext transfer protocol
(HTTP) message and debug response messages and/or infor
mation. For brevity, the messages may be referred to hereinas
messages.
The runtime testing system 108 is designed to execute a

number of test sessions, optionally iteratively, for example as
described below. In each test session a message is sent to the
tested unit 100 and a response of the tested application 108 to
the message is intercepted and analyzed, for example as
described below.
The runtime testing system 108 includes a testing unit 105

that is optionally connected to a repository for storing a rules,
optionally in a dataset that includes a plurality of connected
records, each consist a set of instructions for a different test
session. As used herein, such a set of instructions may be
referred to as a test session record and/or test session node.
The runtime testing system 108 further includes a code

interface 107, referred to herein as runtime monitor module
107, that adds debug operators to the code of the tested appli
cation and monitors responses to the messages provided by
the Scripting engine 106 in runtime, during the test sessions,
and forwarding the responses for analysis by the testing unit
105. The runtime monitor module 107 receives the responses
from the tested application 102 in runtime.

Optionally, the testing unit 105 comprises an analyzer
module for analyzing the data monitored by the runtime
monitor module 107 during a test process and optionally a
response parser for preprocessing the response before it is
analyzed. The preprocessing allows correlating the response
with testing data that is defined in a respective testing session
record. Optionally, the preprocessing may be applied on some
or all of the responses.

Reference is now also made to FIG. 2, which is a schematic
illustration of the runtime testing system 108 and the tested
unit 100 of FIG. 1 in which optional components of the
system are described, according to Some embodiments of the
present invention. As outlined above, the testing unit 105
includes the analyzer module 203 for receiving the responses
of the tested application 102 from the runtime monitor mod
ule 107. Optionally, the analyzer module 203 further receives
the messages which have been inputted during the testing
process, and optionally related data Such as execution time,
from the scripting engine 106. In Such a manner, the analyzer
module 203 may base its analysis, in runtime, on actual mes
sages and actual responses thereto.

US 9,043,924 B2
9

Optionally, the testing unit 105 includes application data
records, referred to herein as application data repository 201
or App Data 201. Each application data record includes des
ignated testing instructions, such as application data pertain
ing to a certain application which may be tested by the runt
ime testing system 108 for example application data that
defines access interface for one or more related application
components. In use, a matching application data record may
be selected for the tested application 102. For example, the
Application data repository 201 of a certain web application
includes a collection of HTTP requests that represents valid
user traffic. Such as uniform resource locators (URLs),
parameters, Cookies, Session, Authentication Information,
HTTP headers and/or parameter values. For each type of
tested application, the Application data repository 201 con
tains some or all of the information which is required for
reproducing some or all of the valid application messages.
As outlined above, the testing unit 105 includes a dataset

that includes testing instructions which are optionally divided
to a plurality of testing session records each includes set of
message instructions 204 which are designed to be combined
with a matching application data record from the application
data repository 201 that is selected for the tested application
to produce test entries, as shown at 202. Optionally, the test
ing session records are arranged in or associated with a
model. Such as a graph and a state machine, defining a plu
rality of connections among a plurality of testing session
records, represented as nodes.
The model is used for dynamically determining, according

to intermediate results, which testing sessions are used for
probing, in runtime, the tested application. Optionally, each
testing session record is a node in the graph. In use, an out
come of an analysis of responses received during one testing
session outputs of the tested application determine a progress
along the graph. The progress defines which additional test
ing session records, graph nodes, are selected and used for
testing the tested application 102. In Such an embodiment, a
dynamic iterative process in which a test is preformed accord
ing to a path of testing session records, which are dynamically
built according to the outcome of the previous tests, is held,
for example as described below.

For example FIG.3 depicts is an exemplary model defining
connections among exemplary testing sessions which are
held according to the outcome of other testing sessions,
according to Some embodiments of the present invention. In
FIG. 3, when a message defined according to an SQL state
ment with a parameter value, referred to herein as IniProb,
Succeed, and the parameter value is a string, an altered unique
string is injected. However, if the parameter value is a
numeric value, a three digit number is injected. As shown at
FIG.3, this process lasts until the graph outlines an ending, as
shown at 451 or in 452.

Optionally, the graph includes an initiation node, referred
to herein as a prober, that allows generating a message,
referred to herein as a normal message, which is not modified
with specific testing logic. Such a message may be used to
determine which tests are relevant in the context of specific
tested code.

Optionally, the graph architecture includes a number of sub
graphs, each related to security Vulnerability. In Such an
embodiment, testing sessions may be sequentially performed
according to the different Sub graphs.

Each testing session record 204 includes test rules such as
instructions for modifying the matching application data 201,
for example web messages, such as HTTP messages, of the
matching application data record from the application data
repository 201. The applying of the test rules from a test

10

15

25

30

35

40

45

50

55

60

65

10
session record on messages, which are defined in an applica
tion data record from the application data repository 201,
allows creating one or more testing messages that emulate an
attack or otherwise allow detecting a security vulnerability to
Such an attack. For clarity, as used herein, security Vulnerabil
ity means any weakness that allows an attacker to reduce a
systems information assurance (IA) and/or any weakness
that allows an attacker to affect the practice of managing
information-related risks.

Additionally, each testing session record may define a code
behavior and/or an output behavior that is expected to be
expressed in the response to the one or more testing messages
which are defined according thereto. In such an embodiment,
a testing process is held in a number of testing sessions
according to a number of testing session records which are
optionally dynamically selected according intermediate
results. As outlined above, each one of the testing session
records include test rules which are defined and stored for a
certain application.

Optionally, some testing sessions define an initial exami
nation in which group of security Vulnerabilities is detected,
for example whether the code of the tested application is
based on SQL statements, and the like.

Reference is now also made to FIG. 4A, which is a flow
chart 300 of a method for testing web application security
Vulnerabilities, according to some embodiments of the
present invention. Reference is also made to FIGS. 6A-6E,
which are screenshots of a graphical user interface (GUI) for
allowing a user to control a testing process, monitor the test
ing process, and/or receive data from the testing process,
according to some embodiments of the present invention.

First, as shown at 301, a connection is established between
the runtime testing system 108 and the tested unit 100 that
includes the tested application 102. Optionally, as shown at
FIG. 6A, a GUI allows the operator to designate a web appli
cation by providing the URL thereof.
Now, as shown at 302 and 303, test instructions are selected

for the tested unit 100. Optionally, the test instructions are
defined in the application data record that is selected from the
Application data repository 201 for the tested application
102, for example as described above, and in the testing ses
sion record which is selected as described above. As shown at
302, one of the testing session records is selected from the
repository 204. Optionally, the selected testing session record
associated with a node in a model. Such as a graph, defining a
plurality of connections among a plurality of testing sessions,
for example as described above. As shown at 303, an appli
cation data record is selected. Optionally, the selected appli
cation data record includes a collection of entries, each
describing the interface to invoke an application operation of
the tested application 102. Optionally, each interface
describes an HTTP message that includes an access process,
a URL, parameter names and/or parameter values represent
ing a valid message of the tested application 102.
Now, as shown at 304, the routine monitor 107 prepares the

code of the tested application 102 for a testing session,
optionally according to instructions in the selected testing
session record and/or in the selected data application record.
Each testing session record contains instructions for modify
ing the messages into testing messages, optionally as outlined
above and described below. Optionally, the messages defined
in the selected application data record are manipulated
according to one or more testing rules from the selected
testing session record.
The routine monitor 107 sets debug operators, such as

debug hooks, breakpoints, watches, and the like, in the code
of the tested application according to the testing instructions.

US 9,043,924 B2
11

These debug hooks allows identifying Suspected code execu
tion events, such as database operation code execution, file
system access operations, response writing operations, class
loading/unloading operations, memory access operations,
string manipulation, session management operations, and the
like.

Optionally, the debug operators allow monitoring the activ
ity of the tested unit 100 during a user session, Such as a user
authentication session, and to determine the validity of the
session. This allows the runtime testing system 108 to identify
when a certain operation has caused the session to break, thus
reestablishing the session, without failing the test process.
Now, as shown at 305, the tested application 102 is

executed on the tested unit 100.
Optionally, the execution is initiated by the scripting

engine 106 that sends a request via the web server 101 that
invokes, in response, the application server 104 and the tested
application 102 that resides thereon.

Optionally, this process includes presenting, in runtime,
the tested application. For example, FIG. 6B depicts an exem
plary GUI presenting a login page through which the testing
messages are inputted.

Optionally, the GUI includes a toolbar, or any other com
ponent that allows the operator to initiate and/or end the
testing process, for example as shown at numeral 11 of FIG.
6C.

Optionally, the presentation allows the operator to deter
mine when to launch the testing process. Optionally, the
runtime testing system 108 preprocesses the tested applica
tion 102 or a portion thereof, for example a webpage, and
display general information about the tested webpage based
thereupon. For example, as shown at FIG. 6C the GUI dis
plays general data 422 pertaining to selected webpages 421.
Now, as shown at 306, the scripting engine 106 sends one

or more testing messages to the web server 101 while the
routine monitor 107 reads, in runtime, debugging information
that is generated in response to the testing messages, as shown
at 307.

Optionally, as shown at 308, the analyzer 203 analyses the
debugging information, optionally according to the selected
testing session record and/or the injected testing messages.
Optionally, the analyzer 203 performs an analysis by com
paring between the debugging information and a set of pre
dicted. The analysis is performed in runtime, after the tested
applications have been Successfully loaded for execution.
Additionally or alternatively, the debugging data is aggre
gated and optionally stored for an analysis of debugging
information that has been accumulated during a number of
testing sessions.

According to Some embodiments of the present invention,
the routine monitor 107 includes one or more tracker modules
which are designed to monitor various outputs of the tested
application and/or the executed code of the tested application
in runtime. Such monitoring is used for detecting various
security vulnerabilities. Optionally, the routine monitor 107
includes a string flow tracker and/or a code execution tracker,
which are designed to identify when certain tracked strings
have gone through certain types offiltering aimed at blocking
the execution of a related code segment and/or altering the
string. Optionally, the string flow tracker sets various hooks
on string manipulation methods and assignment methods
according to the adapted test instructions. The String manipu
lation and assignment methods may result with string modi
fications, string splitting and/or string duplication that may
initiate new string flow tracks. Tracking the hooks activity
and output actually traces these modifications to the user
input until it reaches execution points.

10

15

25

30

35

40

45

50

55

60

65

12
Identification of this type of validation and/or sanitation

may be significant for fine tuning of potential Security Vul
nerability detection. By identifying the exact input validation/
sanitation process, the runtime testing system 108 is able to
determine whether alternative forms of attacks, which are not
blocked and/or filtered by the execution of the related code
segment, may prevail and therefore should be considered as
potential security vulnerabilities. Furthermore, by identify
ing the exact input validation/sanitation process false posi
tives may be avoided. The aforementioned identification indi
cates that certain input validation/sanitation filters are
properly implemented by the tested unit 100. In such a man
ner, the runtime testing system 108 does not classify code
segments that cannot be exploited as potential security Vul
nerabilities as potential security vulnerabilities.

Additionally or alternatively, the routine monitor 107
includes an input flow tracker that is configured for monitor
ing user inputs which are received during the runtime of the
tested applications. Optionally, the input flow tracker identi
fies when a string, or a Substring, provided by a user, option
ally via a network port, or as a reaction to a user input, is used
and/or manipulated by a specific process, such as a function.
For example, the usage may be embedding the string and/or
Substrings into other strings, modifying the string and/or Sub
strings and the like. In Such a manner, the Input-Flow-Tracker
may be used for tracking the behavior of the tested application
102 in response to an input.

Additionally or alternatively, the routine monitor 107
includes an output flow tracker for tracking outputs of the
tested application 102 in certain execution points.

Additionally or alternatively, the routine monitor 107
includes a code flow tracker that determines, optionally for
each message, the outline of the executed code. Optionally,
the code flow tracker facilitates a code coverage aggregation
that improves the aggregation of the application data during
the application data gathering. Normally, a designated test
has to be conducted for testing the actual code which is
executed in response to a multi parameter message. Thus,
when an N designated tests has to be conducted for testing the
actual code that is executed in response to a multi parameter
message with N potential combinations of parameters. The
code flow tracker allows comparing code flow outlines of a
multi parameter message with different parameter combina
tions so as to determine whether the executed code is identical
or not. In such a manner, an additional test may be launched
only if the code flows are different.

Additionally or alternatively, the code flow tracker facili
tates code coverage detection by correlating the actual
executed code with a statically analyzed code. In such a
manner, if the difference between the actual executed code
and the statically analyzed code is above a certain percentage,
the code coverage detection defines which percentage of the
code in the application is covered by the test process. This can
be used to guarantee sufficient coverage or provide informa
tion to the user to solve insufficient coverage problems.

Optionally, the information is used for automatically solv
ing insufficient coverage problems. In such an embodiment,
the executed code is analyzed and compared with a statistical
analysis of the code. If the detected coverage is not complete,
branching points where statement determine which code seg
ments are to be executed are detected and used to identify
branching conditions. Optionally, a relevant request with rel
evant parameter information is created to allow reaching
additional areas of the code.

Optionally, the routine monitor 107 includes a runtime
exception tracker that tracks runtime exceptions. In such a
manner, the routine monitor 107 may identify when certain

US 9,043,924 B2
13

operation has caused an exception. In Such a manner, the
handling of the runtime exceptions by the web application
may be evaluated so as to determine whether certain attack
simulation have been Successful or not.

Optionally, the detected web application security vulner
abilities are marked and/or stored for allowing the operator of
the tested application 102 to fix these security vulnerabilities.
Optionally, pseudo code segments which pose these security
Vulnerabilities are pinpointed. Optionally, a report presenting
or otherwise indicating these code segments is provided to the
users so as to allow handling each one of the security Vulner
abilities.

Optionally, the security vulnerabilities are presented to the
user, optionally during the runtime of the application, for
example using the aforementioned GUI. For instance, FIG.
6D is an image of a GUI that depicts an exemplary webpage
that has been monitored in run time and related debugging
data which has been analyzed. In FIG. 6D, the GUI presents
the parameters of the message, for exampletxtOserName and
tXtPassword, as shown at 431 and additional data pertaining
to the runtime analysis, for example pseudo codes segment
Vulnerability 432 and a security vulnerability of related infor
mation, Such as status 433.

Optionally, some or all the test sessions are used for detect
ing a security Vulnerability that involves more than one
webpage, for example a stored/persistent cross site scripting
(XSS). For example, one webpage is a simple form that
allows inputting a message and another webpage includes a
list of messages that every user may see.

In order to detect such security vulnerability, the testing
session includes instructions to performan actual test in steps,
where user inputs to a database and responses thereto are
followed. Optionally, data transferred between the web pages
and the database is tracked and a correlation between pages
that receives input from the user and pages that show the data
to the user is found. In case it finds a correlation, it analyzes it
in order to check if a manipulated input may be used in the
detected pages. In general, when Such correlation transfers
tampered input to and from the database, security Vulnerabil
ity is detected.
Now, as shown at 309, the testing process is either ended,

for example when a testing session record is associated with
a node in a graph that does not have child nodes, or repeated
with a new testing session record that is selected according to
the output of the analysis of the previous testing session. As
described above, the new testing session record is selected
according to the model. The new selected testing session
record is used, together with the selected application data, for
conducting another test session of the tested application 102.
for example as indicated by numeral 309. This process is
iteratively repeated according to the nodes in the connected
graph, according to a threshold and/or according to the out
come of one or more of the testing sessions.
As shown at 310, the status of the tested application 102 is

updated according to the analysis. For example, if the analysis
indicates on one or more web application security Vulner
abilities, the status of the tested application 102 is update to
reflect its security vulnerability.

According to Some embodiments of the present invention,
the routine monitor 107 may include a profiling module
designed to generate code instructions, referred to herein as a
security Vulnerability object, which are injected to a program
code environment which hosts and executes program code,
Such as common language runtime (CLR) code of the tested
application, and to log security related data generated in
response to the injected instructions, pertaining to the tested
application. In such a manner, the routine monitor 107 may

10

15

25

30

35

40

45

50

55

14
test web application security vulnerabilities of the tested
application without modifying the executed tested applica
tions, for example its binaries and Scripts. For example, FIG.
4B is a schematic illustration of a security vulnerability pro
filing object 472 that includes instructions which are injected
to a program code environment 473 that hosts and executes
CLR code of a tested application 474 and a log 475 generated
and updated by the security vulnerability profiling object 472.
Reference is also made to FIG. 4C, which is a flowchart of a
method for testing security Vulnerabilities in tested applica
tions by injecting instructions to the program code environ
ment, according to some embodiments of the present inven
tion.

Blocks 301-303, 305, and 309-310 are as described above.
After 303 and 302, the profiling module of the routine moni
tor 107 prepares or selects the instructions for injection dur
ing a testing session, optionally according to instructions in
the selected testing session record and/or in the selected data
application record. Optionally, the instructions are defined as
CLR code instructions. Now, as shown at 442, while the
tested application is executed, as shown at 305, instructions
are injected to the program code environment 473, for
example using a .Net profiling mechanism. The instructions
change the tested process source code in memory where the
tested process handles web requests, for example as an inter
net information server (IIS). The changing of the Source code
in memory means that file(s) belong to the tested application
are not altered and/or accessed. The program code environ
ment is monitored, as shown at 443, facilitating the logging,
as shown at 444, of security related data regarding the tested
application. Optionally, the instructions contain specially
made code sections that allow the routine monitor 107, for
example the security vulnerability profiling object 472, to
collect data that is used to evaluate and/or identify security
Vulnerabilities. The logging is optionally done using a profiler
without changing the source code. This allows acquiring test
information from monitored events and using them with other
data pertaining to the tested application, for example data
defined in the test entries 202.

In an exemplary scenario, the routine monitor 107 (i.e.
profiling object) injects new code instructions which calls
back to the routine monitor 107 with data that relates to a
specific position of the new code instructions. For example,
the injected code sends a current execute line of code and
additional information about the method, and the optionally
the respective dynamic link library (DLL), to the routine
monitor 107 for analysis, allowing the routine monitor 107 to
evaluate security vulnerabilities based on this analysis. The
routine monitor 107 may create a stack trace of the target
application code and identify anomalies in execution per
input manipulation. A example of an injection, in C# is as
follows:

protected void Page Load (object sender, EventArgs e)

Console.WriteLine(“Hello World!');

60

65

which translates into the following common intermediate language,
Microsoft Intermediate Language (MSIL):

.method family hidebysig instance void Page Load(object sender,
class mscorlibSystem.EventArgs e) cil managed
{
.maxstack 8
L 0000: nop
L 0001:ldstrello World'

US 9,043,924 B2
15

-continued

L 0006: call void mscorlibSystem.Console:WriteLine(string)
L 000b: nop
L 000c: ret

A sample of the byte level representation is:

0x000000000x00 byte -
0x00000001 0x72 byte -

L 0000: nop

0x00000002) 0x01 byte
L 0001:ldstr 'Hello World'

Ox00000003) 0x00 byte
Ox00000004) 0x00 byte
Ox00000005) 0x70 byte
Ox00000006) 0x28 byte - L 0006: call System.Console:WriteLIne
Ox00000007 0x10 byte
Ox00000008) 0x00 byte
Ox00000009 0x00 byte
Ox0000000a) 0x0a byte
Ox0000000b) 0x00 byte -
0x0000000c) 0x2a byte -

L 000b: nop
L 000c: ret

Ahead of each IL instruction, the code may be injected. In
this example, the new injected code is practically a call to a
tracing function, which takes a single argument that contains
the necessary test information therewithin, for example as
depicted in FIG. 4D. Injected segments are depicted in FIG.
4.E. In FIGS. 4D-4E, the original lines are underlined.
The injection of code instructions techniques does not

require any modification of the target application executable
(binaries, scripts, etc) in regards of file system changes (i.e. no
need to recompile and alter the original binaries of the target
application), as the injection occurs during runtime.

According to Some embodiments of the present invention,
the routine monitor 107 includes a multi tier tracker module
designed to monitor outputs of a tested application having
multiple components, which are hosted in a plurality of net
work nodes, such as application servers.

The multi tier tracker module is optionally used when the
code flow, optionally monitored by the code flow tracker, is
spread across a plurality of application components hosted by
a plurality of network nodes, such as application servers, for
example as the three tier architecture depicted in FIG. 5A or
any other similar n-tier architecture.

In these embodiments, the first message defined in the
respective testing session record 204 is for a web message,
Such as a request, which is sent to the first tier application
component. The first tier application component invokes, in
response, optionally synchronously, some operations on a
second tier application component located in another web
server. Optionally, the second tier application component
invokes, in response, optionally synchronously, Some opera
tions on a third tier application component located in another
web server, and so forth and so forth, until a final application
component hosted on an n-tier network node is reached.

Reference is now made to FIG. 5B, which is a flowchart of
a method for testing security vulnerabilities in multi tier web
applications, according to some embodiments of the present
invention.

Blocks 301-303 areas described above. At 404, the routine
monitor 107 sets debug operators, such as debug hooks,
breakpoints, watches, and the like, in each one of the tiers of
the tested application based according to the testing instruc
tions. The debug operators are placed in every application
component in each one of the tiers. Now, as shown at 305, the
tested application is executed. The debug operators allow
identify system events that are relevant for the purpose of
security vulnerability identification, such as DB Operation,

10

15

25

30

35

40

45

50

55

60

65

16
File System access, Response Writing, Class Loading/Un
loading, Memory Access, String Manipulation, Session Man
agement, and the like. Optionally, Some of the debug opera
tors are placed to monitor data communication events, for
example web service processes, communication streams, and
the like.
Now, the routine monitor 107 sends a request, as defined in

the testing instructions, to the tested application. If the appli
cation is a web application, the request is sent to a web server
which invokes the tested application and the application
server it resides on. Similarly to the above, as shown at 305,
the tested application receives the requests and executes it.
During the execution of the tested application, the routine
monitor 107 performs the automatic debugging using the set
debug operators. While sending and receiving data between
application components that run on the various tiers, the
routine monitor 107 tracks requests and identifies the code
paths among the application components in the different tiers.
This is done in the following manner
As shown at 406, the request traffic among the application

components in different tiers is monitored. The multi tier
tracker module identifies that a request for data from an
application component at a new tier X-1 is sent from an
application from a certain tier X. Such a request may be
performed by a wide range of remote calls, including Web
Services, SOAP. RMI, DCOM, and the like. When the multi
tier tracker module identifies such a call, on tierX, it analyzes
its destination, and its content. Then, when the request is
received by the application component on the X-1 tier, the
multi tier tracker module analyzes it to identify whether this
is indeed the relevant request. This verification may be per
formed by comparing and matching tier identification infor
mation, such as a source IP Address, a source IP Port, a
timestamp, request content, a request header and the like. For
example, FIGS.5C and 5D depicts samples of a web services
request as identified on tier X and tier X-1.

Optionally, if the request may lack tier identification infor
mation, the request may be intercepted at tier X. before send
ing it to tier X-1, and unique information may be added
thereto, for example a unique request ID. In this embodiment,
the unique information may be used to determine the rel
evancy of the request. Also, in Such a scenario, the multi tier
tracker module intercepts the received request at tier X-1 and
removes the additional information before releasing it for
execution. This guarantees that the application does not
execute the modified request.
Once the request is matched, the routine monitor 107 con

tinues the code paths analysis, similarly to the described
above in relation to 307-310. The multi tier tracker module
retains the tier-correlation information so that the response
portion of the code flow could also be backtracked from the
last tier and all the way back to the first tier.

According to Some embodiment of the present invention, a
report documenting the security Vulnerabilities is created
according to the outcome of Some or all of the testing ses
sions.

Optionally, an exploit module or a set of instructions for
creating an exploit is generated for each one of the security
Vulnerabilities. As commonly known, an exploit is a piece of
Software, a chunk of data, and/or a sequence of commands
that takes advantage of the security Vulnerability, which may
be a bug, a glitch and the like. Optionally, the generated report
includes some or all of the generated exploits, allowing dem
onstrating the effect of the security vulnerabilities to the
operator of the tested applications. Optionally, the generation
of the exploits is based on a set of instructions that is based on
the security vulnerability behavior. Optionally, the report

US 9,043,924 B2
17

includes a Vulnerable page screenshot that allows viewing the
final result of the exploit and/or step-by-step instructions
which provide clear instructions that allow any user of the
system to reproduce the exploit directly against the tested
system.

Reference is now made to an exemplary testing session in
which certain security vulnerability is tested. According to
Some embodiments of the present invention, one or more
session test records 204 include instructions that allow the
Scripting engine 106 to emulate injection attacks, such as a
structured query language (SQL) injection, a directory tra
Versal, a lightweight directory access protocol (LDAP) Injec
tion, an extensible markup language (XML) path (XPath)
injection, operating system (OS) commanding, a simple mail
transport protocol (SMTP) injection, improper logout, user
name?password enumeration, no session expiration, detailed
error messages, and log file injection. Optionally, the emulat
ing is performed by creating one or more tampered testing
messages which emulate an injection attack.

In Such an embodiment, the Scripting engine 106 injects a
testing message having Meta characters that may influence
the syntax of a code execution and/or the execution itself. If
such an influence is detected by the testing unit 105, for
example by the analyzer 203, a security vulnerability to injec
tion attack is reported. Optionally, the response of the execu
tion of the relevant code is monitored in runtime by the
routine monitor 107 and analyzed by the analyzer 203 to
probe whether the code is executed according to an expected
pattern and/or in a manner that is indicative of a security
Vulnerability to an injection attack. Alternatively, only rel
evant response content is monitored in runtime by examining
data generated on the probed server.
As described above, the testing may be performed interac

tively, according to the dataset of connected records. In Such
a manner, minor changes in the injected messages may be
performed in each one of the iterations so as to avoid false
negative detections of the scope of the security vulnerabili
ties.

Similarly, the messages may be used for emulating HTTP
response splitting injection and/or HTTP Response carriage
return line feed (CRLF) injection.

Optionally, the messages are used for emulating an injec
tion attack that influences an end user rather than the backend
code, for example a cross site Scripting (XSS). In such an
embodiment, the messages are crafted by a series of uniform
resource locator (URL) parameters that are sent via a URL to
a dummy user. The dummy user automatically performs the
attack. The identification of the XSS injection is performed in
a similar manner; however the tracking of the injection is
performed in a response writing component as well as corre
lated with the actual received response. In Such a manner, a
Vulnerability in which a malicious data is sent to a page that
stores it in the database so as to allow populating another
page, which is called by another user, is emulated and
detected.
As described above, the system 100 may be used for detect

ing SQL injections according to debugging information
which is gathered in runtime. In Such an embodiment, some or
more testing session records define a test that allows deter
mining whether the tested application 102 includes a combi
nation of elements that allows executing an SQL injection in
the tested unit 100. Optionally, the elements include an SQL
statement in the code of the tested application and entry-point
parameters concatenated into the SQL statement. Such entry
point parameters allow modifying the parameter value to a
random string. In Such a manner, the testing session allows
identifying that the tested unit 102 allows inputting unlimited

10

15

25

30

35

40

45

50

55

60

65

18
content. Such content, which is not limited to a small set of
allowed values and/or formats, may allow SQL injection.
Optionally, one or more testing sessions verifies whether user
inputs have a syntax portion of an SQL statement. Optionally,
one or more testing sessions checks whether tested values
and/or parameters in the code have been used as part of the
Syntax of a generated SQL statement, such as a standard
dynamic SQL statement or addressing a stored procedure
through a dynamic SQL Injection statement.
Now, if the check is positive, an SQL injection probing is

held. First, the type of the parameters in the string is checked,
for example whether it is an integer or a string.

Optionally, the check is performed for parameters by input
ting the following message:

Test (SQLI P Int) message in which a tested parameter is
set to a unique identifiable integer INT having the same size
as an original parameter, optionally by a representation of at
least 3 bytes. If INT appears as a string value in the code flow
and reaches the SQL syntax, we proceed to another testing
session according to the graph, else, no SQL Injection can be
performed based on this parameter and the testing session
ends.

Optionally, the check is performed for strings by inputting
the following message:

Test (SQLI P Str) message in which a tested parameter is
set to a unique identifiable alphanumeric string having the
same size as the original parameter. String should include
parts of an original string as well as identifiable string. If
string appears as a string value in the code flow and reaches
the SQL syntax, we proceed to another testing session accord
ing to the graph, else, no SQL Injection can be performed
based on this parameter and the testing session ends.

Optionally, an additional test is held, for example as a
separate testing session, in order to avoid false negative iden
tification of SQL injection security vulnerability. This test is
performed after the potential of SQL Injection by having
parameter info embedded as part of the SQL syntax has been
identified, for example as described above. Now, the actual
viability of changing the SQL syntax is tested.

Optionally, the check is performed for parameters by input
ting the following message:

Test (SQLI Bas Int) message where the parameteris set to
a unique identifiable string, beginning with a part of an origi
nal integer but containing alphabetic characters having the
same length limitations as described above as above. If the
string appears in the code flow and reaches the SQL Syntax,
we proceed to another testing session according to the graph,
else, no SQL Injection can be performed based on this param
eter and the testing session ends. Else, the executed SQL
statement is checked to determine whether the parameter in
the statement appears as string, for example bounded by
quotes, or as a set of integers, provided without quotes. As
there may be additional characters around the injected String,
such as “/6' and the like, the test probes adjacent characters.
Optionally, the executed SQL statement is checked by exam
ining the execution. If a string is probed than the query should
be executed Successfully. If an integer is probed the place
ment of alphabetic characters triggers an exception and a
security vulnerability to basic Integer based SQL Injection is
identified.

Optionally, if the original parameter is a string, a check is
performed by inputting the following message:

Test (SQLI Bas Str) message where the parameter is set
to a unique identifiable string, for example as described above
in relation to Test (SQLI P Str), but with one of the middle
characters replaced with a single quote. Now, if the string
appears in the code flow as before and embedded to the SQL

US 9,043,924 B2
19

Syntax without a change, for example a single quote that
remains identical and not been removed, altered to double
quotes, and/or encoded, an exception occurring in the execu
tion of the message is verified.

If no exception is verified, no SQL injection is identified
and the test session is ended. Else, a security vulnerability to
basic string based SQL injection is identified.

It should be noted that if a probed string may be altered
however a single quote cannot be placed it is most likely that
it is not possible to performan SQL injection in an exploitable
manner as it is impractical to insert alphabetic characters to
perform an injection. For clarity, the detection of a security
Vulnerability to an SQL injection does not guarantee the
exploitability of SQL injections. Optionally, the graph
defines one or more exploitability tests if the testing sessions
indicate on a security Vulnerability to an SQL injection.

It is expected that during the life of a patent maturing from
this application many relevant security Vulnerability, an
attack, and an injection attack will be developed and the scope
of the term testing session record, a security Vulnerability, an
attack, and network is intended to include all Such new tech
nologies a priori.
As used herein the term “about” refers to +10%.
The terms “comprises”, “comprising”, “includes”,

“including”, “having and their conjugates mean “including
but not limited to’. This term encompasses the terms “con
sisting of and "consisting essentially of.
The phrase “consisting essentially of means that the com

position or method may include additional ingredients and/or
steps, but only if the additional ingredients and/or steps do not
materially alter the basic and novel characteristics of the
claimed composition or method.
As used herein, the singular form “a”, “an and “the

include plural references unless the context clearly dictates
otherwise. For example, the term “a compound' or “at least
one compound may include a plurality of compounds,
including mixtures thereof.
The word “exemplary' is used herein to mean “serving as

an example, instance or illustration'. Any embodiment
described as “exemplary' is not necessarily to be construed as
preferred or advantageous over other embodiments and/or to
exclude the incorporation of features from other embodi
mentS.

The word "optionally' is used herein to mean “is provided
in some embodiments and not provided in other embodi
ments'. Any particular embodiment of the invention may
include a plurality of “optional features unless such features
conflict.

Throughout this application, various embodiments of this
invention may be presented in a range format. It should be
understood that the description in range format is merely for
convenience and brevity and should not be construed as an
inflexible limitation on the scope of the invention. Accord
ingly, the description of a range should be considered to have
specifically disclosed all the possible Subranges as well as
individual numerical values within that range. For example,
description of a range such as from 1 to 6 should be consid
ered to have specifically disclosed Subranges Such as from 1
to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3
to 6 etc., as well as individual numbers within that range, for
example, 1, 2, 3, 4, 5, and 6. This applies regardless of the
breadth of the range.

Whenever a numerical range is indicated herein, it is meant
to include any cited numeral (fractional or integral) within the
indicated range. The phrases “ranging/ranges between a first
indicate number and a second indicate number and “ranging/
ranges from a first indicate number “to a second indicate

10

15

25

30

35

40

45

50

55

60

65

20
number are used herein interchangeably and are meant to
include the first and second indicated numbers and all the
fractional and integral numerals therebetween.

It is appreciated that certain features of the invention,
which are, for clarity, described in the context of separate
embodiments, may also be provided in combination in a
single embodiment. Conversely, various features of the
invention, which are, for brevity, described in the context of a
single embodiment, may also be provided separately or in any
suitable subcombination or as suitable in any other described
embodiment of the invention. Certain features described in
the context of various embodiments are not to be considered
essential features of those embodiments, unless the embodi
ment is inoperative without those elements.

Although the invention has been described in conjunction
with specific embodiments thereof, it is evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, it is intended to embrace
all Such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims.

All publications, patents and patent applications men
tioned in this specification are herein incorporated in their
entirety by reference into the specification, to the same extent
as if each individual publication, patent or patent application
was specifically and individually indicated to be incorporated
herein by reference. In addition, citation or identification of
any reference in this application shall not be construed as an
admission that such reference is available as prior art to the
present invention. To the extent that section headings are
used, they should not be construed as necessarily limiting.

What is claimed is:
1. A method for detecting at least one vulnerability in an

application, the method comprising:
adding at least one test code to a code segment of a web

application running on a tested unit while the web appli
cation is running, wherein the at least one test code is
adapted to generate security related data in response to at
least one monitored execution event of the web applica
tion, and wherein the security related data includes at
least Some data associated with the at least one test code
for a particular vulnerability;

logging the security related data with other security related
data generated by the at least one test code during the
execution of the web application, wherein the other
security related data is generated in response to the
execution of the at least one test code;

analyzing the logged security related data;
detecting a presence of at least one vulnerability in the web

application based on the analysis of the logged security
related data; and

reporting the presence of the at least one Vulnerability in
the web application as detected based on the analysis of
the logged security related data.

2. The method of claim 1, wherein the program code of the
web application is modified at a run time during the execution
of the web application.

3. The method of claim 1, wherein said at least one Vulner
ability is selected from a group consisting of a structured
query language (SQL) injection, a directory traversal, a light
weight directory access protocol (LDAP) Injection, an exten
sible markup language (XML) path (XPath) injection, oper
ating system (OS) commanding, a simple mail transport
protocol (SMTP) injection, carriage return line feed (CRLF)
injection, a cross site Scripting (XSS), log file injection,
improper logout, username?password enumeration, no ses
sion expiration, and detailed error messages.

US 9,043,924 B2
21

4. The method of claim 1, wherein said security related data
includes data describing an influence of at least one message
on the code execution of said web application at runtime.

5. The method of claim 1, further comprising establishing
a connection to with said web application and using said
connection for receiving said logged security related data.

6. The method of claim 1, further comprising monitoring
behavioral changes of an original code of said web applica
tion at runtime and performing said detecting according to
said changes.

7. The method of claim 1, wherein said detecting comprises
detecting a code segment posing said at least one Vulnerabil
ity in the code of said web application; further comprising
presenting said code segment to a user.

8. The method of claim 1, further comprising generating an
exploit module to said at least one Vulnerability and providing
said exploit module to a user.

9. The method of claim 8, further comprising generating a
report including said exploit module so as to allow the dem
onstrating of said at least one Vulnerability.

10. The method of claim 1, wherein said reporting com
prises providing a Vulnerable page screenshot indicative of
said at least vulnerability.

11. The method of claim 1, further comprising performing
a cross site scripting (XSS) test on said web application and
outputting a persistent XSS indication accordingly.

12. The method of claim 1, further comprising performing
a tampered input test on said web application and outputting
a tampered input indication accordingly.

13. The method of claim 1, further comprising performing
a Cross-site attack test on said web application and outputting
a Cross-site attack indication accordingly.

14. The method of claim 1, wherein said test code com
prises at least one of a debug operator and a profiling object.

15. A system for detecting vulnerabilities in a web appli
cation, comprising:

an code interface module structured and arranged to add at
least one test code to a code segment of the web appli
cation running on a tested unit while the web application
is running, wherein the execution of said at least one test
code generates security related data in response to at
least one monitored execution event of the web applica
tion;

a testing unit structured and arranged to:
store the security related data with other security related

data generated by the execution of the at least one test
code during the execution of the web application,
wherein other security related data were generated in
response to execution of corresponding at least one test
code;

5

10

15

25

30

35

40

45

22
analyze the stored security related data,
detect a presence of at least one vulnerability in the web

application based on the analysis of the stored security
related data,

report the presence of at least one vulnerability in the web
application as detected based on the analysis of the
stored security related data.

16. The system of claim 15, wherein the program code of
the web application is modified at a run time during the
execution of the application.

17. The system of claim 15, wherein said web application
includes a web application.

18. The system of claim 15, wherein said test code com
prises at least one of a debug operator and a profiling object.

19. A non-transitory computer readable medium including
stored executable instructions for detecting at least one Vul
nerability in a web application executing on at least one
processor, the medium comprising instructions for causing
the processor to:

adding at least one test code to a code segment of a web
application running on a server test unit while the web
application is running, wherein the at least one test code
is adapted to generate security related data in response to
at least one monitored execution event of the web appli
cation, and wherein the security related data includes at
least Some data associated with the at least one test code
for a particular vulnerability;

logging the security related data with other security related
data generated by the at least one test code during the
execution of the web application, wherein the other
security related data is generated in response to the
execution of the at least one test code;

analyzing the logged security related data;
detecting a presence of at least one vulnerability in the web

application based on the analysis of the logged security
related data; and

reporting the presence of the at least one Vulnerability in
the web application as detected based on the analysis of
the logged security related data.

20. The medium of claim 19, further including instructions
that cause the processor to generate an execution sequence
associated with the at least one vulnerability.

21. The medium of claim 19, further including instructions
that cause the processor to report the presence of the at least
one Vulnerability based on the generated execution sequence
associated with the Vulnerability.

k k k k k

