This invention relates more specifically to a device for holding metal looms in an adjusted position on electric insulated cables.

A chief object of the invention is to provide a simple and economical metal device that may be readily mounted on electric cables to hold metal looms in an adjusted position thereon, whereby to prevent an abrading action of the cable insulation caused by contact with stationary parts.

In automobiles the electric connector cables are subject to wearing action by reason of contact with the frame or other parts of the vehicle causing in a short time a "breaking down" of the insulation, and thus "shorting" the current.

It has been the practice to mount flexible metal looms, or looms of other flexible materials on the connector cables at points where undue wear occurs, and to tape the ends of the looms to the cable to prevent accidental movement of the same from an adjusted position. Often times the tapes become detached due to atmospheric or other conditions, thus causing a displacement of the adjusted loom. Furthermore the taping operation not only consumes time but is an expensive operation.

By the provision of my simple device flexible looms can be successfully and quickly secured in an adjusted position on the cables, the metal withstand ing any abrading action through the movement of the cable against the vehicle frame or contacting parts.

In a preferred embodiment of the invention as disclosed in the accompanying drawings:

Fig. 1 is a side elevation of a connector cable showing a metal loom secured in adjusted position thereon.

Fig. 2 is an enlarged detail view with one of the 100 M holder sleeves in section.

Fig. 3 is a side elevation of the metal loom.

Fig. 4 is a perspective view of the loom holder.

Referring now more specifically to the drawings an insulated electric connector cable 5 is shown provided on one end with a battery terminal 6 and on its opposite end a flat connector lug 7. Mounted on the cable 5 is a spirally wound flexible metal loom member 8 of the type usually employed on cables, secured in an adjusted position by means of the metal sleeves or ferrules 9. These sleeves are preferably formed from light weight sheet metal of substantially tubular form, the position at one end being expanded or enlarged to form a socket 10 for the reception of one end of the cable loom member 8. The opposite end 11 of the sleeve is of a diameter slightly larger than the cable 5 in order that it may be moved freely thereon, to an adjusted position.

In assembling the metal looms 8 on a cable, a sleeve, or ferrule 9 is first inserted on the cable and moved to the desired position, the tubular end 11 being indented as at 12 to hold it securely in place. A metal loom is then mounted on the cable, with one of its ends engaging the socketed end of the fixed sleeve. Another sleeve is then mounted on the cable with its socketed end engaging the free end of the loom, its tubular end being secured thereto in the same manner as the first sleeve.

From the foregoing it will be clear that by means of the metal sleeves, looms may be readily and quickly secured in an adjusted position on insulated cables.

I claim:

A means for protecting a flexible cable, said means comprising a pair of bendable metal sleeves slidably mounted on said cable, each of said sleeves having an enlarged socketed end, said sleeves being disposed with their socketed ends extending toward each other, and a flexible metal loom disposed on said cable between said sleeves, said loom being of less length than the flexible cable, the loom and the sleeves being adjustable along the cable, the ends of the loom engaging in the socketed ends of the metal sleeves and the smaller ends of said sleeves being adapted to be indented into the cable to retain the sleeves and the loom in immovable relation to said cable.

In testimony whereof I affix my signature.

HERBERT E. WALKER.