wO 2007/047346 A2 |10 0 0O OO 0 I

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O O 0 0

International Bureau

(43) International Publication Date
26 April 2007 (26.04.2007)

(10) International Publication Number

WO 2007/047346 A2

(51) International Patent Classification:
GOG6F 11/00 (2006.01) GOG6F 12/16 (2006.01)

(21) International Application Number:

PCT/US2006/039857
(22) International Filing Date: 13 October 2006 (13.10.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/726,187 14 October 2005 (14.10.2005) US

(71) Applicant (for all designated States except US): RE-
VIVIO, INC. [US/US]; 12 Hartwell Avenue, Lexington,

MA 02421 (US).

Inventors: PASSERINI, Ronald, Peter; 41 Princeton
Street, Somerville, MA 02144 (US). PERRY, Robert,
Warren; 14 Pine Grove Avenue, Leominster, MA
01453 (US). ROCCA, Christopher, Angelo; 13 West-
wood Street, Burlington, MA 01803 (US). ANTHONY,
Michael, Daniel; 9 Elm Street, Wilmington, MA 01887
(US).

(72)

(74) Agents: ANDERSON, Thomas, E. et al.; INTEL-
LECTUAL PROPERTY DEPARTMENT, HUNTON
& WILLIAMS LLP, 1900 K Street, N.W., Suite 1200,

Washington, DC 20006-1109 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: TECHNIQUE FOR TIMELINE COMPRESSION IN A DATA STORE

Raw Data Only

Week -1 Week 0

I Week 4 Week -3 Week -2 I
W T W T F 52 S W T W T F SaSi M TN T F S S M WWME G S
=
S
el Daily Data Onf Hourly Data Only
23 y y
a3, {Lovel2) (Level-1)
=3
2
3 |/—_A‘ﬁ
=
! Weok -4 Week 3 Week -2
N 7 / 7 T
R Z i

M Tu W Th F Sa Su M TuW TR F Ss Su M

Raw Data

(Level0)

Week 0

TN

5 A NI
Ta W Th P oSa S M To W ThOF Sa oSy M

Today

(57) Abstract: A technique for timeline compression in a data store is disclosed. In one particular exemplary embodiment, the
technique may be realized as a method for timeline compression in a storage system, wherein digital content of the storage system
is backed up to enable restoration of the digital content to one or more points in a timeline. The method may comprise selecting a
time interval in the timeline. The method may also comprise identifying one or more sets of backup data recorded for the selected
time interval, wherein the identified one or more sets of backup data represent at least a portion of old data overwritten during the
selected time interval. The method may further comprise discarding other backup data recorded for the selected time interval, thereby
reducing a granularity level of the timeline in the selected time interval.

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

TECHNIQUE FOR TIMELINE COMPRESSION IN A DATA STORE

CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims priority to U.s.
Provisional Patent Application No. 60/726,187, filed October
14, 2005, which is hereby incorpofated by reference herein in
its entirety. |

This patent application is related to U.S. Patent
Application No. 10/924,652, filed August 24, 2004, which is a
continuation-in-part of U.s. Patent Application No.
10/668,833, filed September 23, 2003, each of which is hereby

incorporated by reference herein in its entirety.

FIELD OF THE DISCLOSURE
The present disclosure relates generally to data storage
and, more particularly, to a technique for timeline

compression in a data store.

BACKGROUND OF THE DISCLOSURE

In related U.S. Patent Application No. 10/924,652 and
U.S. Patent Application No. 10/668,833, a time-dependent data
storage and recovery technique is disclosed. Embodiments of
such a technique provide a solution for continuous data
protection (CDP) wherein write commands directed to a storage
system are intercepted by a storage management system having a
current store and a time store. The current store may
maintain or have access to a current (or mirror) copy of the
storage system’s digital content. The time store may recorxrd
information associated with each intercepted write command,
such as new data in the write command’s payload or old data to
be overwritten in the current store in response to the write
command. Recordation of the new or old data in response to a
write command may be referred to as a copy-on-write (COW)

operation, and the new or old data recorded may be referred to

1

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
as COW data. The time store may also record other information
(i.e., metadata) associated with an intercepted write command
and/or the corresponding COW operation, such as, for example,
a timestamp, an original location in the current store where
the old data are overwritten, and a destination location in
the time store to which the COW data are copied. Each COW
operation typically backs up one or more blocks of COW data,
thereby creating one set of COW data and corresponding
metadata. Over a period of time, multiple sets of COW data
and corresponding metadata (including timestamps) may be
accumulated as a collection of historical records of what have
been written or overwritten in the current store or the
storage system. The content of the time store may be indexed
based on the metadata to facilitate efficient access to the
COW data.

With a current copy of the storage system’s digital
content in the current store and the historical records in the
time store, the storage management system adds a new
dimension, i.e., time, to the storage system. Assuming the
storage management system has been operatively coupled to the
storage system since a past time, the storage management
system may quickly and accurately restore any addressable
content in the storage system to any point in time between the
past time and a present time.

Ideally, it might be desirable to maintain such a data
recovery capability for as 1long a timeline as possible.
However, to accommodate an extended timeline, a significant
amount of storage space is needed to store the COW data and
corresponding metadata for every write command in that
timeline. Even more storage space 1s needed if the storage
system sees a relatively high write rate (i.e., number of
write operations per unit time). One temporary solution may
be to simply increase storage capacity of the time store.

However, apart from a higher cost, a simple storage increase

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
may not scale well with the rest of the system and tends to
create a deluge of other problems, such as a performance
degradation due to difficulties of parsing through an
additional amount of data. Without an infinite storage
capacity, most storage systems have to settle for the reality
that only a finite length of timeline (e.g., ten days or two
weeks) can be maintained. In conventional data protection
systems, it is typical to keep a few days’ worth of backup
data and completely discard the backup data that are more than
a few days old. 1In these systems, data recovery capabilities
are limited to the past few days for which backup data are
available. Alternatively, the backup data that are more than
a few days old may be moved off site on a regular basis. Such
a brute-force solution can be costly and disruptive, not to
mention its slow response to data recovery requests where off-
site data are needed.

In view of the foregoing, it would be desirable to
provide a solution for data storage management which overcomes

the above-described inadequacies and shortcomings.

SUMMARY OF THE DISCLOSURE

A technique for timeline compression in a data store is
disclosed. In one particular exemplary embodiment, the
technique may be realized as a method for timeline compression
in a storage system, wherein digital content of the storage
system is backed up to enable restoration of the digital
content to one or more points in a timeline. The method may
comprise selecting a time interval in the timeline. The
method may also comprise identifying one or more sets of
backup data recorded for the selected time interval, wherein
the identified one or more sets of backup data represent at
least a portion of old data overwritten during the selected
time interval. The method may further comprise discarding

other backup data recorded for the selected time interval,

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
thereby reducing a granularity level of the timeline in the
selected time interval.

In accordance with other aspects of this particular
exemplary embodiment, the digital content of the storage
system may be backed up through copy-on-write operations into
a plurality of sets of copy-on-write data and corresponding
metadata, and the step of identifying may further comprise
identifying one or more sets of copy-on-write data and
corresponding metadata recorded for the selected time
interval.

In accordance with further aspects of this particular
exemplary embodiment, a length of the time interval may be
selected based at least in part on a desired granularity level
of the timeline.

In accordance with additional aspects of this particular
exemplary embodiment, the step of identifying may further
comprise: determining whether a storage unit in the storage
system has been overwritten more than once during the selected
time interval; if the storage unit has been overwritten once
during the selected time interval causing a sole set of copy-
on-write data and corresponding metadata to be recorded,
selecting the sole set; and if the storage unit has been
overwritten more than once during the selected time interval
causing multiple sets of copy-on-write data and corresponding
metadata to be recorded, selecting one of the multiple sets.

In accordance with another aspect of this particular
exemplary embodiment, if the storage unit has been overwritten
more than once during the selected time interval, the selected
set of copy-on-write data and corresponding metadata may be
the earliest set recorded for the selected time interval.

In accordance with yet another aspect of this particular
exemplary embodiment, the method may further comprise
coalescing metadata in the one or more identified sets of

copy-on-write data and corresponding metadata.

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

In accordance with still another aspect of this
particular exemplary embodiment, the method may further
comprise: identifying copy-on-write data that correspond to
the coalesced metadata; and replacing all sets of copy-on-
write data and corresponding metadata previously recorded for
the selected time interval with a new set comprising the
identified copy-on-write data and the coalesced metadata.

In accordance with a further aspect of this particular
exemplary embodiment, the method may further comprise:
selecting multiple time intervals in a portion of the timeline
based on a desired granularity level for the portion of the
timeline; and repeating the steps of identifying and
discarding for the selected multiple time intervals.

In accordance with a yet further aspect of this
particular exemplary embodiment, the storage system may
comprise a plurality of storage devices and the method may
further comprise: repeating the steps of identifying and
discarding for one or more of the plurality of storage devices
to cause the plurality of storage devices to have a consistent
granularity level of the timeline with respect to one another.

In accordance with a still further aspect of this
particular exemplary embodiment, the steps of selecting,
identifying and discarding may be triggered when one or more
of the following conditions are met: a predetermined storage
capacity for the timeline has been consumed; a predetermined
amount of data have been accumulated for a granularity level
of the timeline; granularity levels of the timeline for at
least two storage devices in the storage system are
inconsistent; an instruction to reduce the granularity of the
timeline is received; and a scheduled time for reducing the
granularity of the timeline is reached.

In accordance with another aspect of this particular
exemplary embodiment, the method may further comprise scanning

the storage system for a storage device for which the

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
granularity of the timeline can be reduced.

In another particular exemplary embodiment, the
techniques may be realized as at least one signal embodied in
at least one carrier wave for transmitting a computer program
of instructions configured to be readable by at least one
processor for instructing the at least one processor to
execute a computer process for performing the method as
recited above.

In yet another particular exemplary embodiment, the
techniques may be realized as at least one processor readable
carrier for storing a computer program of instructions
configured to be readable by at least one processor for
instructing the at least one processor to execute a computer
process for performing the method as recited above.

In still another particular exemplary embodiment, the
techniques may Dbe realized as a system for timeline
compression in a storage system, wherein digital content of
the storage system is backed up to enable restoration of the
digital content to one or more points in a timeline. The
system may comprise means for selecting a time interval in the
timeline. The system may also comprise means for identifying
one or more sets of backup data recorded for the selected time
interval, wherein the identified one or more sets of backup
data represent at least a portion of old data overwritten
during the selected time interwval. The system may further
comprise means for discarding other backup data recorded for
the selected time interval, thereby reducing a granularity
level of the timeline in the selected time interval.

In a further particular exemplary embodiment, the
techniques may be realized as a system for timeline
compression in a storage system, wherein digital content of
the storage system is backed up to enable restoration of the
digital content to one or more points in a timeline. The

system may comprise a storage medium for storing instructions.

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
The system may also comprise at least one processor for:
selecting a time interval in the timeline; identifying one or
more sets of backup data recorded for the selected time
interval, wherein the identified one or more sets of backup
data represent at least a portion of old data overwritten
during the selected time interval; and discarding other backup
data recorded for the selected time interval, thereby reducing
a granularity level of the timeline in the selected time
interval.

The present disclosure will now be described in more
detail with reference to exemplary embodiments thereof as
shown in the accompanying drawings. While the present
disclosure is described below with reference to exemplary
embodiments, it should be understood that the present
disclosure is not limited thereto. Those of ordinary skill in
the art having access to the teachings herein will recognize
additional implementations, modifications, and embodiments, as
well as other fields of use, which are within the scope of the
present disclosure as described herein, and with respect to

which the present disclosure may be of significant utility.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to facilitate a fuller understanding of the
present disclosure, reference is now made to the accompanying
drawings, in which like elements are referenced with 1like
numerals. These drawings should not be construed as limiting
the present disclosure, but are intended to be exemplary only.

Figure 1la shows a timeline maintained for a storage
system based on a traditional method.

Figure 1lb shows a timeline maintained for a storage
system in accordance with an embodiment of the present
disclosure.

Figure 2 shows a flow chart illustrating an exemplary

timeline compression method in accordance with an embodiment

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
of the present disclosure.

Figure 3 shows a state diagram illustrating an exemplary
method for timeline compression 1n accordance with an
embodiment of the present disclosure.

Figure 4 shows an exemplary timeline for three related
LUs in accordance with an embodiment of the present
disclosure.

Figure 5 shows another exemplary timeline for three
related LUs in accordance with an embodiment of the present
disclosure.

Figure 6 shows major objects involved in an exemplary
program for timeline compression in accordance with

embodiments of the present disclosure.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

As used herein, “backup data” refers generally to data
that have been recorded and/or organized (or even re-
organized) with a purpose of restoring or recovering digital
content of a storage system.

“Copy-on-write data” (or “Cow data”) refers to
substantive data (e.g., new data to be written or old data to
be overwritten in response to a write command) that have been
recorded in a copy-on-write operation. New data to be written
in response to a write command are sometimes referred to as
“after image data” or “after image,” while old data to be
overwritten in response to a write command are sometimes
referred to as “before image data” or “before image.” The
copy-on-write operation may be an actual operation performed
in response to an actual write command. Or, the copy-on-write
operation may be a wvirtual operation that includes the
collective effect of multiple copy-on-write operations that
occur during a selected time interval.

“Corresponding metadata” refers to informational data

(e.g., timestamps) regarding the associated COW data in a

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

copy-on-write operation. Typically, one copy-on-write
Operation causes one set of COW data and corresponding
metadata to be created. Despite their cérrelation, COW data
and corresponding metadata may be stored in separate storage
devices or segments. In a time store, COW data may be
organized in one or more timestamped “data chunks.”

“Raw data” refers to one or more sets of COW data and
corresponding metadata that have been recorded in response to
actual write commands and have not been coalesced or otherwise
modified since their recordation. In some circumstances, “COW
data” and “corresponding metadata” may refer to COW data and
corresponding metadata, respectively, that have been
coalesced, re-organized or otherwise modified in a timeline
compression process, wherein a resulting set of COW data and
corresponding metadata may be considered as originating from a
virtual copy-on-write operation in response to one or more
write commands during a selected time interval. In other
words, “COW data” and “corresponding metadata” may scmetimes
refer to backup data that are not on the raw data level.

“Granularity level” of a timeline refers to a time scale
(e.g., weekly, daily, hourly, by the second, or by the
millisecond) with which digital content of a storage system
can be restored to a point in the timeline. The granularity
level of a timeline is typically determined by the specific
mechanism employed to back up digital content, how complete
backup data are kept, and how the backup data are organized.

A typical “storage system” may comprise one or more
storage devices which may be physical, virtual or logical
devices or a combination thereof. According to one
embodiment, a storage system may comprise a storage area
network (SAN) having one or more datasets, wherein each
dataset may comprise one or more nodes, and wherein one or
more logical wunits (LUs) may be coupled to each node.

Hereinafter, for ease of illustration, the term “storage

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

system” may refer to an entire storage system or a portion
(e.g., dataset or node) thereof. Typically, a timeline may be
maintained for all LUs in a same dataset.

“Timeline storage” refers to a storage space for backup
data in a time store. Timeline storage is typically organized
in terms of quota groups, wherein each quota group allocates a
predetermined storage space for a timeline associated with a
corresponding dataset.

Embodiments of the present disclosure provide a technique
known as “timeline compressioﬁ” that allows a more extended
timeline to be maintained for a storage system (or a dataset)
without any substantial increase in timeline storage capacity
or complete discarding of older backup data. This may be
achieved by selectively decreasing a granularity level of the
timeline as backup data are aging. One or more older portions
of raw data backed up for a storage system may be coalesced
and/or re-organized into one or more data chunks that reflect
write operations in the storage system on a coarser level cof
granularity (e.g., hourly or daily) than the raw data normally
would reflect. Such reduction in the granularity level of the
timeline may offer a flexible, user-definable tradeoff wherein
the timeline storage is economized without sacrificing older
data entirely. As a result, a much longer timeline may be
maintained for a storage system without any significant impact
on its data protection or data recovery capabilities. The
coalescence and/or re-organization process of backup data from
one granularity level to another may be referred to as a
“timeline rollup” or “rollup.”

In the detailed description that follows, references will
be made to embodiments of the time-dependent data storage and
recovery technique as disclosed in U.S. Patent Application No.
10/924,652 and U.S. Patent Application No. 10/668,833. It
should be appreciated that embodiments of the present

disclosure are easily adaptable to other data protection

10

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

methods or systems that maintain historical records of digital
content of a storage system.

Referring to Figure la, there 1is shown a timeline
maintained for a storage system based on a traditional method.
In this example, present day may be Monday of Week 0. The
timeline may have been continuously maintained for a storage
system for a few weeks (i.e., Week -1, Week -2, Week -3, Week
~4 and so on). If several weeks’ worth of backup data were
all stored in the form of raw data, a large amount of storage
space in a time store would be required. If, for example,
there is only enough storage space to store fourteen days’
worth of raw data, then, according to traditional approaches,
those raw data that are more than fourteen days old must be
completely discarded. That 1is, by the beginning of the
present day (i.e., Monday of Week 0), all raw data recorded
for Week -3 and earlier may have already been discarded. As
the present day goes on and new raw data are accumulated, raw
data recorded for Monday of Week -2 may have to be sacrificed
in order to make room for the newly recorded raw data.
Therefore, at any given time, digital content of the storage
system is backed up only for the previous two weeks, while no
historical record is available beyond that two-week period.

Figure 1b shows a timeline maintained for a storage
system in accordance with an embodiment of the present
disclosure. This timeline may be generated by subjecting raw
data to a timeline compression process that selectively
reduces a granularity level of the timeline. It is recognized
that, as time goes by, the oldest backup data are the least
likely to be needed on the finest granularity level.
Therefore, it might suffice to keep only a few days’ worth of
raw data in order to be able to restore the storage system to
any point in time in the past few days. For older backup
data, the granularity level of the timeline may De

progressively reduced. As shown in Figure 1b, on Monday of

11

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
Week 0, for example, backup data for the past three days
(i.e., Friday, Saturday and Sunday of Week -1) are kept in the
form of raw data. In a second time period, that is, more than
three days ago and up to the beginning of Week -2, for
example, the backup data may be kept in the form of hourly
data. That is, the original raw data may be selectively
coalesced and/or discarded, as will be described in more
detail below, such that only enough backup data is kept to be
able to restore digital content of the storage system to any
hour during the second time period. In a third time period
that spans Week -3 and Week -4, for example, the backup data
may be kept in the form of daily data. Prior to the beginning
of Week -4, for example, only weekly data may be kept
available. As a result of this exemplary timeline compression
scheme, it may be possible to maintain a much longer timeline
than the traditional approach illustrated in Figure la. Even
if there is only enough storage space for fourteen days’ worth
of raw data, a timeline much longer than two weeks, maybe a
few months, may be maintained. As a result, digital content
of the storage system that is several weeks old may still be
restored. The only tradeoff is that such restoration of the
older content may be available on a coarser level of
granularity than what raw data can facilitate. For example,
instead of being able to pick and choose a data recovexry point
by the second or by the millisecond, a user may only be able
to select recovery points on an hourly, daily or weekly scale.

A timeline compression functionality in accordance with
embodiments of the present disclosure may be implemented in
any type of storage systems, preferably in connection with a
storage management system having a current store and a time
store. A set of parameters, known as Timeline Lifecycle
Profile (TLP), may be configured by a user to control the
timeline compression process. According to one embodiment,

the TLP may specify four levels of backup data and a user

12

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
configurable amount of time to keep each level of backup data
before that level of backup data may be rolled up to a next
level. The TLP may also specify a minimum amount of timeline
storage used before a rollup takes place.

Referring again to Figure 1lb, the timeline illustrated
therein reflects one exemplary TLP relating to four levels of
backup data. Level-0 TLP may specify conditions that must be
fulfilled before raw data can be rclled up to the next level.
The conditions may be defined as an amount of raw data, in
terms of time length and/or timeline storage capacity, to keep
before some raw data may be rolled up to the next level. For
example, the Level-0 TLP may require that at least 3 days’
worth of raw data using 40% of the timeline storage capacity
be accumulated before raw data older than 3 days or beyond the
40% storage limit may be rolled up to the next level.
According to this configuration, even if there are more than 3
days of raw data, the raw data older than 3 days will not be
rolled up until the raw data have also used up at least 40% of
the timeline storage capacity. This configuration may also
require that, even if 40% of the timeline storage capacity is
occupied by raw data, a rollup is not performed unless more
than 3 days’ worth of raw data have been accumulated. In the
Level-0 TLP, a default value for the time length may be
infinite, which means that all other levels may be ignored and
there will be no rollup of Level-0 raw data. A default limit
for timeline storage capacity may be 0%, which means the
amount of timeline storage in use will not be considered in
determining whether to initiate a rollup of the raw data.

Level-1 TLP may specify a reduced granularity level
(e.g., hourly) of the timeline compared with Level-0, as well
as conditions that must be met before Level-1 data (e.g.,
hourly data) can be rolled up to the next level. Similar to
Level-0 TLP, the conditions may be defined as an amount of

Level-1l data, in terms of time length and/or timeline storage

13

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
capacity, to keep before Level-l data may be rolled up to the

next level (e.g., as shown in Figure 1b, 11 days’ worth of
hourly data using 20% of the timeline storage capacity). In
the Level-1 TLP, a default value for the time length may be
infinite, which means that all other levels may be ignored and
rollups do not continue beyond Level-1 data. A default limit
for timeline storage capacity may be 0%, which means the
amount of timeline storage in use will not be considered in
determining whether to initiate a rollup of the Level-1 data.

Level-2 TLP may specify a further reduced granularity
level (e.g., daily) of the timeline as well as conditions that
trigger a rollup of the Level-2 data. For example, the Level-
2 TLP may require that at least 14 days’ worth of daily data
using 20% of the timeline storage capacity be accumulated
before the older daily data may be rolled up to the next
level.

Level-3 TLP may specify an even further reduced
granularity level (e.g., weekly) of the timeline as well as
conditions that trigger a rollup of the Level-3 data to the
next level (e.g., monthly data). For example, the Level-3 TLP
may require that at least 12 weeks’ worth of weekly data using
10% of the timeline storage capacity be accumulated before the
older weekly data may be rolled up to the next level.

According to embodiments of the present disclosure, a
user typically does not explicitly create a TLP since a
default TLP may already exist when a quota group is created in
a storage system. Upon creation of the quota group, the user
may have the option of modifying the default parameters of the
TLP. Similarly, a user typically does not explicitly delete a
TLP. The TLP may be deleted when the associated quota group
is deleted. A user may modify a TLP in order to change the
desired behavior of timeline compression. The TLP may be
modified at any time without any immediate effect on the

timeline. The default TLP, upon creation of a quota group,

14

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
may specify that no rollups take place. A user may also
modify a TLP when modifying attributes of a quota group. When
an LU is added to a dataset, the LU may inherit an existing
TLP for the corresponding guota group. The effect on the
timeline may be that the start of the timeline may shift
forward. This behavior may be the same as when there are no
rollups defined. However, rollups may continue at the current
rollup level for the entire dataset, and the new LU’s current
rollup state may be set to reflect that of the rest of the LUs
in the dataset. When an LU is removed from a dataset, the
start of remaining timeline may shift backward. This may be
the same behavior exhibited when there are no rollups defined.

Referring to Figure 2, there is shown a flow chart
illustrating an exemplary timeline compression method in
accordance with an embodiment of the present disclosure.

In step 202, a rollup may be started for a storage device
in a storage system. The method steps in Figure 2 illustrate
a simplest rollup operation of backup data recorded for a
portion of a timeline from one level to a next level, wherein
it is assumed that the timeline is maintained for a particular
storage device only. Timeline compression involving multiple
storage devices will be described separately below.

In step 204, a time interval may be selected for a rollup
operation. Selection of the time interval is typically based
on conditions specified in the TLP. For example, if it is a
rollup from raw data to hourly data, the time interval may be
one hour long and selected from a portion of the timeline
where hourly data are desired. This portion of the timeline
may span multiple hours. Thus, the method steps 204 through
212 may be repeated for every hour in this portion of the
timeline. Similarly, if it is a rollup from hourly data to
daily data, the time interval may be 24 hours long and
selected from a portion of the timeline where daily data are

desired.

15

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
In step 206, COW data and corresponding metadata may be
identified to represent backup data recorded for the selected
time interval. For example, a unit of storage (e.g., a block)
in the storage device may have been overwritten one or more
times during the selected time interval. If a block has been
overwritten only once during the selected time interval, the
resultant set of COW data and corresponding metadata may be
identified to represent backup data for this block. If a
block has been overwritten multiple times during the selected
time interval, a set of COW data and cbrresponding metadata
that results from the earliest write operation may be
identified to represent backup data for this Dblock.
Alternatively, a set of COW data and corresponding metadata
that results from the latest write operation during the
selected time interval may be identified. Additional or
alternative criteria may be used to identify the
representative backup data for the storage device during the
selected time interval.

In step 208, other backup data that have been recorded
for the selected time interval but are not selected in step
206 may be discarded or simply ignored. For example, metadata
or other indexing data for the unselected backup data may be
deleted or erased such that the unselected backup data are
effectively deleted from the timeline.

In step 210, the COW data and corresponding metadata
identified or selected in step 206 may be coalesced.
According to one embodiment, these COowW data and/or
corresponding metadata are preferably coalesced into fixed
size allocation units known as “buckets.” For example, when
rolling up raw data into hourly data, one hour’s worth of raw
data may be coalesced into one 512 KB fixed-size hourly
bucket. Later on, 24 hourly buckets of backup data may be
coalesced into one 12 MB fixed-size daily bucket. Ccalescence

of the selected COW data and corresponding metadata may be

16

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

carried out in a number of ways. According to one embodiment,
the metadata for the selected time interval may be coalesced
first. Then, the COW data (pointed to by the coalesced
metadata) may be coalesced and copied into memory. The
coalesced COW data may then be stored as new, higher level COW
data for the selected time interval. Accordingly, the
coalesced metadata may be modified and stored as corresponding
metadata for the new COW data.

In step 212, it may be determined whether the rollup has
been done for this storage device. If there are additional
time intervals to roll up, the process may loop back to step
204 to repeat the coalescence of backup data until the rollup
for all appropriate time intervals has been completed
according to the requirements specified in the TLP. Then, in
step 214, the rollup may end for this storage device. A
timeline rollup operation may be configured (e.g., as a thread
or sub-routine) to start or restart upon initiation by a user
or upon triggering of one or more events defined in the TLP.
For example, the rollup thread may be activated whenever a
pre-determined percentage of the timeline storage has been
used, before or after a deprecation of timeline, and/or on a
periodic basis. A rollup thread may also be awoken when a
second rollup thread on another node determines that it must
rollup data for an LU on that node.

Referring to Figure 3, there is shown a state diagram
illustrating an exemplary method for timeline compression in
accordance with an embodiment of the present disclosure. The
state diagram shows five ©phases in a timeline rollup
operation. As mentioned above, the rollup operation may be
preferably a thread running on or in coordination with a
storage management system. Once started, the rollup thread
may coalesce and/or re-organize backup data for a storage
system by going through a Determination Phase, a Scan Phase, a

Coalescence Phase, a Copy Phase, and a Replacement Phase.

17

10

15

20

25

30

WO 2007/047346

In the Determination Phase, it may be determined what
work needs to be done, such as, for example, what level of
backup data to perform the rollup for and for which LU. A
typical environment for implementation of a timeline
compression may be a storage management system coupled to a
storage system having a plurality of storage devices (e.g.,
LUs) . One typical requirement for timeline compression
involving multiple LUs is consistency of granularity levels of
the timeline across all LUs. Accordingly, there may be a need
to determine which level of backup data to roll up and which
LU to start with. The level of backup data to perform the
rollup for, also known as a “rollup level,” may be determined
based on rollup state data (described in detail below) that
have been maintained for the LUs. In order to determine which
LU to perform the rollup for, the LUs may be examined one at a
time, typically by analyzing the rollup state data and/or
other informational data associated with the LUs. For each
LU, the oldest backup data in the timeline may be identified
for the current rollup level. If, for example, the LU in
question is owned by a local node for which the rollup thread
is running, and if there are enough valid, sealed backup data
for the time range in question (e.g., at least two data
chunks), then the rollup operation may proceed to the next
phase (i.e., Scan Phase). Otherwise, another LU may be chosen
and analyzed. If no LU is found that meets the criteria
defined in the TLP, then the rollup operation may end. If an
1U is found that meets the criteria to perform a rollup, then
all related LUs (e.g., those associated with the same quota
group) may be rolled up as well. If it is determined that a
rollup must occur, the rollup thread on other nodes may be
awoken using a remote message.

In the Scan Phase, for backup data that can be rolled up,
a scan of the metadata may be performed in order to identify

the time period defined by the TLP and to retrieve relevant

18

PCT/US2006/039857

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

metadata. The scan may be a query of the metadata on a slice
by slice basis in time order. According to embodiments of the
present disclosure, each LU may be divided into a plurality of
fixed-size logical partitions (e.g., 16 Gigabytes (GB) each)
for ease of management and for load balancing purposes,
wherein each fixed-size logical partition may be referred to
as one “slice.” When a slice has been scanned, the identified
metadata may be coalesced in the Coalescence Phase, after
which a next slice may be scanned in the Scan Phase. The
slice by slice cycle may repeat until all slices have been
exhausted for the LU and time period in question.

In the Coalescence Phase, the metadata that have been
identified in the Scan Phase may be coalesced into fixed size
allocation units. Coalescence of the metadata may be achieved
in any of a variety of ways. According to one embodiment, the
identified metadata may first be stored in memory in a time-
ascending order according to their timestamps. Then, starting
from the oldest metadata, the identified metadata may be
inserted into a binary tree (B~tree) that is indexed by

starting Logical Block Addresses (LBA’s) recorded in the

metadata. The B-tree may be first scanned for LBA overlap
before the coalesced metadata are inserted. The newer COW
data containing LBA overlaps may be discarded. Splits may

also be done on COW data where needed to achieve coalescence.
For example, for a particular time interval, if metadata for
Blocks 1-5 are already stored in the B-tree, then another
metadata row associated with Blocks 3-8 may be split into two
portions, one associated with Blocks 3-5 and the other

associated with Blocks 6-8, where the former may be discarded

" while the latter may be entered into the B-tree. The

resulting metadata may be coalesced into relatively large
fixed sized allocation units (e.g., 512 KB), each allocation
unit representing a single COW operation. Statistics kept as

records may be coalesced and inserted into the B-tree. These

19

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
statistics may be kept on an LU basis so that a determination
can be made in the Copy Phase as to whether to actually copy
the COW data into a rollup chunk or simply modify the
corresponding (coalesced) metadata. The statistics kept may
include, for example, <the number of original blocks, the
number of duplicate Dblocks (block savings), the number of
original COW operations, and the number of coalesced COW
operations (metadata savings).

Bach resulting metadata row may be that of the earliest
original operation in a particular slice. For example, if
Block 128 was written twice in a row, once at time T1 and
again at time T2, the resulting coalesced metadata may only
reflect the write operation at time T1l. Once the metadata for
a slice has been coalesced, the next slice may be processed
for the same LU in the Scan Phase. This procedure continues
until all slices for the LU have been processed, whereupon the
Copy Phase may be executed.

In the Copy Phase, the coalesced metadata may be read
from memory, and the COW data the coalesced metadata point to
may be copied into rollup chunks. Whether or not to actually
copy the COW data may depend on an evaluation of the
statistics collected in the Coalescence Phase. General, an
actual copy of the COW data is performed only when there is
some saving of storage space.

After the evaluation has passed and all of the metadata
have been coalesced for an LU, the COW data may be copied into
resulting rollup chunks on a slice by slice basis. The COW
data may Dbe copied from a time store (in the storage
management system) to the same time store using pre-allocated
non-replicated buffers. In order to accomplish the data copy,
an event chain may be created and a RollupTimeStoreMove event
may be pushed onto the event chain. The RollupTimeStoreMove
object may be derived from an SGIO and a WaitableEvent object

and may be handled by an IO execution context. The event may

20

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
have two extents, one for the read of the original COW data
and one for the write to the rollup chunk in the time store.
The Copy Phase may wait for the event to complete and then
update an in-memory array with a data structure representing a
new indexing operation. This array may be used in the
Replacement Phase to update the coalesced metadata. Once all
of the COW data have been copied, the rollup thread may
proceed to the Replacement Phase.

In the Replacement Phase, the relevant portion of old COW
data may be replaced with the newly created rollup chunks, the
corresponding metadata may be replaced or modified to reflect
the new chunks and coalesced COW data contained therein, and
the rollup state may be updated. The Replacement Phase is
typically carried out atomically and may be rolled back should
a catastrophic failure event occur. The LU whose metadata are
being updated may be locked to keep configuration from
changing and to prevent timeline deprecation from occurring
during this phase. The old COW data coalesced in the previous
phases may be freed, and the new rollup chunks may be added to
the appropriate place in the timeline. The original metadata
may be deleted and replaced by the new, coalesced metadata.
Finally, the LU may be unlocked, and a next LU that meets the
Determination Phase criteria may be processed.

According to one embodiment, the old COW data may be
transformed into new rollup chunks without an actual copy
taking place. The original data chunks may simply be updated
to reflect the rollup timestamps, and their rollup level may
be updated accordingly.

The rollup operation runs through a number of phases one
of which involves copying COW data to newly rolled-up chunks,
which may take a significant amount of time. As a result,
other critical components of the system that interfere with
rollups or change the state of the timeline, such as Instant

Restore, Time Images, or Timeline Deprecation, may cause an

21

10

15

20

25

WO 2007/047346 PCT/US2006/039857
in-progress rollup to be canceled. If a rollup is canceled
during processing of a particular level, all other levels may
be cancelled as well. Therefore, in the state diagram shown
in Figure 3, there is a Cancel route from almost every phase
to End. The Replacement Phase may not be arbitrarily
cancelled and may proceed while the LU in question is locked.
To avoid excessive interruption of the rollups, the timeline
compression process may be preferably scheduled to start when
resources in the storage system and/or the storage management
system are in low demand.

It may be desirable to track the state of rollups that
have occurred on an LU by LU basis. This way, other
components in the storage system can determine what backup
data have been rolled up, and what LUs have not yet had their
backup data rolled up. For example, the determination of a
common timeline start across multiple LUs requires rollup
state information associated with the LUs of interest. The
state of rollups may also be needed for future zrollups in
order to determine where to start a rollup.

The rollup state may be stored in a database table in a
global database called “rollup state,” one example of which is

shown in Table 1.

Table 1: Rollup State Table

Field Type Description
LU Uint32 | Logical Unit (unique index)
GenerationNumber Uint32 | Counter used to uniquely identify
the rollup.
LastRolluplLevel Uint32 | The last rollup level that

completed for this LU.

LastRollupRangeStart | Uint64 |The last start range time a
rollup ran for this LU.

LastRollupRangeEnd Uint64 | The last end range time a rollup
ran for this LU.

22

10

15

20

25

WO 2007/047346 PCT/US2006/039857

Each entry in Table 1 may have a generation number that
uniquely identifies the rollup level for each TLU. The
generation number may be updated whenever a rollup 1is
completed for an LU.

In addition to rollup state on an LU, each LU entry in
the global database may have a field describing the last
rollup level for it. This may be used to determine the
timeline for an LU within a rollup level.

There may be cases where multiple rollups for the same
rollup level and LU may exist in a same rollup chunk. In
order to return valid image times for this case, a history of
rollups that have taken place may be kept. The start and end
time ranges for each rollup may be stored in a table called

“rollup history,” one example of which is shown as Table 2.

Table 2: Rollup History Table.

Field Type Description
LU Uint32 | Logical Unit
Rolluplevel Uint32 | The rollup level that completed for
this LU.

RollupRangeStart | Uint64 | The start range time this rollup ran
for this LU.

RollupRangeEnd Uint64 | The end range time this rollup ran for
this LU.

This information may be used to determine valid image
times for an LU and rollup level. Once a rollup level is
rolled up (e.g. from Level-1 to Level-2) or a rollup level has
been deprecated, the entry representing that particular rollup
may be deleted.

Since an LU is typically related to or grouped with other
LUs, the result of a rollup on one LU may affect how the
timeline for a group of LUs is represented. When a timeline
rollup“involves a group of LUs (e.g., in a dataset or quota

group), the start of a timeline for the group of LUs may be

23

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
the earliest common timeline start (ECTS) among all the LUs.
However, when there are multiple levels of rollup data, there
may be points in time in the timeline that become invalid for
the start of an image time. Figure 4 illustrates two
different rollup levels across three related LUs. Each tick
on the timelines may represent a data chunk in a time store.
The start of the timeline for hourly data may be time t3 since
it is the ECTS among the three LUs. In this example, wvalid
image times are t3, t4, and t5 for the hourly data. The times
t0, tl, and t2 can only be chosen through dissociation with
the other related LUs. Since times t3, t4, and t5 are hourly
buckets of backup data and are essentially single-point-in-
time (SPIT) images, image times chosen in between these times
may be invalid. The Level-0 data in this example runs from
time t6 through a present time. Any Level-0 time between t6
and the present time may be valid image times.

When rollup levels among multiple LUs are inconsistent,
the wvalid image times may differ from those when the rollup
levels are consistent among the LUs. If, 1n the above
example, Level-1l rollup i1is only completed for LU-1, then
points t3 and t4 may not be valid image times. Figure 5
illustrates this scenario. Although the ECTS remains the
same, t5 may be the only valid image time across all LUs for
Level-1l data. Any image time between t6 and the present time
may still be wvalid.

According to embodiments of the present disclosure, a few
primitive application program interfaces (APIs) may Dbe
provided to represent a timeline that'accommodates transient
rollup inconsistencies. For example, primitive APIs may be
provided to perform the following functions: (a) retrieve
start and end of timeline for an LU across all rollup levels,
wherein the start and end time range, as well as the
generation number for the last rollup, may be returned for the

LU; (b) retrieve start and end time of a timeline for an LU

24

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
within each rollup level for an LU (e.g. start and end of

Level-1 data for LU-1), wherein the start and end time range,
as well as the generation number for the last rollup, may be
returned for Level-0, Level-1l, Level-2 and Level-3 data; (c)
retrieve the next and previous image times based on an input
image time for an LU, wherein the start time before and the
start time after the image time may be returned for each of
the two times. Using these primitive APIs, a user or client
program that has knowledge about the relationship among the
LUs may query the information for each LU and determine the
start and end of the timeline for each level.

In the exemplary timeline shown in Figure 4, the
primitive APIs may be used to find the start and end of the
Level-1 timeline for the related Lus as follows.

(1) The ECTS may be found for the set of LUs based on

what the latest timeline start is for the set of LUs, in

this case time t3.

(2) The Level-1 data with earliest start time past the

ECTS, in this case t5, may be the start of the Level-1

timeline.

(3) The Level-1 data with the latest end time rast the

ECTS, in this case t5, may be the end of the Level-1

timeline.

(4) All image times chosen between the start and end

times may be validated by using API(c) above for each LU.

Finding the closest time before and after the image time

may yield up to two valid data points for an image time.

Similarly, the primitive APIs may be used to find the
start of the Level-0 timeline for the related LUs in Figure 4.

(1) The ECTS may be found for the set of LUs based on

what the latest timeline start is for the set of LUs, in

this case time t3.

(2) The Level-0 data with the earliest start time past

the latest end time of the Level-1 data, in this case

25

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
time t6, may be the start of the Level-0 timeline.

(3) Any image time from this point forward may be wvalid

for Level-0 data.

For a Time Image or Instant Restore operation, an image
time may be chosen in a two-stage process wherein the image
time is validated (or confirmed) by each storage device before
the requested Time Image or Instant Restore operation takes
place. In that two-stage process, there may be a window of
opportunity for a rollup to change the timeline in such a way
that makes a chosen image time invalid. To close this window,
the validation phase in that two-stage process may cancel a
currently running rollup and prevent other rollups from
running. In addition, if a rollup is in a state that cannot
be canceled, then the validation phase may complete in error
to force a new query of the timeline. Configuration events in
the validate phase for Time Image and Instant Restore may also
pass in the rollup generation number queried when the timeline
was queried. If the generation number has changed since the
query, the validation phase may also complete in error to
force a new query of the timeline.

In a storage system, each quota group may have an
allocated timeline storage space for rocllup purposes.
According to one embodiment, for example, the amount of

storage provisioned may be based on the following formula:

(Maximum number of LUs in the storage system x Maximum number
of rollup levels possible) + 100 working chunks for doing a

rollup.

In order to have an active Level-1l, Level-2, and Level-3
rollup chunk for each LU, and to have 100 chunks for
performing the active rollup, approximately 20 GB of storage
space may be allocated as rollup quota per quota group.

There may not be enough space to accommodate a Copy Phase

for a given rollup. This situation may be detected using

26

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
statistics generated in the Coalescence Phase, and the rollup
for that rollup level may be cut short. The rollup state
information may then be updated to reflect that the rollup has
not yet completed and the next LU chosen by the determination
phase may be the same LU, so that the rollup may resume.

Rollup chunks may be essentially transformed into new COW
data in the Replacement Phase. The old data chunks may be
freed as they are replaced. The rollup quota may be updated
to reflect changes in the amount of space used. This
guarantees that a rollup does not cause a deprecation of
timeline and that there is space for at least 100 rollup
chunks available at the start of any given rollup.

When a rollup thread 1is woken on a node due to a
deprecation of timeline or a threshold of the timeline storage
capacity being crossed, the rollup thread on other nodes may
be woken as well, so that LUs belonging to the same dataset
may be processed. The mechanism used to awaken the remote
thread may be a simple spread message.

Starting a capture mode, adding LUs to a capturing
dataset, and removing LUs from a capturing dataset all have
the same effect on rollup chunks as these events have on
normal time store data chunks. Every capturing LU may have an
active rollup chunk for every level configured in the TLP.
When an LU has capture mode turned on a rollup chunk may be
activated for each level configured.

Timeline deprecation typically involves discarding older
backup data 1in a timeline once the timeline storage 1is
approaching its quota. If a deprecation cof timeline is about
to take place, any rollup currently running may be immediately
cancelled. When the deprecation is completed, another rollup
may be immediately scheduled.

Rolled-up data may typically be deprecated first in the
timeline since they may be the oldest data in the timeline.

One anomaly in terms of deprecation may be that it is possible

27

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
for an active rollup chunk to be deprecated. Multiple rollup
chunks may contain duplicate start times, much like data
chunks copied back during an Instant Restore. The same
deprecation rules apply to these rollup chunks as do the copy
back chunks. Rollup chunks with duplicate start times may be
all deprecated regardless of how much space is needed.

Time images may be short lived entities. As a result,
they may be deleted when deprecation of timeline takes place.
One goal of timeline compression may be to avoid this
deprecation of timeline based on the premise that backup data
at a higher level of granularity may be better than no data at
all. This being the case, there may be two options:

1. Let rollups behave the same way as deprecation

behaves and delete the time image when a rollup runs into

a time image.

2. Stop rollups when encountering a time image. The

danger being that deprecation may delete the time image

anyway .

A global option may be set up by a user to control how rollups
behave when encountering a time image. For example, any time
image creation may cancel a running rollup.

An instant restore may cause the state of a timeline to
change drastically and quickly. As a result, an active rollup
may be immediately canceled when an instant restore is
initiated.

Much like time images, user-defined timeline annotations
may be invalidated when timeline is deprecated. The same
holds true for rollups.

On failover, any running rollup may be cancelled.
Leftover data for rollups that may have been in progress on a
remote node may be cleaned up by a surviving node. Rollup
chunks may be scrubbed the same way COW data may be scrubbed
on failover.

Figure 6 outlines major objects involved in an exemplary

28

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
Program for timeline compression in accordance with
embodiments of the present disclosure. A RollupManager object
may be an interface for starting, canceling, maintaining
synchronization, and querying state for rollups. In addition,
it may be responsible for maintaining TLP objects. The
RollupManager may contain an instance of a TimelineRollup
object. The TimelineRollup object may be an active object
responsible for performing all phases of a rollup. There may
also be an object called RollupState which may be an interface
for querying and setting state for rollups. It may maintain
transient states related to the rollup process as well as the
persistent states for LUs which may be stored in a global
database. A RegionMaps/Indexing object may be responsible for
building B-trees as described above. A tsAlloc object may
allocate time store cache for rollup chunks. A tsQuotaGroup
object may allocate timeline storage space for a dataset. A
TimelineProfile object may record a TLP for a dataset.

At this point it should be noted that the technique for
timeline compression in accordance with the present disclosure
as described above typically involves the processing of input
data and the generation of output data to some extent. This
input data processing and output data generation may be
implemented in hardware or software. For example, specific
electronic components may be employed in a storage area
network (SAN) or similar or related circuitry for implementing
the functions associated with timeline compression in
accordance with the present disclosure as described above.
Alternatively, one or more processors operating in accordance
with stored instructions may implement the functions
associated with timeline compression in accordance with the
present disclosure as described above. If such is the case,
it is within the scope of the present disclosure that such
instructions may be stored on one or more processor readable

carriers (e.g., a magnetic disk), or transmitted to one or

29

10

15

WO 2007/047346 PCT/US2006/039857

more processors via one or more signals.

The present disclosure is not to be limited in scope by
the specific embodiments described herein. Indeed, other
various embodiments of and modifications to the present
disclosure, in addition to those described herein, will be
apparent to those of ordinary skill in the art from the
foregoing description and accompanying drawings. Thus, such
other embodiments and modifications are intended to fall
within the scope of the present disclosure. Further, although
the present disclosure has been described herein in the
context of a particular implementation in a particular
environment for a particular purpose, those of ordinary skill
in the art will recognize that its usefulness is not limited
thereto and that the present disclosure may be beneficially
implemented in any number of environments for any number of
purposes. Accordingly, the claims set forth below should be
construed in view of the full breadth and spirit of the

present disclosure as described herein.

30

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
CLAIMS

1. A method for timeline compression in a storage system,
wherein digital content of the storage system is backed up to
enable restoration of the digital content to one or more
points in a timeline, the method comprising:

selecting a time interxrval in the timeline;

identifying one or more sets of backup data recorded for
the selected time interval, wherein the identified one or more
sets of backup data represent at least a portion of old data
overwritten during the selected time interval; and

discarding other backup data recorded for the selected
time interval, thereby reducing a granularity level of the

timeline in the selected time interval.

2. The method according to claim 1, wherein the digital
content of the storage system 1is backed up through copy-on-
write operations into a plurality of sets of copy-on-write
data and corresponding metadata, and wherein the step of
identifying further comprises identifying one or more sets of
copy-on-write data and corresponding metadata recorded for the

selected time interval.

3. The method according to claim 2, wherein a length of the
time interval is selected based at least in part on a desired

granularity level of the timeline.

4, The method according to claim 2, wherein the step of
identifying further comprises:

determining whether a storage unit in the storage system
has been overwritten mofe than once during the selected time
interval;

if the storage unit has been overwritten once during the

selected time interval causing a sole set of copy-on-write

31

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

data and corresponding metadata to be recorded, selecting the
sole set; and

if the storage unit has been overwritten more than once
during the selected time interval causing multipl; sets of
copy-on-write data and corresponding metadata to be recorded,

selecting one of the multiple sets.

5. The method according to claim 4, wherein, if the storage
unit has been overwritten more than once during the selected
time interval, the selected set of copy-on-write data and
corresponding metadata is the earliest set recorded for the

selected time interxrval.

6. The method according to claim 2, further comprising:
coalescing metadata in the one or more identified sets of

copy-on-write data and corresponding metadata.

7. The method according to claim 6, further comprising:
identifying copy-on-write data that correspond to the
coalesced metadata; and
replacing all sets of copy-on-write data and
corresponding metadata previously recorded for the selected
time interval with a new set comprising the identified copy-

on-write data and the coalesced metadata.

8. The method according to claim 2, further comprising:
selecting multiple time intervals in a portion of the
timeline based on a desired granularity level for the portion
of the timeline; and
repeating the steps of identifying and discarding for the

selected multiple time intervals.

9. The method according to c¢laim 2, wherein the storage

system comprises a plurality of storage devices, the method

32

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857
further comprising:
repeating the steps of identifying and discarding for one
or more of the plurality of storage devices to cause the
plurality of storage devices to have a consistent granularity

level of the timeline with respect to one another.

10. The method according to claim 2, wherein the steps of
selecting, identifying and discarding are triggered when one
or more of the following conditions are met:

a predetermined storage capacity for the timeline has
been consumed;

a predetermined amount of data have been accumulated for
a granularity level of the timeline;

granularity levels of the timeline for at least two
storage devices in the storage system are inconsistent;

an instruction to reduce the granularity of the timeline
1s received; and

a scheduled time for reducing the granularity of the

timeline is reached.

11. The method according to claim 2, further comprising:
scanning the storage system for a storage device for

which the granularity of the timeline can be reduced.

12. At least one signal embodied in at least one carrier wave
for transmitting a computer program of instructions configured
to be readable by at least one processor for instructing the
at least one processor to execute a computer process for

performing the method as recited in claim 1.

13. At least one processor readable carrier for storing a
computer program of instructions configured to be readable by
at least one processor for instructing the at least one

processor to execute a computer process for performing the

33

10

15

20

25

30

WO 2007/047346 PCT/US2006/039857

method as recited in claim 1.

14, A system for timeline compression in a storage system,
wherein digital content of the storage system is backed up to
enable restoration of the digital content to one or more
points in a timeline, the system comprising:

means for selecting a time interval in the timeline;

means for identifying one or more sets of backup data
recorded for the selected time interval, wherein the
identified one or more sets of backup data represent at least
a portion of old data overwritten during the selected time
interval; and

means for discarding other backup data recorded for the
selected time interval, thereby reducing a granularity level

of the timeline in the selected time interval.

15. A system for timeline compression in a storage system,
wherein digital content of the storage system is backed up to
enable restoration of the digital content to one or more
points in a timeline, the system comprising:
a storage medium for storing instructions; and
/ at least one processor for:
selecting a time interval in the timeline;
identifying one or more sets of backup data recorded
for the selected time interval, wherein the identified
one or more sets of backup data represent at least a
portion of old data overwritten during the selected time
interval; and
discarding other backup data recorded for the
selected time interval, thereby reducing a granularity

level of the timeline in the selected time interval.

34

PCT/US2006/039857

WO 2007/047346

1/6

ABpOL

Y

E:wmwn__t.>>:._._2:wuwn_F_.>>:l_._>_:wmmn_£.>>:._._>_:mmwm:._.>>:._._>_

EEE sz T T r—r—r— € _,€_’€s;k€ 757 % _
RN AN = = N KA LS \

0 eoM |- oM ¢ Yoo e-eem L I

‘ b8

{{ 2
®

eleq mey Auo eyeq Aunoy Ao ereq Aeg " & §

m

<

ql @b

:w«wmF_.>>:._._>_:wwwn_f.>>3._._>_:mmmn_r_._.>>:._._>_=m_wmn_:._.>>:._._>_

.= iy Yy vt v s S pensl (Y RO S BIEINE SRS AR SRR ”:.“m“.“.”_”.“.“_“.Hmuﬁu“:n_““ﬁ S TR FEEER RS SRR SRS I .
0 X°edM L= 99M ¢~ 1POM _ €~ 199M - A99M

SN— pap.eosi(]
—_—

AjuQ ejeg mey

e} ainbi4

PCT/US2006/039857
2/6

WO 2007/047346

oo1Aep abelo}s oy} Joj dnjjod pug y12

¢, 201nep obelols

si} 4o} auop dn|joy 444

elepejow Buipuodsaiiod
R Blep MOD Peyuspl 8y} 8988|e0H
X

~—01¢

[eAJBIUY BWI} POIOd|es aU}

1o} papiooal eyep dnyoeq Jaylo piedsiq ~—=80c

A

[eAIB)Ul BWI} pBJO8jes 8yl
ul ejep dnyoeq jJuesaidal 0] ejepelpul ~—90¢

Buipuodsaliod g eyep MNOD Anuepj
A

Y

[eAlsIul BWI} U J0919S ~—102

aoinep ebeloss e oy dnjjol e e ¢0¢ Z 921nb14

PCT/US2006/039857

WO 2007/047346

3/6

aseyd
Ado)

pa9sa|eon)
elepelop

aseyd
20US089[B0D

|dentified
auoQ 991I1S

aseyd

o) uess

[eoues / SN 810N ON

aseyd
Juswaoejdey

N1 pu4

Replacement
Done

aseyd

punod N1 uoneuiuLBleq

e ¢ eanbi4

PCT/US2006/039857

WO 2007/047346

4/6

A

Mo, NIy} 9}
0-fone

€}

G} niyy 0}
L-lone]

ent

an

N

 2inbi

PCT/US2006/039857

WO 2007/047346

5/6

L1

€}

S103

Ajuo L7 104
G} nJUY3 03
L-fere]

en

ani

N

G ainbi

PCT/US2006/039857

WO 2007/047346

6/6

aijoldaulewil L

dnolioejonps)

()eoe|dal
()Adoo
()ueos

(YozAjeue

Buixapuj
/ sdepjuoibay

dnjjoysulpwi L

00]IV's}

()d|Leeep/eresio

()dnjjoyjeoued
()dnjloyyuels

JoBeuepydnjjoy

() podau
() ereys

ajejsdnjjodn

sjejsdn|ioy

9 2Jnbi4

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings

