
(12) United States Patent

USOO7114181 B2

(10) Patent No.: US 7,114,181 B2
Ramaiah et al. (45) Date of Patent: Sep. 26, 2006

(54) PREVENTING NETWORK DATA INJECTION 2003/0154399 A1 8/2003 Zuk et al. T13 201
ATTACKS 2003/019 1844 A1 10/2003 Meyer et al.

2004/0052234 A1 3/2004 Ameigeiras et al.
(75) Inventors: Anantha Ramaiah, Sunnyvale, CA

(US); Randall Stewart, Crystal Lake, OTHER PUBLICATIONS
IL (US); Peter Lei, Arlington Heights, Peterson et al.; Computer Networks; Second Edition; Academic
IL (US); Patrick Mahan, Santa Cruz, Press; 2000; Chapters 2 and 5.*
CA (US) Stewart, R. “Transmission Control Protocol security considerations

draft-ietf-tcpm-tcpsecure-00.txt”, Network Working Group (Draft,
(73) Assignee: Cisco Technology, Inc., San Jose, CA 2004); pp. 1-10.

(US) “Transmission Control Protocol”, Information Sciences Institute
(1981), 89 pages.

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 y
U.S.C. 154(b) by 81 days. Primary Examiner Gilberto Barrón

Assistant Examiner Jung Kim
(21) Appl. No.: 10/792,146 (74) Attorney, Agent, or Firm—Christopher J. Palermo:
(22) Filed Mar. 2, 2004 Hickman Palermo Truong & Becker LLP

1C a. A

(57) ABSTRACT
(65) Prior Publication Data

US 2005/O160478 A1 Jul. 21, 2005 Approaches for preventing TCP data injection attacks in
packet-switched networks are disclosed. A first approach

Related U.S. Application Data provides for dropping received segments that carry ACK

(60) Provisional application No. 60/537,372, filed on Jan. N.S.A. itskyists s
16, 2004. approach helps keep spurious injected segments out of the

(51) Int. Cl. TCP re-assembly buffer. In a second approach, heuristics a
G06F II/28 (2006.01) used to examine the sequence number of a newly arrived
G06F II/00 (2006.01) segment, and when the sequence number is the next

expected, then the newly arrived segment 1s used and the G06F II/30 (2006.01) pected, then the newly arrived segment is used and th
(52) U.S. Cl 726/22: 726/23: 713/170: contents of the re-assembly buffer are not considered. Fur

Oa - 709/223.709,224 ther, if the data payload of the newly arrived segment

58) Field of Classification S h s 726/22 overlaps in sequential order with segments already in the
(58) Field of Classification Search 72623 re-assembly buffer, the overlapped segments in the re

S lication file f let h hist assembly buffer are considered spurious and are discarded.
ee appl1cauon Ille Ior complete searcn n1story. Thus, this approach helps remove spurious data from the

(56) References Cited re-assembly buffer if the first approach somehow fails to

2002fO145976 A1

U.S. PATENT DOCUMENTS

10/2002 Meyer et al.

prevent the data from entering the re-assembly buffer.

44 Claims, 5 Drawing Sheets

202 RECEIVE TCP SEGMENT

SEQNO.

206 DROP
SEGMENT

204 ISACKWALUE K
(UNACKNOWLEDGED

MIN(UNACKNOWLEDGED SEQNO
INITIAL SEQNO, MAX WINDOWSIZE)?

208 PERFORM
OTHERTCP
PROCESSENG

US 7,114,181 B2 Sheet 1 of 5 Sep. 26, 2006 U.S. Patent

| -61-I

U.S. Patent Sep. 26, 2006 Sheet 2 of 5 US 7,114,181 B2

Fig. 2

202 RECEIVE TCP SEGMENT

204 ISACKVALUE <
(UNACKNOWLEDGED

SEQNO
MIN(UNACKNOWLEDGED SEQNO

INITIAL SEQNO, MAX WINDOWSIZE)?

208 PERFORM
OTHERTCP
PROCESSING 206 DROP

SEGMENT

U.S. Patent Sep. 26, 2006 Sheet 3 of 5 US 7,114,181 B2

Fig. 3

302 RECEIVE FIRST TCP SEGMENT THAT IS
IN-ORDER, FORWARD TO APPLICATION, UPDATE
NEXTEXPECTED SEQUENCENUMBERVALUE

304 RECEIVE SECONDTCP
SEGMENT THAT IS OUT-OF-ORDER,
STORE IN RE-ASSEMBLY BUFFER

306 RECEIVE THIRD
TCP SEGMENT

309 STANDARD
OUT-OF-ORDER

PACKET PROCESSING

316 REGULAR
RE-ASSEMBLY
PROCESSING OF

BUFFER AND THIRD
SEGMENT

31 OTHIRD
SEGMENT OVERLAPS

SEGMENT IN
BUFFER

YES

312 DISCARD
SECOND SEGMENT

N BUFFER

314 RESUME
NORMALTCP
PROCESSING

313 SEND ACK FOR
THIRD SEGMENT

U.S. Patent Sep. 26, 2006 Sheet 4 of 5 US 7,114,181 B2

Fig. 4

(1) OUT-OF-ORDER (2) NEXT EXPECTED
SEGMENT ARRIVES IN-D-SEQUENCE NO=101
BUFFER

404 SEGMENT
SEQNO=201

DATA=100 BYTES
402RE-ASSEMBLY BUFFER

(3) SEGMENT 4.06 ARRIVES:
SEQNO+ DATALENGTH
OVERLAPS VALUE OF
SEQNO OF SEGMENT 4.04

N (4) DISCARDSEGMENT
404

(5) SEND ACK MESSAGE
WITH SEQNO=251

406 SEGMENT
SEQNO-101

DATA-150 BYTES

US 7,114,181 B2 Sheet 5 of 5 2006 9 Sep. 26 U.S. Patent

X{}JONALEN TWOOT
929

US 7,114,181 B2
1.

PREVENTING NETWORK DATA NECTION
ATTACKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims domestic priority under 35 U.S.C.
119(e) from prior provisional application Ser. No. 60/537,
372 filed Jan. 16, 2004, of Anantha Ramaiah et al., entitled
“Preventing Network Data Injection Attacks. , the entire
contents of which is hereby incorporated by reference as if
fully set forth herein.

FIELD OF THE INVENTION

The present invention generally relates to computer net
works. The invention relates more specifically to preventing
data injection attacks in networks.

BACKGROUND

The approaches described in this section could be pur
Sued, but are not necessarily approaches that have been
previously conceived or pursued. Therefore, unless other
wise indicated herein, the approaches described in this
section are not prior art to the claims in this application and
are not admitted to be prior art by inclusion in this section.

Networks have become an important tool for businesses
and consumers alike, many of which are now dependent on
the constant availability of network resources Such as mail
servers, Web sites, and content servers. As use of networks
increases, protecting networks from disruption by malicious
entities becomes more important. For example, denial of
service (“DoS) attacks may deprive legitimate users of
access to network services, and have been used successfully
to disrupt legitimate user access to internet sites such as
Yahoo! and CNN.

Data injection attacks may result in DoS or other adverse
effects. One type of data injection attack takes advantage of
the basic design of the Transmission Control Protocol
(“TCP), one of the foundational protocols of the Internet, as
defined in Internet Engineering Task Force (IETF) Request
for Comments (RFC) 793. In a data injection attack, an
attacker guesses parameter values for a valid TCP connec
tion and then sends spurious segments that contain malicious
or spurious data payloads. If the receiver passes such seg
ments to an application, malfunctions may occur when the
application acts on or executes the data payloads.
A typical implementation of TCP that is compliant with

RFC 793 and is acting as a receiver of data maintains
out-of-order data in a re-assembly buffer pending receipt of
any missing segments. The receiver sends an acknowledg
ment (ACK) message for each segment that is received
out of order and indicating the last valid sequence number.
The sender holds non-acknowledged segments in a re
transmission buffer. This process enables a sender to rapidly
re-transmit segments that have been lost in transmission,
because such segments are not acknowledged.
One type of TCP data injection attack exploits the fore

going mechanisms in TCP implementations that are
intended to manage segments that arrive out-of-order and
need to be re-assembled into the proper order before they are
passed to applications at logical layers above TCP. Border
Gateway Protocol (BGP), Hypertext Transfer Protocol
(HTTP), some voice protocols, Multi-Protocol Label
Switching (MPLS), and other protocols use TCP connec
tions and are targets for these attacks. The consequences can

10

15

25

30

35

40

45

50

55

60

65

2
be severe. For example, when a BGP session of a router is
disrupted by closing the associated TCP connection, the
router will discard all BGP routes that it has created,
essentially causing a failure of the BGP process. As a result,
the BGP process must re-synchronize itself with peer routers
in the network, and during the re-synchronization period the
failed router cannot forward any traffic.

Further, data injection attacks may result in presenting
malicious commands to an upstream process, needlessly
filling the re-assembly buffer, faulty operation of other
higher-layer applications, initiating “ACK wars, etc.
Accordingly, researchers in this field are interested in cre
ating ways to thwart TCP data injection attacks, without
fundamentally altering the operation of TCP as specified in
RFC 793.
A Successful attack must inject a TCP segment that carries

proper values for Source port, destination port; a range of
values is allowed for sequence number and ACK number.
The allowed ranges for these values are large, so that
mounting a brute-force attack involving serially checking all
possible values for each parameter would seem impossible.
However, in most TCP implementations the task of selecting
valid values is simpler because certain loopholes present in
RFC 793. These loopholes create security vulnerabilities in
implementations that are compliant with RFC 793. For
example, assigning a pseudo-random 32-bit value as the
Initial Sequence Number (ISN) for a new TCP connection
might appear to prevent an attacker from guessing the
correct sequence number in any practical way, because the
number of potentially correct values is 2° or approximately
4 billion values. However, a conventional TCP implemen
tation compliant with RFC 793 will accept a segment if the
sequence number of the segment falls within a window or
range of acceptable values, even if the sequence number is
not an exact match to the next expected sequence number.
The window or range typically is the same as the size in
bytes of the re-assembly buffer, and is used to compensate
for the possibility that segments may be lost. In some
implementations of TCP the range of allowed sequence
values may be as large as 16,384, 65.535, or larger.
A consequence is that the attacker does not need to

generate all 32 bits of the sequence number correctly to
provide a number that a receiving node will accept, even
when a truly random or pseudorandom ISN is used. If the
range of allowed sequence values is sufficiently large, then
the chance is greatly increased that an attacker can guess a
correct sequence value through either random or brute-force
selection in a practical amount of time. The larger the
window established by the receiving node, the easier it is for
the hacker to carry out this attack.

Further, most implementations use a relatively small
range of values for the initial port number, and merely
increment the port number for each new connection. As a
result, using ordinary computing resources it may be rela
tively easy for an attacker to guess the port values that are
used by two endpoints to a legitimate TCP connection.

Still another vulnerability occurs because most TCP
implementations do not test whether the ACK value is equal
to an expected ACK value or even within a range of allowed
ACK values. Instead, most implementations will accept any
segment that carries an ACK value greater than a previously
received ACK value, provided the sequence number is
within the allowed range. RFC 793 defines an ACK value as
an unsigned integer in the range 1 to 2. Thus, an attacker
who guesses an allowed sequence number can Succeed with
a data injection attack by trying only two ACK values—one
(1) or 2-1—and one or the other is certain to be accepted.

US 7,114,181 B2
3

The result of the foregoing compromises is that an
attacker can theoretically inject data into a connection in
(2/window-size/2) segments, or roughly 30,000 segments
in most implementations. Therefore even a brute-force
attack can proceed relatively rapidly using conventional
computing equipment.

Approaches for preventing network DoS Reset attacks are
described in co-pending application Ser. No. 10/755,146,
filed Jan. 9, 2004, entitled “Preventing Network Reset
Denial of Service Attacks.” by Mitesh Dalal et al. An
approach for addressing a similar attack, known as the
SYN-RST attack, is provided in co-pending application Ser.
No. 10/641,494, filed Aug. 14, 2003, entitled “Detecting
network denial of service attacks,” of Pritam Shah et al., and
assigned to the same assignee hereof. The approach of Shah
et al. is appropriate for an intermediate router rather than a
TCP endpoint device, but does not fully address all issues
described in this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is a message flow diagram that illustrates one
technique for perpetrating a TCP data injection attack;

FIG. 2 is a flow diagram that illustrates an approach for
discarding data segments upon arrival;

FIG. 3 is a flow diagram that illustrates an approach for
removing spurious data segments from a re-assembly buffer
based on overlap:

FIG. 4 is a block diagram that shows an example of
operation of FIG. 3;

FIG. 5 is a block diagram that illustrates a computer
system upon which an embodiment may be implemented.

DETAILED DESCRIPTION

A method and apparatus for preventing network data
injection attacks is described. In the following description,
for the purposes of explanation, numerous specific details
are set forth to provide a thorough understanding of the
present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known
structures and devices are shown in block diagram form to
avoid unnecessarily obscuring the present invention.

Embodiments are described herein according to the fol
lowing outline:

1.0 Overview
2.0 Approaches for Preventing Network Data Injection

Attacks
2.1 Approach for Discarding Data Segments. Upon

Arrival
2.2 Approach for Removing Spurious Data Segments

from Re-Assembly buffer Based On Overlap
3.0 Implementation Mechanisms—Hardware Overview
4.0 Extensions and Alternatives

1.0 Overview
As an introduction only, and without limiting the scope of

the appended claims, the needs identified in the foregoing
Background, and other needs and objects that will become
apparent for the following description, are achieved in the
present invention, which comprises, in one aspect, a method
for preventing an attack on a network, wherein the attack

10

15

25

30

35

40

45

50

55

60

65

4
comprises injecting a spurious transmission control protocol
(TCP) segment into a TCP connection between a sender and
a receiver, comprising the computer-implemented Steps of
receiving a TCP segment carrying an ACK value; determin
ing whether the ACK value is less than the difference of a
next unacknowledged sequence value and a maximum win
dow size associated with the TCP connection; and discard
ing the TCP segment when the ACK value is less than the
difference of a next unacknowledged sequence value and the
lesser of either the total number of segments sent thus far or
the maximum window size associated with the TCP con
nection.
A second approach comprises receiving a first TCP seg

ment carrying a sequence value; determining whether the
sequence value is equal to a next expected sequence value;
when the sequence value is equal to a next expected
sequence value, determining whether data carried in the first
TCP segment overlaps data carried in one or more second
TCP segments that were previously received in a re-assem
bly buffer; and discarding the one or more second TCP
segments when the first TCP segment overlaps any data
segment previously received in a re-assembly buffer.

In other aspects, the invention encompasses a computer
apparatus and a computer-readable medium configured to
carry out the foregoing steps. Further, many other features
and aspects will become apparent from the following
description and from the appended claims.

2.0 Approaches for Preventing TCP Denial of Service
Attacks

Several approaches for preventing network data injection
attacks are described. A first approach provides for dropping
received segments that carry ACK values smaller than the
next unacknowledged sequence minus the maximum win
dow size. The term “smaller' is used herein in the context of
unsigned integer values in which wraparound may occur.
This approach helps keep spurious injected segments out of
the TCP re-assembly buffer. Only a small change in the logic
of a TCP process acting as receiver is needed. In a second
approach, heuristics are used to examine the sequence
number of a newly arrived segment, and when the sequence
number is the next expected, then the newly arrived segment
is used and the contents of the re-assembly buffer are not
considered. Further, if the data payload of the newly arrived
segment overlaps in sequential order with segments already
in the re-assembly buffer, the overlapped segments in the
re-assembly buffer are considered spurious and are dis
carded. Thus, this approach helps remove spurious data from
the re-assembly buffer if the first approach somehow fails to
prevent the data from entering the re-assembly buffer.

2.1 Approach for Discarding Data Segments. Upon Arrival
A first approach for preventing TCP data injection attacks

is now described with reference to FIG. 1 and FIG. 2. FIG.
1 is a message flow diagram that illustrates one technique for
perpetrating a TCP data injection attack. FIG. 2 is a flow
diagram that illustrates an approach for discarding data
segments upon arrival.
The process of FIG. 2 to cause the message flows shown

by example in FIG. 1 may be implemented in one or more
computer programs, sequences of instructions or other soft
ware elements that are executed by a network element acting
as an endpoint in a TCP connection. For example, FIG. 2
may be implemented as part of a TCP application or feature
of an operating system of a router, Switch or other element
of network infrastructure. Alternatively FIG. 2 may be
implemented as a TCP process, stack, adapter or agent

US 7,114,181 B2
5

hosted by or associated with the operating system of a
personal computer, workstation or other network end sta
tion.

In FIG. 1, Sender 102, Attacker 104 and Receiver 106
represent endpoints in a TCP connection. Sender 102.
Attacker 104 and Receiver 106 may comprise routers,
Switches, hubs, gateways, personal computers, workstations,
servers, or other devices that are or can be connected to or
communicate with a network. Attacker 104 is any entity that
is injecting unwanted or spurious segments or segments into
a TCP flow or connection that has been established between
Sender 102 and Receiver 106. Attacker 104 may comprise a
workstation, personal computer, router, Switch, or other
processing element.

Sender 102, Receiver 106, and Attacker 104 participate in
one or more networks. Further, Sender 102, Receiver 106,
and Attacker 104 may be in or accessible through a local
area network (LAN), wide area network (WAN), one or
more internetworks, or any other kind of network or subset
thereof, in which the Transmission Control Protocol (TCP)
is used to establish connections between network elements.
Such a network may contain additional network infrastruc
ture elements such as routers, Switches, etc. and other end
station devices such as workstations, printers, servers, etc. In
one implementation, Sender 102. Receiver 106, and
Attacker 104 all are communicatively coupled to a public
packet-switched network Such as the internet.

Sender 102, Receiver 106, and Attacker 104 may be
connected to additional network elements. Other embodi
ments may include fewer or more network elements than
those illustrated. Specifically, in a practical system there
may be any number of network elements.

For purposes of describing FIG. 1, assume that Sender
102 and Receiver 106 implement TCP only as defined in
RFC 793, and are using a window size of 4000. Sender 102
sends Receiver 106 a segment 110 with a sequence number
(“SeqNo”) of 101, an ACK value of 5005 and 441 bytes of
data. Receiver 106 sends an acknowledgment message 112
with SeqNo 5005 and ACK 543. In this description, a
reference such as “SeqNo 543 or “ACK5005” is used as an
abbreviated indication that a TCP segment carries a
Sequence Number value of 543 and an Acknowledge value
of 5005, respectively.

Next Attacker 104 sends segment 114 with SeqNo 3000,
ACK 0x2000000 (33,554,432), and 256 bytes of malicious
data. Attacker 104 has guessed SeqNo 3000 without actual
knowledge of the sequence numbers that are then currently
in use by Sender 102 and Receiver 106 for the TCP
connection, and SeqNo 3000 is an allowed SeqNo value
because (3000<543+4000). No window size comparison is
conventionally made for the ACK value, so ACK values in
the range of 2,147,488,649 to 4.294,967,295 and 0 to 5001
are acceptable. Attacker 104 has also determined or guessed
the network addresses of Sender 102 and Receiver 106, such
as their IP addresses, and the port numbers used for the
current connection. The address and port values are placed
in the spurious segment 114, but are omitted for clarity.
Since Attacker 104 is uncertain whether an ACK value of
0x2000000 (33.554,432) is appropriate, Attacker 104 also
sends segment 116 with the same SeqNo 3000 but an ACK
value of 0x82000000 (2,181,038,080)).

At step 118, Receiver 106 accepts segment 116 but drops
segment 114 because its ACK value is not acceptable.
Receiver then acknowledges segment 116 by sending seg
ment 120 with SeqNo 5005 and ACK543. A SeqNo of 5005
is used because segment 112 is the lastin-order segment that
was received, and Receiver 106 needs to signal that it is

10

15

25

30

35

40

45

50

55

60

65

6
awaiting the immediately following segment despite having
received segment 116 that appears to be far in the future of
the stream. Without a defensive approach, as indicated in
step 122, segment 116 is eventually forwarded to and could
harm an application that uses, relies on or executes the data
in segment 116.

Referring now to FIG. 2, in the first preventive approach
herein, in step 202 a TCP segment is received. In step 204,
a test is performed to determine if the ACK value carried in
the received segment is less than the difference of the next
sent but unacknowledged sequence value (Sinduna, in the
parlance of RFC 793) less the lesser of either the total
number of segments sent thus far or the maximum window
size associated with the TCP connection. In one embodi
ment, the expression min (Sinduna isn, max window size)
yields the value that is compared to the unacknowledged
sequence value.
The maximum window size value reflects the maximum

window size that the peer can manage. The allowed window
size may be changed to another window size for particular
exchanges of segments, but even if Such an adjustment has
occurred, the maximum window size is used in the test of
step 204. Thus step 204 tests the ACK value of the received
segment against a window of past valid ACK values. For
step 204 to yield a true result, a valid ACK value cannot be
more than one window behind the next expected sequence
value.

In contrast, prior approaches admit segments having any
ACK value that is within that half of the sequence value
space that includes and is earlier than the next unacknowl
edged sequence value, and provided that the sequence value
itself is within the inbound window. In such circumstances
RFC 739 permits a receiver to ignore the ACK. RFC 793
only requires that if a received ACK value is greater than
that expected by the receiver, then the receiver must send
back an ACK segment specifying the expected ACK value.
The lack of rigorous requirements in RFC 793 for dealing
with ACK values that are earlier than expected presents an
attacker with a way to present spurious segments that will be
accepted.

If the test of step 204 is true, then in step 206 the segment
is dropped and not forwarded to an application or placed in
a re-assembly buffer for potential re-ordering and later
forwarding. If the test of step 204 is false, then in step 208
other TCP segment processing is performed on the received
Segment.

In one alternative, the test of step 204 does not allow for
the ACK value to fall within a window but instead tests
whether the ACK value of the received TCP segment is
exactly equal to an expected ACK value or a range of values
less than the initial window. If an exact match is not found,
then the incoming segment is dropped. This alternative may
cause a receiver to discard data that arrives before other
valid but delayed data, because when the earlier data arrives
the receiver requires an ACK value that the sender has not
encountered yet. As a consequence, this approach may force
the sender to perform a retransmission. However, this draw
back may be acceptable to achieve the benefit of improved
attack resistance in network environments that are known to
have higher vulnerability to attack.

Using the foregoing approaches, spurious segments are
kept out of the re-assembly buffer and not forwarded to
higher-layer applications or processes where the spurious
segments could cause problems. In particular, with the
present approach, a segment is accepted only if its sequence
number is within the acceptable window and its ACK value
is correct.

US 7,114,181 B2
7

2.2 Approach for Removing Spurious Data Segments from
Re-Assembly Buffer Based on Overlap

FIG. 3 is a flow diagram that illustrates an approach for
removing spurious data segments from a re-assembly buffer
based on overlap; FIG. 4 is a block diagram that shows an
example of operation of FIG. 3. In general, FIG. 3 provides
an approach for removing improperly injected segments
from a TCP re-assembly buffer by detecting that the seg
ments are spurious because they improperly overlap data
associated with previously received properly acknowledged
Segments.

Referring first to FIG. 3, steps 302–304 represent prepa
ratory steps that are described to provide context for the
solution represented by subsequent steps. In step 302 a first
TCP segment is received that is in order. The segment is
forwarded to an application, and the next expected sequence
number value is updated in memory. The term “first is used
in step 302 to denote that the segment of step 302 occurs
before the segments of step 304 and step 306, but the
segment of step 302 may arrive at any time after establish
ment of a TCP connection and need not be the first segment
actually received after completing a TCP handshake phase.
In step 304, a second segment is received that is out of order,
and therefore the second segment is stored in the re-assem
bly buffer.

In step 306, a third segment is received. In step 308, a test
is performed to determine if the SeqNo value carried by the
third segment is equal to the next expected SeqNo value.
Step 308 also may involve verifying that the sum of the
SeqNo of the third segment and the length of its data exactly
aligns with other segments in the re-assembly buffer. If not,
then in step 309 conventional processing is applied for an
out-of-order segment. If the SeqNo value is exactly the next
expected value, then the third segment is treated as a trusted
segment that has arrived from a legitimate sender in the
current connection. The third segment is treated as trusted
because the chance that an attacker guessed and sent the
exact next expected SeqNo value is 1 in 232.

Accordingly, in step 310 a test is performed to determine
if the third segment overlaps any segment that is already in
the re-assembly buffer. In this context, “overlap” means that
the sum of the SeqNo and the length of the data carried in
the third segment overlaps the SeqNo in any segment(s) in
the re-assembly buffer. In some cases the third incoming
segment may overlap a number of segments that may have
come from an attacker. If no Such overlap holds, then in step
316 regular re-assembly processing of the buffer and third
segment is performed.

However, if overlap is found, then the overlapped seg
ments previously received into in the re-assembly are
deemed spurious segments, and the third segment is deemed
genuine. Overlap indicates a spurious segment has been
received into the re-assembly buffer because a set of genuine
segments ultimately will align exactly in sequence when
Successive SeqNo values are compared to the data length
size of a preceding segment in the flow. Moreover, an
attacker is required to guess SeqNo values, and therefore the
presence of overlap strongly suggests that a SeqNo has been
guessed and the associated segment is spurious. Overlap as
found in step 310 may be complete overlap or partial
overlap. The spurious segment is discarded from the re
assembly buffer at step 312.

In step 313 an ACK message is sent and carries the SeqNo
of the third segment. In step 314, normal TCP processing
resumes. Such processing may include re-transmission that
helps ensure that the re-assembly buffer contains only valid

10

15

25

30

35

40

45

50

55

60

65

8
data by requiring the sender to re-transmit data within the
range covered by the discarded spurious segment.
An example is now illustrated in connection with FIG. 4.

An out-of-order segment 404 with SeqNo 201 and 100 bytes
of data previously has been received into re-assembly buffer
402, as shown by numeral 1. As indicated by numeral 2, the
next expected sequence number is 101, which is why
segment 404 is considered out of order.
At numeral 3, segment 406 arrives with SeqNo 101 and

150 bytes of data. The SeqNo value 101 is exactly the
expected next SeqNo value, and therefore the test of step
308 (FIG. 3) is true for segment 406. Further, the sum of 101
and 150 is 251, which overlaps the value of 201 carried by
segment 404. Since segment 406 is considered trusted
because it carries the exact next expected sequence number,
segment 404 is deemed spurious and discarded as shown at
numeral 4. An ACK segment is then sent with SeqNo 251 to
acknowledge segment 406.

Thus the foregoing approach removes spurious injected
data segments that have been inadvertently received into a
re-assembly buffer. The approach may be practiced alone or
in combination with the approach of section 2.1 herein.
3.0 Implementation Mechanisms—Hardware Overview

FIG. 5 is a block diagram that illustrates a computer
system 700 upon which an embodiment may be imple
mented. The preferred embodiment is implemented using
one or more computer programs running on a network
element such as a router device. Thus, in this embodiment,
the computer system 700 is a router.
Computer system 700 includes a bus 702 or other com

munication mechanism for communicating information, and
a processor 704 coupled with bus 702 for processing infor
mation. Computer system 700 also includes a main memory
706, such as a random access memory (RAM), flash
memory, or other dynamic storage device, coupled to bus
702 for storing information and instructions to be executed
by processor 704. Main memory 706 also may be used for
storing temporary variables or other intermediate informa
tion during execution of instructions to be executed by
processor 704. Computer system 700 further includes a read
only memory (ROM) 708 or other static storage device
coupled to bus 702 for storing static information and instruc
tions for processor 704. A storage device 710, such as a
magnetic disk, flash memory or optical disk, is provided and
coupled to bus 702 for storing information and instructions.
A communication interface 718 may be coupled to bus

702 for communicating information and command selec
tions to processor 704. Interface 718 is a conventional serial
interface such as an RS-232 or RS-422 interface. An external
terminal 712 or other computer system connects to the
computer system 700 and provides commands to it using the
interface 718. Firmware or software running in the computer
system 700 provides a terminal interface or character-based
command interface so that external commands can be given
to the computer system.
A switching system 716 is coupled to bus 702 and has an

input interface 714 and an output interface 719 to one or
more external network elements. The external network ele
ments may include a local network 722 coupled to one or
more hosts 724, or a global network such as Internet 728
having one or more servers 730. The switching system 716
switches information traffic arriving on input interface 714
to output interface 719 according to pre-determined proto
cols and conventions that are well known. For example,
switching system 716, in cooperation with processor 704,
can determine a destination of a packet of data arriving on

US 7,114,181 B2
9

input interface 714 and send it to the correct destination
using output interface 719. The destinations may include
host 724, server 730, other end stations, or other routing and
switching devices in local network 722 or Internet 728.
The invention is related to the use of computer system 700

for implementing the approaches herein. According to one
embodiment of the invention, an implementation of the
approaches herein is provided by computer system 700 in
response to processor 704 executing one or more sequences
of one or more instructions contained in main memory 706.
Such instructions may be read into main memory 706 from
another computer-readable medium, Such as storage device
710. Execution of the sequences of instructions contained in
main memory 706 causes processor 704 to perform the
process steps described herein. One or more processors in a
multi-processing arrangement may also be employed to
execute the sequences of instructions contained in main
memory 706. In alternative embodiments, hard-wired cir
cuitry may be used in place of or in combination with
Software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.
The term “computer-readable medium' as used herein

refers to any medium that participates in providing instruc
tions to processor 704 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, Volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks. Such
as storage device 710. Volatile media includes dynamic
memory, Such as main memory 706. Transmission media
includes coaxial cables, copper wire and fiber optics, includ
ing the wires that comprise bus 702. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio wave and infrared data communica
tions.
Common forms of computer-readable media include, for

example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 704 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and
use an infrared transmitter to convert the data to an infrared
signal. An infrared detector coupled to bus 702 can receive
the data carried in the infrared signal and place the data on
bus 702. Bus 702 carries the data to main memory 706, from
which processor 704 retrieves and executes the instructions.
The instructions received by main memory 706 may option
ally be stored on storage device 710 either before or after
execution by processor 704.

Communication interface 718 also provides a two-way
data communication coupling to a network link 720 that is
connected to a local network 722. For example, communi
cation interface 718 may be an integrated services digital
network (ISDN) card or a modem to provide a data com
munication connection to a corresponding type of telephone
line. As another example, communication interface 718 may
be a local area network (LAN) card to provide a data

10

15

25

30

35

40

45

50

55

60

65

10
communication connection to a compatible LAN. Wireless
links may also be implemented. In any Such implementation,
communication interface 718 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.
Network link 720 typically provides data communication

through one or more networks to other data devices. For
example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet’ 728. Local
network 722 and Internet 728 both use electrical, electro
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are exemplary forms of carrier waves transporting the
information.
Computer system 700 can send messages and receive

data, including program code, through the network(s), net
work link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested
code for an application program through Internet 728, ISP
726, local network 722 and communication interface 718. In
accordance with the invention, one such downloaded appli
cation provides for detecting network data injection attacks
as described herein.

Processor 704 may execute the received code as it is
received, and/or stored in storage device 710, or other
non-volatile storage for later execution. In this manner,
computer system 700 may obtain application code in the
form of a carrier wave.

4.0 Extensions and Alternatives
In the foregoing specification, the invention has been

described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illus
trative rather than a restrictive sense.

What is claimed is:
1. A method of preventing an attack on a network, wherein

the attack comprises injecting a spurious transmission con
trol protocol (TCP) segment into a TCP connection between
a sender and a receiver, the method comprising the com
puter-implemented steps of

receiving a TCP segment carrying a sequence value and
an ACK value;

determining whether the ACK value is less than the
difference of a next unacknowledged sequence value
and a lesser of either (a) a total number of bytes sent in
the TCP connection or (b) a maximum window size
associated with the TCP connection; and

discarding the TCP segment when the ACK value is less
than the difference of a next unacknowledged sequence
value and the lesser of either (a) the total number of
bytes sent in the TCP connection or (b) the maximum
window size associated with the TCP connection.

2. A method as recited in claim 1, wherein the steps are
performed by an endpoint node acting as the receiver of data
in the TCP connection.

3. A method as recited in claim 1, wherein the steps are
performed by a TCP application of an operating system of a
network infrastructure element.

US 7,114,181 B2
11

4. A method as recited in claim 1, wherein the steps are
performed by a TCP process, stack, adapter or agent hosted
by or associated with an operating system of a personal
computer, workstation or other network end station.

5. A method as recited in claim 1, wherein the maximum
window size comprises a maximum TCP sequence value
window size that an endpoint node in the TCP connection
can manage without regard to any change in current window
size that either endpoint may establish during the TCP
connection.

6. A method as recited in claim 1,
wherein the determining step comprises determining

whether the ACK value is equal to an expected ACK
value or a range of values less than an initial sequence
value window; and

wherein the discarding step comprises discarding the TCP
segment when the ACK value is equal to an expected
ACK value or a range of values less than an initial
sequence value window.

7. A method of preventing an attack on a network, wherein
the attack comprises injecting a spurious transmission con
trol protocol (TCP) segment into a TCP connection between
a sender and a receiver the method comprising the computer
implemented steps of:

receiving a first TCP segment carrying a sequence value;
determining whether the sequence value is equal to a next

expected sequence value;
when the sequence value is equal to a next expected

sequence value, determining whether data carried in the
first TCP segment overlaps data carried in one or more
second TCP segments that were previously received in
a re-assembly buffer; and

discarding all TCP segments that are in the re-assembly
buffer when the first TCP segment overlaps any data
segment previously received in the re-assembly buffer.

8. A method as recited in claim 7, further comprising
storing the first TCP segment in the re-assembly buffer when
the first TCP segment overlaps any data segment previously
received in the re-assembly buffer.

9. A method as recited in claim 7, wherein the data carried
in the first TCP segment overlaps data carried in the one or
more second TCP segments that were previously received in
the re-assembly buffer when a first sum of a first sequence
value and data length carried in the first TCP segment is less
than a second sequence value carried in any of the second
Segments.

10. A method as recited in claim 7, wherein the discarding
step is performed when the first TCP segment completely
overlaps any data segment previously received in the re
assembly buffer.

11. A method as recited in claim 7, further comprising the
step of sending an acknowledgment message that acknowl
edges data the sequence values of the first TCP segment.

12. A method as recited in claim 7, wherein the steps are
performed by an endpoint node acting as the receiver of data
in the TCP connection.

13. A method as recited in claim 7, wherein the steps are
performed by a TCP application of an operating system of a
network infrastructure element.

14. A method as recited in claim 7, wherein the steps are
performed by a TCP process, stack, adapter or agent hosted
by or associated with an operating system of a personal
computer, workstation or other network end station.

15. A computer-readable tangible storage medium carry
ing one or more sequences of instructions for preventing an
attack on a network, wherein the attack comprises sending
a spurious transmission control protocol (TCP) segment

10

15

25

30

35

40

45

50

55

60

65

12
with unwanted or spurious DATA, wherein the execution of
the one or more sequences of instructions by one or more
processors causes the one or more processors to perform:

receiving a TCP segment carrying a sequence value and
an ACK value;

determining whether the ACK value is less than the
difference of a next unacknowledged sequence value
and a lesser of either (a) a total number of bytes sent in
the TCP connection or (b) a maximum window size
associated with the TCP connection; and

discarding the TCP segment when the ACK value is less
than the difference of a next unacknowledged sequence
value and the lesser of either (a) the total number of
bytes sent in the TCP connection or (b) the maximum
window size associated with the TCP connection.

16. A computer-readable tangible storage medium carry
ing one or more sequences of instructions for preventing an
attack on a network, wherein the attack comprises injecting
a spurious transmission control protocol (TCP) segment into
a TCP connection between a sender and a receiver, wherein
the execution of the one or more sequences of instructions
by one or more processors causes the one or more processors
to perform:

receiving a first TCP segment carrying a sequence value;
determining whether the sequence value is equal to a next

expected sequence value;
when the sequence value is equal to a next expected

sequence value, determining whether data carried in the
first TCP segment overlaps data carried in one or more
second TCP segments that were previously received in
a re-assembly buffer; and

discarding all TCP segments that are in the re-assembly
buffer when the first TCP segment overlaps any data
segment previously received in the re-assembly buffer.

17. An apparatus for preventing an attack on a network,
wherein the attack comprises sending a spurious transmis
sion control protocol (TCP) segment with a spurious or
unwanted DATA, comprising:
means for receiving a TCP segment carrying a sequence

value and an ACK value;
means for determining whether the ACK value is less than

the difference of a next unacknowledged sequence
value and a lesser of either (a) a total number of bytes
sent in the TCP connection or (b) a maximum window
size associated with the TCP connection; and

means for discarding the TCP segment when the ACK
value is less than the difference of a next unacknowl
edged sequence value and the lesser of either (a) the
total number of bytes sent in the TCP connection or (b)
the maximum window size associated with the TCP
connection.

18. An apparatus as recited in claim 17, comprising an
endpoint node acting as the receiver of data in the TCP
connection.

19. An apparatus as recited in claim 17, wherein the
means comprise a TCP application of an operating system of
a network infrastructure element.

20. An apparatus as recited in claim 17, wherein the
means comprise a TCP process, Stack, adapter or agent
hosted by or associated with an operating system of a
personal computer, workstation or other network end sta
tion.

21. An apparatus as recited in claim 17, wherein the
maximum window size comprises a maximum TCP
sequence value window size that an endpoint node in the

US 7,114,181 B2
13

TCP connection can manage without regard to any change
in current window size that either endpoint may establish
during the TCP connection.

22. An apparatus as recited in claim 17.
wherein the determining means comprises means for,

determining whether the ACK value is equal to an
expected ACK value or a range of values less than an
initial sequence value window; and

wherein the discarding means comprises means for dis
carding the TCP segment when the ACK value is equal
to an expected ACK value or a range of values less than
an initial sequence value window.

23. An apparatus for preventing an attack on a network,
wherein the attack comprises sending a spurious transmis
sion control protocol (TCP) segment with spurious or
unwanted DATA, comprising:

a processor;

one or more stored sequences of instructions that are
accessible to the processor and which, when executed
by the processor, cause the processor to perform:

receiving a TCP segment carrying a sequence value and
an ACK value;

determining whether the ACK value is less than the
difference of a next unacknowledged sequence value
and a lesser of either (a) a total number of bytes sent in
the TCP connection or (b) a maximum window size
associated with the TCP connection; and

discarding the TCP segment when the ACK value is less
than the difference of a next unacknowledged sequence
value and the lesser of either (a) the total number of
bytes sent in the TCP connection or (b) the maximum
window size associated with the TCP connection.

24. An apparatus as recited in claim 23, comprising an
endpoint node acting as the receiver of data in the TCP
connection.

25. An apparatus as recited in claim 23, wherein the steps
are performed by a TCP application of an operating system
of a network infrastructure element.

26. An apparatus as recited in claim 23, wherein the steps
are performed by a TCP process, stack, adapter or agent
hosted by or associated with an operating system of a
personal computer, workstation or other network end sta
tion.

27. An apparatus as recited in claim 23, wherein the
maximum window size comprises a maximum TCP
sequence value window size that an endpoint node in the
TCP connection can manage without regard to any change
in current window size that either endpoint may establish
during the TCP connection.

28. An apparatus as recited in claim 17,
wherein the determining step comprises determining

whether the ACK value is equal to an expected ACK
value or a range of values less than an initial sequence
value window; and

wherein the discarding step comprises discarding the TCP
segment when the ACK value is equal to an expected
ACK value or a range of values less than an initial
sequence value window.

29. An apparatus for preventing an attack on a network,
wherein the attack comprises injecting a spurious transmis
sion control protocol (TCP) segment into a TCP connection
between a sender and a receiver, the apparatus comprising:

means for receiving a first TCP segment carrying a
sequence value;

10

15

25

30

35

40

45

50

55

60

65

14
means for determining whether the sequence value is

equal to a next expected sequence value;
means for determining, when the sequence value is equal

to a next expected sequence value, whether data carried
in the first TCP segment overlaps data carried in one or
more second TCP segments that were previously
received in a re-assembly buffer; and

means for discarding all TCP segments that are in the
re-assembly buffer when the first TCP segment over
laps any data segment previously received in the re
assembly buffer.

30. An apparatus as recited in claim 29, further compris
ing means for storing the first TCP segment in the re
assembly buffer when the first TCP segment overlaps any
data segment previously received in the re-assembly buffer.

31. An apparatus as recited in claim 29, wherein the data
carried in the first TCP segment overlaps data carried in the
one or more second TCP segments that were previously
received in the re-assembly buffer when a first sum of a first
sequence value and data length carried in the first TCP
segment is less than a second sequence value carried in any
of the second segments.

32. An apparatus as recited in claim 29, wherein the
discarding means comprises means for discarding when the
first TCP segment completely overlaps any data segment
previously received in the re-assembly buffer.

33. An apparatus as recited in claim 29, further compris
ing means for sending an acknowledgment message that
acknowledges data the sequence values of the first TCP
Segment.

34. An apparatus as recited in claim 29, comprising an
endpoint node acting as the receiver of data in the TCP
connection.

35. An apparatus as recited in claim 29, wherein the
means comprise a TCP application of an operating system of
a network infrastructure element.

36. An apparatus as recited in claim 29, wherein the
means comprise a TCP process, Stack, adapter or agent
hosted by or associated with an operating system of a
personal computer, workstation or other network end sta
tion.

37. An apparatus for preventing an attack on a network,
wherein the attack comprises sending a spurious transmis
sion control protocol (TCP) segment with spurious or
unwanted DATA, comprising:

a processor;
one or more stored sequences of instructions that are

accessible to the processor and which, when executed
by the processor, cause the processor to carry out the
steps of

receiving a first TCP segment carrying a sequence value;
determining whether the sequence value is equal to a next

expected sequence value;
determining, when the sequence value is equal to a next

expected sequence value, whether data carried in the
first TCP segment overlaps data carried in one or more
second TCP segments that were previously received in
a re-assembly buffer; and

discarding all TCP segments that are in the re-assembly
buffer when the first TCP segment overlaps any data
segment previously received in the re-assembly buffer.

38. An apparatus as recited in claim 37, further compris
ing instructions for storing the first TCP segment in the
re-assembly buffer when the first TCP segment overlaps any
data segment previously received in the re-assembly buffer.

39. An apparatus as recited in claim 37, wherein the data
carried in the first TCP segment overlaps data carried in the

US 7,114,181 B2
15

one or more second TCP segments that were previously
received in the re-assembly buffer when a first sum of a first
sequence value and data length carried in the first TCP
segment is less than a second sequence value carried in any
of the second segments.

40. An apparatus as recited in claim 37, wherein the
instructions for discarding comprise instructions for discard
ing when the first TCP segment completely overlaps any
data segment previously received in the re-assembly buffer.

41. An apparatus as recited in claim 37, further compris
ing instructions for sending an acknowledgment message
that acknowledges data the sequence values of the first TCP
Segment.

10

16
42. An apparatus as recited in claim 37, comprising an

endpoint node acting as the receiver of data in the TCP
connection.

43. An apparatus as recited in claim 37, wherein the
instructions comprise a TCP application of an operating
system of a network infrastructure element.

44. An apparatus as recited in claim 37, wherein the
instructions comprise a TCP process, stack, adapter or agent
hosted by or associated with an operating system of a
personal computer, workstation or other network end sta
tion.

