
(19) United States
US 20070233.825A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0233825 A1
BROWNELL et al. (43) Pub. Date: Oct. 4, 2007

(54) RECONFIGURABLE, VIRTUAL
PROCESSING SYSTEM, CLUSTER,
NETWORK AND METHOD

(76) Inventors: Vern BROWNELL, Chatham, MA
(US); Pete MANCA, Sterling, MA
(US); Ben SPRACHMAN, Hopkinton,
MA (US); Paul CURTIS, Sudbury, MA
(US); Ewan MILNE, Stow, MA (US);
Max SMITH, Natick, MA (US); Alan
GREENSPAN, Northboro, MA (US);
Scott GENG, Westboro, MA (US); Dan
BUSBY, Sterling, MA (US); Edward
DUFFY, Arlington, MA (US); Peter
SCHULTER, Hampstead, NH (US)

Correspondence Address:
Peter M. Dichiara
Hale and Dorr LLP
60 State Street
Boston, MA 02109 (US)

(21) Appl. No.: 11/759,078

(22) Filed: Jun. 6, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/038.353, filed on
Jan. 4, 2002, now Pat. No. 7,231,430.

(60) Provisional application No. 60/285,296, filed on Apr.
20, 2001.

Publication Classification

(51) Int. Cl.
G06F 15/177 (2006.01)

(52) U.S. Cl. .. 709/220

(57) ABSTRACT

A platform and method of deploying virtual processing areas
networks are described. A plurality of computer processors
are connected to an internal communication network. At
least one control node is in communication with an external
communication network and an external storage network has
an external storage address space. The at least one control
node is connected to the internal network and thereby is in
communication with the plurality of computer processors.
Configuration logic defines and establishes a virtual pro
cessing area network having a corresponding set of com
puter processors from the plurality of processors, a virtual
local area communication network providing communica
tion among the set of computer processors, and a virtual
storage space with a defined correspondence to the address
space of the storage network.

Switch 206

Switch 208 f

US 2007/0233.825 A1

C

2

Patent Application Publication

US 2007/0233.825 A1

ZOZ

Oct. 4, 2007 Sheet 2 of 14 Patent Application Publication

—)

US 2007/0233825A1

'012

Patent Application Publication

Z LZ

US 2007/0233825A1 Patent Application Publication Oct. 4, 2007 Sheet 4 of 14

|—

803, 12 o16oT

US 2007/0233.825 A1 Patent Application Publication Oct. 4, 2007 Sheet 5 of 14

US 2007/0233.825 A1 Patent Application Publication

Patent Application Publication Oct. 4, 2007 Sheet 7 of 14 US 2007/0233.825 A1

(start

Fig. 4A dequeue
Outgoing
datagram

405

ave MAC
address
45

Patent Application Publication Oct. 4, 2007 Sheet 8 of 14

Driver Creates
ARP request

Packet
425

Driver prepend
TLV and send to
Control node for

broadcast
43O

Control Node
Server Logic
receives ARP

request, updates
Source info in TLV

header
435

Control node
broadcasts ARP

request to
members

440

Receive
ARP Reply

445

Filter ARP
Packet on Local

P
450

Create local MAC
from Packet TLV

460

Update ARp
table and Create

ARP reply
465

Unicast ARP
reply
470

Fig. 4B

US 2007/0233825A1

Driver Logic on
Receipt of ARP

request

Patent Application Publication Oct. 4, 2007 Sheet 9 of 14 US 2007/0233.825 A1

Control node
receives ARP

Reply from internal
node

Control node
updates Source node
info in TLV of ARP

reply
473

Control node
unicasts packet
to approrpriate
destination node

475

Select RV for
Unicast
493

ARP replier (or
load balancer)
receives ARP

Reply
480

Prepend header
TLV and Unicast
datagram directly

On RV
495

Update ARP
table
485

Fig. 4C

Dequeue
datagram from
ARP queue

487

Patent Application Publication Oct. 4, 2007 Sheet 10 of 14 US 2007/0233.825 A1

CD
C) C) CD

C) .9 C 2
2 2

CD C)
O) OO CO

O
Cld

)
--

9

O

US 2007/0233.825 A1 Oct. 4, 2007 Sheet 11 of 14

ep?s-JosseoOld

Patent Application Publication

Patent Application Publication Oct. 4, 2007 Sheet 12 of 14 US 2007/0233825A1

N

O)
-

9
d
O
CO
d :
D
d)
s
8.

8 (61-)

US 2007/0233825A1

| || || || || || || ||N

===| | | | || 3 - T???L

| | | | | | | | |

LITTITI O NZ || 0

Patent Application Publication Oct. 4, 2007 Sheet 13 of 14

US 2007/0233.825 A1 Patent Application Publication Oct. 4, 2007 Sheet 14 of 14

9 | 6 ?un?OnJ?S

S30 InOS?H ??)

US 2007/0233.825 A1

RECONFIGURABLE, VIRTUAL PROCESSING
SYSTEM, CLUSTER, NETWORK AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of and claims
priority under 35 U.S.C. S 120 to U.S. patent application Ser.
No. 10/038,353, filed on Jan. 4, 2002, entitled Reconfig
urable, Virtual Processing System, Cluster, Network and
Method, which claims the benefit under 35 U.S.C. S 119(e)
of U.S. Provisional Patent Application No. 60/285,296, filed
on Apr. 20, 2001, entitled Process Area Network, both of
which are incorporated herein by reference in their entirety.

BACKGROUND

0002)
0003. The present invention relates to computing systems
for enterprises and application service providers and, more
specifically, to processing systems having virtualized com
munication networks and storage for quick deployment and
reconfiguration.

0004 2. Discussion of Related Art
0005. In current enterprise computing and application
service provider environments, personnel from multiple
information technology (IT) functions (electrical, network
ing, etc.) must participate to deploy processing and network
ing resources. Consequently, because of scheduling and
other difficulties in coordinating activities from multiple
departments, it can take weeks or months to deploy a new
computer server. This lengthy, manual process increases
both human and equipment costs, and delays the launch of
applications.

1. Field of the Invention

0006 Moreover, because it is difficult to anticipate how
much processing power applications will require, managers
typically over-provision the amount of computational
power. As a result, data-center computing resources often go
unutilized or under-utilized.

0007) If more processing power is eventually needed than
originally provisioned, the various IT functions will again
need to coordinate activities to deploy more or improved
servers, connect them to the communication and storage
networks and so forth. This task gets increasingly difficult as
the systems become larger.
0008 Deployment is also problematic. For example,
when deploying 24 conventional servers, more than 100
discrete connections may be required to configure the over
all system. Managing these cables is an ongoing challenge,
and each represents a failure point. Attempting to mitigate
the risk of failure by adding redundancy can double the
cabling, exacerbating the problem while increasing com
plexity and costs.
0009 Provisioning for high availability with today's
technology is a difficult and costly proposition. Generally, a
failover server must be deployed for every primary server. In
addition, complex management software and professional
services are usually required.
0010 Generally, it is not possible to adjust the processing
power or upgrade the CPUs on a legacy server. Instead,
Scaling processor capacity and/or migrating to a vendor's

Oct. 4, 2007

next-generation architecture often requires a “forklift
upgrade,’ meaning more hardware/software systems are
added, needing new connections and the like.
0011 Consequently, there is a need for a system and
method of providing a platform for enterprise and ASP
computing that addresses the above shortcomings.

SUMMARY

0012. The present invention features a platform and
method for computer processing in which virtual processing
area networks may be configured and deployed.
0013. According to one aspect of the invention, a com
puter processing platform includes a plurality of computer
processors connected to an internal communication network.
At least one control node is in communication with an
external communication network and an external storage
network having an external storage address space. The at
least one control node is connected to the internal network
and thereby communicates with the plurality of computer
processors. Configuration logic defines and establishes a
virtual processing area network having a corresponding set
of computer processors from the plurality of processors, a
virtual local area communication network providing com
munication among the set of computer processors but
excluding the processors from the plurality not in the defined
set, and a virtual storage space with a defined correspon
dence to the address space of the storage network.

BRIEF DESCRIPTION OF THE DRAWINGS

0014)
0015 FIG. 1 is a system diagram illustrating one embodi
ment of the invention;
0016 FIGS. 2A-C are diagrams illustrating the commu
nication links established according to one embodiment of
the invention;
0017 FIGS. 3A-B are diagrams illustrating the network
ing software architecture of certain embodiments of the
invention;
0018 FIGS. 4A-C are flowcharts illustrating driver logic
according to certain embodiments of the invention;

In the Drawing,

0019 FIG. 5 illustrates service clusters according to
certain embodiments of the invention;
0020 FIG. 6 illustrates the storage software architecture
of certain embodiments of the invention;
0021 FIG. 7 illustrates the processor-side storage logic
of certain embodiments of the invention;
0022 FIG. 8 illustrates the storage address mapping logic
of certain embodiments of the invention; and
0023 FIG. 9 illustrates the cluster management logic of
certain embodiments of the invention.

DETAILED DESCRIPTION

0024 Preferred embodiments of the invention provide a
processing platform from which virtual systems may be
deployed through configuration commands. The platform
provides a large pool of processors from which a Subset may
be selected and configured through software commands to

US 2007/0233.825 A1

form a virtualized network of computers (“processing area
network” or “processor clusters') that may be deployed to
serve a given set of applications or customer. The virtualized
processing area network (PAN) may then be used to execute
customer specific applications, such as web-based server
applications. The virtualization may include virtualization of
local area networks (LANs) or the virtualization of I/O
storage. By providing such a platform, processing resources
may be deployed rapidly and easily through software via
configuration commands, e.g., from an administrator, rather
than through physically providing servers, cabling network
and storage connections, providing power to each server and
so forth.

Overview of the Platform and Its Behavior

0025. As shown in FIG. 1, a preferred hardware platform
100 includes a set of processing nodes 105a-n connected to
a switch fabrics 115a, b via high-speed, interconnect 110a, b.
The switch fabric 115a, b is also connected to at least one
control node 120a, b that is in communication with an
external IP network 125 (or other data communication
network), and with a storage area network (SAN) 130. A
management application 135, for example, executing
remotely, may access one or more of the control nodes via
the IP network 125 to assist in configuring the platform 100
and deploying virtualized PANs.

0026. Under certain embodiments, about 24 processing
nodes 105a-n, two control nodes 120, and two switch fabrics
115a, b are contained in a single chassis and interconnected
with a fixed, pre-wired mesh of point-to-point (PtP) links.
Each processing node 105 is a board that includes one or
more (e.g., 4) processors 106j-1, one or more network
interface cards (NICs) 107, and local memory (e.g., greater
than 4 Gbytes) that, among other things, includes some
BIOS firmware for booting and initialization. There is no
local disk for the processors 106; instead all storage, includ
ing Storage needed for paging, is handled by SAN storage
devices 130.

0027 Each control node 120 is a single board that
includes one or more (e.g., 4) processors, local memory, and
local disk storage for holding independent copies of the boot
image and initial file system that is used to boot operating
system software for the processing nodes 105 and for the
control nodes 106. Each control node communicates with
SAN 130 via 100 megabyte/second fibre channel adapter
cards 128 connected to fibre channel links 122, 124 and
communicates with the Internet (or any other external net
work) 125 via an external network interface 129 having one
or more Gigabit Ethernet NICs connected to Gigabit Ether
net links 121,123. (Many other techniques and hardware
may be used for SAN and external network connectivity.)
Each control node includes a low speed Ethernet port (not
shown) as a dedicated management port, which may be used
instead of remote, web-based management via management
application 135.

0028. The switch fabrics is composed of one or more
30-port Giganet switches 115, such as the NIC-CLAN 1000
and clan 5300 switch, and the various processing and control
nodes use corresponding NICs for communication with Such
a fabric module. Giganet switch fabrics have the semantics
of a Non-Broadcast Multiple Access (NBMA) network. All
inter-node communication is via a Switch fabric. Each link

Oct. 4, 2007

is formed as a serial connection between a NIC 107 and a
port in the switch fabric 115. Each link operates at 112
megabytes/second.

0029. In some embodiments, multiple cabinets or chas
sises may be connected together to form larger platforms.
And in other embodiments the configuration may differ; for
example, redundant connections, Switches and control nodes
may be eliminated.
0030 Under software control, the platform supports mul

tiple, simultaneous and independent processing areas net
works (PANs). Each PAN, through software commands, is
configured to have a corresponding Subset of processors 106
that may communicate via a virtual local area network that
is emulated over the PtP mesh. Each PAN is also configured
to have a corresponding virtual I/O subsystem. No physical
deployment or cabling is needed to establish a PAN. Under
certain preferred embodiments, Software logic executing on
the processor nodes and/or the control nodes emulates
Switched Ethernet Semantics; other Software logic executing
on the processor nodes and/or the control nodes provides
virtual storage subsystem functionality that follows SCSI
semantics and that provides independent I/O address spaces
for each PAN.

Network Architecture

0031 Certain preferred embodiments allow an adminis
trator to build virtual, emulated LANs using virtual compo
nents, interfaces, and connections. Each of the virtual LANs
can be internal and private to the platform 100, or multiple
processors may be formed into a processor cluster externally
visible as a single IP address.

0032 Under certain embodiments, the virtual networks
so created emulate a switched Ethernet network, though the
physical, underlying network is a PtP mesh. The virtual
network utilizes IEEE MAC addresses, and the processing
nodes support IETF ARP processing to identify and associ
ate IP addresses with MAC addresses. Consequently, a given
processor node replies to an ARP request consistently
whether the ARP request came from a node internal or
external to the platform.
0033 FIG. 2A shows an exemplary network arrangement
that may be modeled or emulated. A first subnet 202 is
formed by processing nodes PN, PN, and PN that may
communicate with one another via switch 206. A second
subnet 204 is formed by processing nodes PN and PN that
may communicate with one another via switch 208. Under
Switched Ethernet semantics, one node on a Subnet may
communicate directly with another node on the subnet; for
example, PN may send a message to PN. The semantics
also allow one node to communicate with a set of the other
nodes; for example PN may send a broadcast message to
other nodes. The processing nodes PN and PN cannot
directly communicate with PN, because PN is on a dif
ferent subnet. For PN and PN to communicate with PN
higher layer networking software would need to be utilized,
which software would have a fuller understanding of both
Subnets. Though not shown in the figure, a given Switch may
communicate via an “uplink’ to another switch or the like.
As will be appreciated given the description below, the need
for such uplinks is different than their need when the
Switches are physical. Specifically, since the Switches are
virtual and modeled in software they may scale horizontally

US 2007/0233.825 A1

as wide as needed. (In contrast, physical Switches have a
fixed number of physical ports sometimes the uplinks are
needed to provide horizontal scalability.)

0034 FIG. 2B shows exemplary software communica
tion paths and logic used under certain embodiments to
model the subnets 202 and 204 of FIG. 2A. The communi
cation paths 212 connect processing nodes PN, PN PN,
and PN specifically their corresponding processor-side
network communication logic 210, and they also connect
processing nodes to control nodes. (Though drawn as a
single instance of logic for the purpose of clarity, PN may
have multiple instances of the corresponding processor
logic, one per Subnet, for example.) Under preferred
embodiments, management logic and the control node logic
are responsible for establishing, managing and destroying
the communication paths. The individual processing nodes
are not permitted to establish Such paths.

0035. As will be explained in detail below, the processor
logic and the control node logic together emulate Switched
Ethernet semantics over Such communication paths. For
example, the control nodes have control node-side virtual
switch logic 214 to emulate some (but not necessarily all) of
the semantics of an Ethernet Switch, and the processor logic
includes logic to emulate some (but not necessarily all) of
the semantics of an Ethernet driver.

0.036 Within a subnet, one processor node may commu
nicate directly with another via a corresponding virtual
interface 212. Likewise, a processor node may communicate
with the control node logic via a separate virtual interface.
Under certain embodiments, the underlying switch fabric
and associated logic (e.g., Switch fabric manager logic, not
shown) provides the ability to establish and manage Such
virtual interfaces (VIs) over the point to point mesh. More
over, these virtual interfaces may be established in a reliable,
redundant fashion and are referred to herein in as RVIs. At
points in this description, the terms virtual interface (VI) and
reliable virtual interface (RVI) are used interchangeably, as
the choice between a VI versus an RVI largely depends on
the amount of reliability desired by the system at the expense
of system resources.

0037 Referring conjointly to FIGS. 2A-B, if node PN is
to communicate with node PN, it does so ordinarily by
virtual interface 212. However, preferred embodiments
allow communication between PN and PN to occur via
Switch emulation logic, if for example VI 212 is not
operating satisfactorily. In this case a message may be sent
Via VI 2121-switch2os and Via VI 212switch2os-2. If PNI is to
broadcast or multicast a message to other nodes in the Subnet
202 it does so by sending the message to control node-side
logic 214 via virtual interface 212 withog. Control node
side logic 214 then emulates the broadcast or multicast
functionality by cloning and sending the message to the
other relevant nodes using the relevant VIs. The same or
analogous VIS may be used to convey other messages
requiring control node-side logic. For example, as will be
described below, control node-side logic includes logic to
support the address resolution protocol (ARP), and VIs are
used to communicate ARP replies and requests to the control
node. Though the above description Suggests just one VI
between processor logic and control logic, many embodi
ments employ several Such connections. Moreover, though
the figures Suggest symmetry in the Software communication

Oct. 4, 2007

paths, the architecture actually allows asymmetric commu
nication. For example, as will be discussed below, for
communication clustered services the packets would be
routed via the control node. However, return communication
may be direct between nodes.
0038) Notice that like the network of FIG. 2A, there is no
mechanism for communication between node PN, and
PN. Moreover, by having communication paths managed
and created centrally (instead of via the processing nodes)
Such a path is not creatable by the processing nodes, and the
defined subnet connectivity cannot be violated by a proces
SO.

0039 FIG. 2C shows the exemplary physical connections
of certain embodiments to realize the subnets of FIGS. 2A
and B. Specifically, each instance of processing network
logic 210 communicates with the switch fabric 115 via a PtP
links 216 of interconnect 110. Likewise, the control node has
multiple instances of Switch logic 214 and each communi
cates over a PtP connection 216 to the Switch fabric. The
virtual interfaces of FIG. 2B include the logic to convey
information over these physical links, as will be described
further below.

0040. To create and configure such networks, an admin
istrator defines the network topology of a PAN and specifies
(e.g., via a utility within the management software 135)
MAC address assignments of the various nodes. The MAC
address is virtual, identifying a virtual interface, and not tied
to any specific physical node. Under certain embodiments,
MAC addresses follow the IEEE 48 bit address format, but
in which the contents include a “locally administered bit
(set to 1), the serial number of the control node 120 on which
the virtual interface was originally defined (more below),
and a count value from a persistent sequence counter on the
control node that is kept in NVRAM in the control node.
These MACs will be used to identify the nodes (as is
conventional) at a layer 2 level. For example, in replying to
ARP requests (whether from a node internal to the PAN or
on an external network) these MACs will be included in the
ARP reply.
0041. The control node-side networking logic maintains
data structures that contain information reflecting the con
nectivity of the LAN (e.g., which nodes may communicate
to which other nodes). The control node logic also allocates
and assigns VI (or RVI) mappings to the defined MAC
addresses and allocates and assigns VIs or (RVIs) between
the control nodes and between the control nodes and the
processing nodes. In the example of FIG. 2A, the logic
would allocate and assign VIS 212 of FIG. 2B. (The naming
of the VIs and RVIs in some embodiments is a consequence
of the Switching fabric and the Switch fabric manager logic
employed.)

0042. As each processor boots, BIOS-based boot logic
initializes each processor 106 of the node 105 and, among
other things, establishes a (or discovers the) VI 212 to the
control node logic. The processor node then obtains from the
control node relevant data link information, Such as the
processor node's MAC address, and the MAC identities of
other devices within the same data link configuration. Each
processor then registers its IP address with the control node,
which then binds the IP address to the node and an RVI (e.g.,
the RVI on which the registration arrived). In this fashion,
the control node will be able to bind IP addresses for each

US 2007/0233.825 A1

virtual MAC for each node on a subnet. In addition to the
above, the processor node also obtains the RVI or VI-related
information for its connections to other nodes or to control
node networking logic.

0043. Thus, after boot and initialization, the various
processor nodes should understand their layer 2, data link
connectivity. As will be explained below, layer 3 (IP)
connectivity and specifically layer 3 to layer 2 associations
are determined during normal processing of the processors
as a consequence of the address resolution protocol.
0044 FIG. 3A details the processor-side networking
logic 210 and FIG. 3B details the control node-side net
working 310 logic of certain embodiments. The processor
side logic 210 includes IP stack 305, virtual network driver
310, ARP logic 350, RCLAN layer 315, and redundant
Giganet drivers 320a, b. The control node-side logic 310
includes redundant Giganet drivers 325a, b, RCLAN layer
330, virtual Cluster proxy logic 360, virtual LAN server 335,
ARP server logic 355, virtual LAN proxy 340, and physical
LAN drivers 345.

IP Stack

0045. The IP stack 305 is the communication protocol
stack provided with the operating system (e.g., Linux) used
by the processing nodes 106. The IP stack provides a layer
3 interface for the applications and operating system execut
ing on a processor 106 to communicate with the simulated
Ethernet network. The IP stack provides packets of infor
mation to the virtual Ethernet layer 310 in conjunction with
providing a layer 3, IP address as a destination for that
packet. The IP stack logic is conventional except that certain
embodiment avoid check Sum calculations and logic.

Virtual Ethernet Driver

0046) The virtual Ethernet driver 310 will appear to the IP
stack 305 like a “real' Ethernet driver. In this regard, the
virtual Ethernet driver 310 receives IP packets or datagrams
from the IP stack for subsequent transmission on the net
work, and it receives packet information from the network
to be delivered to the stack as an IP packet.
0047. The stack builds the MAC header. The “normal”
Ethernet code in the stack may be used. The virtual Ethernet
driver receives the packet with the MAC header already
built and the correct MAC address already in the header.
0.048. In material part and with reference to FIGS. 4A-C,
the virtual Ethernet driver 310 dequeues 405 outgoing IP
datagrams so that the packet may be sent on the network.
The standard IP stack ARP logic is used. The driver, as will
be explained below, intercepts all ARP packets entering and
leaving the system to modify them so that the proper
information ends up in each node's ARP tables. The normal
ARP logic places the correct MAC address in the link layer
header of the outgoing packet before the packet is queued to
the Ethernet driver. The driver then just examines the link
layer header and destination MAC to determine how to send
the packet. The driver does not directly manipulate the ARP
table (except for the occasional invalidation of ARP entries).
0049. The driver 310 determines 415 whether ARP logic
350 has MAC address information (more below) associated
with the IP address in the dequeued packet. If the ARP logic
350 has the information, the information is used to send 420

Oct. 4, 2007

the packet accordingly. If the ARP logic 350 does not have
the information, the driver needs to determine such infor
mation, and in certain preferred embodiments, this informa
tion is obtained as a result of an implementation of the ARP
protocol as discussed in connection with FIGS. 4B-C.
0050. If the ARP logic 350 has the MAC address infor
mation, the driver analyzes the information returned from
the ARP logic 350 to determine where and how to send the
packet. Specifically, the driver looks at the address to
determine whether the MAC address is in a valid format or
in a particular invalid format. For example, in one embodi
ment, internal nodes (i.e., PAN nodes internal to the plat
form) are signaled through a combination of setting the
locally administered bit, the multicast bit, and another
predefined bit pattern in the first byte of the MAC address.
The overarching pattern is one which is highly improbable
of being a valid pattern.
0051) If the MAC address returned from the ARP logic is
in a valid format, the IP address associated with that MAC
address is for a node external at least to the relevant subnet
and in preferred embodiments is external to the platform. To
deliver such a packet, the driver prepends the packet with a
TLV (type-length-value) header. The logic then sends the
packet to the control node over a pre-established VI. The
control node then handles the rest of the transmission as
appropriate.

0.052) If the MAC address information returned from the
ARP logic 350 is in an a particular invalid format, the invalid
format signals that the IP-addressed node is to an internal
node, and the information in the MAC address information
is used to help identify the VI (or RVI) directly connecting
the two processing nodes. For example, the ARP table entry
may hold information identifying the RVI 212 to use to send
the packet, e.g., 212, to another processing node. The
driver prepends the packet with a TLV header. It then places
address information into the header as well as information
identifying the Ethernet protocol type. The logic then selects
the appropriate VI (or RVI) on which to send the encapsu
lated packet. If that VI (or RVI) is operating satisfactorily it
is used to carry the packet; if it is operating unsatisfactorily
the packet is sent to the control node Switch logic (more
below) so that the Switch logic can send it to the appropriate
node. Though the ARP table may contain information to
actually specify the RVI to use, many other techniques may
be employed. For example, the information in the table may
indirectly provide such information, e.g., by pointing to the
information of interest or otherwise identifying the infor
mation of interest though not contain it.
0053 For any multicast or broadcast type messages, the
driver sends the message to the control node on a defined VI.
The control node then clones the packet and sends it to all
nodes (excluding the sending node) and the uplink accord
ingly.
0054 If there is no ARP mapping then the upper layers
would never have sent the packet to the driver. If there is no
datalink layer mapping available, the packet is put aside
until ARP resolution is completed. Once the ARP layer has
finished ARPing, the packets held back pending ARP get
their datalink headers build and the packets are then sent to
the driver.

0055. If the ARP logic has no mapping for an IP address
of an IP packet from the IP stack and, consequently, the

US 2007/0233.825 A1

driver 310 is unable to determine the associated addressing
information (i.e., MAC address or RVI-related information),
the driver obtains such information by following the ARP
protocol. Referring to FIGS. 4B-C, the driver builds 425 an
ARP request packet containing the relevant IP address for
which there is no MAC mapping in the local ARP table. The
node then prepends 430 the ARP packet with a TLV-type
header. The ARP request is then sent via a dedicated RVI to
the control node-side networking logic—specifically, the
virtual LAN server 335.

0056. As will be discussed in more detail below, the ARP
request packet is processed 435 by the control node and
broadcast 440 to the relevant nodes. For example, the
control node will flag whether the requesting node is part of
an IP service cluster.

0057 The Ethernet driver logic 310 at the relevant nodes
receives 445 the ARP reply, and determines 450 if it is the
target of the ARP request by comparing the target IP address
with a list of locally configured IP addresses by making calls
to the node's IP stack. If it is not the target, it passes up the
packet without modification. If it is the target, the driver
creates 460 a local MAC header from the TLV header and
updates 465 the local ARP table and creates an ARP reply.
The driver modifies the information in the ARP request
(mainly the source MAC) and then passes the ARP request
up normally for the upper layers to handle. It is the upper
layers that form the ARP reply when necessary. The reply
among other things contains the MAC address of the reply
ing node and has a bit set in the TLV header indicating that
the reply is from a local node. In this regard, the node
responds according to IETF-type ARP semantics (in contrast
to ATM ARP protocols in which ARP replies are handled
centrally). The reply is then sent 470.

0.058 As will be explained in more detail below, the
control node logic 335 receives 473 the reply and modifies
it. For example, the control node may substitute the MAC
address of a replying, internal node with information iden
tifying the source cabinet, processing node number, RVI
connection number, channel, virtual interface number, and
virtual LAN name. Once the ARP reply is modified the
control node logic then sends 475 the ARP reply to an
appropriate node, i.e., the node that sent the ARP request, or
in specific instances to the load balancer in an IP service
cluster, discussed below.

0059 Eventually, an encapsulated ARP reply is received
480. If the replying node is an external node, the ARP reply
contains the MAC address of the replying node. If the
replying node is an internal node, the ARP reply instead
contains information identifying the relevant RVI to com
municate with the node. In either case, the local table is
updated 485.

0060. The pending datagram is dequeued 487, and the
appropriate RVI is selected 493. As discussed above, the
appropriate RVI is selected based on whether the target node
is internal or external. A TLV header is prepended to the
packet and sent 495.

0061 For communications within a virtual LAN the
maximum transmission unit (MTU) is configured as 16896
bytes. Even though the configured MTU is 16896 bytes, the
Ethernet driver 310 recognizes when a packet is being sent
to an external network. Through the use of path MTU

Oct. 4, 2007

discovery, ICMP and IP stack changes, the path MTU is
changed at the source node 105. This mechanism is also used
to trigger packet check Summing.

0062 Certain embodiments of the invention support pro
miscuous mode through a combination of logic at the virtual
LAN server 335 and in the virtual LAN drivers 310. When
a virtual LAN driver 310 receives a promiscuous mode
message from the virtual LAN server 335, the message
contains information about the identity of the receiver
desiring to enter promiscuous mode. This information
includes the receiver's location (cabinet, node, etc), the
interface number of the promiscuous virtual interface 310 on
the receiver (required for demultiplexing packets), and the
name of the virtual LAN to which the receiver belongs. This
information is then used by the driver 310 to determine how
to send promiscuous packets to the receiver (which RVI or
other mechanism to use to send the packets). The virtual
interface 310 maintains a list of promiscuous listeners on the
same virtual LAN. When a sending node receives a promis
cuous mode message it will update its promiscuous list
accordingly.

0063. When a packet is transmitted over a virtual Ether
net driver 310, this list will be examined. If the list is not
empty, then the virtual Ethernet interface 310 will do the
following:

0064. If the outgoing packet is being broadcast or
multicast, no promiscuous copy will be sent. The
normal broadcast operation will transmit the packet to
the promiscuous listener(s).

0065. If the packet is a unicast packet with a destina
tion other than the promiscuous listener, the packet will
be cloned and sent to the promiscuous listeners.

0066. The header TLV includes extra information the
destination can use to demultiplex and validate the incoming
packet. Part of this information is the destination virtual
Ethernet interface number (destination device number on the
receiving node). Since these can be different between the
actual packet destination and the promiscuous destination,
this header cannot simply be cloned. Thus, memory will
have to be allocated for each header for each packet clone to
each promiscuous listener. When the packet header for a
promiscuous packet is built the packet type will be set to
indicate that the packet was a promiscuous transmission
rather than a unicast transmission.

0067. The virtual Ethernet driver 310 is also responsible
for handling the redundant control node connections. For
example, the virtual Ethernet drivers will periodically test
end-to-end connectivity by sending a heartbeat TLV to each
connected RVI. This will allow virtual Ethernet drivers to
determine if a node has stopped responding or whether a
stopped node has started to respond again. When an RVI or
control node 120 is determined to be down, the Ethernet
driver will send traffic through the surviving control node. If
both control nodes are functional the driver 310 will attempt
to load balance traffic between the two nodes.

0068 Certain embodiments of the invention provide per
formance improvements. For example, with modifications to
the IP stack 305, packets sent only within the platform 100
are not check summed since all elements of the platform 100
provide error detection and guaranteed data delivery.

US 2007/0233.825 A1

0069. In addition, for communications within a PAN (or
even within a platform 100) the RVI may be configured so
that the packets may be larger than the maximum size
permitted by Ethernet. Thus, while the model emulates
Ethernet behavior in certain embodiments maximum packet
size may be violated to improve performance. The actual
packet size will be negotiated as part of the data link layer.
0070) Failure of a control node is detected either by a
notification from the RCLAN layer, or by a failure of
heartbeat TLVs. If a control node fails the Ethernet driver
310 will send traffic only to the remaining control node. The
Ethernet driver 310 will recognize the recovery of a control
node via notification from the RCLAN layer or the resump
tion of heartbeat TLVs. Once a control node has recovered,
the Ethernet driver 310 will resume load balancing.
0.071) If a node detects that it cannot communicate with
another node via a direct RVI (as outlined above) the node
attempts to communicate via the control node, acting as a
switch. Such failure may be signaled by the lower RCLAN
layer, for example from failure to receive a virtual interface
acknowledgement or from failures detected through heart
beat mechanisms. In this instance, the driver marks bits in
the TLV header accordingly to indicate that the message is
to be unicast and sends the packet to the control node so that
it can send the packet to the desired node (e.g., based on the
IP address, if necessary).

RCLAN Layer
0072 The RCLAN layer 315 is responsible for handling
the redundancy, fail-over and load balancing logic of the
redundant interconnect NICs 107. This includes detecting
failures, re-routing traffic over a redundant connection on
failures, load balancing, and reporting inability to deliver
traffic back to the virtual network drivers 310. The virtual
ethernet drivers 310 expect to be notified asynchronously
when there is a fatal error on any RVI that makes the RVI
unusable or if any RVI is taken down for any reason.
0.073 Under normal circumstances the virtual network
driver 310 on each processor will attempt to load balance
outgoing packets between available control nodes. This can
be done via simple round-robin alternation between avail
able control nodes, or by keeping track of how many bytes
have been transmitted on each and always transmitting on
the control nodes through which fewest bytes have been
Sent.

0074 The RCLAN provides high bandwidth (224
MB/sec each way) low latency reliable asynchronous point
to-point communication between kernels. The sender of the
data is notified if the data cannot be delivered and a best
effort will be made to deliver it. The RCLAN uses two
Giganet clan 1000 cards to provide redundant communica
tion paths between kernels. It seamlessly recovers single
failures in the clan 1000 cards or the Giganet switches. It
detects lost data and data errors and resends the data if
needed. Communication will not be disrupted as long as one
of the connections is partially working, e.g., the error rate
does not exceed 5%. Clients of the RCLAN include the RPC
mechanism, the remote SCSI mechanism, and remote Eth
ernet. The RCLAN also provide a simple form of flow
control. Low latency and high concurrency are achieved by
allowing multiple simultaneous requests for each device to
be sent by the processor node to the control node, so that

Oct. 4, 2007

they can be forwarded to the device as soon as possible or,
alternatively so that they can be queued for completion as
close to the device as possible as opposed to queuing all
requests on the processor node.
0075) The RCLAN layer 330 on the control node-side
operates analogously to the above.

Giganet Driver
0076. The Giganet driver logic 320 is the logic respon
sible for providing an interface to the Giganet NIC 107.
whether on a processor 106 or control node 120. In short, the
Giganet driver logic establishes VI connections, associated
by VI ids, so that the higher layers, e.g., RCLAN 315 and
Ethernet driver 310, need only understand the semantics of
VIS.

0077 Giganet driver logic 320 is responsible for allocat
ing memory in each node for buffers and queues for the VI's,
and for conditioning the NIC 107 to know about the con
nection and its memory allocation. Certain embodiments use
VI connections provided by the Giganet driver. The Giganet
NIC driver code establishes a Virtual Interface pair (i.e., VI)
and assigns it to a corresponding virtual interface id.
0078 Each VI is a bi-directional connection established
between one Giganet port and another, or more precisely
between memory buffers and memory queues on one node
to buffers and queues on another. The allocation of ports and
memory is handled by the NIC drivers as stated above. Data
is transmitted by placing it into a buffer the NIC knows
about and triggering action by writing to a specific memory
mapped register. On the receiving side, the data appears in
a buffer and completion status appears in a queue. The data
never need be copied if the sending and receiving programs
are capable of producing and consuming messages in the
connections buffers. The transmission can even be direct
from application program to application program if the
operating system memory-maps the connection’s buffers
and control registers into application address space. Each
Giganet port can Support 1024 simultaneous VI connections
over it and keep them separate from each other with hard
ware protection, so the operating system as well as disparate
applications can safely share a single port. Under one
embodiment of the invention, 14 VI connections may be
established simultaneously from every port to every other
port.

0079. In preferred embodiments, the NIC drivers estab
lish VI connections in redundant pairs, with one connection
of the pair going through one of the two Switch fabrics
115a, b and the other through the other switch. Moreover, in
preferred embodiments, data is sent alternately on the two
legs of the pair, equalizing load on the Switches. Alterna
tively, the redundant pairs may be used in fail-over manner.
0080 All the connection pairs established by the node
persist as long as the operating system remains up. Estab
lishment of a connection pair to simulate an Ethernet con
nection is intended to be analogous to, and as persistent as,
physically plugging in a cable between network interface
cards. If a node's defined configuration changes while its
operating system is running, then applicable redundant
Virtual Interface connection pairs will be established or
discarded at the time of the change.
0081. The Giganet driver logic 325 on the control node
side operates analogously to the above.

US 2007/0233.825 A1

Virtual LAN Server

0082) The virtual LAN server logic 335 facilitates the
emulation of an Ethernet network over the underlying
NBMA network. The virtual LAN server logic

0083) 1... manages membership to a corresponding vir
tual LAN:

0084 2. provides RVI mapping and management;
0085 3. ARP processing and IP mapping to RVI;
0086 4. provides broadcast and multicast services:
0087 5. facilitates bridging and routing to other
domains; and

0088 6. manages service clusters.

1. Virtual LAN Membership Management
0089 Administrators configure the virtual LANs using
management application 135. Assignment and configuration
of IP addresses on virtual LANs may done in the same way
as on an “ordinary' subnet. The choice of IP addresses to use
is dependent on the external visibility of nodes on a virtual
LAN. If the virtual LAN is not globally visible (either not
visible outside the platform 100, or from the Internet),
private IP addresses should be used. Otherwise, IP addresses
must be configured from the range provided by the internet
service provider (ISP) that provides the Internet connectiv
ity. In general, virtual LAN IP address assignment must be
treated the same as normal LAN IP address assignment.
Configuration files stored on the local disks of the control
node 120 define the IP addresses within a virtual LAN. For
the purposes of a virtual network interface, an IP alias just
creates another IP to RVI mapping on the virtual LAN server
logic 335. Each processor may configure multiple virtual
interfaces as needed. The primary restrictions on the creation
and configuration of virtual network interfaces are IP
address allocation and configuration.
0090. Each virtual LAN has a corresponding instance of
server logic 335 that executes on both of the control nodes
120 and a number of nodes executing on the processor nodes
105. The topology is defined by the administrator.
0091) Each virtual LAN server 335 is configured to
manage exactly one broadcast domain, and any number of
layer 3 (IP) subnets may be present on the given layer 2
broadcast domain. The servers 335 are configured and
created in response to administrator commands to create
virtual LANs.

0092. When a processor 106 boots and configures its
virtual networks, it connects to the virtual LAN server 335
via a special management RVI. The processors then obtain
their data link configuration information, such as the virtual
MAC addresses assigned to it, virtual LAN membership
information and the like. The virtual LAN server 335 will
determine and confirm that the processor attempting to
connect to it is properly a member of the virtual LAN that
that server 335 is servicing. If the processor is not a virtual
LAN member, the connection to the server is rejected. If it
is a member, the virtual network driver 310 registers its IP
address with the virtual LAN server. (The IP address is
provided by the IP stack 305 when the driver 310 is
configured.) The virtual LAN server then binds that IP
address to an RVI on which the registration arrived. This

Oct. 4, 2007

enables the virtual LAN server to find the processor asso
ciated with a specific IP address. Additionally, the associa
tion of IP addresses with a processor can be performed via
the virtual LAN management interface 135. The latter
method is necessary to properly configure cluster IP
addresses or IP addresses with special handling, discussed
below.

2. RVI Mapping and Management

0093. As outlined above, certain embodiments use RVIs
to connect nodes at the data link layer and to form control
connections. Some of these connections are created and
assigned as part of control nodes booting and initialization.
The data link layer connections are used for the reasons
described above. The control connections are used to
exchange management, configuration, and health informa
tion.

0094 Some RVI connections are between nodes for
unicast traffic, e.g., 212. Other RVI connections are to the
virtual LAN server logic 335 so that the server can handle
the requests, e.g., ARP traffic, broadcasts, and so on. To
create the RVI the virtual LAN server 335 creates and
removes RVIs through calls to a Giganet Switch manager
360 (provided with the switch fabric and Giganet NICs). The
Switch manager may execute on the control nodes 120 and
cooperates with the Giganet drivers to create the RVIs.

0.095 With regard to processor connections, as nodes
register with the virtual LAN server 335, the virtual LAN
server creates and assigns virtual MAC addresses for the
nodes, as described above. In conjunction with this, the
virtual LAN server logic maintains data structures reflecting
the topology and MAC assignments for the various nodes.
The virtual LAN server logic then creates corresponding
RVIs for the unicast paths between nodes. These RVIs are
Subsequently allocated and made known to the nodes during
the nodes booting. Moreover, the RVIs are also associated
with IP addresses during the virtual LAN server's handling
of ARP traffic. The RVI connections are torn down if a node
is removed from the topology.

0096). If a node 106 at one end of an established RVI
connection is rebooted, the two operating systems of the
each end of the connection, and RVI management logic
re-establish the connection. Software using the connection
on the processing node that remained up will be unaware
that anything happened to the connection itself. Whether or
not the software notices or cares that the software at the
other end was rebooted depends upon what it is using the
connection for and the extent to which the rebooted end is
able to re-establish its state from persistent storage. For
example, any Software communicating via Transmission
Control Protocol (TCP) will notice that all TCP sessions are
closed by a reboot. On the other hand, Network File System
(NFS) access is stateless and not affected by a reboot if it
occurs within an allowed timeout period.

0097. Should a node be unable to send a packet on a
direct RVI at any time, it can always attempt to send the
packet to a destination via the virtual LAN server 335. Since
the virtual LAN server 335 is connected to all virtual
Ethernet driver 310 interfaces on the virtual LAN via the
control connections, virtual LAN server 335 can also serve
as the packet relay mechanism of last resort.

US 2007/0233.825 A1

0098. With regard to the connections to the virtual LAN
server 335, certain embodiments use virtual Ethernet drivers
310 that algorithmically determine the RVI that it ought to
use to connect to its associated virtual LAN server 335. The
algorithm, depending on the embodiment, may need to
consider identification information Such as cabinet number
to identify the RVI.

3. ARP Processing and IP Mapping to RVIs
0099. As explained above, the virtual Ethernet drivers
310 of certain embodiments support ARP. In these embodi
ments, ARP processing is used to advantage to create
mappings at the nodes between IP addresses and RVIs that
may be used to carry unicast traffic, including IP packets,
between nodes.

0100. To do this, the virtual Ethernet drivers 310 send
ARP packet requests and replies to the virtual LAN server
335 via a dedicated RVI. The virtual LAN server 335, and
specifically ARP server logic 355, handles the packets by
adding information to the packet header. As was explained
above, this information facilitates identification of the
source and target and identifies the RVI that may be used
between the nodes.

0101 The ARP server logic 355 receives the ARP
requests, processes the TLV header, and broadcasts the
request to all relevant nodes on the internal platform and the
external network if appropriate. Among other things, the
server logic 355 determines who should receive the ARP
reply, resulting from the request. For example, if the Source
is a clustered IP address, the reply should be sent to the
cluster load balancer, not necessarily the source of the ARP
request. The server logic 355 indicates such by including
information in the TLV header of the ARP request, so that
the target of the ARP replies accordingly. The server 335 will
process the ARP packet by including further information in
the appended header and broadcast the packet to the nodes
in the relevant domain. For example, the modified header
may include information identifying the source cabinet,
processing node number, RVI connection number, channel,
virtual interface number, and virtual LAN name (some of
which is only known by the server 335).
0102) The ARP replies are received by the server logic
355, which then maps the MAC information in the reply to
corresponding RVI related information. The RVI-related
information is placed in the target MAC entry of the reply
and sent to the appropriate source node (e.g., may be the
sender of the request, but in some instances such as with
clustered IP addresses may be a different node).

4. Broadcast and Multicast Services

0103 As outlined above, broadcasts are handled by
receiving the packet on a dedicated RVI. The packet is then
cloned by the server 335 and unicast to all virtual interfaces
310 in the relevant broadcast domain.

0104. The same approach may be used for multicast. All
multicast packets will be reflected off the virtual LAN
server. Under some alternative embodiments, the virtual
LAN server will treat multicast the same as broadcast and
rely on IP filtering on each node to filter out unwanted
packets.

0105. When an application wishes to send or receive
multicast addresses it must first join a multicast group. When

Oct. 4, 2007

a process on a processor performs a multicast join, the
processor virtual network driver 310 sends a join request to
the virtual LAN server 335 via a dedicated RVI. The virtual
LAN server then configures a specific multicast MAC
address on the interface and informs the LAN Proxy 340,
discussed below, as necessary. The Proxy 340 will have to
keep track of use counts on specific multicast groups so a
multicast address is only removed when no processor
belongs to that multicast group.

5. Bridging and Routing to Other Domains
0106 From the perspective of system 100, the external
network 125 may operate in one of two modes: filtered or
unfiltered. In filtered mode a single MAC address for the
entire system is used for all outgoing packets. This hides the
virtual MAC addresses of a processing node 107 behind the
Virtual LAN Proxy 340 and makes the system appear as a
single node on the network 125 (or as multiple nodes behind
a bridge or proxy). Because this doesn't expose unique link
layer information for each internal node 107 some other
unique identifier is required to properly deliver incoming
packets. When running in filter mode, the destination IP
address of each incoming packet is used to uniquely identify
the intended recipient since the MAC address will only
identify the system. In unfiltered mode the virtual MACs of
a node 107 are visible outside the system so that they may
be used to direct incoming traffic. That is, filtered mode
mandates layer 3 switching while unfiltered mode allows
layer 2 switching. Filtered mode requires that some com
ponent (in this case the Virtual LAN Proxy 340) perform
replacement of node virtual MAC addresses with the MAC
address of the external network 125 on all outgoing packets.
0.107 Some embodiments support the ability for a virtual
LAN to be connected to external networks. Consequently,
the virtual LAN will have to handle IP addresses not
configured locally. To address this, one embodiment
imposes a limit that each virtual LAN so connected be
restricted to one external broadcast domain. IP addresses and
subnet assignments for the internal nodes of the virtual LAN
will have to be in accordance with the external domain.

0108). The virtual LAN server 335 services the external
connection by effectively acting as a data link layer bridge
in that it moves packets between the external Ethernet driver
345 and internal processors and performs no IP processing.
However, unlike like a data link layer bridge, the server
cannot always rely on distinctive layer two addresses from
the external network to internal nodes and instead the
connection may use layer 3 (IP) information to make the
bridging decisions. To do this, the external connection
Software extracts IP address information from incoming
packets and it uses this information to identify the correct
node 106 so that it may move the packet to that node.
0109) A virtual LAN server 335 having an attached
external broadcast domain has to intercept and process
packets from and to the external domain so that external
nodes have a consistent view of the subnet(s) in the broad
cast domain.

0110. When virtual LAN server 335 having an attached
external broadcast domain receives an ARP request from an
external node it will relay the request to all internal nodes.
The correct node will then compose the reply and send the
reply back to the requester through the virtual LAN server

US 2007/0233.825 A1

335. The virtual LAN server cooperates with the virtual
LAN Proxy 340 so that the Proxy may handle any necessary
MAC address translation on outgoing requests. All ARP
Replies and ARP advertisements from external sources will
be relayed directly to the target nodes.

0111 Virtual Ethernet interfaces 310 will send all unicast
packets with an external destination to the virtual LAN
server 335 over the control connection RVI. (External des
tinations may be recognized by the driver by the MAC
address format.) The virtual LAN server will then move the
packet to the external network 125 accordingly.

0112) If the virtual LAN server 335 receives a broadcast
or multicast packet from an internal node it relays the packet
to the external network in addition to relaying the packet to
all internal virtual LAN members. If the virtual LAN server
335 receives a broadcast or multicast packet from an exter
nal Source it relays the packet to all attached internal nodes.
0113 Under certain embodiments, interconnecting vir
tual LANs through the use of IP routers or firewalls is
accomplished using analogous mechanisms to those used in
interconnecting physical LANs. One processor is configured
on both LANs, and the Linux kernel on that processor must
have routing (and possibly IP masquerading) enabled. Nor
mal IP Subnetting and routing semantics will always be
maintained, even for two nodes located in the same plat
form.

0114. A processor could be configured as a router
between two external subnets, between and external and
internal subnet, and between two internal subnets. When an
internal node is sending a packet through a router there are
no problems because of the point-to-point topology of the
internal network. The sender will send directly to the router
(i.e., processor so configured with routing logic) without the
intervention of the virtual LAN server (i.e., typical processor
to processor communication, discussed above).
0115 When an external node sends a packet to an internal
router, and the external network 125 is running in filtered
mode, the destination MAC address of the incoming packet
will be that of the platform 100. Thus the MAC address can
not be used to uniquely identify the packet destination node.
For a packet whose destination is an internal node on the
virtual LAN, the destination IP address in the IP header is
used to direct the packet to the proper destination node.
However, because routers are not final destinations, the
destination IP address in the IP header is that of the final
destination rather than that of the next hop (which is the
internal router). Thus, there is nothing in the incoming
packet that can be used to direct it to the correct internal
node. To handle this situation, one embodiment imposes a
limit of no more than one router exposed to an external
network on a virtual LAN. This router is registered with the
virtual LAN server 335 as a default destination so that
incoming packets with no valid destination will be directed
to this default node.

0116. When an external node sends a packet to an internal
router and the external network 125 is running in unfiltered
mode, the destination MAC address of the incoming packet
will be the virtual MAC address of the internal destination
node. The LAN Server 335 will then use this virtual MAC
to send the packet directly to the destination internal node.
In this case any number of internal nodes may be functioning

Oct. 4, 2007

as routers as the incoming packet's MAC address will
uniquely identify the destination node.
0.117) If a configuration requires multiple routers on a
Subnet, one router can be picked as the exposed router. This
router in turn could route to the other routers as necessary.
0118 Under certain embodiments, router redundancy is
provided, by making a router a clustered service and load
balancing or failing over on a stateless basis (i.e., every IP
packet rather than per-TCP connection).
0119) Certain embodiments of the invention support pro
miscuous mode functionality by providing Switch semantics
in which a given port may be designated as a promiscuous
port so that all traffic passing through the Switch is repeated
on the promiscuous port. The nodes that are allowed to listen
in promiscuous mode will be assigned administratively at
the virtual LAN server.

0120 When a virtual Ethernet interface 310 enters pro
miscuous receive mode it will send a message to the virtual
LAN server 335 over the management RVI. This message
will contain all the information about the virtual Ethernet
interface 310 entering promiscuous mode. When the virtual
LAN Server receives a promiscuous mode message from a
node, it will check its configuration information to deter
mine if the node is allowed to listen promiscuously. If not,
the virtual LAN Server will drop the promiscuous mode
message without further processing. If the node is allowed
to enter promiscuous mode, the virtual LAN server will
broadcast the promiscuous mode message to all other nodes
on the virtual LAN. The virtual LAN server will also mark
the node as being promiscuous so that it can forward copies
of incoming external packets to it. When a promiscuous
listener detects any change in its RVI configuration it will
send a promiscuous mode message to the virtual LAN to
update the state of all other nodes on the relevant broadcast
domain. This will update any nodes entering or leaving a
virtual LAN. When a virtual Ethernet interface 310 leaves
promiscuous it will send the virtual LAN server a message
informing it that the interface is leaving promiscuous mode.
The virtual LAN server will then send this message to all
other nodes on the virtual LAN. Promiscuous settings will
allow for placing an external connection in promiscuous
mode when any internal virtual interface is a promiscuous
listener. This will make the traffic external to the platform
(but on the same virtual LAN) available to the promiscuous
listener.

6. Managing Service Clusters
0.121. A service cluster is a set of services available at one
or more IP address (or host names). Examples of these
services are HTTP, FTP, telnet, NFS, etc. An IP address and
port number pair represents a specific service type (though
not a service instance) offered by the cluster to clients,
including clients on the external network 125.
0.122 FIG. 5 shows how certain embodiments present a
virtual cluster 405 of services as a single virtual host to the
Internet or other external network 125 via a cluster IP
address. All the services of the cluster 505 are addressed
through a single IP address, through different ports at that IP
address. In the example of FIG. 5, service B is a load
balanced service.

0123. With reference to FIG. 3B, virtual clusters are
supported by the inclusion of virtual cluster proxy (VCP)

US 2007/0233.825 A1

logic 360 which cooperates with the virtual LAN server 335.
In short, VCP360 is responsible for handling distribution of
incoming connections, port filters, and real server connec
tions for each configured virtual IP address. There will be
one VCP for each clustered IP address configured.
0124 When a packet arrives on the virtual cluster IP
address, the virtual LAN Proxy logic 340 will send the
packet to the VCP 360 for processing. The VCP will then
decide where to send the packet based on the packet con
tents, its internal connection state cache, any load balancing
algorithms being applied to incoming traffic, and the avail
ability of configured services. The VCP will relay incoming
packets based on both the destination IP address as well as
the TCP or UDP port number. Further, it will only distribute
packets destined for port numbers known to the VCP (or for
existing TCP connections). It is the configuration of these
ports, and the mapping of the port number to one or more
processors that creates the virtual cluster and makes specific
service instances available in the cluster. If multiple
instances of the same service from multiple application
processors are configured then the VCP can load balance
between the service instances.

0125) The VCP 360 maintains a cache of all active
connections that exist on the cluster's IP address. Any load
balancing decisions that are made will only be made when
a new connection is established between the client and a
service. Once the connection has been set up, the VCP will
use the source and destination information in the incoming
packet header to make Sure all packets in a TCP stream get
routed to the same processor 106 configured to provide the
service. In the absence of the ability to determine a client
session (for example, HTTP sessions), the actual connec
tion/load balancing mapping cache will route packets based
on client address so that Subsequent connections from the
same client goes to the same processor (making a client
session persistent or “sticky”). Session persistence should be
selectable on a service port number basis since only certain
types of services require session persistence.
0126 Replies to ARP requests, and routing of ARP
replies, is handled by the VCP. When a processor sends any
ARP packet, it will send it out through the Virtual Ethernet
driver 310. The packet will then be sent to the virtual LAN
Server 335 for normal ARP processing. The virtual LAN
server will broadcast the packet as usual, but will make sure
it doesn't get broadcast to any member of the cluster (not
just the sender). It will also place information in the packet
header TLV that indicates to the ARP target that the ARP
source can only be reached through the virtual LAN server
and specifically through the load balancer. The ARP target,
whether internal or external, will process the ARP request
normally and send a reply back through the virtual LAN
server. Because the source of the ARP was a cluster IP
address, the virtual LAN server will be unable to determine
which processor sent out the original request. Thus, the
virtual LAN Server will send the reply to each cluster
member so that they can handle it properly. When an ARP
packet is sent by a source with a cluster IP address as the
target, the virtual LAN server will send the request to every
cluster member. Each cluster member will receive the ARP
request and process it normally. They will then compose an
ARP reply and send it back to the source via the virtual LAN
server. When the virtual LAN server receives any ARP reply
from a cluster member it will drop that reply, but the virtual

Oct. 4, 2007

LAN server will compose and send an ARP reply to the ARP
source. Thus, the virtual LAN Server will respond to all
ARPs of the cluster IP address. The ARP reply will contain
the information necessary for the ARP source to send all
packets for the cluster IP address to the VCP. For external
ARP sources, this will simply be an ARP reply with the
external MAC address as the source hardware address. For
internal ARP sources this will be the information necessary
to tell the source to send packets for the cluster IP address
down the virtual LAN management RVI rather than through
a directly connected RVI. Any gratuitous ARP packets that
are received will be forwarded to all cluster members. Any
gratuitous ARP packets sent by a cluster member will be sent
normally.

Virtual LAN Proxy

0127. The virtual LAN Proxy 340 performs the basic
co-ordination of the physical network resources among all
the processors that have virtual interfaces to the external
physical network 125. It bridges virtual LAN server 335 to
the external network 125. When the external network 125 is
running in filtered mode the Virtual LAN Proxy 340 will
convert the internal virtual MAC addresses from each node
to the single external MAC assigned to the system 100.
When the external network 125 is operating in unfiltered
mode no such MAC translation is required. The Virtual LAN
Proxy 340 also performs insertion and removal of IEEE
802.1Q Virtual LAN ID tagging information, and demulti
plexing packets based on their VLAN Ids. It also serializes
access to the physical Ethernet interface 129 and co-ordi
nates the allocation and removal of MAC addresses, such as
multicast addresses, on the physical network.
0128. When the external network 125 is running in
filtered mode and the virtual LAN Proxy 340 receives
outgoing packets (ARP or otherwise) from a virtual LAN
server 335, it replace the internal format MAC address with
the MAC address of the physical Ethernet device 129 as the
Source MAC address. When the External Network 125 is
running in unfiltered mode no such replacement is required.
0129. When the virtual LAN Proxy 340 receives incom
ing ARP packets, it moves the packet to the virtual LAN
server 335 which handles the packet and relays the packet on
to the correct destination(s). If the ARP packet is a broadcast
packet then the packet is relayed to all internal nodes on the
Virtual LAN. If the packet is a unicast packet the packet is
sent only to the destination node. The destination node is
determined by the IP address in the ARP packet when the
External Network 125 is running in filtered mode, or by the
MAC address in the Ethernet header of the ARP packet (not
the MAC address is the ARP packet).

Physical LAN Driver

0.130 Under certain embodiments, the connection to the
external network 125 is via Gigabit or 100/10baseTEthernet
links connected to the control node. Physical LAN drivers
345 are responsible for interfacing with such links. Packets
being sent on the interface will be queued to the device in the
normal manner, including placing the packets in Socket
buffers. The queue used to queue the packets is the one used
by the protocol stack to queue packets to the device's
transmit routine. For incoming packets, the Socket buffer
containing the packets will be passed around and the packet

US 2007/0233.825 A1

data will never be copied (though it will be cloned if needed
for multicast operations). Under these embodiments, generic
Linux network device drivers may be used in the control
node without modification. This facilitates the addition of
new devices to the platform without requiring additional
device driver work.

0131 The physical network interface 345 is in commu
nication only with the virtual LAN proxy 340. This prevents
the control node from using the external connection in any
way that would interfere with the operation of the virtual
LANs and improves security and isolation of user data, i.e.,
an administrator may not 'sniff any user's packets.

Load Balancing and Failover

0132 Under some embodiments, the redundant connec
tions to the external network 125 will be used alternately to
load balance packet transmission between two redundant
interfaces to the external network 125. Other embodiments
load balance by configuring each virtual network interface
on alternating control nodes so the virtual interfaces are
evenly distributed between the two control nodes. Another
embodiment transmits through one control node and
receives through another.
0133) When in filtered mode, there will be one externally
visible MAC address to which external nodes transmit
packets for a set of virtual network interfaces. If that adapter
goes down, then not only do the virtual network interfaces
have to fail over to the other control node, but the MAC
address must fail over too so that external nodes can
continue to send packets to the MAC address already in the
ARP caches. Under one embodiment of the invention, when
a failed control node recovers, a single MAC address is
manipulated and the MAC address does not have to be
remapped on recovery.

0134 Under another embodiment of the invention, load
balancing is performed by allowing transmission on both
control nodes but only reception through one. The failover
case is both send and receive through the same control node.
The recovery case is transmission through the recovered
control node since that doesn’t require any MAC manipu
lation.

0135 The control node doing reception has IP informa
tion for filtering and multicast address information for
multicast MAC configuration. This information is needed to
process incoming packets and should be failed over should
the receiving control node fail. If the transmitting control
node fails, virtual network drivers need only start sending
outgoing packets only to the receiving control node. No
special failover processing is required other than the recog
nition that the transmitting control node has failed. If the
failed control node recovers the virtual network drivers can
resume sending outgoing packets to the recovered control
nodes without any additional special recovery processing. If
the receiving control node fails then the transmitting control
node must assume the receiving interface role. To do this, it
must configure all MAC addresses on its physical interface
to enable packet reception. Alternately, both control nodes
could have the same MAC address configured on their
interfaces, but receives could be physically disabled on the
Ethernet device by the device driver until an control node is
ready to receive packets. Then failover would simply enable
receives on the device.

Oct. 4, 2007

0.136 Because the interfaces must be configured with
multicast MAC addresses when any processor has joined a
multicast group, multicast information must be shared
between control nodes so that failover will be transparent to
the processor. Since the virtual network drivers will have to
keep track of multicast group membership anyway, this
information will always be available to a LAN Proxy via the
virtual LAN server when needed. Thus, a receive failover
will result in multicast group membership being queried
from virtual network drivers to rebuild the local multicast
group membership tables. This operations is low overhead
and requires no special processing except during failover
and recovery, and doesn't require any special replication of
data between control nodes. When receive has failed over
and the failed control node recovers, only transmissions will
be moved over to the recovered control node. Thus, the
algorithm for recovery on virtual network interfaces is to
always move transmissions to the recovered control node
and leave receive processing where it is.
0.137 Virtual service clusters may also use load balancing
and failover.

Multicabinet Platforms

0.138. Some embodiments allow cabinets to be connected
together to form larger platforms. Each cabinet will have at
least one control node which will be used for inter-cabinet
connections. Each control node will include a virtual LAN
server 335 to handle local connections and traffic. One of the
servers is configured to be a master, such as the one located
on the control node with the external connection for the
virtual LAN. The other virtual LAN server will act as proxy
servers, or slaves, so that the local processors of those
cabinets can participate. The master maintains all virtual
LAN state and control while the proxies relay packets
between the processors and masters.
0.139. Each virtual LAN server proxy maintains a RVI to
each master virtual LAN Server. Each local processor will
connect to the virtual LAN Server Proxy server just as if it
were a master. When a processor connects and registers an
IP and MAC address, the proxy will register that IP and
MAC address with the master. This will cause the master to
bind the addresses to the RVI from the proxy. Thus, the
master will contain RVI bindings for all internal nodes, but
proxies will contain bindings only for nodes in the same
cabinet.

0140. When an processor anywhere in a multicabinet
virtual LAN sends any packet to its virtual LAN server, the
packet will be relayed to the master for processing. The
master will then do normal processing on the packet. The
master will relay packets to the proxies as necessary for
multicast and broadcast. The master will also relay unicast
packets based on the destination IP address of the unicast
packet and registered IP addresses on the proxies. Note that
on the master, a proxy connection looks very much like a
node with many configured IP addresses.

Networking Management Logic

0.141. During times when there is no operating system
running on a processing node, such as booting or kernel
debugging, the node's serial console traffic and boot image
requests are routed by switch driver code located in the
processing node's kernel debugging Software or BIOS to

US 2007/0233.825 A1

management software running on a control node (not
shown). From there, the console traffic can again be accessed
either from the high-speed external network 125 or through
the control node's management ports. The boot image
requests can be satisfied from either the control node's local
disks or from partitions out on the external SAN 130. The
control node 120 is preferably booted and running normally
before anything can be done to an processing node. The
control node is itself booted or debugged from its manage
ment ports.

0142. Some customers may wish to restrict booting and
debugging of controllers to local access only, by plugging
their management ports into an on-site computer when
needed. Others may choose to allow remote booting and
debugging by establishing a secure network segment for
management purposes, suitably isolated from the Internet,
into which to plug their management ports. Once a controller
is booted and running normally, all other management
functions for it and for the rest of the platform can be
accessed from the high-speed external network 125 as well
as the management ports, if permitted by the administrator.

0143 Serial console traffic to and from each processing
node 105 is sent by an operating system kernel driver over
the Switch fabric 115 to management Software running on a
control node 120. From there, any node's console traffic can
be accessed either from the normal, high-speed external
network 125 or through either of the control node's man
agement ports.

Storage Architecture

0144) Certain embodiments follow a SCSI model of
storage. Each virtual PAN has its own virtualized I/O space
and issues SCSI commands and status within Such space.
Logic at the control node translates or transforms the
addresses and commands as necessary from a PAN and
transmits them accordingly to the SAN 130 which services
the commands. From the perspective of the SAN, the client
is the platform 100 and the actual PANs that issued the
commands are hidden and anonymous. Because the SAN
address space is virtualized, one PAN operating on the
platform 100 may have device numbering starting with a
device number 1, and a second PAN may also have a device
number 1. Yet each of the device number 1s will correspond
to a different, unique portion of SAN storage.

0145 Under preferred embodiments, an administrator
can build virtual storage. Each of the PANs will have its own
independent perspective of mass storage. Thus, as will be
explained below, a first PAN may have a given device/LUN
address map to a first location in the SAN, and a second PAN
may have the same given device/LUN map to a second,
different location in the SAN. Each processor maps a
device/LUN address into a major and minor device number,
to identify a disk and a partition, for example. Though the
major and minor device numbers are perceived as a physical
address by the PAN and the processors within a PAN, in
effect they are treated by the platform as a virtual address to
the mass storage provided by the SAN. That is, the major
and minor device numbers of each processor are mapped to
corresponding SAN locations.

0146 FIG. 6 illustrates the software components used to
implement the storage architecture of certain embodiments.
A configuration component 605, typically executed on a

Oct. 4, 2007

control node 120, is in communication with external SAN
130. A management interface component 610 provides an
interface to the configuration component 605 and is in
communication with IP network 125 and thus with remote
management logic 135 (see FIG. 1). Each processor 106 in
the system 100 includes an instance of processor-side stor
age logic 620. Each Such instance 620 communicates via 2
RVI connections 625 to a corresponding instance of control
node-side storage logic 615.
0.147. In short, the configuration component 605 and
interface 610 are responsible for discovering those portions
of SAN storage that are allocated to the platform 100 and for
allowing an administrator to Suballocate portions to specific
PANs or processors 106. Storage configuration logic 605 is
also responsible for communicating the SAN storage allo
cations to control node-side logic 615. The processor-side
storage logic 620 is responsible for communicating the
processor's storage requests over the internal interconnect
110 and storage fabric 115 via dedicated RVIs 625 to the
control node-side logic 615. The requests will contain, under
certain embodiments, virtual storage addresses and SCSI
commands. The control node-side logic is responsible for
receiving and handling Such commands by identifying the
corresponding actual address for the SAN and converting
the commands and protocol to the appropriate form for the
SAN, for example, including but not limited to, fibre channel
(Gigabit Ethernet with iSCSI is another exemplary connec
tivity).

Configuration Component

0.148. The configuration component 605 determines
which elements in the SAN 130 are visible to each indi
vidual processor 106. It provides a mapping function that
translates the device numbers (e.g., SCSI target and LUN)
that the processor uses into the device numbers visible to the
control nodes through their attached SCSI and Fibre Chan
nel I/O interfaces 128. It also provides an access control
function, which prevents processors from accessing external
storage devices which are attached to the control nodes but
not included in the processors configuration. The model that
is presented to the processor (and to the system administra
tor and applications/users on that processor) makes it appear
as if each processor has its own mass storage devices
attached to interfaces on the processor.
0.149 Among other things, this functionality allows the
software on a processor 106 to be moved to another pro
cessor easily. For example, in certain embodiments, the
control node via Software (without any physical re-cabling)
may change the PAN configurations to allow a new proces
Sor to access the required devices. Thus, a new processor
may be made to inherit the storage personality of another.
0.150 Under certain embodiments, the control nodes
appear as hosts on the SANs, though alternative embodi
ments allow the processors to act as such.
0151. As outlined above, the configuration logic discov
ers the SAN storage allocated to the platform 100 (for
example, during platform boot) and this pool is Subsequently
allocated by an administrator. If discovery is activated later,
the control node that performs the discovery operation
compares the new view with the prior view. Newly available
storage is added to the pool of storage that may be allocated
by an administrator. Partitions that disappear that were not

US 2007/0233.825 A1

assigned are removed from the available pool of storage that
may be allocated to PANs. Partitions that disappear that were
assigned trigger error messages.

Management Interface Component
0152 The configuration component 605 allows manage
ment Software to access and update the information which
describes the device mapping between the devices visible to
the control nodes 120 and the virtual devices visible to the
individual processors 106. It also allows access to control
information. The assignments may be identified by the
processing node in conjunction with an identification of the
simulated SCSI disks, e.g., by name of the simulated con
troller, cable, unit, or logical unit number (LUN).
0153. Under certain embodiments the interface compo
nent 610 cooperates with the configuration component to
gather and monitor information and statistics, such as:

0154 Total number of I/O operations performed
O155 Total number of bytes transferred
0156 Total number of read operations performed
0157 Total number of write operations performed
0158 Total amount of time I/O was in progress

Processor-side Storage Logic
0159. The processor-side logic 620 of the protocol is
implemented as a host adapter module that emulates a SCSI
subsystem by providing a low-level virtual interface to in the
operating system on the processors 106. The processors 106
use this virtual interface to send SCSI I/O commands to the
control nodes 120 for processing.
0160 Under embodiments employing redundant control
nodes 120, each processing node 105 will include one
instance of logic 620 per control node 120. Under certain
embodiments, the processors refer to storage using physical
device numbering, rather than logical. That is, the address is
specified as a device name to identify the LUN, the SCSI
target, channel, host adapter, and control node 120 (e.g.,
node 120a or 120b). As shown in FIG. 8, one embodiment
maps the target (T) and LUN (L) to a host adapter (H),
channel (C), mapped target (mT), and mapped LUN (mL)
0161 FIG. 7 shows an exemplary architecture for pro
cessor side logic 720. Logic 720 includes a device-type
specific driver (e.g., a disk driver) 705, a mid-level SCSI I/O
driver 710, and wrapper and interconnect logic 715.
0162 The device-type-specific driver 705 is a conven
tional driver provided with the operating system and asso
ciated with specific device types.
0163 The mid-level SCSI I/O driver 710 is a conven
tional mid-level driver that is called by the device-type
specific driver 705 once the driver 705 determines that the
device is a SCSI device.

0164. The wrapper and interconnect logic 715 is called
by the mid-level SCSI I/O driver 710. This logic provides
the SCSI subsystem interface and thus emulates the SCSI
Subsystem. In certain embodiments that use the Giganet
fabric, logic 715 is responsible for wrapping the SCSI
commands as necessary and for interacting with the Giganet
and RCLAN interface to cause the NIC to send the packets

Oct. 4, 2007

to the control nodes via the dedicated RVIs to the control
nodes, described above. The header information for the
Giganet packet is modified to indicate that this is a storage
packet and includes other information, described below in
context. Though not shown in FIG. 7, wrapper logic 715
may use the RCLAN layer to support and utilize redundant
interconnects 110 and fabrics 115.

0.165 For embodiments that use Giganet fabric 115, the
RVIs of connection 725 are assigned virtual interface (VI)
numbers from the range of 1024 available VIs. For the two
endpoints to communicate, the Switch 115 is programmed
with a bi-directional path between the pair (control node
switch port, control node VI number), (processor node 105
switch port, processor node VI number).
0166 A separate RVI is used for each type of message
sent in either direction. Thus, there is always a receive buffer
pending on each RVI for a message that can be sent from the
other side of the protocol. In addition, since only one type of
message is sent in either direction on each RVI, the receive
buffers posted to each of the RVI channels can be sized
appropriately for the maximum message length that the
protocol will use for that type of message. Under other
embodiments, all of the possible message types are multi
plexed onto a single RVI, rather than using 2 VIs. The
protocol and the message format do not specifically require
the use of 2 RVIs, and the messages themselves have
message type information in their header so that they could
be demultiplexed.

0.167 One of the two channels is used to exchange SCSI
commands (CMD) and status (STAT) messages. The other
channel is used to exchange buffer (BUF) and transmit
(TRAN) messages. This channel is also used to handle data
payloads of SCSI commands.
0168 CMD messages contain control information, the
SCSI command to be performed, and the virtual addresses
and sizes of I/O buffers in the node 105. STAT messages
contain control information and a completion status code
reflecting any errors that may have occurred while process
ing the SCSI command. BUF messages contain control
information and the virtual addresses and sizes of I/O buffers
in the control node 120. TRAN messages contain control
information and are used to confirm Successful transmission
of data from node 105 to the control node 120.

0169. The processor side wrapper logic 715 examines the
SCSI command to be sent to determine if the command
requires the transfer of data and, if so, in what direction.
Depending on the analysis, the wrapper logic 715 sets
appropriate flag information in the message header accord
ingly. The section describing the control node-side logic
describes how the flag information is utilized.
0170 Under certain embodiments of the invention, the
link 725 between processor-side storage logic 720 and
control node-side storage logic 715 may be used to convey
control messages, not part of the SCSI protocol and not to
be communicated to the SAN 130. Instead, these control
messages are to be handled by the control node-side logic
T15.

0171 The protocol control messages are always gener
ated by the processor-side of the protocol and sent to the
control node-side of the protocol over one of two virtual
interfaces (VIs) connecting the processor-side logic 720 to

US 2007/0233.825 A1

the control node-side storage logic 715. The message header
used for protocol control operations is the same as a com
mand message header, except that different flag bits are used
to distinguish the message as a protocol control message.
The control node 120 performs the requested operation and
responds over the RVI with a message header that is the
same as is used by a status message. In this fashion, a
separate RVI for the infrequently used protocol control
operations is not needed.

0172 Under certain embodiments using redundant con
trol nodes, the processor-side logic 720 detects certain errors
from issued commands and in response re-issues the com
mand to the other control node. This retry may be imple
mented in a mid-level driver 710.

Control Node-side Storage Logic

0173 Under certain embodiments, the control node-side
storage logic 715 is implemented as a device driver module.
The logic 715 provides a device-level interface to the
operating system on the control nodes 120. This device-level
interface is also used to access the configuration component
705. When this device driver module is initialized, it
responds to protocol messages from all of the processors 106
in the platform 100. All of the configuration activity is
introduced through the device-level interface. All of the I/O
activity is introduced through messages that are sent and
received through the interconnect 110 and switch fabric 115.
On the control node 120, there will be one instance of logic
715 per processor node 105 (though it is only shown as one
box in FIG. 7). Under certain embodiments, the control
node-side logic 715 communicates with the SAN 130 via
FCP or FCP-2 protocols, or iSCSI or other protocols that use
the SCSI-2 or SCSI-3 command set over various media.

0174 As described above, the processor-side logic sets
flags in the RVI message headers indicating whether data
flow is associated with the command and, if so, in which
direction. The control node-side storage logic 715 receives
messages from the processor-side logic and then analyzes
the header information to determine how to act, e.g., to
allocate buffers or the like. In addition, the logic translates
the address information contained in the messages from the
processor to the corresponding, mapped SAN address and
issues the commands (e.g., via FCP or FCP-2) to the SAN
130.

0175 ASCSI command such as a TEST UNIT READY
command, which does not require a SCSI data transfer
phase, is handled by the processor-side logic 720 sending a
single command on the RVI used for command messages,
and by the control node-side logic sending a single status
message back over the same RVI. More specifically, the
processor-side of the protocol constructs the message with a
standard message header, a new sequence number for this
command, the desired SCSI target and LUN, the SCSI
command to be executed, and a list size of Zero. The control
node-side of the logic receives the message, extracts the
SCSI command information and conveys it to the SAN 130
via interface 128. After the control node has received the
command completion callback, it constructs a status mes
sage to the processor using a standard message header, the
sequence number for this command, the status of the com
pleted command, and optionally the request sense data if the
command completed with a check condition status.

Oct. 4, 2007

0176 A SCSI command such as a READ command,
which requires a SCSI data transfer phase to transfer data
from the SCSI device into the host memory, is handled by
the processor-side logic sending a command message to the
control node-side logic 715, and the control node responding
with one or more RDMAWRITE operation into memory in
the processor node 105, and a single status message from the
control node-side logic. More specifically, the processor
side logic 720 constructs a command message with a stan
dard message header, a new sequence number for this
command, the desired SCSI target and LUN, the SCSI
command to be executed, and a list of regions of memory
where the data from the command is to be stored. The
control node-side logic 715 allocates temporary memory
buffers to store the data from the SCSI operation while the
SCSI command is executing on the control node. After the
control node-side logic 715 has sent the SCSI command to
the SAN 130 for processing and the command has com
pleted it sends the data back to the processor 105 memory
with a sequence of one or more RDMA WRITE operations.
It then constructs a status message with a standard message
header, the sequence number for this command, the status of
the completed command, and optionally the REQUEST
SENSE data if the command completed with a SCSI
CHECK CONDITION Status.

0177 A SCSI command such as a WRITE command,
which requires a SCSI data transfer phase to transfer data
from the host memory to the SCSI device, is handled by the
processor-side logic 720 sending a single command message
to the control node-side logic 715, one or more BUF
messages from the control node-side logic 715 to the pro
cessor-side logic, one or more RDMA WRITE operations
from the processor-side storage logic into memory in the
control node, one or more TRAN messages from the pro
cessor-side logic to the control node-side logic, and a single
status message from the control node-side logic back to the
processor-side logic. The use of the BUF messages to
communicate the location of temporary buffer memory in
the control node to the processor-side storage logic and the
use of TRAN messages to indicate completion of the RDMA
WRITE data transfer is due to the lack of RDMA READ
capability in the underlying Giganet fabric. If the underlying
fabric supports RDMA READ operations, a different
sequence of corresponding actions may be employed. More
specifically, the processor-side logic 720 constructs a CMD
message with a standard message header, a new sequence
number for this command, the desired SCSI target and LUN,
and the SCSI command to be executed. The control node
side logic 715 allocates temporary memory buffers to store
the data from the SCSI operation while the SCSI command
is executing on the control node. The control node-side of
the protocol then constructs a BUF message with a standard
message header, the sequence number for this command,
and a list of regions of virtual memory which are used for the
temporary memory buffers on the control node. The proces
sor-side logic 720 then sends the data over to the control
node memory with a sequence of one or more RDMA
WRITE operations. It then constructs a TRAN message with
a standard message header, and the sequence number for this
command After the control node-side logic has sent the
SCSI command to the SAN 130 for processing and has
received the command completion, it constructs a STAT
message with a standard message header, the sequence
number for this command, the status of the completed

US 2007/0233.825 A1

command, and optionally the REQUEST SENSE data if the
command completed with a CHECK CONDITION status.
0178 Under some embodiments, the CMD message con
tains a list of regions of virtual memory from where the data
for the command is stored. The BUF and TRAN messages
also contain an index field, which allows the control node
side of the protocol to send a separate BUF message for each
entry in the region list in the CMD message. The processor
side of the protocol would respond to such a message by
performing RDMA WRITE operations for the amount of
data described in the BUF message, followed by a TRAN
message to indicate the completion of a single segment of
data transfer.

0179 The protocol between the processor-side logic 720
and the control node-side logic 715 allows for scatter-gather
I/O operations. This functionality allows the data involved in
an I/O request to be read from or written to several distinct
regions of virtual and/or physical memory. This allows
multiple, non-contiguous buffers to be used for the request
on the control node.

0180. As stated above, the configuration logic 705 is
responsible for discovering the SAN storage allocated to the
platform and for interacting with the interface logic 710 so
that an administrator may suballocate the storage to specific
PANs. As part of this allocation, the configuration compo
nent 705 creates and maintains a storage data structure 915
that includes information identifying the correspondence
between processor addresses and actual SAN addresses.
FIG. 7 shows such a structure. The correspondence, as
described above, may be between the processing node and
the identification of the simulated SCSI disks, e.g., by name
of the simulated controller, cable, unit, or logical unit
number (LUN).
Management Logic

0181 Management logic 135 is used to interface to
control node software to provision the PANs. Among other
things, the logic 135 allows an administrator to establish the
virtual network topology of a PAN, its visibility to the
external network (e.g., as a service cluster), and to establish
the types of devices on the PAN, e.g., bridges and routing.

0182. The logic 135 also interfaces with the storage
management interface logic 710 So that an administrator
may define the storage for a PAN during initial allocation or
Subsequently. The configuration definition includes the stor
age correspondence (SCSI to SAN) discussed above and
access control permissions.

0183) As described above, each of the PANs and each of
the processors will have a personality defined by its virtual
networking (including a virtual MAC address) and virtual
storage. The structures that record Such personality may be
accessed by management logic, as described below, to
implement processor clustering. In addition, they may be
accessed by an administrator as described above or with an
agent administrator. An agent for example may be used to
re-configure a PAN in response to certain events, such as
time of day or year, or in response to certain loads on the
system.

0184 The operating system software at a processor
includes serial console driver code to route console I/O
traffic for the node over the Giganet switch 115 to manage

Oct. 4, 2007

ment Software running on a control node. From there, the
management Software can make any node's console I/O
stream accessible via the control node's management ports
(its low-speed Ethernet port and its Emergency Management
Port) or via the high-speed external network 125, as per
mitted by an administrator. Console traffic can be logged for
audit and history purposes.
Cluster Management Logic

0185 FIG. 9 illustrates the cluster management logic of
certain embodiments. The cluster management logic 905
accesses the data structures 910 that record the networking
information described above, such as the network topologies
of PANs, the MAC address assignments within a PAN and
so on. In addition, the cluster management logic 905
accesses the data structures 915 that record the storage
correspondence of the various processors 106. Moreover,
the cluster management logic 905 accesses a data structure
920 that records free resources such as unallocated proces
sors within the platform 100.
0186. In response to processor error events or adminis
trator commands, the cluster management logic 905 can
change the data structures to cause the storage and network
ing personalities of a given processor to “migrate' to a new
processor. In this fashion, the new processor “inherits' the
personality of the former processor. The cluster management
logic 905 may be caused to do this to swap a new processor
in to a PAN to replace a failing one.

0187. The new processor will inherit the MAC address of
a former processor and act like the former. The control node
will communicate the connectivity information when the
new processor boots, and will update the connectivity infor
mation for the non-failing processors as needed. For
example, in certain embodiments, the RVI connections for
the other processors are updated transparently; that is, the
software on the other processors does not need to be
involved in establishing connectivity to the newly swapped
in processor. Moreover, the new processor will inherit the
storage correspondence of the former and consequently
inherit the persisted state of the former processor.
0188 Among other advantages this allows a free pool of
resources, including processors, to be shared across the
entire platform rather than across given PANs. In this way,
the free resources (which may be kept as such to improve
reliability and fault tolerance of the system) may be used
more efficiently.

0189 When a new processor is “swapped in it will need
to re-ARP to learn IP address to MAC address associations.

Alternatives

0190. As each Giganet port of the switch fabric 115 can
support 1024 simultaneous Virtual Interface connections
over it and keep them separate from each other with hard
ware protection, the operating system can safely share a
node's Giganet ports with application programs. This would
allow direct connection between application programs with
out the need to run through the full stack of driver code. To
do this, an operating system call would establish a Virtual
Interface channel and memory-map its buffers and queues
into application address space. In addition, a library to
encapsulate the low-level details of interfacing to the chan
nel would facilitate use of such Virtual Interface connec

US 2007/0233.825 A1

tions. The library could also automatically establish redun
dant Virtual Interface channel pairs and manage sharing or
failing over between them, without requiring any effort or
awareness from the calling application.
0191 The embodiments described above emulated Eth
ernet internally over an ATM-like fabric. The design may be
changed to use an internal Ethernet fabric which would
simplify much of the architecture, e.g., obviating the need
for emulation features. If the external network communi
cates according to ATM, another variation would use ATM
internally without emulation of Ethernet and the ATM could
be communicated externally to the external network when so
addressed. Another variation would allow ATM internally to
the platform (i.e., without emulation of Ethernet) and only
external communications are transformed to Ethernet. This
would streamline internal communications but require emu
lation logic at the controller.
0192 Certain embodiments deploy PANs based on soft
ware configuration commands. It will be appreciated that
deployment may be based on programmatic control. For
example, more processors may be deployed under Software
control during peak hours of operation for that PAN, or
corresponding more or less storage space for a PAN may be
deployed under Software algorithmic control.
0193 It will be appreciated that the scope of the present
invention is not limited to the above described embodi
ments, but rather is defined by the appended claims; and that
these claims will encompass modifications of and improve
ments to what has been described.

What is claimed is:
1. A platform for automatically deploying virtual process

ing area networks (PANs) in response to software com
mands, wherein each virtual PAN may communicate with an
external internet protocol (IP) communication network and
wherein each virtual PAN may communicate with an exter
nal storage network having an external storage address
space, said platform comprising:

a pre-wired Switching fabric independent of and isolated
from said external IP communication network, and
independent of and isolated from said external storage
network;

a plurality of computer processor nodes each pre-wired
and in fixed connection to said Switching fabric, each
computer processor node having at least one computer
processor and memory storage, and wherein each com
puter processor node includes a programmable virtual
MAC address;

Oct. 4, 2007

configuration logic for receiving Software commands
specifying virtual PANs, each virtual PAN specification
having (i) a specified number of computer processors,
(ii) a defined communication interconnectivity and
Switching functionality among the computer processors
of the virtual PAN, said interconnectivity including a
layer 2 data link interconnectivity having MAC address
assignments for the computer processors of the virtual
PAN, and (iii) a virtual storage space for the virtual
PAN:

wherein said configuration logic includes logic to pro
gram a corresponding set of computer processors and
said switching fabric to completely establish without
human intervention the defined communication inter
connectivity and Switching functionality for a virtual
PAN specification, including programming said com
puter processor nodes with the MAC address assign
ments for the virtual PAN:

wherein said configuration logic includes logic to migrate
MAC address assignments from a first set of computer
processors to a second set of computer processors to
re-deploy the virtual PAN on the platform, said re
deployment being automatic and without human inter
vention for re-wiring the switch fabric to establish the
specified data link connectivity of the virtual PAN:

all network I/O requests and storage requests of any
computer processor of a virtual PAN are transmitted via
said switching fabric;

wherein network I/O requests of any computer processor
of a virtual PAN, addressed to an entity on said external
IP communication network, are transmitted to said
external IP communication network;

wherein all storage requests of any computer processor of
a virtual PAN are transmitted to said external storage
network; and

wherein the platform Supports simultaneous, independent
operation of multiple virtual PANs using said switching
fabric.

2. The platform of claim 1 wherein the MAC address
assignments for a virtual PAN are recorded in computer
readable data structures.

3. The platform of claim 1 wherein computer processor
nodes have MAC address assignments programmed during
a booting operation.

