wo 2017/023551 A2 || I ¥ 00O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/023551 A2

9 February 2017 (09.02.2017) WIPO | PCT
(51) International Patent Classification: (74) Agents: LENKIN, Alan M. et al.; Seytarth Shaw LLP,
GO6N 99/00 (2010.01) GO6K 9/62 (2006.01) Suite 3500, 2029 Century Park East, Los Angeles, Califor-
(21) International Application Number: nia 90067-3021 (US).
PCT/US2016/043146 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
20 July 2016 (20.07.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/201,090 4 August 2015 (04.08.2015) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
14/849,518 9 September 2015 (09.09.2015) US SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: QUALCOMM INCORPORATED [US/US]; o
ATTN: International IP Administration, 5775 Morehouse (84) Designated States (uniess otherwise indicated, for every
Drive, San Diego, California 92121-1714 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Inventors: MAJUMDAR, Somdeb; 5775 Morehouse TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

Drive, San Diego, California 92121-1714 (US). LIN,
Dexu; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). TOWAL, Regan Blythe; 5775 More-
house Drive, San Diego, California 92121-1714 (US).
SARAH, Anthony; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DETECTION OF UNKNOWN CLASSES AND INITIALIZATION OF CLASSIFIERS FOR UNKNOWN CLASSES

1200

KNOWN DATA |

120
—@ECEIVE AN INPUT AT A FIRST CLASSLF].E[D
£ 1204

JENNNE. & 722

| SYNTHETICALLY |

1 GENERATE 1

| NEGATIVE DATA AS |

1 AFUNCTION OF THE | Y

I

[}

1208

1206
TRAIN A SECOND
CLASSIFIER

TRAINING THE SECOND
CLASSIFIER

KNOWN OR UNKNOWN

CLASSIFY AS
UNKNOWN
DATA

CLASSIFY THE DATA
USING THE FIRST
CLASSIFTER

USING THE TRAINED SECOND
CLASSIFIER

FIG. 12

(57) Abstract: A method of detecting unknown classes is
presented and includes generating a first classitier for mul-
tiple first classes. In one configuration, an output of the first
classifier has a dimension of at least two. The method also
includes designing a second classifier to receive the output
of the first classifier to decide whether input data belongs to
the multiple first classes or at least one second class.

WO 2017/023551 A2 | IIWAT 00T 00O A

Declarations under Rule 4.17: Published:
— as to applicant’s entitlement to apply for and be granted — without international search report and to be republished
a patent (Rule 4.17(ii)) upon receipt of that report (Rule 48.2(g))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2017/023551 PCT/US2016/043146

DETECTION OF UNKNOWN CLASSES AND INITIALIZATION OF
CLASSIFIERS FOR UNKNOWN CLASSES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of U.S. Provisional Patent
Application No. 62/201,090, filed on August 4, 2015, and titled “DETECTION OF
UNKNOWN CLASSES AND INITIALIZATION OF CLASSIFIERS FOR
UNKNOWN CLASSES,” the disclosure of which is expressly incorporated by

reference herein in its entirety.

BACKGROUND
Field

[0002] Certain aspects of the present disclosure generally relate to machine learning
and, more particularly, to improving systems and methods for detecting unknown

classes and initializing classifiers for unknown classes.

Background

[0003] An artificial neural network, which may comprise an interconnected group of
artificial neurons (e.g., neuron models), is a computational device or represents a
method to be performed by a computational device. Artificial neural networks may

have corresponding structure and/or function in biological neural networks.

[0004] Convolutional neural networks are a type of feed-forward artificial neural
network. Convolutional neural networks may include layers of neurons that may be
configured in a tiled receptive field. Convolutional neural networks (CNNs) have
numerous applications. In particular, CNNs have broadly been used in the area of

pattern recognition and classification.

[0005] Deep learning architectures, such as deep belief networks and deep
convolutional networks, have increasingly been used in object recognition applications.
Like convolutional neural networks, computation in these deep learning architectures
may be distributed over a population of processing nodes, which may be configured in

one or more computational chains. These multi-layered architectures offer greater

WO 2017/023551 PCT/US2016/043146

flexibility as they may be trained one layer at a time and may be fine-tuned using back

propagation.

[0006] Other models are also available for object recognition. For example, support
vector machines (SVMs) are learning tools that can be applied for classification.
Support vector machines include a separating hyperplane (e.g., decision boundary) that
categorizes data. The hyperplane is defined by supervised learning. A desired
hyperplane increases the margin of the training data. In other words, the hyperplane

should have the greatest minimum distance to the training examples.

[0007] Although these solutions achieve excellent results on a number of
classification benchmarks, their computational complexity can be prohibitively high.

Additionally, training of the models may be challenging.

SUMMARY

[0008] In one aspect of the present disclosure, a method of detecting unknown
classes is disclosed. The method includes generating a first classifier for a first classes.
In one configuration, an output of the first classifier has a dimension of at least two.
The method also includes designing a second classifier to receive the output of the first
classifier to decide whether input data belongs to the first classes or at least one second

class.

[0009] Another aspect of the present disclosure is directed to an apparatus including
means for generating a first classifier for first classes. In one configuration, an output of
the first classifier has a dimension of at least two. The apparatus also includes means
for designing a second classifier to receive the output of the first classifier to decide

whether input data belongs to the first classes or at least one second class.

[0010] In another aspect of the present disclosure, a computer program product for
detecting unknown classes is disclosed. The computer program product has a non-
transitory computer-readable medium with non-transitory program code recorded
thereon. The program code is executed by a processor and includes program code to
generate a first classifier for first classes. In one configuration, an output of the first

classifier has a dimension of at least two. The program code also includes program

WO 2017/023551 PCT/US2016/043146

code to design a second classifier to receive the output of the first classifier to decide

whether input data belongs to the first classes or at least one second class.

[0011] Another aspect of the present disclosure is directed to an apparatus for
detecting unknown classes having a memory and one or more processors coupled to the
memory. The processor(s) is configured to generate a first classifier for first classes. In
one configuration, an output of the first classifier has a dimension of at least two. The
processor(s) is also configured to design a second classifier to receive the output of the
first classifier to decide whether input data belongs to the first classes or at least one

second class.

[0012] In one aspect of the present disclosure, a method of generating synthetic
negative data is disclosed. The method includes obtaining known data from multiple
classes. The method also includes synthetically generating negative data as a function

of the known data.

[0013] Another aspect of the present disclosure is directed to an apparatus including
means for obtaining known data from multiple classes. The apparatus also includes

means for synthetically generating negative data as a function of the known data.

[0014] In another aspect of the present disclosure, a computer program product for
generating synthetic negative data is disclosed. The computer program product has a
non-transitory computer-readable medium with non-transitory program code recorded
thereon. The program code is executed by a processor and includes program code to
obtain known data from multiple classes. The program code also includes program

code to synthetically generate negative data as a function of the known data.

[0015] Another aspect of the present disclosure is directed to an apparatus for
generating synthetic negative data having a memory and one or more processors
coupled to the memory. The processor(s) is configured to obtain known data from
multiple classes. The processor(s) is also configured to synthetically generate negative

data as a function of the known data.

[0016] Additional features and advantages of the disclosure will be described below.
It should be appreciated by those skilled in the art that this disclosure may be readily

utilized as a basis for modifying or designing other structures for carrying out the same

WO 2017/023551 PCT/US2016/043146

purposes of the present disclosure. It should also be realized by those skilled in the art
that such equivalent constructions do not depart from the teachings of the disclosure as
set forth in the appended claims. The novel features, which are believed to be
characteristic of the disclosure, both as to its organization and method of operation,
together with further objects and advantages, will be better understood from the
following description when considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the figures is provided for the
purpose of illustration and description only and is not intended as a definition of the

limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The features, nature, and advantages of the present disclosure will become
more apparent from the detailed description set forth below when taken in conjunction
with the drawings in which like reference characters identify correspondingly

throughout.

[0018] FIGURE 1 illustrates an example implementation of designing a neural
network using a system-on-a-chip (SOC), including a general-purpose processor in

accordance with certain aspects of the present disclosure.

[0019] FIGURE 2 illustrates an example implementation of a system in accordance

with aspects of the present disclosure.

[0020] FIGURE 3A is a diagram illustrating a neural network in accordance with

aspects of the present disclosure.

[0021] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional

network (DCN) in accordance with aspects of the present disclosure.

[0022] FIGURE 4 is a block diagram illustrating an exemplary software architecture
that may modularize artificial intelligence (AI) functions in accordance with aspects of

the present disclosure.

[0023] FIGURE 5 is a block diagram illustrating the run-time operation of an Al

application on a smartphone in accordance with aspects of the present disclosure.

WO 2017/023551 PCT/US2016/043146

[0024] FIGURES 6 and 7 illustrate examples of binary classifiers according to

aspects of the present disclosure.

[0025] FIGURES 8A and 8B illustrate methods for detecting unknown classes

according to aspects of the present disclosure.

[0026] FIGURES 9A and 9B illustrate methods for generating synthetic unknown

data according to aspects of the present disclosure.

[0027] FIGURE 10 is flow diagram illustrating a method for unknown class

detection according to aspects of the present disclosure.

[0028] FIGURE 11 is a flow diagram illustrating a method for generating synthetic

unknown data according to aspects of the present disclosure.

[0029] FIGURE 12 is flow diagram illustrating a method for unknown class
detection and generating synthetic unknown data according to aspects of the present

disclosure.

DETAILED DESCRIPTION

[0030] The detailed description set forth below, in connection with the appended
drawings, is intended as a description of various configurations and is not intended to
represent the only configurations in which the concepts described herein may be
practiced. The detailed description includes specific details for the purpose of providing
a thorough understanding of the various concepts. However, it will be apparent to those
skilled in the art that these concepts may be practiced without these specific details. In
some instances, well-known structures and components are shown in block diagram

form in order to avoid obscuring such concepts.

[0031] Based on the teachings, one skilled in the art should appreciate that the scope
of the disclosure is intended to cover any aspect of the disclosure, whether implemented
independently of or combined with any other aspect of the disclosure. For example, an
apparatus may be implemented or a method may be practiced using any number of the
aspects set forth. In addition, the scope of the disclosure is intended to cover such an
apparatus or method practiced using other structure, functionality, or structure and

functionality in addition to or other than the various aspects of the disclosure set forth.

WO 2017/023551 PCT/US2016/043146

It should be understood that any aspect of the disclosure disclosed may be embodied by

one or more elements of a claim.

[0032] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily

to be construed as preferred or advantageous over other aspects.

[0033] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and

equivalents thereof.

[0034] A conventional classifier, such as a support vector machine (SVM), may
determine decision boundaries between two or more classes. For multi-class
classification, several classifier decision boundaries may be generated to classify a
sample. Classification refers to associating a sample with a class that was used to train
the network. For example, for facial recognition, an image detector may classify an

image of a face as belonging to a specific person (e.g., class).

[0035] Furthermore, conventional classifiers produce a vector of scores indicating
the probability of the sample belonging to each class. A class having the highest

probability may be selected as the winning class.

[0036] Still, in some cases, a sample does not belong to any of the classes that were
used to train a classifier. Thus, it may be desirable to generate a framework to initialize
the classifier to label an object as belonging to a known class or belonging to an
unknown class (or at least one unknown class). In one configuration, a first classifier is
specified to determine classification scores for a sample. Furthermore, a second
classifier may be specified to categorize a sample as known or unknown based on the

classification scores. Furthermore, in another configuration, a classification boundary

WO 2017/023551 PCT/US2016/043146

for an unknown class may be defined based on random training samples that exclude
known classes and/or include synthetically generated negative class data. The negative

class data may be referred to as unknown class data or unknown data.

[0037] FIGURE 1 illustrates an example implementation of the aforementioned
unknown class detection, unknown classifier initialization, and/or synthetic negative
data generation using a system-on-a-chip (SOC) 100, which may include a general-
purpose processor (CPU) or multi-core general-purpose processors (CPUs) 102 in
accordance with certain aspects of the present disclosure. Variables (e.g., neural signals
and synaptic weights), system parameters associated with a computational device (e.g.,
neural network with weights), delays, frequency bin information, and task information
may be stored in a memory block (e.g., at least one memory unit) associated with a
neural processing unit (NPU) 108 (e.g., at least one processor) or in a dedicated memory
block 118. Instructions executed at the general-purpose processor 102 may be loaded
from a program memory associated with the CPU 102 or may be loaded from a
dedicated memory block 118. The SOC 100 may also include additional processing
blocks tailored to specific functions, such as a graphics processing unit (GPU) 104, a
digital signal processor (DSP) 106, a connectivity block 110, which may include fourth
generation long term evolution (4G LTE) connectivity, unlicensed Wi-Fi connectivity,
USB connectivity, Bluetooth connectivity, and the like, and a multimedia processor 112
that may, for example, detect and recognize gestures. The SOC 100 may also include a
sensor processor 114, image signal processors (ISPs), and/or navigation 120, which may
include a global positioning system. The SOC may be based on an ARM instruction

set.

[0038] The SOC 100 may also include additional processing blocks tailored to
specific functions, such as a GPU 104, a DSP 106, a connectivity block 110, which may
include fourth generation long term evolution (4G LTE) connectivity, unlicensed Wi-Fi
connectivity, USB connectivity, Bluetooth connectivity, and the like, and a multimedia
processor 112 that may, for example, detect and recognize gestures. In one
implementation, the NPU is implemented in the CPU, DSP, and/or GPU. The SOC 100
may also include a sensor processor 114, image signal processors (ISPs), and/or

navigation 120, which may include a global positioning system.

WO 2017/023551 PCT/US2016/043146

[0039] The SOC 100 may be based on an ARM instruction set. In an aspect of the
present disclosure, the instructions loaded into the general-purpose processor 102 may
comprise code for generating a first classifier for first classes. In one configuration, the
output has a dimension of at least two. The instructions loaded into the general-purpose
processor 102 may also comprise code for designing a second classifier to receive the
output of the first classifier to decide whether the input data belongs to the first classes

or at least one second class.

[0040] Additionally, in another aspect of the present disclosure, the instructions

loaded into the general-purpose processor 102 may comprise code for obtaining known
data from multiple classes. The instructions loaded into the general-purpose processor
102 may also comprise code for synthetically generating negative data as a function of

the known data.

[0041] FIGURE 2 illustrates an example implementation of a system 200 in
accordance with certain aspects of the present disclosure. As illustrated in FIGURE 2,
the system 200 may have multiple local processing units 202 that may perform various
operations of methods described herein. Each local processing unit 202 may comprise a
local state memory 204 and a local parameter memory 206 that may store parameters of
a neural network. In addition, the local processing unit 202 may have a local (neuron)
model program (LMP) memory 208 for storing a local model program, a local learning
program (LLP) memory 210 for storing a local learning program, and a local connection
memory 212. Furthermore, as illustrated in FIGURE 2, each local processing unit 202
may interface with a configuration processor unit 214 for providing configurations for
local memories of the local processing unit, and with a routing connection processing

unit 216 that provides routing between the local processing units 202.

[0042] Deep learning architectures may perform an object recognition task by
learning to represent inputs at successively higher levels of abstraction in each layer,
thereby building up a useful feature representation of the input data. In this way, deep
learning addresses a major bottleneck of traditional machine learning. Prior to the
advent of deep learning, a machine learning approach to an object recognition problem
may have relied heavily on human engineered features, perhaps in combination with a
shallow classifier. A shallow classifier may be a two-class linear classifier, for

example, in which a weighted sum of the feature vector components may be compared

WO 2017/023551 PCT/US2016/043146

with a threshold to predict to which class the input belongs. Human engineered features
may be templates or kernels tailored to a specific problem domain by engineers with
domain expertise. Deep learning architectures, in contrast, may learn to represent
features that are similar to what a human engineer might design, but through training.
Furthermore, a deep network may learn to represent and recognize new types of features

that a human might not have considered.

[0043] A deep learning architecture may learn a hierarchy of features. If presented
with visual data, for example, the first layer may learn to recognize simple features,
such as edges, in the input stream. If presented with auditory data, the first layer may
learn to recognize spectral power in specific frequencies. The second layer, taking the
output of the first layer as input, may learn to recognize combinations of features, such
as simple shapes for visual data or combinations of sounds for auditory data. Higher
layers may learn to represent complex shapes in visual data or words in auditory data.

Still higher layers may learn to recognize common visual objects or spoken phrases.

[0044] Deep learning architectures may perform especially well when applied to
problems that have a natural hierarchical structure. For example, the classification of
motorized vehicles may benefit from first learning to recognize wheels, windshields,
and other features. These features may be combined at higher layers in different ways

to recognize cars, trucks, and airplanes.

[0045] Neural networks may be designed with a variety of connectivity patterns. In
feed-forward networks, information is passed from lower to higher layers, with each
neuron in a given layer communicating to neurons in higher layers. A hierarchical
representation may be built up in successive layers of a feed-forward network, as
described above. Neural networks may also have recurrent or feedback (also called top-
down) connections. In a recurrent connection, the output from a neuron in a given layer
is communicated to another neuron in the same layer. A recurrent architecture may be
helpful in recognizing patterns that span more than one of the input data chunks that are
delivered to the neural network in a sequence. A connection from a neuron in a given
layer to a neuron in a lower layer is called a feedback (or top-down) connection. A
network with many feedback connections may be helpful when the recognition of a
high-level concept may aid in discriminating the particular low-level features of an

input.

WO 2017/023551 PCT/US2016/043146

[0046] Referring to FIGURE 3 A, the connections between layers of a neural
network may be fully connected 302 or locally connected 304. In a fully connected
network 302, a neuron in a first layer may communicate its output to every neuron in a
second layer, so that each neuron in the second layer will receive input from every
neuron in the first layer. Alternatively, in a locally connected network 304, a neuron in
a first layer may be connected to a limited number of neurons in the second layer. A
convolutional network 306 may be locally connected, and is further configured such that
the connection strengths associated with the inputs for each neuron in the second layer
are shared (e.g., 308). More generally, a locally connected layer of a network may be
configured so that each neuron in a layer will have the same or a similar connectivity
pattern, but with connections strengths that may have different values (e.g., 310, 312,
314, and 316). The locally connected connectivity pattern may give rise to spatially
distinct receptive fields in a higher layer, because the higher layer neurons in a given
region may receive inputs that are tuned through training to the properties of a restricted

portion of the total input to the network.

[0047] Locally connected neural networks may be well suited to problems in which
the spatial location of inputs is meaningful. For instance, a network 300 designed to
recognize visual features from a car-mounted camera may develop high layer neurons
with different properties depending on their association with the lower versus the upper
portion of the image. Neurons associated with the lower portion of the image may learn
to recognize lane markings, for example, while neurons associated with the upper

portion of the image may learn to recognize traffic lights, traffic signs, and the like.

[0048] A DCN may be trained with supervised learning. During training, a DCN
may be presented with an image 326, such as a cropped image of a speed limit sign, and
a “forward pass” may then be computed to produce an output 322. The output 322 may
be a vector of values corresponding to features such as “sign,” “60,” and “100.” The
network designer may want the DCN to output a high score for some of the neurons in
the output feature vector, for example the ones corresponding to “sign” and “60” as
shown in the output 322 for a network 300 that has been trained. Before training, the
output produced by the DCN is likely to be incorrect, and so an error may be calculated
between the actual output and the target output. The weights of the DCN may then be
adjusted so that the output scores of the DCN are more closely aligned with the target.

10

WO 2017/023551 PCT/US2016/043146

[0049] To adjust the weights, a learning algorithm may compute a gradient vector
for the weights. The gradient may indicate an amount that an error would increase or
decrease if the weight were adjusted slightly. At the top layer, the gradient may
correspond directly to the value of a weight connecting an activated neuron in the
penultimate layer and a neuron in the output layer. In lower layers, the gradient may
depend on the value of the weights and on the computed error gradients of the higher
layers. The weights may then be adjusted so as to reduce the error. This manner of
adjusting the weights may be referred to as “back propagation” as it involves a

“backward pass” through the neural network.

[0050] In practice, the error gradient of weights may be calculated over a small
number of examples, so that the calculated gradient approximates the true error
gradient. This approximation method may be referred to as stochastic gradient descent.
Stochastic gradient descent may be repeated until the achievable error rate of the entire

system has stopped decreasing or until the error rate has reached a target level.

[0051] After learning, the DCN may be presented with new images 326 and a
forward pass through the network may yield an output 322 that may be considered an

inference or a prediction of the DCN.

[0052] Deep belief networks (DBNs) are probabilistic models comprising multiple
layers of hidden nodes. DBNs may be used to extract a hierarchical representation of
training data sets. A DBN may be obtained by stacking up layers of Restricted
Boltzmann Machines (RBMs). An RBM is a type of artificial neural network that can
learn a probability distribution over a set of inputs. Because RBMs can learn a
probability distribution in the absence of information about the class to which each
input should be categorized, RBMs are often used in unsupervised learning. Using a
hybrid unsupervised and supervised paradigm, the bottom RBMs of a DBN may be
trained in an unsupervised manner and may serve as feature extractors, and the top
RBM may be trained in a supervised manner (on a joint distribution of inputs from the

previous layer and target classes) and may serve as a classifier.

[0053] Deep convolutional networks (DCN5s) are networks of convolutional
networks, configured with additional pooling and normalization layers. DCNs have

achieved state-of-the-art performance on many tasks. DCNs can be trained using

11

WO 2017/023551 PCT/US2016/043146

supervised learning in which both the input and output targets are known for many
exemplars and are used to modify the weights of the network by use of gradient descent

methods.

[0054] DCNs may be feed-forward networks. In addition, as described above, the
connections from a neuron in a first layer of a DCN to a group of neurons in the next
higher layer are shared across the neurons in the first layer. The feed-forward and
shared connections of DCNs may be exploited for fast processing. The computational
burden of a DCN may be much less, for example, than that of a similarly sized neural

network that comprises recurrent or feedback connections.

[0055] The processing of each layer of a convolutional network may be considered
a spatially invariant template or basis projection. If the input is first decomposed into
multiple channels, such as the red, green, and blue channels of a color image, then the
convolutional network trained on that input may be considered three-dimensional, with
two spatial dimensions along the axes of the image and a third dimension capturing
color information. The outputs of the convolutional connections may be considered to
form a feature map in the subsequent layer 318 and 320, with each element of the
feature map (e.g., 320) receiving input from a range of neurons in the previous layer
(e.g., 318) and from each of the multiple channels. The values in the feature map may
be further processed with a non-linearity, such as a rectification, max(0,x). Values from
adjacent neurons may be further pooled, which corresponds to down sampling, and may
provide additional local invariance and dimensionality reduction. Normalization, which
corresponds to whitening, may also be applied through lateral inhibition between

neurons in the feature map.

[0056] The performance of deep learning architectures may increase as more
labeled data points become available or as computational power increases. Modern
deep neural networks are routinely trained with computing resources that are thousands
of times greater than what was available to a typical researcher just fifteen years ago.
New architectures and training paradigms may further boost the performance of deep
learning. Rectified linear units may reduce a training issue known as vanishing
gradients. New training techniques may reduce over-fitting and thus enable larger
models to achieve better generalization. Encapsulation techniques may abstract data in

a given receptive field and further boost overall performance.

12

WO 2017/023551 PCT/US2016/043146

[0057] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional
network 350. The deep convolutional network 350 may include multiple different types
of layers based on connectivity and weight sharing. As shown in FIGURE 3B, the
exemplary deep convolutional network 350 includes multiple convolution blocks (e.g.,
C1 and C2). Each of the convolution blocks may be configured with a convolution
layer, a normalization layer (LNorm), and a pooling layer. The convolution layers may
include one or more convolutional filters, which may be applied to the input data to
generate a feature map. Although only two convolution blocks are shown, the present
disclosure is not so limiting, and instead, any number of convolutional blocks may be
included in the deep convolutional network 350 according to design preference. The
normalization layer may be used to normalize the output of the convolution filters. For
example, the normalization layer may provide whitening or lateral inhibition. The
pooling layer may provide down sampling aggregation over space for local invariance

and dimensionality reduction.

[0058] The parallel filter banks, for example, of a deep convolutional network may
be loaded on a CPU 102 or GPU 104 of an SOC 100, optionally based on an ARM
instruction set, to achieve high performance and low power consumption. In alternative
embodiments, the parallel filter banks may be loaded on the DSP 106 or an ISP 116 of
an SOC 100. In addition, the DCN may access other processing blocks that may be
present on the SOC, such as processing blocks dedicated to sensors 114 and navigation

120.

[0059] The deep convolutional network 350 may also include one or more fully
connected layers (e.g., FC1 and FC2). The deep convolutional network 350 may further
include a logistic regression (LR) layer. Between each layer of the deep convolutional
network 350 are weights (not shown) that are to be updated. The output of each layer
may serve as an input of a succeeding layer in the deep convolutional network 350 to
learn hierarchical feature representations from input data (e.g., images, audio, video,

sensor data and/or other input data) supplied at the first convolution block C1.

[0060] FIGURE 4 is a block diagram illustrating an exemplary software architecture
400 that may modularize artificial intelligence (AI) functions. Using the architecture,

applications 402 may be designed that may cause various processing blocks of an SOC

13

WO 2017/023551 PCT/US2016/043146

420 (for example a CPU 422, a DSP 424, a GPU 426 and/or an NPU 428) to perform

supporting computations during run-time operation of the application 402.

[0061] The Al application 402 may be configured to call functions defined in a user
space 404 that may, for example, provide for the detection and recognition of a scene
indicative of the location in which the device currently operates. The AT application
402 may, for example, configure a microphone and a camera differently depending on
whether the recognized scene is an office, a lecture hall, a restaurant, or an outdoor
setting such as a lake. The Al application 402 may make a request to compiled program
code associated with a library defined in a SceneDetect application programming
interface (API) 406 to provide an estimate of the current scene. This request may
ultimately rely on the output of a deep neural network configured to provide scene

estimates based on video and positioning data, for example.

[0062] A run-time engine 408, which may be compiled code of a Runtime
Framework, may be further accessible to the Al application 402. The Al application
402 may cause the run-time engine, for example, to request a scene estimate at a
particular time interval or triggered by an event detected by the user interface of the
application. When caused to estimate the scene, the run-time engine may in turn send a
signal to an operating system 410, such as a Linux Kernel 412, running on the SOC 420.
The operating system 410, in turn, may cause a computation to be performed on the
CPU 422, the DSP 424, the GPU 426, the NPU 428, or some combination thereof. The
CPU 422 may be accessed directly by the operating system, and other processing blocks
may be accessed through a driver, such as a driver 414-418 for a DSP 424, for a GPU
426, or for an NPU 428. In the exemplary example, the deep neural network may be
configured to run on a combination of processing blocks, such as a CPU 422 and a GPU

426, or may be run on an NPU 428, if present.

[0063] FIGURE 5 is a block diagram illustrating the run-time operation 500 of an
Al application on a smartphone 502. The Al application may include a pre-process
module 504 that may be configured (using for example, the JAVA programming
language) to convert the format of an image 506 and then crop and/or resize the image
508. The pre-processed image may then be communicated to a classify application 510
that contains a SceneDetect Backend Engine 512 that may be configured (using for

example, the C programming language) to detect and classify scenes based on visual

14

WO 2017/023551 PCT/US2016/043146

input. The SceneDetect Backend Engine 512 may be configured to further preprocess
514 the image by scaling 516 and cropping 518. For example, the image may be scaled
and cropped so that the resulting image is 224 pixels by 224 pixels. These dimensions
may map to the input dimensions of a neural network. The neural network may be
configured by a deep neural network block 520 to cause various processing blocks of
the SOC 100 to further process the image pixels with a deep neural network. The
results of the deep neural network may then be thresholded 522 and passed through an
exponential smoothing block 524 in the classify application 510. The smoothed results

may then cause a change of the settings and/or the display of the smartphone 502.

[0064] In one configuration, a machine learning model is configured for generating,
designing, obtaining, and/or synthetically generating. The model includes a generating
means, designing means, obtaining means and/or synthetically generating means. In
one aspect, the generating means, designing means, obtaining means and/or
synthetically generating means may be the general-purpose processor 102, program
memory associated with the general-purpose processor 102, memory block 118, local
processing units 202, and or the routing connection processing units 216 configured to
perform the functions recited. In another configuration, the aforementioned means may
be any module or any apparatus configured to perform the functions recited by the

aforementioned means.

[0065] According to certain aspects of the present disclosure, each local processing
unit 202 may be configured to determine parameters of the network based upon desired
one or more functional features of the network, and develop the one or more functional
features towards the desired functional features as the determined parameters are further

adapted, tuned and updated.

DETECTING UNKNOWN CLASSES AND INITIALIZING CLASSIFIERS

[0066] In most systems, a classifier, such as a support vector machine, is specified
to work in conjunction with a feature extractor. For example, the deep convolutional
network extracts features from an input and the classifier categorizes the input based on
the extracted features. That is, the classifier determines whether the features belong to a
known or unknown class. Furthermore, the input may be classified based on the classes

assigned to the extracted features.

15

WO 2017/023551 PCT/US2016/043146

[0067] As previously discussed, a multi-class classifier may be trained with multiple
classes to associate a received sample with a class. For example, the multi-class
classifier may receive an image of a car and determine the type of car based on the
trained classes. Still, in some cases, such as during the test of a network, a sample may
not belong to any of the classes that were used to train a multi-class classifier. Thus, it
may be desirable to generate a framework to initialize the multi-class classifier to label
an object as belonging to a known class or belonging to an unknown class. The multi-

class classifier may be referred to as the classifier.

[0068] In one configuration, a binary classifier is used in conjunction with a
classifier, such as a support vector machine, to determine whether a sample belongs to a
known or unknown class. Specifically, in this configuration, the vector of scores
produced by a multi-class classifier, or a subset of the multi-class classifier, are used as
a feature vector to build a binary classifier. The binary classifier is specified for

classifying a sample as known or unknown.

[0069] Additionally, in some cases there may only be one class for a classifier. For
example, the classifier may be specified to determine whether an object is a dog. In this
example, when an image is presented to the classifier, the object is classified either as a
dog or not a dog. Still, it may be desirable to create a framework to initialize a classifier
to recognize an input as belonging to the one known class or to assign an unknown label

to the input.

[0070] As previously discussed, the classifier may generate a vector of scores
indicating the confidence (e.g., probability) of the sample belonging to each class. In
most cases, the scores are normalized to generate a confidence for each class and a class

having the highest confidence may be selected as the winning class.

[0071] In one configuration, the un-normalized (e.g., raw) scores may be used for a
binary classifier. In most cases, when a known sample is received, the raw scores may
be distributed so that the raw scores of one or more classes have reduced values and a
raw score of a specific class has an increased value. Furthermore, when an unknown
sample is received, the values of the raw scores may be uniform amongst the classes,
e.g., uniformly low. If the confidence (e.g., scores) is low for all classes, then it can be

determined that the image is unknown. In this example, a raw score may have a range

16

WO 2017/023551 PCT/US2016/043146

that is beyond the normalized score range of O to 1, such as -10 to 10, where 10 is the
highest confidence and -10 1s the lowest confidence. Of course, the range is not limited
to -10 to 10 and may be any range. In the present disclosure, a raw score may be

referred to as a score.

[0072] In this configuration, the score vector may be used to train a binary classifier.
That is, the binary classifier may be trained to recognize the pattern of the scores so that
the binary classifier may recognize whether a sample is known or unknown. Thus, in
one configuration, the binary classifier determines whether a sample is known or
unknown prior to the classifier assigning a class to a sample. For example, if the sample
is an unknown class, the classifier may not determine the class. Alternatively, if the
sample belongs to the known class, the classifier may be specified to determine the

class.

[0073] The present disclosure is not limited to known and unknown classes, the
binary classifier may be specified to perform other types of binary distinctions, such as
men/women, faces with glasses/faces without glasses, and/or long hair/short hair. For
example, a classifier may have classes for detecting the faces of different women. In
this example, if the binary classifier is specified to determine men and women, the
classifier may not determine the class if the binary classifier determines that the input is

a face of a man.

[0074] Furthermore, a binary classifier may be specified based on a threshold for
each score of multiple scores, such as the top two scores for a sample, of an n-element
score vector, where 7 is the number of classes. That is, in this example, a threshold may
be specified for each of the top two scores. Furthermore, the sample may be classified
as unknown if a score of a sample is less than the threshold for each of the top two
scores. Alternatively, the sample may be classified as known if a score of a sample is

greater than the threshold for the top two scores.

[0075] FIGURE 6 illustrates an example of a two-dimensional binary classifier 610
based on thresholds set for each of the top two scores of an n-element score vector. As
shown in FIGURE 6, the x-axis is a range of scores of the highest scoring class for the
sample and the y-axis is a range of scores of the second highest scoring class for the

sample.

17

WO 2017/023551 PCT/US2016/043146

[0076] In one example, as shown in FIGURE 6, if a sample has a high score of 4
and a second high score of -6, the sample may be classified as a known sample.
Furthermore, in another example, as shown in FIGURE 6, if a sample has a high score
of -2 and a second high score of -2, the sample may be classified as unknown. That is,
in this example, the sample is classified as known if the score is greater than the two-
dimensional binary classifier 610 and the sample is classified as unknown if the score is
less than the two-dimensional binary classifier 610. More specifically, samples to the
left of the two-dimensional binary classifier 610 are classified as unknown and samples
to the right of the two-dimensional binary classifier 610 are classified as known

samples.

[0077] Still, as shown in FIGURE 6, false positives and false negatives may be
generated based on the two-dimensional binary classifier 610. False positives refer to
unknown samples that may be classified as known samples. Additionally, false
negatives refer to known samples that may be classified as unknown samples.
Furthermore, as shown in FIGURE 6, some samples may be known samples that are

incorrectly classified.

[0078] In some cases, the number of false positives and false negatives may be
reduced by adjusting the thresholds for the binary classifier. Furthermore, it may be
desirable to increase the number of dimensions used for the binary classifier to improve

results. Still, it may not be desirable to use a one-dimensional binary classifier.

[0079] FIGURE 7 shows an example of a one-dimensional binary classifier 710. As
shown in FIGURE 7, a threshold may be set to zero for the highest score received for a
sample from an n-element score vector. In this example, the sample is classified as
known if the score is greater than the one-dimensional binary classifier 710 and the
sample is classified as unknown if the score is less than the one-dimensional binary
classifier 710. Still, as shown in FIGURE 7, the number of false negatives for the one-
dimensional binary classifier 710 is greater than the number of false negatives for the
two-dimensional binary classifier 610. Thus, it may be desirable to specify a binary

classifier having a dimension that is greater than one.

[0080] In one configuration, when an increased number of unknown samples are

received, the unknown samples may be clustered to generate an unknown class. The

18

WO 2017/023551 PCT/US2016/043146

unknown class may be used to initialize an unknown class in a classifier and/or modify
an existing unknown class. Furthermore, in one configuration, a user may be polled to
determine if the unknown data should be labeled so that the unknown data becomes

known data.

[0081] In some cases, a classifier may be initialized on one known class. Therefore,
it may be desirable to initialize the classifier to add one or more unknown classes.

Thus, in one configuration, one or more additional training sets include a group of
samples taken from classes outside of the known groups. The one or more additional
training sets may be used to initialize unknown classifiers to classify unknown samples.
For example, an additional classifier boundary may be generated to separate all known

classes from the unknown class.

[0082] In one configuration, the unknown samples may be random training samples
from a distribution that excludes the known classes. That is, samples may include
positive examples as well as one or more negative examples of the class that is being
trained. For example, if the class is being trained on images of a specific model of car,
the positive examples include examples of the specific car model and the negative

examples include examples of other car models.

[0083] In another configuration, the unknown samples are synthetic samples. That
is, synthetic unknown class features may be generated by applying a transformation on
each known class feature to separate the known class feature from the other known

classes using a metric, such as a distance metric, in the feature space.

[0084] In one configuration, multiple points that describe a class in a feature space
are specified to create a negative class. For example, if a cloud of points may describe a
class, a vector is generated from each sample to the middle of the cloud. Furthermore,
in this example, each vector may be flipped and a negative sample is generated from the
end of the flipped vector. In another configuration, points in a vector space that
surround a class are specified to generate a negative class. The points may refer to

vectors generated from positive samples.

[0085] FIGURE 8A illustrates an example of using positive points 800 to create a
negative class according to an aspect of the present disclosure. As shown in FIGURE

8A, multiple positive points 800 form a cluster in a feature space. Furthermore, as

19

WO 2017/023551 PCT/US2016/043146

shown in FIGURE 8A, a first vector 804 is calculated from a first point 802 to the
center of the cluster. Additionally, a second vector 806 is generated by flipping the first
vector 804. Finally, a first synthetic negative point 808 is generated based on the
second vector 806. In this example, a synthetic class is generated based on the synthetic
negative points generated from the vector of each positive point. That is, for every
positive point, a synthetic negative point is generated. The aspects disclosed in
FIGURE 8A are not limited to a specific cluster and are also contemplated for different

groups of clusters.

[0086] FIGURE 8B illustrates an example of using positive points 850 to create a
negative class according to an aspect of the present disclosure. As shown in FIGURE
8B, multiple positive points 850 form a cluster in a feature space. Furthermore, in this
example, a global centroid 858 of the multiple positive points 850 in each class is
determined and is used to define a central direction from each class centroid to the
global centroid. A negative vector 854 is also defined for each point as the negative of
the vector from the cluster centroid and each point. Based on the angle between the
negative vector 854 and the central vector 852, negative vectors are kept when pointing
in the same general direction as the central vector 852, where the general direction is

defined by the dot product of the negative vector and the central vector.

[0087] For example, vectors with an angle of less than 90 degrees between them
could be considered pointing in the same general direction, as shown in FIGURE 8B. A
negative point 856 is generated from each negative vector 854 remaining after removing
those that are not pointing in the general direction of the central vector. Additionally, a
negative class is generated from the negative points 856. The aspects disclosed in
FIGURES 8A and 8B are not limited to a specific cluster and are also contemplated for

different groups of clusters.

[0088] FIGURE 9A illustrates an example of using a group of clusters 900, 902,
910 to create a negative class according to an aspect of the present disclosure. As
shown in FIGURE 9A, multiple clusters 900, 902, 910 may be formed from positive
points in a feature space. In this example, a central vector is calculated from each
cluster to the global center of the group of clusters 900, 902, 910. For example, as
shown in FIGURE 9A, a first vector 904 is calculated from the first cluster group 902 to

the global center 912. Finally, one or more negative points 908 are generated by adding

20

WO 2017/023551 PCT/US2016/043146

a scaled version of the central vector (e.g. 904) to some or all of the points in the
positive class. In this example, a synthetic negative class is generated based on the

negative points 908 (The vectors from clusters 900, 910 are not shown).

[0089] FIGURE 9B illustrates an example of using a group of clusters 950, 962, 972
to create a negative class according to an aspect of the present disclosure. As shown in
FIGURE 9B, multiple clusters 950, 962, 972 may be formed from positive points in a
feature space. Furthermore, in this example, two cluster vectors 952 from cluster 962 to
clusters 950, and 972 are determined. Based on the cluster vectors 952, negative vectors
954 (only two are shown) are generated for points in the cluster 962. The negative
vectors 954 may be generated for all or some of the points in the cluster. Furthermore,
one or more negative points 956 are generated from each negative vector 954.

Additionally, a negative class is generated from the negative points 956.

[0090] In yet another aspect, unsupervised learning occurs on an unknown class.
The unknown class is analyzed to obtain a cluster. The cluster can then be sent to a

more sophisticated network to identify the cluster.

[0091] FIGURE 10 illustrates a method 1000 for unknown class detection. In block
1002, the network generates a first classifier for a multiple first classes. In one
configuration, the output has a dimension of at least two. Furthermore, in block 1004,
the network designs a second classifier to receive the output of the first classifier to
decide whether input data belongs to the multiple first classes or one or more second

classes. The second classifier can be either linear or non-linear.

[0092] FIGURE 11 illustrates a method 1100 for generating synthetic negative data.
In block 1102, the network obtains known data from multiple classes. Furthermore, in
block 1104, the network synthetically generates negative data as a function of the

known data.

[0093] FIGURE 12 illustrates a flow diagram 1200 for unknown class detection
according to an aspect of the present disclosure. In block 1202, a first classifier receives
an input. The classifier may classify the input based on extracted features of the input
or to train a second classifier based on extracted features of the input. As an example,
the input is an image. The first classifier may be a single class classifier or a multi-class

classifier.

21

WO 2017/023551 PCT/US2016/043146

[0094] The first classifier outputs a vector of scores indicating the confidence (e.g.,
probability) of the sample belonging to one or more classes. In conventional systems,
the scores are normalized to generate a confidence for each class and a class having the
highest confidence may be selected as the winning class. In one configuration, the un-
normalized (e.g., raw) scores may be used to train a second classifier, such as a binary
classifier. That is, the second classifier may be trained with examples of data belonging

to one or more known classes and data not belonging to the one or more known classes.

[0095] In one configuration, the data not belonging to the one or more known
classes is negative data synthetically generated as a function of the known data. Thus,
as an option, at block 1204, negative data is synthetically generated as a function of the
known data. Furthermore, in block 1206, the second classifier is trained on the scores
of the known data and the unknown data. That is, the binary classifier may be trained to
recognize the pattern of the scores so that the binary classifier may recognize whether a

sample is known or unknown.

[0096] After training, the first classifier may receive an input and output the raw
scores to the trained second classifier. At block 1208, the trained second classifier
determines whether a sample is known or unknown prior to the first classifier assigning
a class to an extracted feature. For example, if the extracted feature is an unknown
class, the first classifier may not determine the class and the second classifier classifies
an extracted feature as unknown (block 1212). Alternatively, if the extracted feature
belongs to a known class, the first classifier may be specified to determine the class

(block 1210).

[0097] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,
but not limited to, a circuit, an application specific integrated circuit (ASIC), or
processor. Generally, where there are operations illustrated in the figures, those
operations may have corresponding counterpart means-plus-function components with

similar numbering.

[0098] As used herein, the term “determining” encompasses a wide variety of

actions. For example, “determining” may include calculating, computing, processing,

22

WO 2017/023551 PCT/US2016/043146

deriving, investigating, looking up (e.g., looking up in a table, a database or another data
structure), ascertaining and the like. Additionally, “determining” may include receiving
(e.g., receiving information), accessing (e.g., accessing data in a memory) and the like.
Furthermore, “determining” may include resolving, selecting, choosing, establishing

and the like.

[0099] As used herein, a phrase referring to “at least one of” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of: a, b, or ¢” is intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

[00100] The various illustrative logical blocks, modules and circuits described in
connection with the present disclosure may be implemented or performed with a
general-purpose processor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array signal (FPGA) or other
programmable logic device (PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform the functions described
herein. A general-purpose processor may be a microprocessor, but in the alternative,
the processor may be any commercially available processor, controller, microcontroller
or state machine. A processor may also be implemented as a combination of computing
devices, e.g., a combination of a DSP and a microprocessor, a plurality of
Mmicroprocessors, one or more microprocessors in conjunction with a DSP core, or any

other such configuration.

[00101] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash
memory, erasable programmable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or
many instructions, and may be distributed over several different code segments, among
different programs, and across multiple storage media. A storage medium may be

coupled to a processor such that the processor can read information from, and write

23

WO 2017/023551 PCT/US2016/043146

information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

[00102] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged
with one another without departing from the scope of the claims. In other words, unless
a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[00103] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus may include any number
of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[00104] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors. Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination thereof, whether referred to as
software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, random access
memory (RAM), flash memory, read only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only memory (EPROM), electrically
erasable programmable Read-only memory (EEPROM), registers, magnetic disks,

24

WO 2017/023551 PCT/US2016/043146

optical disks, hard drives, or any other suitable storage medium, or any combination
thereof. The machine-readable media may be embodied in a computer-program

product. The computer-program product may comprise packaging materials.

[00105] In a hardware implementation, the machine-readable media may be part of
the processing system separate from the processor. However, as those skilled in the art
will readily appreciate, the machine-readable media, or any portion thereof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as the case may be with
cache and/or general register files. Although the various components discussed may be
described as having a specific location, such as a local component, they may also be
configured in various ways, such as certain components being configured as part of a

distributed computing system.

[00106] The processing system may be configured as a general-purpose processing
system with one or more microprocessors providing the processor functionality and
external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may comprise one or more neuromorphic
processors for implementing the neuron models and models of neural systems described
herein. As another alternative, the processing system may be implemented with an
application specific integrated circuit (ASIC) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of the machine-readable media
integrated into a single chip, or with one or more field programmable gate arrays
(FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic,
discrete hardware components, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described throughout this disclosure.
Those skilled in the art will recognize how best to implement the described functionality
for the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

25

WO 2017/023551 PCT/US2016/043146

[00107] The machine-readable media may comprise a number of software modules.
The software modules include instructions that, when executed by the processor, cause
the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a hard drive when a
triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions
from that software module. Furthermore, it should be appreciated that aspects of the
present disclosure result in improvements to the functioning of the processor, computer,

machine, or other system implementing such aspects.

[00108] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to
another. A storage medium may be any available medium that can be accessed by a
computer. By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Additionally, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in

some aspects computer-readable media may comprise non-transitory computer-readable

26

WO 2017/023551 PCT/US2016/043146

media (e.g., tangible media). In addition, for other aspects computer-readable media
may comprise transitory computer- readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.

[00109] Thus, certain aspects may comprise a computer program product for
performing the operations presented herein. For example, such a computer program
product may comprise a computer-readable medium having instructions stored (and/or
encoded) thereon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[00110] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a user terminal and/or base station as applicable. For
example, such a device can be coupled to a server to facilitate the transfer of means for
performing the methods described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or providing the storage means to
the device. Moreover, any other suitable technique for providing the methods and

techniques described herein to a device can be utilized.

[00111] TItis to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.

27

WO 2017/023551 PCT/US2016/043146

CLAIMS
WHAT IS CLAIMED IS:

1. A method of detecting unknown classes, comprising:

generating a first classifier for a first plurality of classes, an output of the first
classifier having a dimension of at least two; and

designing a second classifier to receive the output of the first classifier to decide

whether input data belongs to the first plurality of classes or at least one second class.

2. The method of claim 1, further comprising classifying the input data into at least
one unknown class when the input data does not belong to one of the first plurality of

classes.

3. The method of claim 1, in which designing the second classifier comprises
training the second classifier with examples of data belonging to the first plurality of

classes and data not belonging to the first plurality of classes.

4. The method of claim 3, in which the data not belonging to the first plurality of

classes comprises synthetically generated negative data.

5. The method of claim 4, in which the synthetically generated negative data is a

function of known data from the first plurality of classes.

6. The method of claim 3, further comprising modifying a boundary of at least one
of the first plurality of classes, one of the at least one second class, or a combination

thereof based at least in part on the data not belonging to the first plurality of classes.

7. The method of claim 1, in which the first plurality of classes are a plurality of

known classes.

8. The method of claim 1, in which the at least one second class comprises an
unknown class or a plurality of classes that are different from the first plurality of

classes.

9. The method of claim 1, in which the second classifier is linear or non-linear.

28

WO 2017/023551 PCT/US2016/043146

10. A method of generating synthetic negative data, comprising:
obtaining known data from a plurality of classes; and

synthetically generating negative data as a function of the known data.

11. The method of claim 10, in which synthetically generating the negative data
comprises:

computing a first vector between each known data point in a cluster of known
data and a centroid of the cluster; and

computing a second vector between a centroid of class specific clusters and a

centroid of all known data points independent of class.

12. The method of claim 11, further comprising generating the negative data from

the second vector or a negative vector of the first vector.

13. The method of claim 10, further comprising training a classifier on the negative

data.

14. The method of claim 10, further comprising modifying a boundary of at least an
existing known class, an existing unknown class, or a combination thereof based at least

in part on the negative data.

15. An apparatus for detecting unknown classes, comprising;
at least one memory unit; and
at least one processor coupled to the memory unit, the at least one processor
configured:
to generate a first classifier for a first plurality of classes, an output of the
first classifier having a dimension of at least two; and
to design a second classifier to receive the output of the first classifier to
decide whether input data belongs to the first plurality of classes or at least one

second class.

16. The apparatus of claim 15, in which the at least one processor is further
configured to classify the input data into at least one unknown class when the input data

does not belong to one of the first plurality of classes.

29

WO 2017/023551 PCT/US2016/043146

17. The apparatus of claim 15, in which the at least one processor is further
configured to train the second classifier with examples of data belonging to the first

plurality of classes and data not belonging to the first plurality of classes.

18. The apparatus of claim 17, in which the data not belonging to the first plurality

of classes comprises synthetically generated negative data.

19. The apparatus of claim 18, in which the synthetically generated negative data is

a function of known data from the first plurality of classes.

20. The apparatus of claim 17, in which the at least one processor is further
configured to modify a boundary of at least one of the first plurality of classes, one of
the at least one second class, , or a combination thereof based at least in part on the data

not belonging to the first plurality of classes.

21. The apparatus of claim 15, in which the first plurality of classes are a plurality of

known classes.

22. The apparatus of claim 15, in which the at least one second class comprises an

unknown class or a plurality of classes that are different from the first plurality of

classes.
23. The apparatus of claim 15, in which the second classifier is linear or non-linear.
24, A apparatus for generating synthetic negative data, comprising:

at least one memory unit; and

at least one processor coupled to the memory unit, the at least one processor

configured:

to obtain known data from a plurality of classes; and

to synthetically generate negative data as a function of the known data.
25. The apparatus of claim 24, in which the at least one processor is further
configured:

to compute a first vector between each known data point in a cluster of known

data and a centroid of the cluster; and

30

WO 2017/023551 PCT/US2016/043146

to compute a second vector between a centroid of class specific clusters and a

centroid of all known data points independent of class.

26. The apparatus of claim 25, in which the at least one processor is further
configured to generate the negative data from the second vector or a negative vector of

the first vector.

27. The apparatus of claim 24, in which the at least one processor is further

configured to train a classifier on the negative data.

28. The apparatus of claim 24, in which the at least one processor is further
configured to modify a boundary of at least an existing known class, an existing

unknown class, or a combination thereof based at least in part on the negative data.

29. A non-transitory computer-readable medium having program code recorded
thereon, the program code being executed by a processor and comprising:

program code to generate a first classifier for a first plurality of classes, an
output of the first classifier having a dimension of at least two; and

program code to design a second classifier to receive the output of the first
classifier to decide whether input data belongs to the first plurality of classes or at least

one second class.

30. A non-transitory computer-readable medium having program code recorded
thereon, the program code being executed by a processor and comprising:

program code to obtain known data from a plurality of classes; and

program code to synthetically generate negative data as a function of the known

data.

31 An apparatus for detecting unknown classes, comprising;

means for generating a first classifier for a first plurality of classes, an output of
the first classifier having a dimension of at least two; and

means for designing a second classifier to receive the output of the first classifier
to decide whether input data belongs to the first plurality of classes or at least one

second class.

31

WO 2017/023551 PCT/US2016/043146

32. An apparatus for generating synthetic negative data, comprising;
means for obtaining known data from a plurality of classes; and

means for synthetically generating negative data as a function of the known data.

32

WO 2017/023551

100

1/14

PCT/US2016/043146

1024

1044

106

108

110

I
1

CPUs

MULTIMEDIA
GPU
DSP SENSORS
NPUs ISPs

MEMORY
CONNECTIVITY
NAVIGATION

—112

—114

—116

—118

—120

FIG. 1

PCT/US2016/043146

WO 2017/023551

2/14

¢ O

[11u) SuIssadoid 807

AJOWRAN

weI3orq

weI3orq
uorddUU0)) Surured | ADOIAT 1290

820 820 [PPOIN [E00°]
™ [4¥4 J 01¢ J 80¢C ~ >
AJOWRAN CIowop _

IRjoweIRd
[290] QJe)g [£90] _
90z - voz -~ _
_
3uIss9001 . _
uoneIngyuo.) . _
_
AIOWRIN weidoid _
uondauuU0)) Jururea| 5 :mﬁwo%%o _
8207 820 [PPON [B00T _
[4¥4 J 01¢ J 80¢C \ “
> KIOWSN o >
Iopuweled OUWRIN _
890 QJe)S [800] _
_
907 - voz -~ _
131U SuISSad0I{ [BJ07] _
14%4 ~

3urssa001qd
uornIUUo))
3unnoy

WO 2017/023551 PCT/US2016/043146

3/14
302 304 306
FULLY CONNECTED LOCALLY CONNECTED CONVOLUTIONAL

30
h 18 0 CLASSFICATION 322

R A R

FEATUREMAPS FEATUREMAPS .\ n \

25 B8 e AT

“.“\“ ‘ 5.\ . \
“"_ \ & . XK — \\
(o) \\“ &0 \ m\ o2 !
%

CONVOLUTION

FEATURE EXTRACTION CONVOLUTION

FIG. 34

WO 2017/023551 PCT/US2016/043146

4/14

350

)

COv)

Y

LNorm]

Y

MAXPOOL)

l

COv)

Y

Y

LNorm]

Y

MAXPOOL)

Y
Fof

l

FC2

l

LR

FIG. 3B

PCT/US2016/043146

WO 2017/023551

5/14

v OId

0cv -1

0l

y0v -1

7, 7, 12y 7,
\ . \ JYYMANYH
- NOSYHAAYNS
.. S S
\ % 30VdS
v EIEN
| NHOMINYES FWILNNY HLOYTZ
B | a P O S
! 80v ¢ dY : IdY m
m <3134 3104 POIRgeUs !
m \\ !
yseloss W
............................. S NOILYOMddY -
= 34N1y34 HLOY3Z

00v

PCT/US2016/043146

6/14

WO 2017/023551

$ O

Casody T T T T 1 (ang=poisias)
e INHLOORS | S11nS3
ol SOBRANT e} 3} Ao
_ N.mm._w._zmm_m zo_._%mom_“__mmio \ / w Nﬂ __. i
“ weonﬂ@z _ g%ﬁ \ __ 00¥d3id dol _ oOo0D
1 I 1 |
s iy IR s B <+
| ONISS300K e {7 A |
e — A LR E L —
hlg A /

y0G 208 /

PCT/US2016/043146

7/14

1 SCORE

TOP

FIG. 6

WO 2017/023551

e
i
i
i
i
!
|||||+ |||||||
o
= D
L e
o O
DHMW 1 T] 4
S== " w “ .un_.._m N T
L= I i i e . i
= =0 \ 1 i oe | . 1
=== ! ! i R L
OO x|t] o Peag i G
=== i i ! T e "ge"!
D ! ” “ ! - . o4
« o . I i i I 6 o
! ! i ! !
i | ! i | !
i i i i i i
[l o -3 © oo [} o~

PCT/US2016/043146

WO 2017/023551

8/14

i i
! |
I |
i]
i |
| I
|||||| L __4
] i
| i
I |
I |
i]
i |
|||||| '
| I
] i
| i
I |
I |
i]
|||||| e m e —
| I
|] I
] i
1 #
I |
1 e]
|||||| [
i |
=2 0 |
M~ ® o«
| &
| ev o &F
[i [Py
B,
a
1 nuw
] o
I *
|||||| - — — Sem
I |
i]
i |
| I
| I
] i
llllll oy
|
S|
]
& ol
o o i
o O |
-1 © -—=5
o O 1
CNW i
i |
== _
=== !
OO X |___]
= = = 7
X X T “
& a L) i
|
] !
| i
[o

TOP1 SCORE

FIG. 7

9/14

WO 2017/023551

> 5 X

10/14

PCT/US2016/043146

908

PCT/US2016/043146

WO 2017/023551

11/14

950

/r***

972

956

FIG. 9B

WO 2017/023551

1000

PCT/US2016/043146

12/14

GENERATE A FIRST CLASSIFIER FOR MULTIPLE
FIRST CLASSES

1002

l

DESIGN A SECOND CLASSIFIER TO RECEIVE THE
OUTPUT OF THE FIRST CLASSIFIER TO DECIDE
WHETHER INPUT DATA BELONGS TO THE
MULTIPLE FIRST CLASSES OR ONE OR MORE
SECOND CLASSES

L 1004

FIG. 10

WO 2017/023551 PCT/US2016/043146

13/14

1100
~y
— 1102
OBTAIN KNOWN DATA FROM MULTIPLE
CLASSES
1104

SYNTHETICALLY GENERATE NEGATIVE DATA
AS A FUNCTION OF THE KNOWN DATA

FIG. 11

WO 2017/023551 PCT/US2016/043146
14/14
1200
¢
1202
CRECEIVE AN INPUT AT A FIRST CLASSIFIEID
[‘ 1204
| SYNTHETICALLY :
: GENERATE [
| NEGATIVE DATA AS |
| A FUNCTION OF THE |
: KNOWN DATA |
—————— [=== 1208
1206
KNOWN OR UNKNOWN
TRAIN A SECOND
CLASSIFIER
UNKNOWN
TRAINING THE SECOND
CLASSIFIER KNOWN 1212

1210 CLASSIFY AS
UNKNOWN
CLASSIFY THE DATA DATA
USING THE FIRST
CLASSIFIER

USING THE TRAINED SECOND
CLASSIFIER

FIG. 12

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings

