(57) Abrégé/Abstract:
Disclosed is a solid skin care composition comprising: (a) a first layer which is solid at 45°C and which is a water-in-oil emulsion; and (b) a second layer which is solid at 45°C and which is a water-in-oil emulsion comprising a benefit agent; wherein the first layer and the second layer have a different composition; and wherein the first layer and the second layer are provided in the same package in a manner such that the first layer and the second layer can be simultaneously applied.
SOLID SKIN CARE COMPOSITION COMPRISING MULTIPLE LAYERS BASED ON WATER-IN-OIL EMULSIONS

Disclosed is a solid skin care composition comprising: (a) a first layer which is solid at 45°C and which is a water-in-oil emulsion; and (b) a second layer which is solid at 45°C and which is a water-in-oil emulsion comprising a benefit agent wherein the first layer and the second layer have a different composition; and wherein the first layer and the second layer are provided in the same package in a manner such that the first layer and the second layer can be simultaneously applied.
Published:
- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
SOLID SKIN CARE COMPOSITION COMPRISING MULTIPLE LAYERS BASED ON WATER-IN-OIL EMULSIONS

FIELD OF THE INVENTION

The present invention relates to a solid skin care composition comprising multiple layers. Specifically, the present invention relates to solid skin care compositions comprising multiple layers each made of different compositions providing unique characteristic benefits. The characteristic benefits would not be achieved to the extent when provided in separate phases, if the multiple layers were mixed together and provided as a single composition. The compositions of the present invention are particularly useful for cosmetic foundation products.

BACKGROUND OF THE INVENTION

A foundation composition can be applied to the face and other parts of the body to even skin tone and texture and to hide pores, imperfections, fine lines and the like. A foundation composition is also applied to moisturize the skin, to balance the oil level of the skin, and to provide protection against the adverse effects of sunlight, wind, and other environmental factors.

Foundation compositions are generally available in the form of liquid or cream suspensions, emulsions, gels, pressed powder or anhydrous oil and wax compositions. Emulsion-type foundations in the form of liquid are suitable in that they provide moisturizing effects by the water and water-soluble skin treatment agents incorporated. These liquid form foundations, however, are less convenient to use and carry for the consumer. On the other hand, solid foundations packaged in compacts are suitable for use by the consumer, however, are typically less efficient than liquid form foundations in terms of moisturizing the skin and coverage of the skin.

Foundation compositions in the form of solid, yet water-in-oil emulsion have been suggested. Such solid emulsion foundations aim to address the drawbacks of conventional liquid form foundations and solid foundations. These foundations can be filled in a wide variety of packaging, including compacts, and is increasing popularity among consumers. References which disclose such foundation compositions include

Recently, consumers have become to seek various performances and skin benefits in foundation products, such as radiant look, natural look, spreadability, fit to the skin, blending into the skin, coverage, wear, long lasting, oil shine control, UV protection, and specific treatment provided by skin active agents. Further, different consumer segments may seek different types of performance, such as moisturizing feel against light feel, and natural look against lusterous finish. To achieve these benefits, foundation formulations must accommodate various components which, depending on their physical and chemical properties, may be difficult to formulate into a single product. For example, inclusion of oil absorbing powder for oil shine control may provide a composition with unfavorable spreadability performance.

On the other hand, cosmetic compositions comprising multiple layers or phases are known in the prior art. For example, U.S. 4,980,155 to Revlon, Inc. discloses a two phase cosmetic composition comprising a color phase composition and a gel phase composition. WO2004/105708 to Gamma Croma S.P.A. discloses a multicolor cosmetic product with solid consistence that comprises two or more cosmetic products of different colors. JP Patent Application Publication No. 1999-269025 to Noevir Co., Ltd. discloses a double-layered stick-shaped cosmetic product comprising an oil-based stick-shaped composition and a water-based stick-shaped composition. JP Patent Application Publication No. 2002-97112 discloses a solid cosmetic composition having mutually different colors and the manufacturing process for the same. None of them disclose a multi-layered skin care composition which is in the form of solid water-in-oil emulsions in ambient temperature.

Based on the foregoing, there is a need for a solid skin care composition which provides more than one benefit rendered by components which are difficult to formulate into a single composition. Specifically for cosmetic foundation products, there is a need for a solid composition which provides good spreadability and appearance benefits in one product.

None of the existing art provides all of the advantages and benefits of the present invention.
SUMMARY OF THE INVENTION

The present invention is directed to a solid skin care composition comprising a first layer which is solid at 45°C and which is a water-in-oil emulsion; and a second layer which is solid at 45°C and which is a water-in-oil emulsion comprising a benefit agent; wherein the first layer and the second layer have different composition; and wherein the first layer and the second layer are provided in the same package in a manner such that the first layer and the second layer can be simultaneously applied. By providing multiple layers of compositions in a manner such that they can be simultaneously applied, the overall composition provides benefits characteristic of each layer, which benefit(s) would otherwise be compromised or deteriorate other performance, if they were combined into one composition.

The present invention is suitable for any skin care composition in solid form, such as cosmetic foundation, blusher, sunscreen, eyeshadow, lipstick, antiperspirant stick, dermal pharmaceutical ointment, and others. One particularly preferred embodiment for the present invention is a cosmetic foundation made of multiple layers that are visibly distinct.

In another aspect, the present application relates to the manufacture process for a multilayer skin care composition comprising the steps of:

(a) providing the first layer composition and the second layer composition in fluid state in isolated vessels;

(b) separately dispensing the first layer composition by a first nozzle and the second layer composition by a second nozzle into a same package while keeping the temperature of the first layer composition and second layer composition between 55°C and 90°C, preferably between 60°C and 75°C; and

(c) allowing the transferred first layer and second layer to solidify in the package.

These and other features, aspects, and advantages of the present invention will become evident to those skilled in the art from a reading of the present disclosure with the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description of preferred, nonlimiting embodiments and representations taken in conjunction with the accompanying drawings in which:

Fig. 1 is a schematic view of a preferred embodiment of the process of the present invention.

Fig. 2 is a sectional view of Fig. 1 taken at line A-A’.

Fig. 3 (a) – (d) are schematic views of preferred embodiments of the process of the present invention focusing on the filling step.

Fig. 4 (i) – (vii) are schematic views of preferred embodiments of the visible appearance of the present composition.

Fig 5 is a diagram showing the preferred range of viscosity difference and density difference between the compositions of the first layer and the second layer of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description.

All percentages, parts and ratios as used herein are by weight of the composition of each layer, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore do not include carriers or by-products that may be included in commercially available materials.

All ingredients such as actives and other ingredients useful herein may be categorized or described by their cosmetic and/or therapeutic benefit or their postulated mode of action. However, it is to be understood that the active and other ingredients useful herein can, in some instances, provide more than one cosmetic and/or therapeutic benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit an ingredient to the particularly stated application or applications listed.
FIRST LAYER AND SECOND LAYER

The composition of the present invention comprises multiple layers, namely at least a first layer and a second layer. By providing multiple layers of compositions in a manner such that they can be simultaneously applied, the overall composition provides benefits characteristic of each layer, which benefit(s) would otherwise be compromised or deteriorate other performance, if they were combined into one composition. While any number of layers can be included in the overall composition, an overall composition having two layers is focused in the discussion herein.

The first and second layers are of different composition, and are designed to provide different benefits based on at least one benefit agent included in either of the layers. For convenience, the layer comprising such benefit agent is called the second layer; however, this does not require that the first layer is devoid of a benefit agent. The first and second layers may comprise different benefit agents, different combination of benefit agents, or different concentrations of the same benefit agent. In the context of the present invention, a “benefit agent” is a component which provides a particular skin care benefit characteristic of the usage of the skin care product. Herein, skin care benefit may include benefits related to appearance or make-up of the skin. Typically, a certain benefit agent included in the second layer is less compatible with a certain component included in the first layer, or a certain benefit agent in the second layer deteriorates performance of the overall composition when the first and second layers are combined into one composition.

For example, radiant powder such as pearl pigment is a favorable characteristic component of a cosmetic foundation product. Inclusion of radiant powder provides the radiant look benefit. However, radiant powder needs to be included at a relatively high level to achieve a radiant look effect because other powders contained in the formulation, such as coverage titanium dioxide may overwhelm the radiant powder effect. As used herein, coverage titanium dioxides are those having a particle size of from about 200nm to about 500nm and provide coverage benefit to the skin. If the particle size is out of this range, the titanium dioxide may not provide enough coverage as a cosmetic material. Coverage titanium dioxide is typically included in foundation products at a level of from about 2% to about 20%, preferably from about 4% to 15%. In the present invention, by
including the radiant powder mainly in the second layer, and providing the first and second layers in a manner such that they can be simultaneously applied on the skin, the radiant effect of the overall composition can be achieved with relatively low radiant powder level. It is advantageous to keep the level of overall pigment powders, including the benefit agents in powder form, to a low level, such that the entire composition maintains flexibility to accommodate other components which provide spreadability, and fresh and light feel. Characteristics such as good spreadability and fresh and light feel come from the balance of basic components required for making a water-in-oil emulsion, namely, volatile silicone oil, non-volatile oil, solid wax, lipophilic surfactant and water.

Hence, the present composition having multiple layers provides a well balanced product having characteristic benefits coming from the benefit agents, while also maintaining the basic benefits of a water-in-oil emulsion composition, such as good spreadability and fresh and light feel. Said in another way, usage of multiple layers provides flexibility in product formulation.

The first and second layers of the present invention are solid at room temperature, thus do not, or only slightly dissolve or mingle with each other during storage, and after each use. The first and second layers are provided in a manner that allows the user to simultaneously apply both layers on the skin. A suitable way is to provide both layers in the same primary package, for example a pan, jar, or stick applicator. The primary package may accompany a suitable applicator, such as a sponge or brush. Preferably, the first and second layers are formulated such that they exhibit a similar rheology profile when receiving pressure/heat from the finger or applicator upon use.

The first and second layers can be provided in any ratio as necessary for providing the target benefit(s). Preferably, the first and second layers are provided in a weight ratio of from about 1:99 to about 99:1, more preferably from about 1:9 to about 9:1. The first and second layers are preferably visibly distinct, so that the different benefits/characteristics of the layers are communicated to the user. A colorant may be suitably included in at least one of the first or second layers for making the layers visibly distinct.
PHASE TYPE AND FORMULATION OF FIRST LAYER AND SECOND LAYER

In the present invention, the compositions for the first layer and second layer both take the phase type of water-in-oil emulsion. Water-in-oil emulsions are useful for providing good application feel to the skin or hair, while also being able to encompass oil soluble and water soluble components, and further leaving a fresh and cool feeling after the water is evaporated.

In one highly preferred embodiment, the present composition is a cosmetic foundation. Cosmetic foundations in water-in-oil emulsion form are particularly useful for providing good spreadability, moisturized feeling, and fresh feel after application.

Each of the first layer composition and the second layer compositions preferably comprise the following components:

(a) from about 10% to about 50%, preferably from about 15% to about 35% of a volatile silicone oil;

(b) from about 0.5% to about 20%, preferably from about 1% to about 15% of a non-volatile oil;

(c) from about 5% to about 45%, preferably from about 5% to about 30% of a pigment powder;

(d) from about 1% to about 10%, preferably from about 2% to about 5% of a solid wax;

(e) from about 0.5% to about 5%, preferably from about 1% to about 4% of a lipophilic surfactant; and

(f) an amount of water, such that the total level of the volatile silicone oil and water is more than about 40%, preferably from about 10% to about 35% of water.

The second layer further comprises at least one benefit agent. Compositions of each layer are formulated to have a viscosity of from about 100mPas to about 10,000mPas, preferably from about 300mPas to about 3,000mPas when brought to a temperature of between about 55°C and about 90°C.

As will be explained in detail in the following context, the compositions of each layer are formulated and formed separately. Once formulated and formed, each respective layer can be combined during the packaging process by dispensing the
respective layers simultaneously into a primary package, such as a pan or the like in a swirl, a spiral, a rod, a flower or the like configuration. In order to keep the two layers separate from each other for a prolonged period, it is preferable that each layer is formulated to keep the viscosity difference and density difference between the compositions of each layer in the area defined by the four points of a(0.16g/cm³, -1600mPas), b(0.16g/cm³, 600mPas), c(-0.16g/cm³, -600mPas) and d(-0.16g/cm³, 1600mPas) as shown in the diagram of Fig 5. The method used to adjust the density and viscosity of the composition of each layer is known to those skilled in the art. It has been found that when the density difference and viscosity difference between the compositions of each layer are within the preferred area, the two layers exhibit favorable physical stability over a period of time. In another preferred embodiment, in order to avoid the components of one layer migrating into the other layer, the difference of content level of non-volatile oil in the compositions of each layer is controlled to be in the range of 0-10%, the difference of content level of pigment powder in the compositions of each layer is controlled to be in the range of 0-20%, the difference of content level of wax in the compositions of each layer is controlled to be in the range of 0-3%, and the difference of total content level of water and volatile silicone oil in the compositions of each layer is controlled to be in the range of 0-10%. To make the two layers visually distinctive, a preferred way is to use different species and/or level of pigment in the composition of each layer. Details of the species and levels of the components contained in each layer are provided as follows.

BENEFIT AGENT

The composition of the present invention comprises a benefit agent which provides a particular skin care benefit characteristic of the usage of the skin care product. Herein, skin care benefit may include benefits related to appearance or make-up of the skin.

In a cosmetic composition embodiment, including but not limited to cosmetic foundation, blusher, sunscreen, eyeshadow and lipstick, the benefit agent is selected from the group consisting of radiant powder, soft focus agent, oil absorbing powder, sebum solidifying powder, film forming polymer and mixtures thereof.

In an antiperspirant embodiment, the benefit agent is an antiperspirant active.
Radiant Powder

Radiant powder is a pigment that is particularly effective in providing radiant look to the skin, by having a gloss level of more than 7.0. Gloss level is a parameter which can be measured by a known method using the opacity charts available from THE LENETA COMPANY, Drawdown bar (0.003µm and 0.006µm), solvent (KP-545 available from Shin-Etsu Chemical Co., Ltd.), Gloss Checker IG-320 available from HORIBA.

The radiant powder useful herein includes pearl pigments, such as mica and titanium dioxide and dimethicone: SA-Timiron MP-1001 and SA-Flamenco Orange available from Miyoshi Kasei, Titanium Dioxide and Mica and Alumina and Silica and Demethicone / Methicone Copolymer and Iron Oxide: Relief Color Pink P-2 available from CATALYSTS & CHEMICALS IND. CO., LTD., mica, synthetic mica, boron nitride and specified particle talc having an average particle size of about 20µm and a gloss level of about 7.2 (0.003µm on white back), 33.0 (0.006µm on white back), about 8.5 (0.003µm on black back) and about 10.3 (0.006µm on black back). Specified particle talc has a higher gloss level and a lower transparency level than normal particle talc. Specifically, the gloss level of specified particle talc is about 130% to 200% vs. normal particle talc and the transparency level of specified particle talc is about 10% to 100% vs. normal particle talc. Transparency level can be measured by a known method using the opacity charts available from THE LENETA COMPANY, Drawdown bar (0.003µm and 0.006µm), solvent (KP-545 available from Shin-Etsu Chemical Co., Ltd.), Spectraflash available from Datacolor. Commercially available specified particle talc is available from Miyoshi Kasei Inc. under the trade name of SI-TALC CT-20™.

In a single layer formulation, because other powders, such as coverage titanium dioxide, contained in the formulation may overwhelm the radiant powder effect, to achieve the radiant look effect, a typical level of radiant powder is as high as 5%. In the present invention, by formulating the radiant powder mainly in the second layer and coverage titanium dioxide in the first layer, and providing the first and second layers in a manner such that they can be simultaneously applied on the skin, the skin care product of the present invention can provide satisfied radiant appearance effect with lower level of
radiant powder. As a result, there is provided more flexibility in product formulation. Compared to a single layer product, a multiple layer product comprising lower level of radiant powder has a better spreadability and light feel on the skin. In a preferred example, the content level of radiant powder in the second layer is from about 5% to about 25%, more preferably from about 10% to about 20% by weight of the composition of the second layer. When calculated based on the total weight of the first layer and the second layer, the preferred content level of radiant powder is from about 0.5% to about 5%.

Soft Focus Agent (1) Soft Focus Powder

Soft focus powder is a pigment that is particularly effective in providing a soft focus effect to the composition, namely natural finish yet having good coverage for minimizing the appearance of skin troubles, when incorporated in a defined amount. Specifically, the soft focus powder herein must meet two parameter criteria to provide such an effect. First, both the Total Luminous Transmittance (Tt) and Diffuse Luminous Transmittance (Td) of the pigment are relatively high. The soft focus powder has a Total Luminous Transmittance (Tt) of from about 40 to about 94 and a Diffuse Luminous Transmittance (Td) of from about 28 to about 38. Without being bound by theory, it is believed that, by having such high Tt and Td values, the soft focus powder exhibits a high transparency, thereby providing an overall natural finish. Second, the soft focus powder has a relatively high Haze value \((\frac{Td}{Tt} \times 100) \) of from about 32 to about 95. Without being bound by theory, it is believed that, by having such high Haze value, the contrast between lighted area of the skin and shaded area of the skin (such as pores and wrinkles) is minimized for reducing the appearance of the trouble areas.

Total Luminous Transmittance (Tt), Diffuse Luminous Transmittance (Td), and Haze value \((\frac{Td}{Tt} \times 100) \) can be measured and calculated by the artisan by reference to ASTM D 1003-00 “Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics”. Although the pigments herein are not plastics, the same principles of this specific standard test can be applied.

The soft focus powder useful herein includes polymethyl/methacrylate (PMMA), silica, hybrid pigments such as alumina treated mica, titanium dioxide treated talc, titanium dioxide treated mica, vinyl dimethicone/methicone silsesquioxane crosspolymer,
alumina, barium sulfate and synthetic mica. Commercially available soft focus powder useful herein includes alumina treated mica having the trade name SA Excel Mica™ JP2 available from Miyoshi Kasei, which has a Total Luminous Transmittance (Tt) of about 87, Diffuse Luminous Transmittance (Td) of about 28, and Haze value \(\{(T_d / T_t) \times 100\} \) of about 32.

Similar to radiant powder, when formulated with coverage titanium dioxide in a single layer, the content level of a soft focus powder shall be as high as 5% to achieve noticeable natural look effect. However, in the present invention, by formulating soft focus powder mainly in the second layer and coverage titanium dioxide in the first layer, and providing the first and second layers in a manner such that they can be simultaneously applied on the skin, the skin care product of the present invention can provide satisfied natural look effect with relatively low level of soft focus powder. As a result, the cost of the product can be controlled while also providing more flexibility in product formulation. In a preferred example, the content level of soft focus powder in the second layer is from about 2% to about 25%, more preferably from about 5% to about 20% based on the composition of the second layer. When calculated on the basis of the total weight of the first layer and the second layer, the preferred content level of soft focus powder is from about 0.5% to about 4%, more preferably from about 1% to about 3%.

Soft Focus Agent (2) Silicone Elastomer

Soft focus silicone elastomer is crosslinked siloxane elastomer which is particularly effective in providing soft focus effect to the skin. In other words, when incorporated in a cosmetic product a defined amount of silicone elastomer, the silicone elastomer can provide natural finish yet having good coverage for minimizing the appearance of skin troubles. Specifically, silicone elastomer has lower matte level compared with other silicone oil. Matte level is a parameter reflecting soft focus effect, i.e. natural finish of a cosmetic material. The lower the matte level is, the better natural finish the material can provide. Matte level of silicone elastomer used in the present application is less than about 40. Matte level can be measured by the PG-1M gloss meter (Incidence angle / Reflection angle: 60/60°) made by Nihon Denshoku Kogyo.

Commercially available silicone elastomer useful in the present application includes a
silicone elastomer having the tradename KSG-16 available from Shinetsu, which has a matte level of about 37.

Silicone elastomer suitable for use herein can be emulsifying or non-emulsifying crosslinked siloxane elastomer or mixtures thereof. The term “non-emulsifying” as used herein defines crosslinked organopolysiloxane elastomer from which polyoxyalkylene units are absent. The term “emulsifying” as used herein, means crosslinked organopolysiloxane elastomer having at least one polyoxyalkylene (e.g., polyoxyethylene or polyoxypropylene) unit. Non-emulsifying elastomer useful in the present invention is formed via crosslinking organohydrogenpolysiloxane with an alpha, omega-diene.

Emulsifying elastomer herein includes polyoxyalkylene modified elastomer formed via crosslinking from organohydrogenpolysiloxane with polyoxyalkylene diene or organohydrogenpolysiloxane containing at least one polyether group crosslinked with an alpha, omega-diene. Emulsifying crosslinked organopolysiloxane elastomer can notably be chosen from the crosslinked polymer described in US Patents 5,412,004, 5,837,793, and 5,811,487. In addition, an emulsifying elastomer comprised of dimethicone copolyol crosspolymer (and dimethicone) is available from Shin Etsu under the tradename KSG-21.

Non-emulsifying elastomer is dimethicone/vinyl dimethicone crosspolymer. Such dimethicone/vinyl dimethicone crosspolymer is supplied by a variety of suppliers including Dow Corning (DC 9040 and DC 9041), General Electric (SFE 839), Shin Etsu (KSG-15, 16, 18 [dimethicone/phenyl vinyl dimethicone crosspolymer]), and Grant Industries (GRANSIL™ line of elastomer). Cross-linked organopolysiloxane elastomer useful in the present invention and processes for making them are further described in U.S. Patent 4,970,252, 5,760,116, and 5,654,362. Additional crosslinked organopolysiloxane elastomer useful in the present invention is disclosed in Japanese Patent Application JP 61-18708, assigned to Pola Kasei Kogyo KK. Commercially available elastomer preferred for use herein is Dow Corning’s 9040 silicone elastomer blend, Shin Etsu’s KSG-21, and mixtures thereof.

Similar to the radiant powder, when formulated with coverage titanium dioxide in a single layer, the content level of a silicone elastomer shall be as high as 10% to achieve noticeable natural look effect. However, in the present invention, by formulating a
silicone elastomer mainly in the second layer and coverage titanium dioxide in the first layer, and providing the first and second layers in a manner such that they can be simultaneously applied on the skin, the skin care product of the present invention can provide satisfied natural look effect with lower level of silicone elastomer. As a result, the cost of the product can be controlled while also providing more flexibility in product formulation. In a preferred example, the content level of silicone elastomer in the second layer is from about 1% to about 20%, preferably from about 2% to about 15%. When calculated based on the total weight of the first layer and the second layer, the preferred content level of silicone elastomer is from about 0.5% to about 8%, more preferably from about 1% to about 5%.

Oil Absorbing Powder

Oil absorbing powder is a pigment that is particularly effective in absorbing oil, and thereby can be included in the present composition for absorbing excessive sebum from the skin. Specifically, the oil absorbing powder herein has an oil absorbency of at least about 100mL/100g, preferably at least about 200mL/100g. Oil absorbency is a unit well known to the artisan, and which can be measured via: JIS K5101 No.21 “Test Method for Oil Absorbency Level”.

Oil absorbing powder useful herein includes spherical silica, and methyl methacrylate copolymer. Commercially available spherical oil absorbing pigments useful herein include spherical silica with tradename SI-SILDEX H-52 available from Miyoshi Kasei, Inc. having an oil absorbency of more than 200mL/100g, vinyl dimethicone/methicone silsesquioxane crosspolymer with tradename KSP-100 and KSP-101 available from ShinEtsu Chemical having an oil absorbency of more than 200mL/100g, and methyl methacrylate copolymer with tradename SA-GMP-0820 available from GANZ Chemical and surface treated by Miyoshi Kasei, Inc. having an oil absorbency of more than 100mL/100g. Typically, inclusion of oil absorbing powder for oil shine control may provide a composition with unfavorable spreadability performance. However, in the present invention, by including oil absorbing powder mainly in the second layer, the unfavorable spreadability performance can be improved. In a preferred example, the content level of an oil absorbing powder in the second layer is from about 1% to about 10%, more preferably from about 3% to about 5%.
Sebum Solidifying Powder

Sebum solidifying powder useful herein include those comprising a base
substance which is coated with low crystalline zinc oxide, amorphous zinc oxide, or
mixtures thereof, wherein the zinc oxide is from about 15% to about 25% by weight of
the sebum solidifying powder. The base substance may be any organic or inorganic
substances that are useful for cosmetic use, including those listed below under “Pigment
Powder Component”. The sebum solidifying powder herein can be suitably made
according to the methods disclosed in US 2002/0031534 A1.

The sebum solidifying powder may be surface treated. The sebum
solidifying powder useful herein have the ability to solidify sebum, i.e., are effective in
adsorbing free fatty acid, diglyceride, and triglyceride, and solidifying them by forming
zinc salts thereof, such that a film is formed within about 30 minutes. Moreover, the
originally glossy sebum changes appearance into a matte film. Such capability can be
distinguished from other oil absorbing powder, which are not selective in the type of oil to
be absorbed, and do not form a film after absorbing oil, thus may leave glossy gels and
pastes after absorbing the sebum. Change in appearance provides a noticeable signal to
the user that sebum has been controlled. Sebum solidifying effect may be conveniently
measured by mixing a certain amount of powder with a certain amount of artificial sebum,
mixing for a certain period of time, and allowing standing until solidified or showing
matte appearance. The time taken for the mixture to solidify or to change appearance is
recorded. The shorter the time taken to solidify or change appearance, the higher the
solidifying effect is of the powder.

Commercially available sebum solidifying powder useful herein includes mica
coated with hydroxyapatite, 20% zinc oxide with tradename PLV-20, and the same
powder surface treated with methicone with tradename SI-PLV-20, both available from
Miyoshi Kasei, Inc. Typically, inclusion of sebum solidifying powder for oil shine
control may provide a composition with unfavorable spreadability performance.
However, in the present invention, by including sebum solidifying powder mainly in the
second layer, the unfavorable spreadability performance can be improved. In a preferred
example, the content level of sebum solidifying powder in the second layer is from about
0.2% to about 10%, preferably from about 1% to about 7%.
Film Forming Polymer

Film forming polymer is useful for imparting wear and/or transfer resistant properties to a cosmetic product. Preferred polymers form a non-tacky film which is removable with water used with cleansers such as soap.

Examples of suitable film forming polymeric materials include:

a) sulfopolyester resins, such as AQ sulfopolyester resins, such as AQ29D, AQ35S, AQ38D, AQ38S, AQ48S, and AQ55S (available from Eastman Chemicals);

b) polyvinylacetate/polyvinyl alcohol polymers, such as Vinex™ resins available from Air Products, including Vinex 2034, Vinex 2144, and Vinex 2019;

c) acrylic resins, including water dispersible acrylic resins available from National Starch under the trade name "Dermacryl™", including Dermacryl LT;

d) polyvinylpyrrolidones (PVP), including Luviskol K17, K30 and K90 (available from BASF), water soluble copolymers of PVP, including PVP/VA S-630 and W-735 and PVP/dimethylaminoethylmethacrylate Copolymers such as Copolymer 845 and Copolymer 937 available from ISP, as well as other PVP polymers disclosed by E.S. Barabas in the Encyclopedia of Polymer Science and Engineering, 2 Ed. Vol. 17 pp. 198-257;

e) high molecular weight silicones such as dimethicone and organic-substituted dimethicones, especially those with viscosities of greater than about 50,000 mPas;

f) high molecular weight hydrocarbon polymers with viscosities of greater than about 50,000 mPas;

g) organosiloxanes, including organosiloxane resins, fluid diorganopolysiloxane polymers and silicone ester waxes.

Examples of these polymers and cosmetic compositions containing them are found in PCT publication Nos. WO96/33689, published 10/31/96; WO97/17058, published 5/15/97; and US Patent No. 5,505,937 issued to Castrogiovanni et al. 4/9/96.

Additional film forming polymers suitable for use herein include the water-insoluble polymer materials in aqueous emulsion and water soluble film forming polymers described in PCT publication No. WO98/18431, published 5/7/98.

Examples of high molecular weight hydrocarbon polymers with viscosities of greater than about 50,000 mPas include...
polybutene, polybutene terephthalate, polydecene, polycyclopentadiene, and similar linear and branched high molecular weight hydrocarbons. Preferred film forming polymers include organosiloxane resins comprising combinations of \(R_3SiO_{1/2} \) "M" units, \(R_2SiO \) "D" units, \(RSiO_{3/2} \) "T" units, \(SiO_2 \) "Q" units in ratios to each other that satisfy the relationship \(R_nSiO(4-n)/2 \) where \(n \) is a value between 1.0 and 1.50 and \(R \) is methyl. Note that a small amount, up to 5%, of silanol or alkoxy functionality may also be present in the resin structure as a result of processing. The organosiloxane resins must be solid at about 25°C and have a molecular weight range of from about 1,000 to about 10,000 grams/mole. The resin is soluble in organic solvents such as toluene, xylene, isoparaffins, and cyclosiloxanes or the volatile carrier, indicating that the resin is not sufficiently crosslinked such that the resin is insoluble in the volatile carrier. Particularly preferred are resins comprising repeating monofunctional or \(R_3SiO_{1/2} \) "M" units and the quadrofunctional or \(SiO_2 \) "Q" units, otherwise known as "MQ" resins as disclosed in U.S. Patent 5,330,747, Krzysik, issued July 19, 1994. In the present invention the ratio of the "M" to "Q" functional units is preferably about 0.7 and the value of \(n \) is 1.2. Organosiloxane resins such as these are commercially available such as trimethylsiloxy silicate / cyclomethicone D5 Blend available from GE Toshiba Silicone, Wacker 803 and 804 available from Wacker Silicones Corporation of Adrian Michigan, KP545 from Shin-Etsu Chemical and G. E. 1170-002 from the General Electric Company. In the present invention, by having film forming polymer mainly in the second layer, the film forming polymer will exist in a higher concentration at a localized area, and thereby forming a film of higher film intensity when applied to the skin, compared to the remainder of the composition. Such concentrated area of high film intensity provides improved adhesion of the entire composition to the skin. Namely, by providing the film forming polymer mainly in the second layer, the amount of film forming polymer included in the entire composition can be reduced, or if the same amount of film forming polymer is formulated in the second layer, an entire composition having improved adhesion is obtained. In a preferred embodiment, the content level of film forming polymer in the second layer is from about 0.5% to about 20%, preferably from about 0.5% to about 10%, more preferably from about 1% to about 8%.
Antiperspirant Agent

For an antiperspirant composition, the composition of the present invention may comprise a safe and effective amount of an antiperspirant active agent. A wide variety of conventional antiperspirant active agent are suitable for use herein, such as aluminum/zirconium astringent complexes including aluminum halides, aluminum hydroxy-halides, zirconyl oxyhalides, zirconyl hydroxy-halides; and ZAG complexes such as aluminium zirconium trichlorohydrex gly.

VOLATILE SILICONE OIL

The composition of the present invention of each layer comprises volatile silicone oil. In a cosmetic foundation embodiment, the amount of the volatile silicone oil is controlled so that the composition of each layer comprises from about 10% to about 50%, preferably from about 15% to about 35% of the volatile silicone oil and the total of the volatile silicone oil and water is more than about 40% of the composition of each layer. Without being bound by theory, the species and levels of the volatile silicone oil herein is believed to provide improved refreshing and light feeling to the skin, without necessarily leaving a dried feeling to the skin.

The volatile silicone oil useful herein are selected from those having a boiling point of from about 60 to about 260°C, preferably those having from 2 to 7 silicon atoms. The volatile silicone oils useful herein include polyaalkyl or polyaryl siloxanes with the following structure (I):

\[
\begin{align*}
\text{Z}^8 & \text{Si} - \text{O} & \text{Si} - \text{O} & \text{Si} - \text{Z}^8 \\
\text{R}^3 & \text{R}^3 & \text{R}^3 & \text{R}^3 \\
\end{align*}
\]

wherein \(R^3 \) is independently alkyl or aryl, and \(p \) is an integer from about 0 to about 5. \(Z^8 \) represents groups which block the ends of the silicone chains. Preferably, \(R^3 \) includes methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl, \(Z^8 \) includes hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy. More preferably, \(R^3 \) and \(Z^8 \) are methyl groups. The preferred volatile silicone compounds are hexamethyldisiloxane, octamethyldisiloxane, decamethyldisiloxane, hexadecamethylheptasiloxane.

Commercially available volatile silicone compounds useful herein include...
octamethyltrisiloxane with tradename SH200C-1cs, decamethyldisiloxane with tradename SH200C-1.5cs, hexadecamethylheptasiloxane with tradename SH200C-2cs, all available from Dow Corning.

The volatile silicone oil useful herein also includes a cyclic silicone compound having the formula:

```
[Si - O]_n
```

wherein R^93 is independently alkyl or aryl, and n is an integer of from 3 to 7.

Preferably, R^93 includes methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl. More preferably, R^93 is methyl. The preferred volatile silicone compounds are octamethyldicyclosiloxane, decamethyldicyclosiloxane, tetradecamethyldicyclosiloxane. Commercially available volatile silicone compounds useful herein include octamethyldicyclosiloxane with tradename SH244, decamethyldicyclosiloxane with tradename DC245 and SH245, and dodecamethyldicyclosiloxane with tradename DC246; all available from Dow Corning.

NON-VOLATILE OIL

The composition of each layer of the present invention comprises non-volatile oil, preferably by weight of the composition of each layer at from about 0.5% to about 20%, more preferably from about 1% to about 15%. Without being bound by theory, the species and levels of the non-volatile oil herein is believed to provide improved smoothness to the skin, and also alleviate dry feeling of the skin.

Non-volatile oils useful herein are, for example, tridecyl isononanoate, isostearyl isostearate, isocetyl isostearate, isopropyl isostearate, isodecyl isonoanoate, cetyl octanoate, isononyl isononanoate, diisopropyl myristate, isocetyl myristate, isoroldecyl myristate, isopropyl myristate, isostearyl palmitate, isocetyl palmitate, isodecyl palmitate, isopropyl palmitate, octyl palmitate, caprylic/capric acid triglyceride, glyceryl tri-2-ethylhexanoate, neopentyl glycol di(2-ethyl hexanoate), diisopropyl dimerate, tocopherol, tocopherol acetate, avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, eggyolk oil, sesame oil, persic oil, wheat germ oil, pasanqua
oil, castor oil, linseed oil, safflower oil, cotton seed oil, perillie oil, soybean oil, peanut oil, tea seed oil, kaya oil, rice bran oil, china paulownia oil, Japanese paulownia oil, jojoba oil, rice germ oil, glycerol triocanate, glycerol triisopalmiante, trimethylopropane triisostearate, isopropyl myristate, glycerol tri-2-ethylhexanoate, pentaerythritol tetra-2-ethylhexanoate, lanolin, liquid lanolin, liquid paraffin, squalane, vaseline, and mixtures thereof. Commercially available oils include, for example, isostrideyl isononanoate with tradename Crodamol TN available from Croda, Hexaflan available from Nissin Seiyu, and tocoferol acetates available from Eisai.

Non-volatile oils useful herein also include polyalkyl or polyaryl siloxanes with the following structure (I)

\[
\begin{align*}
\text{Z}^8 & \quad \text{Si-O-} \quad \text{Si-O-} \quad \text{Si-Z}^8 \\
\text{R}^3 & \quad \text{R}^3 & \quad \text{R}^3 & \quad \text{R}^3 \\
\end{align*}
\]

(1)

wherein R^3 is alkyl or aryl, and p is an integer from about 7 to about 8,000. Z^8 represents groups which block the ends of the silicone chains. The alkyl or aryl groups substituted on the siloxane chain (R^3) or at the ends of the siloxane chains Z^8 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the skin, is compatible with the other components of the composition, and is chemically stable under normal use and storage conditions. Suitable Z^8 includes hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy. The two R^3 on the silicon atom may represent the same group or different groups. Preferably, the two R^3 represents the same group. Suitable R^3 includes methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl. Preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred. The polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes. These silicone compounds are available, for example, from the General Electric Company in their Viscasil® and SF 96 series, and from Dow Corning in their Dow Corning 200 series.
Polyalkylaryl siloxane fluids can also be used and include, for example, polymethylphenylsiloxanes. These siloxanes are available, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid.

Non-volatile oils also useful herein are the various grades of mineral oils. Mineral oils are liquid mixtures of hydrocarbons that are obtained from petroleum. Specific examples of suitable hydrocarbons include paraffin oil, mineral oil, dodecane, isododecane, hexadecane, isohexadecane, eicosene, isoeicosene, tridecane, tetradecane, polybutene, polyisobutene, and mixtures thereof.

SOLID WAX

The composition of each layer of the present invention comprises a solid wax, preferably by weight of the composition of each layer at from about 1% to about 10%, more preferably from about 2% to about 5%. Without being bound by theory, the species and levels of the solid wax herein is believed to provide consistency to the composition and coverage to the skin, while not negatively contributing to the spreadability upon application to the skin, and fresh and light feel of the skin.

The solid waxes useful herein are paraffin wax, microcrystalline wax, ozokerite wax, ceresin wax, carnauba wax, candellila wax, eicosanyl behenate, and mixtures thereof. A mixture of waxes is preferably used.

Commercially available solid waxes useful herein include: Candelilla wax NC-1630 available from Cerarica Noda, Ozokerite wax SP-1021 available from Strahl & Pitsh, and Eicosanyl behenate available from Cas Chemical.

LIPOPHILIC SURFACANT

The composition of each layer of the present invention comprises a lipophilic surfactant, preferably by weight of the composition of each layer at from about 0.5% to about 5%, more preferably from about 1% to about 4%. The lipophilic surfactant herein has an HLB value of less than about 8.

The HLB value is a theoretical index value which describes the hydrophilicity-hydrophobicity balance of a specific compound. Generally, it is recognized that the HLB index ranges from 0 (very hydrophobic) to 40 (very hydrophilic). The HLB value of the lipophilic surfactants may be found in tables and charts known in the art, or may be
calculated with the following general equation: HLB = 7 + (hydrophobic group values) +
(hydrophilic group values). The HLB and methods for calculating the HLB of a
compound are explained in detail in Surfactant Science Series, Vol. 1: Nonionic

Without being bound by theory, the species and levels of the lipophilic surfactant
herein are believed to provide a stable water-in-oil emulsion in view of the other
components of the present invention.

The lipophilic surfactant can be an ester-type surfactant. Ester-type surfactants
useful herein include: sorbitan monoisostearate, sorbitan diisostearate, sorbitan
sesquisostearate, sorbitan monooleate, sorbitan dioleate, sorbitan sesquioleate, glyceryl
monoisostearate, glyceryl diisostearate, glyceryl sesquisostearate, glyceryl monooleate,
glyceryl dioleate, glyceryl sesquioleate, diglyceryl diisostearate, diglyceryl dioleate,
diglycerin monoisostearyl ether, diglycerin diisostearyl ether, and mixtures thereof.

Commercially available ester-type surfactants are, for example, sorbitan
monoisostearate having a tradename Crill™ 6 available from Croda, and sorbitan
sesquioleate with tradename Arelcel 83 available from Kao Atras.

The lipophilic surfactant can be a silicone-type surfactant. Silicone-type
surfactants useful herein are (i), (ii), and (iii) as shown below, and mixtures thereof.

(i) dimethicone copolyols having the formula:

\[
(\text{CH}_3)_3\text{SiO} \xrightarrow{\text{Si}((\text{CH}_3)_2\text{O})_x} \text{Si}((\text{CH}_3)_2\text{O})_x \xrightarrow{\text{C}_3\text{H}_6} \text{Si}((\text{CH}_3)_3) \\
\xrightarrow{\text{C}_2\text{H}_4\text{O}}_\text{a}(\text{C}_3\text{H}_6\text{O})_b \xrightarrow{\text{H}}
\]

wherein \(x\) is an integer from 5 to 100, \(y\) is an integer from 1 to 50, \(a\) is zero or greater, \(b\) is
zero or greater, the average sum of \(a+b\) is 1-100.

(ii) dimethicone copolyols having the formula:
wherein R is selected from the group consisting of hydrogen, methyl, and combinations thereof, m is an integer from 5 to 100, x is independently zero or greater, y is independently zero or greater, the sum of x+y is 1-100.

(iii) branched polyether-polydiorganosiloxane emulsifiers herein having the formula:

\[\text{R}^1 - \text{O} - \left(\text{H}_3\text{C}_3\text{Si} - \text{O} - \right)_a \left(\text{Si} - \text{O} - \right)_b \left(\text{Si} - \text{O} - \right)_c \text{Si(CH}_3)_3 \]

\[\text{R}^2 - \text{O} - \left(\text{CH}_2 \right)_d \text{Si(OCH}_2\text{H}_4\text{O})_e \left(\text{C}_3\text{H}_6\text{O})_f \text{R}^3 \]

wherein \(\text{R}^1 \) is an alkyl having from about 1 to about 20 carbons; \(\text{R}^2 \) is

\[\text{CH}_3 \]

\[- \text{C}_9\text{H}_{29} - \left(\text{Si} - \text{O} - \right)_h \text{Si(CH}_3)_3 \]

wherein g is from about 1 to about 5, and h is from about 5 to about 20; \(\text{R}^3 \) is H or an alkyl having from about 1 to about 5 carbons; e is from about 5 to about 20; f is from about 0 to about 10; a is from about 20 to about 100; b is from about 1 to about 15; c is from about 1 to about 15; and d is from about 1 to about 5.

Commercially available silicone-type surfactants are, for example, dimethicone copolymers DC5225C, BY22-012, BY22-008, SH3746M, SH3771M, SH3772M, SH3773M, SH3775M, SH3748, SH3749, and DC5200, all available from Dow Corning, and branched polyether-polydiorganosiloxane emulsifiers such as PEG-9 polydimethylsiloxysiethyl Dimethicone, having an HLB of about 4 and a molecular weight of about 6,000 having a tradename KF-6028 available from ShinEtsu Chemical.

In a preferred embodiment, the lipophilic surfactant is a mixture of at least one ester-type surfactant and at least one silicone-type surfactant to provide a stable emulsion for the other essential components of the present invention.
WATER

The composition of the present invention comprises water in an amount sufficient to provide a discontinuous aqueous phase, preferably an amount such that the total of the volatile silicone oil and water is more than about 40% of the composition of each layer. More preferably, the present composition comprises from about 10% to about 35% of water. Without being bound by theory, the amount of water herein is believed to provide improved refreshing and light feeling to the skin, without necessarily leaving a dried feeling to the skin. Further, this amount of water allows the inclusion of optional skin active agents which are soluble in water as described below.

In the present invention, deionized water is typically used. Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product.

PIGMENT POWDER COMPONENT

The composition of each layer of the present invention comprises from about 5% to about 45%, preferably from about 5% to about 30% of a pigment powder component. The pigments included in the pigment powder component herein are typically hydrophobic in nature, or hydrophobically treated. By keeping the level of pigment component low, the entire composition maintains flexibility to accommodate other components which provide spreadability, moisturization, and fresh and light feel. The species and levels of the pigments are selected to provide, for example, shade, coverage, good wear performance, and stability in the composition.

Pigments useful for the pigment component herein are inorganic and organic powder such as talc, mica, sericite, silica, magnesium silicate, synthetic fluorphlogopite, calcium silicate, aluminum silicate, bentonite and montmorillonite; pearl pigments such as alumina, barium sulfate, calcium secondary phosphate, calcium carbonate, coverage titanium oxide, finely divided titanium oxide, zirconium oxide, normal particle size zinc oxide, hydroxy apatite, iron oxide, iron titanate, ultramarine blue, Prussian blue, chromium oxide, chromium hydroxide, cobalt oxide, cobalt titanate, titanium oxide coated mica; organic powder such as polyester, polyethylene, polystyrene, methyl methacrylate resin, cellulose, 12-nylon, 6-nylon, styrene-acrylic acid copolymers, polypropylene, vinyl chloride polymer, tetrafluoroethylene polymer, boron nitride, fish
scale guanine, laked tar color dyes, and laked natural color dyes. Such pigments may be treated with a hydrophobic treatment agent, including: silicone such as methicone, dimethicone, and perfluoroalkylsilane; fatty material such as stearic acid and disodium hydrogenated glutamate; metal soap such as aluminium dimyristate; aluminium hydrogenated tallow glutamate, hydrogenated lecithin, lauroyl lysine, aluminium salt of perfluoroalkyl phosphate, and aluminium hydroxide as to reduce the activity for titanium dioxide, and mixtures thereof.

available from Ajinomoto, synthetic fluorphlogopite and methicone: PDM-5L(S) / PDM-10L(S) / PDM-20L(S) / PDM-40L(S) available from Topy Industries.

ADDITIONAL COMPONENTS

The compositions hereof may further contain additional components such as those conventionally used in topical products, e.g., for providing aesthetic or functional benefit to the composition or skin, such as sensory benefits relating to appearance, smell, or feel, therapeutic benefits, or prophylactic benefits (it is to be understood that the above-described required materials may themselves provide such benefits).

The CTFA Cosmetic Ingredient Handbook, Second Edition (1992) describes a wide variety of nonlimiting cosmetic and pharmaceutical ingredients commonly used in the industry, which are suitable for use in the topical compositions of the present invention. Such other materials may be dissolved or dispersed in the composition, depending on the relative solubilities of the components of the composition.

Examples of suitable topical ingredient classes include: anti-cellulite agents, antioxidants, radical scavengers, chelating agents, vitamins and derivatives thereof, abrasives, other oil absorbents, astringents, dyes, essential oils, fragrance, structuring agents, emulsifiers, solubilizing agents, anti-caking agents, antifoaming agents, binders, buffering agents, bulking agents, denaturants, pH adjusters, propellants, reducing agents, sequestrants, cosmetic biocides, and preservatives.

20 Skin Active Agent

The compositions of the present invention may comprise a safe and effective amount of a skin active agent. The term “skin active agent” as used herein, means an active ingredient which provides a cosmetic and/or therapeutic effect to the area of application on the skin, hair, or nails. The skin active agents useful herein include skin lightening agents, anti-acne agents, emollients, non-steroidal anti-inflammatory agents, topical anaesthetics, artificial tanning agents, anti-microbial and anti-fungal actives, skin soothing agents, sun screening agents, skin barrier repair agents, anti-wrinkle agents, anti-skin atrophy actives, lipids, sebum inhibitors, sebum inhibitors, skin sensates, protease inhibitors, skin tightening agents, anti-itch agents, hair growth inhibitors, desquamation enzyme enhancers, anti-glycation agents, and mixtures thereof. When included, the
present composition comprises from about 0.001% to about 20%, preferably from about 0.1% to about 10% of at least one skin active agent.

The type and amount of skin active agents are selected so that the inclusion of a specific agent does not affect the stability of the composition. For example, hydrophilic agents may be incorporated in an amount soluble in the aqueous phase, while lipophilic agents may be incorporated in an amount soluble in the oil phase.

Skin lightening agents useful herein refer to active ingredients that improve hyperpigmentation as compared to pre-treatment. Useful skin lightening agents herein include ascorbic acid compounds, vitamin B₃ compounds, azelaic acid, butyl hydroxyanisole, gallic acid and its derivatives, glycyrrhizinic acid, hydroquinone, kojic acid, arbutin, mulberry extract, and mixtures thereof. Use of combinations of skin lightening agents is believed to be advantageous in that they may provide skin lightening benefit through different mechanisms.

Ascorbic acid compounds useful herein include ascorbic acid per se in the L-form, ascorbic acid salt, and derivatives thereof. Ascorbic acid salts useful herein include, sodium, potassium, lithium, calcium, magnesium, barium, ammonium and protamine salts. Ascorbic acid derivatives useful herein include, for example, esters of ascorbic acid, and ester salts of ascorbic acid. Particularly preferred ascorbic acid compounds include 2-O-D-glucopyranosyl-L-ascorbic acid, which is an ester of ascorbic acid and glucose and usually referred to as L-ascorbic acid 2-glucoside or ascorbyl glucoside, and its metal salts, and L-ascorbic acid phosphate ester salts such as sodium ascorbyl phosphate, potassium ascorbyl phosphate, magnesium ascorbyl phosphate, and calcium ascorbyl phosphate. Commercially available ascorbic compounds include magnesium ascorbyl phosphate available from Showa Denko, 2-O-D-glucopyranosyl-L-ascorbic acid available from Hayashibara and sodium L-ascorbyl phosphate with tradename STAY C™ available from Roche.

Vitamin B₃ compounds useful herein include, for example, those having the formula:
wherein R is -CONH₂ (e.g., niacinamide) or -CH₂OH (e.g., nicotinyl alcohol); derivatives thereof; and salts thereof. Exemplary derivatives of the foregoing vitamin B₃ compounds include nicotinic acid esters, including non-vasodilating esters of nicotinic acid, nicotinyl amino acids, nicotinyl alcohol esters of carboxylic acids, nicotinic acid N-oxide and niacinamide N-oxide. Preferred vitamin B₃ compounds are niacinamide and tocopherol nicotinate, and more preferred is niacinamide. In a preferred embodiment, the vitamin B₃ compound contains a limited amount of the salt form and is more preferably substantially free of salts of a vitamin B₃ compound. Preferably the vitamin B₃ compound contains less than about 50% of such salt, and is more preferably essentially free of the salt form. Commercially available vitamin B₃ compounds that are highly useful herein include niacinamide USP available from Reilly.

Other hydrophobic skin lightening agents useful herein include ascorbic acid derivatives such as ascorbyl tetraisopalmitate (for example, VC-IP available from Nikko Chemical), ascorbyl palmitate (for example available from Roche Vitamins), ascorbyl dipalmitate (for example, NIKKOL CP available from Nikko Chemical); undecylenoyl phenyl alanine (for example, SEPIWHITE MSH available from Seppic); octadecenedioic acid (for example, ARLATONE DIOIC DCA available from Uniquema); oenothera biennis seed extract, and pyrus malus (apple) fruit extract, Water and Myritol 318 and butylene glycol and tocopherol and sccorbil tetraisopalmitate and Paraben and Carbopol 980 and DNA / SMARTVECTOR UV available from COLETICA, magnesium ascorbyl phosphate in hyaluronic filling sphere available from COLETICA, and mixtures thereof.

Other skin active agents useful herein include those selected from the group consisting of N-acetyl D-glucosamine, panthenol (e.g., DL panthenol available from Alps Pharmaceutical Inc.), tocopheryl nicotinate, benzoyl peroxide, 3-hydroxy benzoic acid, flavonoids (e.g., flavanone, chalcone), farnesol, phytantriol, glycolic acid, lactic acid, 4-hydroxy benzoic acid, acetyl salicylic acid, 2-hydroxybutanoic acid, 2-hydroxypentanoic acid, 2-hydroxyhexanoic acid, cis-retinoic acid, trans-retinoic acid, retinol, retinyl esters (e.g., retinyl propionate), phytic acid, N-acetyl-L-cysteine, lipoic acid, tocopherol and its esters (e.g., tocopheryl acetate: DL-α-tocopheryl acetate available from Eisai), azelaic acid, arachidonic acid, tetracycline, ibuprofen, naproxen, ketoprofen, hydrocortisone,
acetaminophen, resorcinol, phenoxyethanol, phenoxypropanol, phenoxyisopropanol, 2,4,4'-trichloro-2'-hydroxy diphenyl ether, 3,4,4'-trichlorocarbanilide, octopirox, lidocaine hydrochloride, clotrimazole, miconazole, ketoconazole, neomycin sulfate, theophylline, and mixtures thereof. In a preferred example, the content level of a skin active agent is from about 0.001% to about 20%, more preferably from about 0.1% to about 10%.

Humectant

The composition of the present invention may further comprise a humectant by weight of compositions of each layer at from about 1% to about 15%, preferably 2% to about 7%.

The humectants herein are selected from the group consisting of polyhydric alcohols, water soluble alkylxylated nonionic polymers, and mixtures thereof. Polyhydric alcohols useful herein include glycerin, propylene glycol, 1,3- butylene glycol, dipropylene glycol, diglycerin, sodium hyaluronate, and mixtures thereof.

Commercially available humectants herein include: glycerin available from Asahi Denka; propylene glycol with tradename LEXOL PG-865/855 available from Inolex, 1,2-PROPYLENE GLYCOL USP available from BASF; 1,3-butylene glycol available from Kyowa Hakko Kogyo; dipropylene glycol with the same tradename available from BASF; diglycerin with tradename DIGLYCEROL available from Solvay GmbH; sodium hyaluronate with tradenames ACTIMOIST™ available from Active Organics, AVIAN SODIUM HYALURONATE series available from Interagen, HYALURONIC ACID Na available from Ichimaru Pharcos.

UV Protection Powder

UV protection powder provides UV protection benefit in the composition. UV protection powder has a particle size of less than 100nm, which size provide very little coverage effect to the skin. The composition of each layer of the present invention may comprise from about 0% to about 20%, preferably from about 0.1% to about 10% of a UV protection powder, such as micronized titanium dioxide and micronized zinc oxide. The powder included in the pigment component herein is typically hydrophobic in nature, or hydrophobically treated.

Commercially available UV protection powder is titanium dioxide and methicone SI-TTO-S-3Z available from Miyoshi Kasei, titanium dioxide and dimethicone and

UV Absorbing Agent

The compositions of the present invention may comprise a safe and effective amount of a UV absorbing agent. A wide variety of conventional UV protecting agents are suitable for use herein, such as those described in U.S. Patent 5,087,445, Haffey et al, issued February 11, 1992; U.S. Patent 5,073,372, Turner et al, issued December 17, 1991; U.S. Patent 5,073,371, Turner et al., issued December 17, 1991; and Segarin, et al, at Chapter VIII, pages 189 et seq., of Cosmetics Science and Technology (1972). When included, the present composition comprises from about 0.5% to about 20%, preferably from about 1% to about 15% of a UV absorbing agent.

UV absorbing agent useful herein includes, for example, 2-ethylhexyl-p-methoxycinnamate (commercially available as PARISCOL MCX), butylmethoxydibenzoylmethane, 2-hydroxy-4-methoxybenzo-phenone, 2-phenylbenzimidazole-5-sulfonic acid, octyldimethyl-p-aminobenzoic acid, octocrylene, 2-ethylhexyl N,N-dimethyl-p-aminobenzoate, p-aminobenzoic acid, 2-phenylbenzimidazole-5-sulfonic acid, octocrylene, oxybenzone, homomenthyl salicylate, octyl salicylate, 4,4'-methoxy-t-butylidibenzoylmethane, 4-isopropyl dibenzoylmethane, 3-benzylidene camphor, 3-(4-methylbenzylidene) camphor, Eusolex™ 6300, Octocrylene, Avobenzone (commercially available as Parsol 1789), and mixtures thereof.

Thickener

Useful for the present invention is a thickener. Thickeners can be used for solidifying solid water-in-oil form compositions of the present invention. When used, the thickener is kept to about 15% of the composition. The thickeners useful herein are selected from the group consisting of fatty compounds, gelling agents, inorganic thickeners and mixtures thereof. The amount and type of thickeners are selected according to the desired viscosity and characteristics of the product.

Fatty compound useful herein includes stearic acid, palmitic acid, stearyl alcohol, cetyl alcohol, behenyl alcohol, stearic acid, palmitic acid, the polyethylene glycol ether of stearyl alcohol or cetyl alcohol having an average of about 1 to about 5 ethylene oxide units, and mixtures thereof. Preferred fatty compounds are selected from stearyl
alcohol, cetlyl alcohol, behenyl alcohol, the polyethylene glycol ether of stearyl alcohol having an average of about 2 ethylene oxide units (steareth-2), the polyethylene glycol ether of cetlyl alcohol having an average of about 2 ethylene oxide units, and mixtures thereof.

The gelling agent useful as thickeners of the present invention include esters and amides of fatty acid gellants, hydroxy acids, hydroxy fatty acids, other amide gellants, and crystalline gellants.

N-acyl amino acid amides useful herein are prepared from glutamic acid, lysine, glutamine, aspartic acid and mixtures thereof. Particularly preferred are N-acyl glutamic acid amides corresponding to the following formula:

\[\text{R2-NH-CO-(CH2)2-CH-(NH-CO-R1)-CO-NH-R2} \]

wherein R1 is an aliphatic hydrocarbon radical having from about 12 to about 22 carbon atoms, and R2 is an aliphatic hydrocarbon radical having from about 4 to about 12 carbon atoms. Non-limiting examples of these include n-lauroyl-L-glutamic acid dibutyl amide, n-stearoyl-L-glutamic acid diheptyl amide, and mixtures thereof. Most preferred is n-lauroyl-L-glutamic acid dibutyl amide, also referred to as dibutyl lauroyl glutamide. This material is commercially available with tradename Gelling agent GP-1 available from Ajinomoto.

Other gelling agents suitable for use in the compositions includes 12-hydroxystearic acid, esters of 12-hydroxystearic acid, amides of 12-hydroxystearic acid and combinations thereof. These preferred gellants include those which correspond to the following formula:

\[\text{R1-CO-(CH2)10-CH-(OH)-(CH2)5-CH3} \]

wherein R1 is R2 or NR2R3; and R2 and R3 are hydrogen, or an alkyl, aryl, or arylalkyl radical which is branched linear or cyclic and has from about 1 to about 22 carbon atoms; preferably, from about 1 to about 18 carbon atoms. R2 and R3 may be either the same or different; however, at least one is preferably a hydrogen atom. Preferred among these gellants are those selected from the group consisting of 12-hydroxystearic acid, 12-hydroxystearic acid methyl ester, 12-hydroxystearic acid ethyl ester, 12-hydroxystearic acid stearyl ester, 12-hydroxystearic acid benzyl ester, 12-hydroxystearic acid amide, isopropyl amide of 12-hydroxystearic acid, butyl amide of 12-hydroxystearic acid, benzyl
amide of 12-hydroxystearic acid, phenyl amide of 12-hydroxystearic acid, t-butyl amide of 12-hydroxystearic acid, cyclohexyl amide of 12-hydroxystearic acid, 1-adamantyl amide of 12-hydroxystearic acid, 2-adamantyl amide of 12-hydroxystearic acid, diisopropyl amide of 12-hydroxystearic acid, and mixtures thereof; even more preferably, 12-hydroxystearic acid, isopropyl amide of 12-hydroxystearic acid, and combinations thereof. Most preferred is 12-hydroxystearic acid.

Suitable amide gellants include disubstituted or branched monoamide gellants, monosubstituted or branched diamide gellants, triamide gellants, and combinations thereof, excluding the n-acyl amino acid derivatives selected from the group consisting of n-acyl amino acid amides, n-acyl amino acid esters prepared from glutamic acid, lysine, glutamine, aspartic acid, and combinations thereof, and which are specifically disclosed in U.S. Patent 5,429,816.

Alkyl amides or di- and tri-basic carboxylic acids or anhydrides suitable for use in the composition include alkyl amides of citric acid, tricarballylic acid, aconitic acid, nitritoltriacetic acid, succinic acid and itaconic acid such as 1,2,3-propane tributylamide, 2-hydroxy-1,2,3-propane tributylamide, 1-propene-1,2,3-triyltamide, N,N',N"-tri(acetodecylamide)amine, 2-dodecyl-N,N'-dihexylsuccinamide, and 2 dodecyl-N,N'-dibutylsuccinamide. Preferred are alkyl amides of di-carboxylic acids such as di-amides of alkyl succinic acids, alkenyl succinic acids, alkyl succinic anhydrides and alkenyl succinic anhydrides, more preferably 2-dodecyl-N,N'-dibutylsuccinamide.

Inorganic thickeners useful herein include hectorite, bentonite, montmorillonite, and bentone clays which have been modified to be compatible with oil. Preferably, the modification is quaternization with an ammonium compound. Preferable inorganic thickeners include quaternary ammonium modified hectorite. Commercially available oil swelling clay materials include Disteardimonium hectorite with tradename Bentone 38V CG available from Elementis.

PREPARATION OF THE COMPOSITION

The present invention also relates to a suitable process for making the composition of the present invention. While the present composition may be made by any process known in the art, the process herein is advantageous for manufacturing the present composition in an aesthetically appealing, yet cost effective manner.
The present process is particularly useful for the present composition wherein the first layer and the second layer each provide a viscosity of from about 100 mPas to about 10,000 mPas, preferably from 300 mPas to 3000 mPas when brought to a temperature of between about 55°C and about 90°C. The present process comprises the steps of:

(a) providing the first layer composition and the second layer composition in fluid state in isolated vessels;

(b) separately dispensing the first layer composition by a first nozzle and the second layer composition by a second nozzle into a same package while keeping the temperature of the first layer composition and second layer composition between 55°C and 90°C, preferably between 60°C and 75°C; and

(c) allowing the transferred first layer and second layer to solidify in the package.

Each of the first and second layer compositions can be made by any suitable method known for providing water-in-oil emulsion compositions. In a suitable process, the first and second layer compositions are independently made by the steps of:

1) dissolving the volatile silicone oil, non-volatile oil, solid wax, lipophilic surfactant, slurry of pigments dispersed in oil, and any other hydrophobic material in liquid form at ambient temperature in a sealed tank, to make a lipophilic mixture;

2) adding the remaining pigments and powders into such lipophilic mixture and dispersing with a homogenizer at about 20-30°C;

3) separate from 1) and 2), heating and dissolving in water, humectants and any other hydrophilic material at about 75-80°C, and then cooling to about 20-30°C;

4) adding the product of step 3) to the product of step 2) to effect an emulsification; and

5) heating and adding to the product of step 4), solid wax and any remaining hydrophobic material at about 80-85°C.

The obtained composition, which is still fluid at such temperature, is filled into an airtight container and allowed to cool to room temperature typically using a cooling unit.

Referring to Fig. 1, the first and second layer compositions made according to the above steps are re-melted under 70°C and deaerated in two isolated vessels 101 and 102. Such vessel is typically a tank that is equipped with appropriate mixing means 103 and
104 for mixing and homogenizing. Then, the deaerated bulk compositions are transferred into two separate filling hoppers 105 and 106, from where the first and second layer compositions in fluid state are delivered into pipes 107, 108 which are guided to a first nozzle 109 for the first layer, and a second nozzle 110 for the second layer. In a preferred embodiment, the second nozzle 110 is composed of two separate nozzles. The first and second nozzles terminate at a filling site 121. In the process of transferring and filling, heat-exchanging equipments are used to maintain the bulk composition temperature within the range of about 55°C to about 90°C, preferably from about 60°C to about 75°C.

Meanwhile, the reservoir part of the primary package for accommodating the present composition is brought to the filling site 121 by suitable means such as a moving belt conveyor 120. In the preferred embodiment of the present invention, the reservoir part of the primary package is a pan made of metallic or plastic material. In the description hereafter, the reservoir part of the primary package is represented by, and referred to as a “pan”. Now referring to Figs. 2 and 3, the pan is brought to filling site 200 by means of, for example, a moving bar 201. The filling site 200 consists of a table 202 for placing the pan, and at which the primary package receives the first and second layer compositions in fluid state by the first nozzle and second nozzle. The table 202 may be moved or rotated so that a design is illustrated by the flow of the first and second layer compositions in fluid state. The terminating point of the first and second nozzle may also be moved or rotated. Depending on the combined movement of the table and nozzle termination points, various designing is possible. Here, it is advantageous to have the first and second layer compositions visibly distinct, such that the design is clear and distinct.

Fig. 4 shows embodiments of the resulting design made by such movement of the table and/or nozzle termination points upon filling. The design of (iii) may be made by having one nozzle stable, and the other nozzle moving in linear direction. The spiral design of (i) may be made by the first and second nozzles moving away from each other in linear direction, while the table is rotated as shown in Fig. 3(a). Another spiral design (iv) may be made in a similar manner, albeit by having one of the first or second nozzle separated into two branches, as shown in (c) of Fig. 3. Yet another spiral design (v) can
be made by the same nozzle configuration shown in (c) of Fig. 3, albeit adjusting the filling speed and rotation speed of the table. Other spiral designs (vi) and (vii) of Fig 4 can be made by the nozzle configuration as shown in (d) of Fig. 3, wherein one of the first or second nozzle is separated into three branches. The marble design of (ii) of Fig. 4 may be made by having the first nozzle and second nozzle jointed with each other immediately before the termination point, such as shown in (b) of Fig. 3. In such an embodiment, the temperature of the first and second layer compositions must be carefully controlled in the range 60°C and 75°C such that the layers are not completely mixed with each other at the jointed point, yet are fluid enough to flow.

Referring back to Fig. 1, the pan filled with the first and second layer compositions are sent to another moving belt conveyer, and moved through a cooling unit 141 for cooling and solidifying the composition. Those compositions containing volatile components such as water, silicone oil, and others, are packaged in an air-tight container, such that the composition is not deteriorated during storage. In the preferred foundation embodiment of the present invention, the composition is placed in a compact housing an air tight container in which the composition is included. The compact may further contain a mirror and a concave tray for accommodating a sponge applicator.

APPLICATION OF THE PRODUCT

The multilayer product of the present invention can be applied on a consumer’s skin by a finger, a sponge or a brush. Depending on how well consumers mix each layer before application, each layer of the product may be maintained to be separated, semi-mixed or mixed upon application on the skin. However, to achieve certain benefits of the present invention, such as the radiant look from radiant powder, it is preferred to apply the present product by paying off the product from the package by a finger, a sponge or a brush in one stroke, and then applying the product on skin. It is believed that by this preferred application method, each layer of the product of the present invention will more or less maintain being separated from each other even upon applying on the skin, and therefore can achieve the intended benefits for skin.

EXAMPLES
The following examples further describe and demonstrate the preferred embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration, and are not to be construed as limitations of the present invention since many variations thereof are possible without departing from its spirit and scope.

1) EXAMPLES 1-5 (W/O solid emulsion composition of the first layer)

The following make-up compositions are formed by the process described below:

<table>
<thead>
<tr>
<th>No.</th>
<th>Components</th>
<th>Function</th>
<th>Ex. 1-1</th>
<th>Ex. 2-1</th>
<th>Ex. 3-1</th>
<th>Ex. 4-1</th>
<th>Ex. 5-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclopentasiloxane *1</td>
<td>Volatile oil</td>
<td>26.90</td>
<td>25.90</td>
<td>25.90</td>
<td>25.90</td>
<td>25.90</td>
</tr>
<tr>
<td>2</td>
<td>PEG-9 Polydimethylsiloxylxyethyl Dimethicone *2</td>
<td>Lipophilic surfactant</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>Tocopheryl Acetate *3</td>
<td>Skin active agent</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>Isotridecyl Isononanoate *4</td>
<td>Non-volatile oil</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>Sorbitan Monoisostearate *5</td>
<td>Lipophilic surfactant</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>2-ethylhexyl-p-methoxycinnamate*6</td>
<td>UV absorbing agent</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>Iron Oxide and Cyclopentasiloxane and Dimethicone and Disodium Hydrogenated Glutamate *7</td>
<td>Pigment powder</td>
<td>3.00</td>
<td>1.80</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>Titanium Dioxide and Dimethicone and Disodium Hydrogenated Glutamate *8</td>
<td>Pigment powder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>Component Name</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity</td>
<td>Quantity</td>
<td>Quantity</td>
<td>Quantity</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>9</td>
<td>Titanium Dioxide and Talc and Methicone *9</td>
<td>Pigment powder</td>
<td>14.00</td>
<td>12.60</td>
<td>10.00</td>
<td>12.00</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Alumina and Titanium Dioxide and Methicone *10</td>
<td>Pigment powder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>11</td>
<td>Titanium Dioxide and Methicone *11</td>
<td>Pigment powder</td>
<td>-</td>
<td>-</td>
<td>5.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Titanium Dioxide and Dimethicone and Aluminium Hydroxide and Stearic Acid *12</td>
<td>UV protection powder</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>13</td>
<td>Silica and Methicone*13</td>
<td>Oil absorbing powder</td>
<td>2.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Talc and Methicone *14</td>
<td>Radiant powder</td>
<td>3.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Talc and Methicone *15</td>
<td>Pigment powder</td>
<td>-</td>
<td>8.60</td>
<td>6.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>16</td>
<td>Water</td>
<td></td>
<td>29.00</td>
<td>29.00</td>
<td>30.00</td>
<td>28.00</td>
<td>30.00</td>
</tr>
<tr>
<td>17</td>
<td>Niacinamide *16</td>
<td>Skin active agent</td>
<td>4.00</td>
<td>4.00</td>
<td>3.00</td>
<td>3.00</td>
<td>4.00</td>
</tr>
<tr>
<td>18</td>
<td>N-acetyl D-glucosamine</td>
<td>Skin active agent</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Preservative</td>
<td>Preservative</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>20</td>
<td>Panthenol *17</td>
<td>Skin active agent</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>21</td>
<td>Glycerin*18</td>
<td>Humectant</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>22</td>
<td>Butylene Glycol *19</td>
<td>Humectant</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Candelilla Wax*20</td>
<td>Solid wax</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>24</td>
<td>Ceresin *21</td>
<td>Solid wax</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
</tr>
</tbody>
</table>
 Definitions of Components

*1 Cyclopentasiloxane: SH245 available from Dow Corning
*2 PEG-9 Polydimethylsiloxeyl Dimethicone: KF-6028 available from Shin-Etsu Chemical Co., Ltd.
*3 Tocopheryl Acetate: DL-α-tocopheryl Acetate available from Eisai
*4 Isotridecyl Isononanoate: Crodamol TN available from Croda
*5 Sorbitan Monoisostearate: Crill 6 available from Croda
*6 2-ethylhexyl-p-methoxycinnamate: Parsol MCX available from Roche Vitamins Japan K.K.
*7 Iron Oxide and Cyclopentasiloxane and Dimethicone and Disodium Hydrogenated Glutamte: SA/NAI-Y-10 / D5 (70%) , SA/NAI-R-10 / D5 (65%) and SA/NAI-B-10 / D5 (75%) available from Miyoshi Kasei
*8 Titanium Dioxide and Dimethicone and Disodium Hydrogenated Glutamte: SA/NAI TR-10 available from Miyoshi Kasei
*9 Titanium Dioxide and Talc and Methicone: SI-T-CR-50Z available from Miyoshi Kasei
*10 Alumina and Titanium Dioxide and Methicone: SI-LTSG30AFLAKEH(5%)LHC available from Miyoshi Kasei
*11 Titanium Dioxide and Methicone: SI-FTL-300 available from Miyoshi Kasei
*12 Titanium Dioxide and Dimethicone and Aluminum Hydroxide and Stearic acid: SAST-UFT-Z available from Miyoshi Kasei
*13 Silica and Methicone: SI-SILDEX H-52 available from Miyoshi Kasei
*14 Talc and Methicone: SI Talc CT-20 available from Miyoshi Kasei
*15 Talc and Methicone: SI Talc JA13R LHC available from Miyoshi Kasei
*16 Niacinamide: Niacinamide available from Reilly Industries Inc.
*17 Panthenol: DL-Panthenol available from Alps Pharmaceutical Inc.
*18 Glycerin: Glycerin USP available from Asahi Denka
Butylene Glycol: 1,3-Butylene Glycol available from Kyowa Hakko Kogyo
Candelilla Wax: Candelilla wax NC-1630 available from Cerarica Noda
Ceresin: Ozokerite wax SP-1021 available from Strahl & Pitts

Preparation Method

1) Mixing components numbers 1 through 7 with suitable mixer until homogeneous to provide a silicone phase.

2) Mixing components numbers 8 through 15 with suitable mixer until homogeneous to provide a pigment mixture which is then pulverized using a pulverizer. Adding the pigment mixture into the silicone phase with a suitable mixer until homogeneous.

3) Dissolving components number 16 through 22 with suitable mixer until all components are dissolved to provide a water phase which is then added into the silicone phase and pigment mixture to make an emulsion at room temperature using homogenizer.

4) Adding components number 23 and 24 into the emulsion which is then heated to dissolve at 85 °C in a sealed tank.

5) Finally, filling the emulsion into an air-tight container and allowing cooling to room temperature using a cooling unit.

2) EXAMPLES 1-5 (W/O solid emulsion composition of the second layer)

The following make-up compositions are formed by the process described below:

<table>
<thead>
<tr>
<th>No.</th>
<th>Components</th>
<th>Function</th>
<th>Ex.1-2</th>
<th>Ex.2-2</th>
<th>Ex.3-2</th>
<th>Ex.4-2</th>
<th>Ex.5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclopentasiloxane *1</td>
<td>Volatile oil</td>
<td>26.90</td>
<td>26.90</td>
<td>26.90</td>
<td>21.90</td>
<td>22.00</td>
</tr>
<tr>
<td>2</td>
<td>PEG-9 Polydimethylsiloxeyethyl Dimethicone *2</td>
<td>Lipophilic surfactant</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>Dimethicone and Dimethicone/Vinyl Dimethicone Crosspolymer *3</td>
<td>Silicone elastomer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.00</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Trimethylsiloxy silicate and Cyclopentasiloxane</td>
<td>Film Forming</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>5</td>
<td>Tocopheryl Acetate *5</td>
<td>Skin active agent</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>Isotridecyl Isononanoate *6</td>
<td>Non-volatile oil</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>Sorbitan Monoisostearate *7</td>
<td>Lipophilic surfactant</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>8</td>
<td>Iron Oxide and Cyclopentasiloxane and Dimethicone and Disodium Hydrogenated Glutamate *8</td>
<td>Pigment powder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
</tr>
<tr>
<td>9</td>
<td>Disteardimonium Hectorite *9</td>
<td>Thickener</td>
<td>-</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Titanium Dioxide and Talc and Methicone *10</td>
<td>Pigment powder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>Titanium Dioxide and Methicone *11</td>
<td>UV protection powder</td>
<td>3.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Titanium Dioxide and Dimethicone and Aluminium Hydroxide and Stearic Acid *12</td>
<td>UV protection powder</td>
<td>3.00</td>
<td>2.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mica and Alumina and Dimethicone*13</td>
<td>Soft focus powder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.00</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Silica and Methicone *14</td>
<td>Oil absorbing powder</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>5.00</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Vinyl Dimethicone</td>
<td>Oil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>Ingredient</td>
<td>Absorbing Property</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>16</td>
<td>Mica and Zinc Oxide and Methicone and Hydroxyapatite *16</td>
<td>Sebum solidifying powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Mica and Titanium Dioxide and Dimethicone *17</td>
<td>Radiant Powder</td>
<td></td>
<td>2.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mica and Titanium Dioxide and Dimethicone *18</td>
<td>Radiant powder</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Titanium Dioxide and Mica and Alumina and Silica and Dimethicone / Methicone Copolymer and Iron Oxide *19</td>
<td>Radiant Powder</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Talc and Methicone *20</td>
<td>Radiant powder</td>
<td>15.00</td>
<td>16.50</td>
<td>15.00</td>
<td>9.00</td>
<td>12.80</td>
</tr>
<tr>
<td>21</td>
<td>Lauroyl Lysine*21</td>
<td>Pigment Powder</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Talc and Methicone *22</td>
<td>Pigment powder</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Water</td>
<td>Water</td>
<td>27.00</td>
<td>30.00</td>
<td>30.00</td>
<td>29.00</td>
<td>27.00</td>
</tr>
<tr>
<td>24</td>
<td>Polyvinylpyrrolidones *23</td>
<td>Film forming polymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Niacinamide *24</td>
<td>Skin active agent</td>
<td>4.00</td>
<td>3.00</td>
<td>3.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>26</td>
<td>Preservative</td>
<td>Preservative</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
</tbody>
</table>

*15 Methicone Silsesquioxane Crosspolymer *15

*16 Mica and Zinc Oxide and Methicone and Hydroxyapatite *16

*17 Mica and Titanium Dioxide and Dimethicone *17

*18 Mica and Titanium Dioxide and Dimethicone *18

*19 Titanium Dioxide and Mica and Alumina and Silica and Dimethicone / Methicone Copolymer and Iron Oxide *19

*20 Talc and Methicone *20

*21 Lauroyl Lysine*21

*22 Talc and Methicone *22

*23 Polyvinylpyrrolidones *23

*24 Niacinamide *24

*25 Preservative

*26 Preservative
<table>
<thead>
<tr>
<th></th>
<th>Ingredient</th>
<th>Description</th>
<th>0.25</th>
<th>0.25</th>
<th>0.25</th>
<th>0.25</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Panthenol *25</td>
<td>Skin active agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Glycerin *26</td>
<td>Humectant</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td>29</td>
<td>Butylene Glycol *27</td>
<td>Humectant</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>Water and Myritol 318 and Butylene Glycol and Tocopherol and Ascorbil</td>
<td>Skin active agent</td>
<td>2.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tetraisopalmitate and Paraben and Carbopol 980 and DNA *28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Candelilla Wax*29</td>
<td>Solid wax</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>32</td>
<td>Ceresin™ *30</td>
<td>Solid wax</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td></td>
<td>1.176</td>
<td>1.165</td>
<td>1.170</td>
<td>1.180</td>
<td>1.210</td>
</tr>
<tr>
<td></td>
<td>Viscosity (mPas)</td>
<td></td>
<td>1070</td>
<td>1440</td>
<td>1290</td>
<td>1560</td>
<td>1470</td>
</tr>
</tbody>
</table>

Definitions of Components:

*1 Cyclopentasiloxane: SH245 available from Dow Corning

*2 PEG-9 Polydimethylsiloxonyethyl Dimethicone: KF-6028 available from Shin-Etsu Chemical Co., Ltd.

*3 Dimethicone and Dimethicone/Vinyl Dimethicone Crosspolymer: KSG-16 available from Shin-Etsu Chemical Co., Ltd.

*4 Trimethylsiloxyilsilicate and Cyclopentasiloxane: Trimethylsiloxyilsilicate/Cyclomethicone D5 blend available from GE Toshiba Silicones

*5 Tocopheryl Acetate: DL-α-tocopheryl Acetate available from Eisai

*6 Isotridecyl Isononanoate: Crodamol TN available from Croda

*7 Sorbitan Monoisostearate: Crill 6 available from Croda

*8 Iron Oxide and Cyclopentasiloxane and Dimethicone and Disodium Hydrogenated Glutamate: SA/NAI-Y-10 / D5 (70%), SA/NAI-R-10 / D5 (65%) and SA/NAI-B-10 / D5 (75%) available from Miyoshi Kasei
*9 Distearidomonium Hectorite: BENTONE 38V CG™ available from ELEMENTIS

*10 Titanium Dioxide and Talc and Methicone: SI-T-CR-50Z available from Miyoshi Kasei

*11 Titanium Dioxide and Methicone: SI-TTO-S-3Z™ available from Miyoshi Kasei

*12 Titanium Dioxide and Dimethicone and Aluminum Hydroxide and Stearic Acid: SAST-UFTR-Z available from Miyoshi Kasei

*13 Mica and Alumina and Dimethicone: SA-Excel Mica JP2 available from Miyoshi Kasei

*14 Silica and Methicone: SI-SILDEX H-52™ available from Miyoshi Kasei

*15 Vinyl Dimethicone / Methicone Silsesquioxane Crosspolymer: KSP-100 available from Shinetsu Chemical

*16 Mica and Zinc Oxide and Methicone and Hydroxyapatite: SI-PLV-20 available from Miyoshi Kasei

*17 Mica and Titanium Dioxide and Dimethicone: SA-Flamenco Orange available from Miyoshi Kasei

*18 Mica and Titanium Dioxide and Dimethicone: SA-Timiron MP-1001 available from Miyoshi Kasei

*19 Titanium Dioxide and Mica and Alumina and Silica and Dimethicone / Methicone Copolymer and Iron Oxide: Relief Color Pink P-2™ available from CATALYSTS & CHEMICALS IND. CO., LTD.

*20 Talc and Methicone: SI Talc CT-20 available from Miyoshi Kasei

*21 Laureryl Lysine: AMIHOPÉ LL™ available from AJINOMOTO CO., INC.

*22 Talc and Methicone: SI Talc JA13R LHC available from Miyoshi Kasei

*23 Polyvinylpyrrolidones: PVP K-30 available from BASF

*24 Niacinamide: Niacinamide available from Reilly Industries Inc.

*26 Glycerin: Glycerin USP available from Asahi Denka

*27 Butylene Glycol: 1,3-Butylene Glycol available from Kyowa Hakko Kogyo

*28 Water and Myritol 318 and Butylene Glycol and Tocopherol and Ascorbil Tetraisopalmitate and Paraben and Carbopol 980 and DNA: SMARTVECTOR UV available from Coletica
*29 Candelilla wax: Candelilla wax NC-1630 available from Cerarica Noda

*30 Ceresin: Ozokerite wax SP-1021 available from Strahl & Pitsch

Preparation Method

The solid W/O emulsion compositions of the second layer of Examples 1-2 –5-2 are prepared as follows:

1) Mixing components numbers 1 through 8 with suitable mixer until homogeneous to provide a silicone phase.

2) Mixing components numbers 9 through 22 with suitable mixer until homogeneous to provide a pigment mixture which is then pulverized using pulverizer. The pigment mixture is then added into the silicone phase with suitable mixer until homogeneous.

3) Dissolving components number 23 through 30 with suitable mixer until all components are dissolved to provide a water phase which is added into the silicone phase and pigment mixture to provide an emulsion at room temperature using homogenizer.

4) Adding components number 31 and 32 into the emulsion which is then heated to dissolve at 85 °C in a sealed tank.

5) Finally, filling the emulsion in an air-tight container and allowing cooling to room temperature using a cooling unit.

Five different dual-layer foundation products can be made using the preparation method described above and combining 85% of the first layer compositions 1-1 to 5-1 and 15% of the corresponding second layer compositions 1-2 to 5-2 of Examples 1-5. Specifically, the preparation process includes the steps of (a) remelting and deaerating the first layer composition of Example 1-1 to 5-1 and the second layer composition of Example 1-2 to 5-2 in two isolated vessels; (b) separately dispensing the first layer composition by a first nozzle and the second layer composition by a second nozzle into a same package while keeping the temperature of the first layer composition and second layer composition between 60°C and 75°C; and (c) allowing the transferred first layer and second layer to solidify in the package. The dual-layer foundation products of the present invention not only have a more attractive aesthetic look, but also provide a variety of skin benefits.

For example, Example 1 can provide radiant look by comprising high level of specific particle talc and methicone: SI Talc CT-20 available from Miyoshi Kasei in the second
layer, Example 2 can provide radiant look by comprising talc and methicone: SI Talc CT-20 available from Miyoshi Kasei and titanium dioxide and mica and dimethicone: SA-Timiron MP-1001 available from Miyoshi Kasei, Mica and Titanium Dioxide and Dimethicone: SA-Flamenco Orange available from Miyoshi Kasei, Titanium Dioxide and Mica and Alumina and Silica and Dimethicone / Methicone Copolymer and Iron Oxide: Relief Color Pink P-2 available from CATALYSTS & CHEMICALS IND. CO., LTD.

in the second layer, Example 3 can provide natural look by comprising mica and alumina and dimethicone: SA-Excel Mica JP2 available from Miyoshi Kasei in the second layer, Example 4 can provide oil shine control effect by comprising silica and methicone: SI-Sildex H-52 available from Miyoshi Kasei and mica and zinc oxide and methicone and hydroxyapatite: SI-PLV-20 available from Miyoshi Kasei in the second layer and Example 5 can provide long wear and oily shine control benefit by comprising trimethylsiloxyxilicate and cyclopentasiloxane: trimethylsiloxysilicate / cyclomethicone D5 Blend available from GE Toshiba Silicone, polyvinylpirrolidones: PVP K-30 available from BASF and dimethicone and dimethicone/vinyl dimethicone crosspolymer: KSP-100 available from Shin-Etsu Chemical Co., Ltd. in the second layer.

The citation of all documents is, in relevant part, not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this written document conflicts with any meaning or definition of the term in a cited document, the meaning or definition assigned to the term in this written document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
What is claimed is:

1. A solid skin care composition comprising:
 (a) a first layer which is solid at 45°C and which is a water-in-oil emulsion; and
 (b) a second layer which is solid at 45°C and which is a water-in-oil emulsion
 comprising a benefit agent;

 wherein the first layer and the second layer have different composition; and

 wherein the first layer and the second layer are provided in the same package in a manner
 such that the first layer and the second layer can be simultaneously applied.

2. The composition of Claim 1, wherein the first layer and the second layer are
 visibly distinct.

3. The composition of Claim 2, wherein at least one of the first layer and second
 layer comprises a colorant to make the layers visibly distinct.

4. The composition of Claim 1, wherein the weight ratio of the first layer to the
 second layer is from about 1:99 to about 99:1.

5. The composition of Claim 1, wherein the first layer and the second layer each has
 a viscosity of from about 100mPas to about 3000mPas when brought to a temperature of
 between about 55°C and about 90°C.

6. The composition of Claim 1, wherein the viscosity difference and density
 difference between the compositions of the first layer and the second layer are within the
 area defined by the points of a(0.16g/cm³, -1600mPas), b(0.16g/cm³, 600mPas),
 c(-0.16g/cm³, -600mPas) and d(-0.16g/cm³, 1600mPas) as shown in the diagram of Fig 5.

7. The composition of Claim 1, wherein the first layer composition comprises:
 (a) a volatile silicone oil;
 (b) a non-volatile oil;
 (c) a pigment powder;
(d) a solid wax;
(e) a lipophilic surfactant; and
(f) water.

8. The composition of Claim 7 wherein the second layer composition comprises:
(a) a volatile silicone oil;
(b) a non-volatile oil;
(c) a pigment powder;
(d) a solid wax;
(e) a lipophilic surfactant;
(f) water; and
(g) a benefit agent.

9. The composition of Claim 8, wherein the differences of content level of non-volatile oil, pigment powder, wax, and total of water and volatile silicone oil in the first layer and the second layer are within the following ranges:
 a) non-volatile oil from 0% to about 10%;
 b) pigment powder from 0% to about 20%;
 c) wax from 0% to about 10%;
 d) total of water and volatile silicone oil from 0% to about 10%.

10. The composition of Claim 8 wherein the composition is a cosmetic foundation and wherein the benefit agent is selected from the group consisting of radiant powder, soft focus agent, oil absorbing powder, sebum solidifying powder, film forming polymer and mixtures thereof.

11. The composition of Claim 1, wherein the composition is an antiperspirant product and wherein the benefit agent is an antiperspirant active agent.

12. A method for manufacturing the composition of Claim 5 comprising the steps of:
(a) providing the first layer composition and the second layer composition in fluid state in isolated vessels;

(b) separately dispensing the first layer composition by a first nozzle and the second layer composition by a second nozzle into a same package while keeping the temperature of the first layer composition and the second layer composition between about 55°C and about 90°C; and

(c) allowing the transferred first layer and second layer to solidify in the package.

13. The method of Claim 12, wherein upon filling of the first layer and second layer into the package, the package is rotated.

14. The method of Claim 12, wherein the second nozzle is composed of two separate nozzles.

15. The method of Claim 12, wherein the second nozzle is composed of three separate nozzles.
Fig. 1

Fig. 2

SUBSTITUTE SHEET (RULE 26)