PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/13402

18 March 1999 (18.03.99)

(21) International Application Number: PCT/US98/15807

(22) International Filing Date: 14 August 1998 (14.08.98)

(30) Priority Data:

08/926,619 Us

10 September 1997 (10.09.97)

(71) Applicant: TREND MICRO, INC. [US/US]; 10101 N. De Anza
Boulevard, Cupertino, CA 95014 (US).

(72) Inventor: JI, Shuang; 98 Muir Avenue, Santa Clara, CA 95051
(Us).

(74) Agents: KLIVANS, Norman, R. et al.; Skjerven, Morrill,
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro
Drive, San Jose, CA 95110 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
With amended claims.

(54) Title: COMPUTER NETWORK MALICIOUS CODE SCANNER

(57) Abstract

A network scanner (26) for security checking of
application programs (e.g. Java applets or Active X
controls) received over the Internet or an Intranet (10)
has both static (pre-run time) and dynamic (run time)
scanning. Static scanning at the HTTP proxy server
(32) identifies suspicious instructions and instruments
them e.g. a pre-and post—filter instruction sequence or
otherwise. The instrumented applet is then transferred
to the client (14) (web browser (22)) together with
security monitoring code. During run time at the
client (14), the instrumented instructions are thereby

monitored for security policy violations, and execution
of an instruction is prevented in the event of such a
violation.

20
i
Server Machine
32
i 10
HTIP Proxy Server
Applet
Scanner o internet
14
!
Client Machine
2
Web Browser
30
i
Local Resources

AL
AM
AT
AU

BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/13402 PCT/US98/15807

COMPUTER NETWORK MALICIOUS CODE SCANNER

FIELD OF THE INVENTION
This invention pertains to computer networks and
specifically to detecting and preventing operation of

computer viruses and other types of malicious computer

code.
BACKGR D

With the rapid development of the Internet,
Intranet, and network computing, applications
(application programs) are distributed more and more
via such networks, instead of via physical storage
media. Many associated distribution technologies are
available, such as Java and Active X. Therefore
objects with both data and code flow around the network
and have seamless integration with local computer
resources. However, this also poses a great security
risk to users. Code (software) from unknown origin is
thereby executed on local computers and given access to
local resources such as the hard disk drive in a user’s
computer. In a world wide web browser environment,
such code is often automatically executed and the user
might not even have a chance to be forewarned about any
security risks (e.g. presence of computer viruses) he
bears. Attempts have been made to reduce such risks;
see Ji et al., U.S. Patent 5,623,600, incorporated by

reference in its entirety.

10

15

20

25

30

WO 99/13402 PCT/US98/15807

Active X technology, like Java, distributes code
that can access local system resources directly. The
web browser cannot monitor or block such accesses.

Such an applet (application) can do virtually anything
that a conventional program, for instance, a virus, is
capable of doing. Microsoft Corp. and others have
attempted to address this problem by using digital
signature technology, whereby a special algorithm
generates a digital profile of the applet. The profile
is attached to the applet. When an applet is
downloaded from the Internet, a verification algorithm
is run on the applet and the digital profile to ensure
that the applet code has not been modified after the
signing. If an applet is signed by a known signature,
it is considered safe.

However, no analysis of the code is done to check
the behavior of the applet. It is not difficult to
obtain a signature from a reputable source, since the
signature can be applied for online. It has occurred
that a person has created an Active X applet that was
authenticated by Microsoft but contains malicious code.
(Malicious code refers to viruses and other problematic
software. A virus is a program intended to replicate
and damage operation of a computer system without the
user’s knowledge or permission. In the Internet/Java
environment, the replication aspect may not be present,
hence the term “malicious code” broadly referring to
such damaging software even if it does not replicate.)

Java being an interpreted language, Java code can

be monitored at run-time. Most web browsers block

10

15

20

25

30

WO 99/13402 PCT/US98/15807

attempts to access local resources by Java applets,
which protects the local computer to a certain extent.
However, as the popularity of Intranets (private
Internets) increases, more and more applets need to
have access to local computers. Such restrictions
posed by the web browsers are becoming rather
inconvenient. As a result, web browsers are relaxing
their security policies. Netscape Communicator is a
web browser that now gives users the ability to
selectively run applets with known security risks.
Again, decisions are made based on trust, with no code
analysis done.

Hence scanning programs with the ability to
analyze and monitor applets are in need to protect
users.

At least three Java applet scanners are currently
available commercially: SurfinShield and SurfinGate,
both from Finjan, and Cage from Digitivity, Inc.
SurfinShield is a client-side (user) solution. A copy
of SurfinShield must be installed on every computer
which is running a web browser. SurfinShield replaces
some of the Java library functions included in the
browser that may pose security risks with its own.
This way, it can trap all such calls and block them if
necessary.

SurfinShield provides run-time monitoring. It
introduces almost no performance overhead on applet
startup and execution. It is able to trap all security
breach attempts, if a correct set of Java library

functions is replaced. However, it is still difficult

10

i5

20

25

30

WO 99/13402

to keep track of the states of individual applets if a
series of actions must be performed by the instances
before they can be determined dangerous this way,
because the scanner is activated rather passively by
the applets.

Since every computer in an organization needs a
copy of the SurfinShield software, it is expensive to
deploy. Also, installing a new release of the product
involves updating on every computer, imposing a
significant administrative burden.

Because SurfinShield replaces library functions of
browsers, it is also browser-dependent; a minor browser
upgrade may prevent operation. SufinGate is a server
solution that is installed on an HTTP proxy server.
Therefore, one copy of the software can protect all the
computers proxied by that server. Unlike SufinShield,
SurfinGate only scans the applet code statically. If
it detects that one or more insecure functions might be
called during the execution of the applet, it blocks
the applet. Its scanning algorithm is rather slow. To
solve this problem, SurfinGate maintains an applet
profile database. Each applet is given an ID which is
its URL. Once an applet is scanned, an entry is added
to the database with its applet ID and the insecure
functions it might try to access. When this applet is
downloaded again, the security profile is taken from
the database to determine the behavior of the applet.
No analysis is redone. This means that if a previously
safe applet is modified and still has the same URL,

SurfinGate will fail to rescan it and let it pass

PCT/US98/15807

10

15

20

25

30

WO 99/13402 PCT/US98/15807

through. Also, because the size of the database is
ever-growing, its maintenance becomes a problem over
time.

Cage is also a server solution that is installed
on an HTTP proxy server, and provides run-time
monitoring and yet avoids client-side installations or
changes. It is similar to X Windows. All workstations
protected by the server serve as X terminals and only
provide graphical presentation functionality. When an
applet is downloaded to Cage, it stops at the Cage
server and only a GUI (graphical user interface) agent
in the form of an applet is passed back to the browser.
The applet is then run on the Cage server. GUI
requests are passed to the agent on the client, which
draws the presentation for the user. Therefore, it
appears to users that the applets are actually running
locally.

This approach creates a heavy load on the server,
since all the applets in the protected domain run on
the server and all the potentially powerful computers
are used as graphical terminals only. Also, reasonable
requests to access local resources (as in Intranet
applications) are almost impossible to honor because
the server does not have direct access to resources on
individual workstations.

These products fail to create any balance between
static scanning and run-time monitoring. SurfinShield
employs run-time monitoring, SurfinGate uses static
scanning, and Cage utilizes emulated run-time

monitoring. Since static scanning is usually done on

10

15

20

25

30

WO 99/13402 PCT/US98/15807

the server and run-time monitoring on the client, this
imbalance also causes an imbalance between the load of
the server and the client. To distribute the load
between the client and the server evenly, the present
inventor has determined that a combination of static

scanning and run-time monitoring is needed.

SUMMARY

This disclosure is directed to an applet scanner
that runs e.g. as an HTTP proxy server and does not
require any client-side modification. The scanner
combines static scanning and run-time monitoring and
does not cause a heavy load on the server. It also
does not introduce significant performance overhead
during the execution of applets. The scanner provides
configurable security policy functionality, and can be
deployed as a client-side solution with appropriate
modifications.

Thereby in accordance with the invention a scanner
(for a virus or other malicious code) provides both
static and dynamic scanning for application programs,
e.g. Java applets or ActiveX controls. The applets or
controls (hereinafter cdllectively referred to as
applets) are conventionally received from e.g. the
Internet or an Intranet at a conventional server. At
this point the applets are statically scanned at the
server by the scanner looking for particular
instructions which may be problematic in a security
context. The identified problematic instructions are

then each instrumented, e.g. special code is inserted

10

15

20

25

30

WO 99/13402 PCT/US98/15807

before and after each problematic instruction, where
the special code calls respectively a prefilter and a
post filter. Alternatively, the instrumentation
involves replacing the problematic instruction with
another instruction which calls a supplied function.

The instrumented applet is then downloaded from
the server to the client (local computer), at which
time the applet code is conventionally interpreted by
the client web browser and it begins to be executed.

As the applet code is executed, each instrumented
instruction is monitored by the web browser using a
monitor package which is part of the scanner and
delivered to the client side. Upon execution, each
instrumented instruction is subject to a security
check. 1If the security policy (which has been pre-
established) is violated, that particular instruction
which violates the security policy is not executed, and
instead a report is made and execution continues, if
appropriate, with the next instruction.

More broadly, the present invention is directed to
delivering what is referred to as a “live agent” (e.g.,
a security monitoring package) along with e.g. an
applet that contains suspicious instructions during a
network transfer (e.g. downloading to a client), the
monitoring package being intended to prevent execution
of the suspicious instructions. The suspicious
instructions each may (or may not) be instrumented as
described above; the instrumentation involves altering
suspicious instructions such as by adding code (such as

the pre-and post-filter calls) or altering the

10

15

20

25

30

WO 99/13402 PCT/US98/15807

suspicious instructions by replacing any suspicious

instructions with other instructions.

F D B WIN
Fig. 1 shows diagramatically use of a scanner in
accordance with this invention.

Fig. 2 shows detail of the Fig. 1 scanner.

DETAILED DESCRIPTION

Several characteristics of the well known Java
language and applets are pertinent to the present
scanning method and apparatus. Java is an interpreted,
dynamic-linking language. Only the application modules
are distributed, and all the standard library functions
are provided by the interpreter, for instance a web
browser. Because Java byte code is platform-
independent, applets have to use some of the standard
library functions to access operating system resources.

This creates two opportunities in accordance with
the invention to detect attempts to use operating
system resources. First, one can “trick” applets into
calling particular functions supplied by the scanner
during the dynamic linking stage. This is done by
replacing the browser Java library routines with the
scanner’s monitoring routines of the same name.
Second, since invocations of such functions have to be
resolved at run-time, symbolic names of these functions
are kept in the Java applet module. The scanner can
detect possible use of these functions by looking at

the static code itself. The first opportunity provides

10

15

20

25

30

WO 99/13402

run-time monitoring. It is the most definitive method
to determine the security risks posed by an applet.

The second opportunity enables statically scanning
an applet, without running it, to detect possible
security risks. If a set of insecure functions is
properly defined and an applet never calls any function
in the set, the applet can be assumed to be safe.
However, this static scanning method is not definitive,
since an applet might show different behavior given
different user input. Under certain conditions, the
instruction in the applet that makes the function call
may never be executed. If static scanning is used
without run-time monitoring, many such “false alarms”
of security risks are produced undesirably.

After the code of an applet is downloaded, e.g.
via the Internet to a client platform (local computer),
an instance of the applet is created in the
conventional Java “virtual machine” in the web browser
(client) running on that local computer. Different
instances of the same applet might produce different
results given different inputs. A running instance of
an applet is conventionally called a session; sessions
are strictly run-time entities. Static scanning cannot
analyze sessions because static scanning does not let
the applet run. Sessions are important because an
instance of an applet will often perform a series of
suspicious tasks before it can be determined dangerous
(i.e., in violation of the security policy). Such
state information needs to be associated with the

sessions. The present applet scanner thereby stops

PCT/US98/15807

10

15

20

25

30

WO 99/13402 PCT/US98/15807

sessions instead of blocking execution of the entire
applet.

A security policy defines what functions an applet
needs to perform to be considered a security risk.
Examples of security policies include preventing (1)
applets from any file access, or (2) file access in a
certain directory, or (3) creating certain Java
objects. An applet scanner in accordance with the
invention may allow different security policies for
different clients, for different users, and for applets
from different origins.

Fig. 1 is a high level block diagram illustrating
the present scanner in the context of conventional
elements. The Internet (or an Intranet) is shown
generally at 10. The client machine or platform
(computer) 14, which is typically a personal computer,
is connected to the Internet 10 via a conventional
proxy server machine (computer) 20. Client machine 14
also includes local resources 30, e.g. files stored on
a disk drive. A conventional web browser 22 is
software that is installed on the client machine 14.

It is to be understood that each of these elements is
complex, but except for the presently disclosed
features is conventional.

Upon receipt of a particular Java applet, the HTTP
proxy server 32, which is software running on server
machine 20 and which has associated scanner software
26, then scans the applet and instruments it using an
instrumenter 28 which is part of the scanner software

26. (Downloaded non-applets are not sgscanned.) The

-10-

10

15

20

25

30

WO 99/13402 PCT/US98/15807

instrumented applet is subject to a special digital
signer which is an (optional) part of the scanner 26.
The scanned (instrumented) applet, which has been
digitally signed is then downloaded to the web browser
22 in the client 14. The applet is then conventionally
interpreted by the web browser 22 and its instructions
are executed. The execution is monitored by the
monitor package software, also downloaded from scanner
26, in the web browser 22 in accordance with this
invention for security purposes. Thus static scanning
is performed by the HTTP proxy server 32 and dynamic
scanning by the web browser 22.

The present applet scanner thus uses applet
instrumentation technology, that is, for Java applets
it alters the Java applet byte code sequence during
downloading of the applet to the server 32. After the
Java applet byte code sequence has been downloaded, the
static (pre-run time) scanning is performed on the
applet by the scanner 26. If an instruction (a
suspicious instruction) that calls an insecure function
(as determined by a predefined set of such functions)
is found during this static scanning, a first
instruction sequence (pre-filter) is inserted before
that instruction and a second instruction sequence
(post-filter) after that instruction by the
instruments.

An example of such a suspicious Java function is
“Java.IO.File.list” which may list the contents of a
client (local) directory 30, e.g. a directory on the

client machine 14 hard disk drive. The first

-11-

10

15

20

25

30

35

WO 99/13402 PCT/US98/15807

instruction sequence generates a call to a pre-filter
function provided by the scanner 26, signaling that an
insecure (suspicious) function is to be invoked. The
pre-filter checks the security policy associated with
the scanner 26 and decides whether this particular
instruction (“call”) is allowed. The second
instruction sequence generates a call to a post-filter
function also provided by the scanner. It also reports
the result of the call to the post-filter function.
Both the pre- and post-filter functions update the
gsession state to be used by the security policy. The
static scanning and instrumentation are both performed
on the HTTP proxy server 32.

The following is pseudo-code for the

instrumentation process:

instrument (JavaClassFile classfile)

{

extract constant pool from classfile;
extract functions from classfile;

for each function

for each instruction in function

{

if(the instruction is a function call

AND the target of the call is a pre-defined set
of suspicious functions)
{

output an instruction sequence which generates a
function call to a pre-monitor function, with the
name of the suspicious function, parameters to the
suspicious function, and possibly other
information about his suspicious function
invocation as the parameters;

~-12-

10

15

20

25

30

35

40

WO 99/13402

PCT/US98/15807

output the original instruction;

output an instruction sequence which generates a
function call to a post-monitor function, with the
result of the suspicious function invocation and
possibly other related information as parameters;

}

else

{
output the original instruction;
}
}
}

Examples of pre- and post-monitor functions are:
(1) to disallow any directory listing access:
pre-filter (function name, parameters)
if (function name == “java.io.File.list”)
throw new SecurityException();

}

post-filter (result)

{
}

(2) To protect files under c:\temp from directory
listing access:

pre-filter (function name, parameters)

if
(function name == “java.io.File.list”)

{

extract the name of the file to be read from
parameters;

if the directory to be listed is under c:\temp)
throw new SecurityException() ;

{
}

post-filter (result)

{
}

-13-

10

15

20

25

30

WO 99/13402

The pre and post filter and monitoring package
security policy functions) are combined with the
instrumented applet code in a single JAR (Java archive)
file format at the server 32, and downloaded to the web
browser 22 in client machine 14. From this point on,
the server 32 is virtually disconnected from this
server-client session. All the monitoring and applet
code is executed in the web browser 22 in the client
machine 14. The only time that the server 32 may be
again involved during this particular session is when
the applet is determined to be dangerous (i.e.
including malicious code that violates the security
policy) or the applet has completed execution, and a
report is sent back to the server 32 by the monitoring
code in the scanner 26. A report is optional in this
second case.

This approach minimizes the overhead on both
server 32 and browser 14. The only work performed on
the server 32 is to identify suspicious applet
instructions and instrument them, which is usually
performed by a one time pass over the applet code. To
the client web browser 22, the only overhead is some
occasional calls to the scanner monitoring functions,
which update session statistics and check security
policies. This achieves an optimum distribution of
scanning and monitoring between the server 32 and the
client web browser 22. Also, the server 32 maintains
no state information about active sessions in the set
of host associated with the proxy server instead the

session state information is maintained locally at

-14-

PCT/US98/15807

10

15

20

25

30

WO 99/13402 PCT/US98/15807

client machine 14 by the downloaded monitoring
functions.

This approach may damage the integrity of
externally digitally signed (authenticated) applets,
since the content of the applets is changed by the
instrumentation. However, this can also be used as an
advantage because using the present scanner, a new set
of authenticated signatures can be set and enforced for
the entire domain as further described below.

Operation of scanner 26 and its various (software)
components is better understood with reference to Fig.
2, showing greater detail than Fig. 1.

An applet pre-fetcher component 38 fetches from
the Internet 10 all the dependency files required by a
Java class file, if they are not already packed into a
JAR file. This is important because the goal is to
attach the scanner monitor package to a session only
once.

A Java applet may contain more than one code
module, or class file. Heretofore this disclosure has
assumed that all the class files are packed in one JAR
file and downloaded once. One monitoring package is
attached to the JAR file and every instantiation of
this package on the client web browser 22 marks a
unique session. However, if the class files are not
packed together and are downloaded on an as-needed
basis during applet execution, multiple instrumentation
will occur and multiple instances of the monitoring
package for the same session are created on the client.

This creates a problem of how to maintain information

-15-

10

15

20

25

WO 99/13402

on session states. To solve this problem, the pre-
fetcher 38 pre-fetches the dependency classgs files
during the static scanning of the main applet code
module. The dependency class files are (see below)
instrumented once, packed together, and delivered to
the client.

Upon receiving a (signed) applet, the signal
verifier component 40 then verifies the signature and
its integrity, as conventional, to decide whether to
accept this applet.

Next, the unpacker 42 component extracts the class
files from the JAR file. JAR uses ZIP (compression)
format.

Java class parser component 44 then parses each
Java class file. Parser 44 conventionally extracts the
instruction sequence of the Java functions.

The Java instrumenter component 48 instruments the
Java class files, e.g. by inserting monitoring
instructions (e.g. pre and post filter calls) before
and after each suspicious instruction, as described
above.

The monitor package contains monitoring functions
that are delivered from the server 32 to the client web
browser 22 with the instrumental applet and are invoked
by the instrumentation code in the applet. The monitor
package also creates a unique session upon
instantiation. It also contains a security policy
checker (supplied by security policy generator

component 54) to determine whether the applet being

-16-

PCT/US98/15807

10

15

20

25

30

WO 99/13402 PCT/US98/15807

scanned violates the security policy, given the
monitoring information.

The security policy generator component 54
generates the security checker code included in the
monitor package, from a set of predefined security
policies. Different clients, users, and applets may
have different security policies. The security policy
generator 54 may run on server machine 20 or another
computer. In addition, security policies can be
configured by an administrator of the system. A simple
security policy is to assign different weights to
monitored functions and make sure the security weight
of a session does not exceed a preset threshold. A
more sophisticated security policy checks the file or
regource the applet is trying to access at run time and
prompts the user whether to allow the access. Hence
the security policy broadly is a state machine to
detect security policy violations upon attempted
instruction execution.

The security policy generator 54 can operate
outside the run-time instrumenter component 48 when the
security policy is being created. The instrumenter
component 48 can then directly use the byte code.
Thereby any performance limitations of the security
policy generator component 54 become legg important.

Next, packer 50 creates a new JAR file (JAR’) from
the instrumented class files and the monitoring
package.

The digital signer component 58 digitally signs

the applet (now JAR"”), with a digital signature unique

-17-

WO 99/13402 PCT/US98/15807

to the particular scanner 26, for authentication in the
local domain. The applet JAR” is then transferred to
the client machine 14 for execution. Thus the only
signature that a client needs to recognize is the
digital signature of the signer component 58 in the
scanner 26. This pre-verification simplifies system
administration and reduces risks to unsophisticated
users who might otherwise accidentally accept applets
with unauthorized signatures.

In one embodiment, the components of scanner 26
are each implemented in Java. Some (or all) of the
functions (“components”) of the scanner 26 described
above may be implemented in native (non-Java) code to
improve performance. The actual scanner code is not
given here; it can be readily written by one of
ordinary skill in the art in light of this disclosure.

This disclosure is illustrative and not limiting,
further modifications will be apparent to one skilled
in the art and are intended to fall within the scope of

the appended claims.

-18-

5

10

15

20

25

WO 99/13402 PCT/US98/15807

I claim:

1. A method of detecting and preventing
execution of problematic instructions in an application
program provided from a computer network, comprising
the steps of:

providing the application program over the
computer network;

determining whether the provided application
program includes any instructions that are members
of a particular set of instructions;

executing the application program if it is
determined that no members of the set are included
in the application program;

if it is determined that an instruction is a
member of the set, then altering the application
program at the point of the instruction, thereby
allowing monitoring of execution of the

instruction.

2. The method of Claim 1, further comprising the
step of associating monitoring code with the

application program.

3. The method of Claim 1 wherein the step of
altering includes inserting a first predefined call
before the instruction and a second predefined call

after the instruction.

-19-

10

15

20

25

30

WO 99/13402 PCT/US98/15807

4, The method of Claim 1, wherein the step of
altering includes replacing the instruction with a

predefined second instruction.

5. The method of Claim 1, wherein the

application program is an applet.

6. The method of Claim 2, wherein the applet is

in the Java language.

7. The method of Claim 1, wherein the computer

network is an Intranet or the Internet.

8. The method of Claim 3, wherein the first

predefined call is a call to check a security policy.

9. The method of Claim 8, wherein the security

policy is a state machine.

10. The method of Claim 3, wherein the first or
second predefined call changes a session state of the

application program.

11. The method of Claim 3, wherein the step of
inserting is repeated for each instruction that is a

member of the particular set.
12. The method of Claim 1, wherein the particular
set of instructions includes instructions that access a

predefined set of files.

-20-

10

15

20

25

30

WO 99/13402

13. The method of Claim 1, further comprising the
steps of:
determining if the application program
includes an authentication;
verifying the authentication; and
replacing the verified authentication with a

second authentication.

14. The method of Claim 1, further comprising the
steps of:

providing all dependency files associated
with the application program;

providing a single monitoring package
performing the step of determining for the
application program and its associated dependency
files; and

executing the application program and its

associated dependency files.

15. A method of detecting and preventing
execution of problematic instructions in an application
program provided from a computer network, comprising
the steps of:

determining if the application program
includes any instructions that are members of a
particular set of instructions;

if any instruction is identified as a member
of the set, associating an agent with the

application program; and

-21-

PCT/US98/15807

10

15

20

25

30

WO 99/13402

transferring the application program with the

associated agent to a client for execution.

16. The method of Claim 15, wherein the agent is
a monitoring function to prevent execution of members

of a particular set of instructions.

17. The method of Claim 15, further comprising
the step of instrumenting each of the identified

instructions prior to the step of transferring.

18. The method of Claim 15, wherein the computer

network is an Intranet or the Internet.

19. A scanner for detecting and preventing
execution of problematic instructions in an application
program provided from a computer network, wherein the
scanner determines whether the provided application
program includes any instructions that are members of a
particular set of instructions, allowing execution of
the application program if it is determined that no
members of the set are included in the application
program; and comprising

an instrumenter which alters the application
program at the point of an instruction which is
determined to be a member of the set, thereby
allowing monitoring of execution of the altered

instruction.

-22-

PCT/US98/15807

10

15

20

25

WO 99/13402 PCT/US98/15807

20. The scanner of Claim 19, further comprising a
packer which associates monitoring code with the

application program.

21. The scanner of Claim 19 wherein the
instrumenter inserts a first predefined call before the
instruction and a second predefined call after the

instruction.
22. The scanner of Claim 19, wherein the
instrumenter replaces the instruction with a predefined

second instruction.

23. The scanner of Claim 19, wherein the

application program is an applet.

24. The scanner of Claim 20, wherein the applet

is in the Java language.

25. The scanner of Claim 19, wherein the computer

network is an Intranet or the Internet.

26. The scanner of Claim 21, wherein the first

predefined call is a call to check a security policy.

27. The scanner of Claim 26, wherein the security

policy is a state machine.

-23-

10

15

20

25

WO 99/13402 PCT/US98/15807

28. The scanner of Claim 21, wherein the first or
second predefined call changes a session state of the

application prograﬁ.

29. The scanner of Claim 21, wherein the
instrumenter repeats the inserting for each instruction

that is a member of the particular set.

30. The scanner of Claim 19, wherein the

particular set of instructions includes instructions

that access a predefined set of files.

31. The scanner of Claim 19, further comprising:
a verifier which determines if the
application program includes an authentication and
verifies the authentication; and
a signer which replaces the verified

authentication with a second authentication.

32. The scanner of Claim 19, further comprising:
a prefetcher which fetches all dependency
files associated with the application program; and

a security policy generator which provides a
single monitoring package for the application

program and its associated dependency files.

-24-

10

15

20

25

30

WO 99/13402 PCT/US98/15807

AMENDED CLAIMS
[received by the International Bureau on 19 January 1999 (19.01.99); original
claims 1-4, 6, 11, 13-15, 17, 19, 24 and 29 amended; new claims 33-42 added;
remaining claims unchanged (7 pages)]

1. A method of detecting and preventing
execution of instructions in an application program
provided from a computer network, comprising:

providing the application program over the
computer network;

determining whether the provided application’
program includes any instructions that are members
of a particular set of instructions;

executing the application program if it is
determined that no members of the set are included
in the application program;

if it is determined that an instruction is a
member of the set, then altering the application

program, thereby allowing monitoring of execution

of the instruction.

2. The method of Claim 1, further comprising
associating monitoring code with the application
program.

3. The method of Claim 1 wherein the altering

includes inserting a first predefined call before the
instruction and a second predefined call after the

instruction.

4. The method of Claim 1, wherein the altering

includes replacing the instruction with a predefined

second instruction.

5. The method of Claim 1, wherein the

application program is an applet.

225-
AMENDED SHEET (ARTICLE. 19)

10

15

20

25

30

WO 99/13402

PCT/US98/15807

6. The method of Claim 5, wherein the applet is

in the Java language.

7. The method of Claim 1, wherein the computer

network is an Intranet or the Internet.

8. The method of Claim 3, wherein the first

predefined call is a call to check a security policy.

9. The method of Claim 8, wherein the security

policy is a state machine.

10. The method of Claim 3, wherein the first or
second predefined call changes a session state of the

application program.

11. The method of Claim 3, wherein the inserting
is repeated for each instruction in the application

program that is a member of the particular set.

12. The method of Claim 1, wherein the particular

set of instructions includes instructions that access a

predefined set of files.

13. The method of Claim 1, further comprising:

determining if the application program

includes an authentication;
verifying the authentication; and

replacing the verified authentication with a

second authentication.

14. The method of Claim 1, further comprising:

providing all dependency files associated

with the application program;

-26-
AMENDED SHEET (ARTICLE 19)

WO 99/13402

10

15

20

25

30

PCT/US98/15807

providing a single monitoring package
performing the step of determining for the
application program and its associated dependency

files; and

executing the application program and its

associated dependency files.

15. A method of detecting and preventing
execution of instructions in an application program
provided from a computer network, comprising:

determining if the application program

includes any instructions that are members of a

particular set of instructions;

if any instruction is identified as a member
of the set, associating an agent with the
application program; and

transferring the application program with the

associated agent to a client for execution.

16. The method of Claim 15, wherein the agent is
a monitoring function to prevent execution of members

of a particular set of instructions.

17. The method of Claim 15, further comprising

instrumenting each of the identified instructions prior

to the step of transferring.

18. The method of Claim 15, wherein the computer

network is an Intranet or the Internet.

19. A scanner for detecting and preventing
execution of instructions in an application program
provided from a computer network, wherein the scanner

determines whether the provided application program

27-
AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 99/13402

PCT/US98/15807

includes any instructions that are members of a
particular set of instructions, allowing execution of
the application program if it is determined that no
members of the set are included in the application
program; and comprising:
an instrumenter which alters the application
program at an instruction which is determined to
be a member of the set, thereby allowing

monitoring of execution of such instruction.

20. The scanner of Claim 19, further comprising a
packer which associates monitoring code with the

application program.

21. The scanner of Claim 19 wherein the
instrumenter inserts a first predefined call before the

instruction and a second predefined call after the

instruction.

22. The scanner of Claim 19, wherein the

instrumenter replaces the instruction with a predefined

second instruction.

23. The scanner of Claim 19, wherein the

application program is an applet.

24. The scanner of Claim 23, wherein the applet

is in the Java language.

25. The scanner of Claim 19, wherein the computer

network is an Intranet or the Internet.

-28-
AMENDED- SHEET (ARTICLE 19)

10

15

20

25

30

WO 99/13402

PCT/US98/15807

26. The scanner of Claim 21, wherein the first

predefined call is a call to check a security policy.

27. The scanner of Claim 26, wherein the security

policy is a state machine.

28. The scanner of Claim 21, wherein the first or
second predefined call changes a session state of the

application program.

29. The scanner of Claim 21, wherein the
instrumenter repeats the inserting for each instruction

in the application program that is a member of the

particular set.

30. The scanner of Claim 19, wherein the
particular set of instructions includes instructions

that access a predefined set of files.

31. The scanner of Claim 19, further comprising:
a verifier which determines if the
application program includes an authentication and
verifies the authentication; and
a signer which replaces the verified

authentication with a second authentication.

32. The scanner of Claim 19, further comprising:
a prefetcher which fetches all dependency
files associated with the application program; and

a security policy generator which provides a
single monitoring package for the application

program and its associated dependency files.

-29.
AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 99/13402 PCT/US98/15807

33. The method of Claim 1, wherein the computer
network includes a server and a client coupled to the
server, and wherein the altering takes place at the

server, wherein the executing the application program

takes place at the client.

34. The method of Claim 33, further comprising

performing the monitoring at the client.

35. The method of Claim 1, further comprising
carrying out the method of Claim for 1 each of a
plurality of application programs as each application

program is provided from the computer network.

36. The scanner of Claim 19, wherein the computer
network includes a server and a client coupled to the
server, wherein the altering by the instrumenter takes
place at the server, and wherein the executing the

application program takes place at the client.

37. The scanner of Claim 36, wherein the

monitoring is performed at the client.

38. The scanner of Claim 19, wherein the
instrumenter alters each of a plurality of application

programs as each application program is provided from

the computer network.

39, The method of Claim 1, wherein the

instructions are problematic instructions.

40. The method of Claim 1, wherein the

application program is altered at the point of the

instruction.

=30-
AMENDED SHEET (ARTICLE 19)

WO 99/13402 PCT/US98/15807

41. The scanner of Claim 19, wherein the
instructions that are members of the particular set are

problematic instructions.

42. The scanner of Claim 19, wherein the

alteration is at the point of the instruction.

AMENDED SHEET (ARTIGLE 19)

WO 99/13402 PCT/US98/15807

1/2
20
/
Server Machine
32
/ 10
HTTP Proxy Server
26
= A
let
Scanner ?p Internet
14
[
Client Machine
22
\ \ /
Web Browser
30
\ [
Local Resources

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 99/13402

PCT/US98/15807
2/?
Applet
\
Prefetcher 38 Securing Policy
R Generator
‘ z
Verify Signature | _ 4 54
Monitoring
Package
Unpacker L _4)
Class files ~— D
Y 7
Parser L _ 44
\
Instrumenter ~ 48
Class files ~— >
\ \ \ \ \
Packer |50
JAR'
Signer 58
IAR" %
Scanner
.::C'Iient ~— 14

FIG. 2

SUBSTITUTE SHEET (RULE 26).

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/15807

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GOGF 11/00
US CL :395/186
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/186, 187.01, 188.01, 183.14, 183.13, 200.54, 200.55, 200.32; 380/3, 4, 23, 25

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,257,381 A (COOK) 26 October 1993, col. 2, lines 10-44, col. | 1-9, 11-12, 15-
2, line 67 to col. 3, line 14, col. 3, line 31 to col. 5, line 14. 27, 29-30

Y US 5,623,600 A (J1 ET AL) 22 April 1997, col. 2, line 39 to col. 3,| 1-9, 11-12, 15-

line 13, col. 3, line 51 to col. 4, line 15, col. 4, line 56 to col. 5, | 27, 29-30
line 38, col. 5, line 50 to col. 6, line 27, col. 7, line 29 to col. 9,
line 26, col. 10, line 26 to col. 11, line 40.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited d: ts: T later document published after the international filing date or priority
. L. . date and not in conflict with the application but cited to understand
"A* document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance .
g® : " . . . "X* document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date idered novel or £ bo idered to involve an inventive step

L document which may throw doubts on priority claim(s) or which is when the document is taken alone

cited to establish the publication date of another citation or other

spoecial reason (as specified) 'Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
*0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P dth‘fﬁ::tt; d:t;a:l:i;:i?lr to the international filing date but later than =g » document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
28 SEPTEMBER 1998 0 2 DEC 1998 ’
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT .
Washington, D.C. 20231 JOSEPH PALYS : , onl ’H *M
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/15807

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS
search terms: virus, scanners, instruction insertions, static or dynamic scanning or monitoring, applets, program
downloading, Internet, web browser.

Form PCT/ISA/210 (extra sheet)(July 1992)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

