Office de la Proprieté
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2537138 A1 2005/05/19

(21) 2 537 138

12 DEMANDE DE BREVET CANADIEN

CANADIAN PATENT APPLICATION
(13) A1

(86) Date de déepot PCT/PCT Filing Date: 2004/07/29

(87) Date publication PCT/PCT Publication Date: 2005/05/19
(85) Entree phase nationale/National Entry: 2006/02/27

(86) N° demande PCT/PCT Application No.: US 2004/024421
(87) N° publication PCT/PCT Publication No.: 2005/045580
(30) Priorité/Priority: 2003/10/23 (US10/692,288)

51) Cl.Int./Int.Cl. GO6T 717/00(2006.01)

(71) Demandeur/Applicant:
MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
SWEDBERG, GREGORY D., US;
DAVID, PAUL, US;

ARSOV, ANDREY, US;
CURTIS, DONALD B., US;
BLANCO, LEONARDO E., US

(74) Agent: SMART & BIGGAR

54) Titre : SYSTEME ET PROCEDE POUR UN MOTEUR DE COMPOSITION UNIFIE DANS UN SYSTEME DE
TRAITEMENT DE GRAPHIQUES
54) Title: SYSTEM AND METHOD FOR A UNIFIED COMPOSITION ENGINE IN A GRAPHICS PROCESSING SYSTEM

'/‘* 401
405
wa (o .
'.\V‘Sua' | Master Resource
— - Table
| . Retouce
e T Fe
e Py S
TN /D
—— Visual | | Visual | — —*
__‘_ o /"lf‘ \\'— - — R I N
- —'\\]'
(Visual |
..\ /;
N
.
41(i 406 408
Notify Queue | | 1 | | ‘Change Queue
..) £ gJ ——— R
| m3 o .. , m 3 | |
- B85 Composition Device Interface €29 e
: © o = |
! =
.‘f’f— .\‘
7 Comp \
412 [.\Node ,, l. Slave Resource
_________ ' | Tabhle 3
414
|——Handie Ref - Resdurce 1 ﬁl'/\
‘ Resource2
:/-’ B
{ Comp .
'l.. Node ’} Handle Re; i'-. - .
\\5j|_,// —» Rescuree N
/ Comp\
\ Node _’
e 420
-——tFlandle Ref

(57) Abréegée/Abstract:

The present Invention Is directed to a system and method for a unified composition engine that, in general, combines previously
separate composition services. The unified composition engine provides a composition service used both In-process in conjunction
with application programming interfaces (API's) and on the desktop as the desktop compositor.

SRR VNEEEN
R 5. sas ALy
O
A

OPIC

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

woO 2005/045580 A3 I D0 ! A0 A A0 5O D O R0

CA 02537138 2006-02-27

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

19 May 2005 (19.05.2005)

G06T 17/00

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/024421

(22) International Filing Date: 29 July 2004 (29.07.2004)
English

English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

10/692,288 23 October 2003 (23.10.2003) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]J; One Microsoft
Way, Redmont, WA 98052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SWEDBERG,
Gregory, D. [US/US]; 4952 160th Court SE, Bellevue,
WA 98006 (US). DAVID, Paul [US/US]; 11516 NE
103rd Place, Kirkland, WA 98033 (US). ARSOV, Andrey
[BG/US]; 23323 NE 19th Drive, Sammamish, WA 98074

(74)

(81)

(84)

(10) International Publication Number

WO 2005/045580 A3

(US). CURTIS, Donald, B. [US/US]; 13533 S.E. 52nd
Street, Bellevue, WA 98006 (US). BLANCO, Leonardo,
E. [US/US]J; 9935 225th Avenue NE, Redmond, WA 98053
(US).

Agent: BRUESS, Steven, C.; Mechant & Gould P.C., P.O.
Box 2903, Minneapolis, MN 55402-0903 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, K7, L.C, LK, LR, LS, LT, LU, L.V, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL., SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM.,
7 W.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR A UNIFIED COMPOSITION ENGINE IN A GRAPHICS PROCESSING SYSTEM

/*’* 401

405

Table

Master Resource

(57) Abstract: The present invention
is directed to a system and method for a
unified composition engine that, in general,

combines previously separate composition
402

. — services. The unified composition engine
Resource 2 provides a composition service used both
in-process in conjunction with application
Visual " . . .
|) o programming interfaces (API’s) and on the
desktop as the desktop compositor.
408
41(i 40(3 1
Notify Queue \ Change Queue

aubuy
vogisodwory

Compasition Device (nterface

uomsbdmo:)
s 4

auifugy

a]

e e

412 Slave Resource

Table

Comp
Node

——Hand|e Ref - Resource 1

Resource 2

Comp

Noda
Comp
Node

Mandle Ref .

CA 02537138 2006-02-27

WO 2005/045580 A3

/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BEF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report
before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
25 August 2005

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

SYSTEM AND METHOD FOR A UNIFIED COMPOSITION ENGINE IN A
GRAPHICS PROCESSING SYSTEM

Background of the Invention
In contemporary computing systems, the capability of graphics and

video hardware 1s growing at a fast pace. In fact, to an extent, the graphics system
in contemporary computing systems may be considered more of a coprocessor than
a simple graphics subsystem. At the same time, consumers are expecting more and
more quality in displayed images, whether viewing a monitor, television or cellular
telephone display, for example.

However, memory and bus speeds have not kept up with the
advancements in main processors and/or graphics processors. As a result, the limits
of the traditional immediate mode model of accessing graphics on computer systems
are being reached. At the same time, developers and consumers are demanding new
features and special effects that cannot be met with traditional graphical windowing
architectures.

Although certain game programs have been designed to take
advantage of the graphics hardware, such game programs operate with different
requirements than those of desktop application programs and the like, primarily n
that the games do not need to be concerned with other programs that may be
concurrently running. Unlike such game programs, applications need to share
graphics and other system resources with other applications. | They are not, however,
generally written in a cooperative, machine-wide sharing model with respect to
graphics processing.

For example, performing animation with desktop applications
currently requires specialized single-purpose code, or the use of another application.
Even then, achieving smooth animation in a multiple windowed environment 1s
difficult if not impossible. In general, this is because accomplishing smooth, high-
speed animation requires updating animation parameters and redrawing the scene
(which requires traversing and drawing data structures) at a high frame rate, ideally
at the hardware refresh rate of the graphics device. However, updating animation
parameters and traversing and drawing the data structures that define a scene are

generally computationally-intensive. The larger or more animate the scene, the

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

greater the computational requirement, which limits the complexity of a scene that
can be animated smoothly.

Compounding the problem is the requirement that each frame of the
animation needs to be computed, drawn, and readied for presentation when the
graphics hardware performs a display refresh. If the frame is not ready when
required by the hardware, the result is a dropped or delayed frame. If enough frames
are dropped, there is a noticeable stutter in the animated display. Also, if the frame
preparation is not synchronized with the refresh rate, an undesirable effect known as
tearing may occur. In practice, contemporary multi-tasking operating systems
divide computational resources among the many tasks on the system. However, the
amount of time given for frame processing by the operating system task scheduler
will rarely align with the graphics hardware frame rate. Consequently, even when
sufficient computational resources exist, the animation system may still miss frames
due to scheduling problems. For example, an animation task may be scheduled to
run too late, or it may get preempted before completing a frame, and not be
rescheduled in time to provide a next frame for the next hardware refresh of the
screen. These problems get even more complex if the animated graphics need to be
composited with video or other sources of asynchronously generated frames.

In general, the previous (e.g., WM. PAINT) model for preparing the
frames requires too much data processing to keep up with the refresh rate when
complex graphics effects (such as complex animation) are desired. As aresult,
when complex graphics effects are attempted with conventional models, instead of
completing the changes in the next frame that result in the perceived visual effects in
time for the next frame, the changes may be added over different frames, causing
results that are visually and noticeably undesirable.

A new model for controlling graphics output is described in the
aforementioned United States Patent Applications. This new model provides a
number of significant improvements in graphics processing technology. For
example, U.S. Serial No. 10/184,795 is generally directed towards a multiple-level
graphics processing system and method, in which a higher-level component (e.g., of
an operating system) performs computationally intensive aspects of building a scene
graph, updating animation parameters and traversing the scene graph’s data

structures, at a relatively low operating rate, in order to pass simplified data

2

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

structures and/or graphics commands to a low-level desktop composition
component. Because the high-level processing greatly simplifies the data, the low-
level component can operate at a faster rate, (relative to the high-level component),
such as a rate that corresponds to the frame refresh rate of the graphics subsystem, to
process the data into constant output data for the graphics subsystem. While the
above improvements provide substantial benefits in graphics processing technology,

certain improvements are yet to be realized.

Summary of the Invention
'Brieﬂy, the present invention provides a system and method for a

unified composition engine that, in general, combines preyiously separate
composition services. The unified composition engine provides a composition
service used both in-process in conjunction with application programming interfaces
(API's) and on the desktop as the desktop compositor. The unified composition
engine combines the efforts of two previous composition efforts: API composition
engine intended for in process utilization to compose the content of a single
application; and the desktop composition engine intended to compose the all of the
windows to create the final display. The desktop composition engine and API
composition engine have different roles and usage scenarios. The desktop
composition engine is used to compose the content rendered by other processes,
render a minimum of 1ts own content to implement the window frame; and
coordinate tightly with the legacy window manager (e.g., User32). The API
composition engine 1s used to control rendering and compose all of the content for a
single application and provide a mechanism for efficient remoting. Recent changes
in usage requirements for the API composition engine and the desktop composition
engine resulted in the API composition engine being required to host content from
other processes and legacy child windows, and for the desktop composition engine
to remote the window frame. Combining the two composition efforts reduces code
duplication, improves test coverage and simplifies enabling features like legacy
window interoperability, remoting, and Multiple Document Interfacing (MDI), that

were complicated otherwise.

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

235

30

Brief Description of the Drawings
FIGURE 1 illustrates an exemplary computing device that may be

used in illustrative implementations of the present invention.

FIGURE 2 represents a general, layered architecture for an API
composition engine 1n accordance with the present invention

FIGURE 3 is a block diagram representing a media integration layer
architecture into which the present invention may be incorporated.

FIGURE 4 1llustrates an overview architecture for utilizing a unified
composition engine in accordance with the present invention.

FIGURE 5 1llustrates an overview architecture for multiple unified
composition engines for a single application domain 1n accordance with the present
inveration.

FIGURE 6 illustrates an overview architecture for multiple
application domains for a single unified composition engine in accordance with the

present invention.

Detailed Description of the Preferred Embodiment
The present invention 1s substantially directed at a system and

method for a Unified Composition Engine (UCE). The invention provides a method
for composing a graphics output at both the application level and the desktop level,
substantially reducing code duplication.

The following description is divided into three parts. The first part of
the description describes an illustrative computing environment in which the present
invention may operate. The second part of the description describes an illustrative

graphics architecture. The third part of the description describes one illustrative

implementation of the present invention.

Illustrative Computing Environment
FIGURE 1 illustrates an example of a suitable computing system

environment 100 on which the invention may be implemented. The computing
systexmn environment 100 is only one example of a suitable computing environment

and 1s not intended to suggest any limitation as to the scope of use or functionality of

4

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

the invention. Neither should the computing environment 100 be interpreted as
having any dependency or requirement relating to any one or combination of
components illustrated in the exemplary operating environment 100.

The mvention 1s operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of
well known computing systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not limited to, personal
computers, server computers, hand-held or laptop devices, tablet devices,
multiprocessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include any of the above
systems or devices, and the like.

The invention may be described in the general context of computer-
executable instructions, such as program modules, being executed by a computer.
Generally, program modules include routines, programs, objects, components, data
structures, and so forth, which perform particular tasks or implement particular
abstract data types. The invention may also be practiced in distributed computing
environments where tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment,
program modules may be located in both local and remote computer storage media
including memory storage devices.

With reference to FIGURE 1, an exemplary system for implementing
the invention 1cludes a general pufpo se computing device 1n the form of a computer
110. Components of the computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121 that couples
various system components including the system memory to the processing unit 120.
The system bus 121 may be any of several types of bus structures including a
memory bus or memory controller; a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Accelerated Graphics Port (AGP) bus, and Peripheral

Component Interconnect (PCI) bus also known as Mezzanine bus.

S

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

The computer 110 typically includes a variety of computer-readable
media. Computer-readable media can be any available media that can be accessed
by the computer 110 and includes both volatile and nonvolatile media, and
removable and non-removable media. By way of example, and not limitation,
computer-readable media may comprise computer storage media and
communication media. Computer storage media includes both volatile and
nonvolatile, removable and non-removable media implemented in any method or
technolo gy for storage of information such as computer-readable instructions, data
structure s, program modules or other data. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired mformation and which can
accessed by the computer 110. Communication media typically embodies
computer-readable instructions, data structures, program modules or other data in a
modulated data signal such as a carrier wave or other transport mechanism and
includes any information delivery media. The term “modulated data signal” means a
signal th.at has one or more of its characteristics set or changed in such a manner as
to encod e information in the signal. By way of example, and not limitation,
communication media includes wired media such as a wired network or direct-wired
connection, :and wireless media such as acoustic, RF, infrared and other wireless
media. Combinations of the any of the above should also be included within the
scope of computer-readable media.

The system memory 130 includes computer storage media in the
form of wvolatile and/or nonvolatile memory such as read only memory (ROM) 131
and rand. om access memory (RAM) 132. A basic iput/output system 133 (BIOS),
containinag the basic routines that help to transfer information between elements
within computer 110, such as during start-up, is typically stored in ROM 131. RAM
132 typically contains data and/or program modules that are immediately accessible
to and/or presently being operated on by processing unit 120. By way of example,
and not 1amitation, FIG. 1 illustrates operating system 134, application programs

135, other program modules 136 and program data 137.

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

235

30

The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIGURE 1
1llustrates a hard disk drive 141 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a
removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that reads
from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or
other optical media. Other removable/non-removable, volatile/nonvolatile computer
storage media that can be used in the exemplary operating environment include, but
are not limited to, magnetic tape cassettes, flash memory cards, digital versatile
disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard
disk drive 141 1s typically connected to the system bus 121 through a non-removable
memory interface such as interface 140, and magnetic disk drive 151 and optical
disk drive 155 are typically connected to the system bus 121 by a removable
memory mterface, such as interface 150.

The drives and their associated computer storage media, described
above and illustrated in FIGURE 1, provide storage of computer-readable
1nstructions, data structures, program modules and other data for the computer 110.
In FIGURE 1, for example, hard disk drive 141 1s illustrated as storing operating
system 144, application programs 145, other program modules 146 and program
data 147. Note that these components can either be the same as or different from
operating system 134, application programs 135, other program modules 136, and
program data 137.: Operating system 144, application programs 145, other program
modules 146, and program data 147 are given different numbers herein to illustrate
that, at a minimum, they are different copies. A user may enter commands and
1nformation into the computer 20 through input devices such as a tablet (electronic
digitizer) 164, a microphone 163, a keyboard 162 and pointing device 161,
commonly referred to as mouse, trackball or touch pad. Other input devices (not
shown) may include a joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing unit 120 through a user
1nput interface 160 that 1s coupled to the system bus, but may be connected by other
1nterface and bus structures, such as a parallel port, game port or a universal serial
bus (USB). A monitor 191 or other type of display device is also connected to the

system bus 121 via an interface, such as a video interface 190. The monitor 191

7

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

may also be integrated with a touch-screen panel 193 or the like that can input
digitized mput such as handwriting into the computer system 110 via an interface,
such as a touch-screen interface 192. Note that the monitor and/or touch screen
panel can be physically coupled to a housing in which the computing device 110 is
incorporated, such as in a tablet-type personal computer, wherein the touch screen
panel 193 essentially serves as the tablet 164. In addition, computers such as the
computing device 110 may also ihclude other peripheral output devices such as
speakers 195 and printer 196, which may be connected through an output peripheral
interface 194 or the like.

The computer 110 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer
180. The remote computer 180 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node, and typically includes
many or all of the elements described above relative to the computer 110, although
only a memory storage device 181 has been illustrated in FIGURE 1. The logical
connections depicted in FIGURE 1 include a local area network (LAN) 171 and a
wide area network (WAN) 173, but may also include other networks. Such
networking environments are commonplace 1n offices, enterprise-wide computer
networks, mtranets and the Intermet.

When used 1in a LAN networking environment, the computer 110 1s
connected to the LAN 171 through a network interface or adapter 170. When used
in a WAN networking environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the WAN 173, such as the
Internet. The modem 172, which may be internal or external, may be connected to
the system bus 121 via the user input interface 160 or other appropriate mechanism.
In a networked environment, program modules depicted relative to the computer
110, or portions thereof, may be stored 1n the remote memory storage device. By
way of example, and not limitation, FIGURE 1 illustrates remote application
programs 185 as residing on memory device 181. It will be appreciated that the
network connections shown are exemplary and other means of establishing a

communications link between the computers may be used.

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

235

30

Illus¢rative Graphics Architecture

In one described implementation, the present invention is generally
incorporated into a media integration layer stack, into which an application program,
the desktop system, or the like submits various data to a high level visual system,
such as by directly making calls to a visual API layer or providing markup that is
interpreted into calls to the visual API layer. The visual system constructs a
hierarchical scene graph based on the data submitted to it, and at some rendering
time, processes the scene graph into commands and other data and asynchronously
communicates with a compositor service in the stack to process those commands
and other data into its own retained data structure. A lower-level compositor system

may combine communications from possibly multiple visual systems (clients) into

graphics commands that are understood by a graphics subsystem, and animation

commands or intervals modifying portions of the retained graphics data. The lower-
level compositor system p_rovédes those graphics commands to the graphics
subsystem at a rate that correéponds (e.g., 1s at or near) the refresh rate of the
graphiics hardware.

One aspect of the present invention is generally directed to receiving
and processing program code-initiated drawing instructions and other information
(e.g., 1mage bitmaps), in order to render graphical output on the system display. To
this end, the present invention provides a system and method implemented in
various components, data structures and a communications protocol, which together
enable a higher-level composition engine, e.g., in a user interface thread and
rendering thread associated with the visual system, to provide data to a lower-level
animation and compositing engine, or compositor. The visual system provides
functions (e.g., application programming interfaces, or APIs) to application
programs and the like to enable those programs to populate a scene graph with data
structures, drawing primitives (commands), and other graphics-related data.

FIGURE 2 represents a general, layered architecture 200 for an API
composition engine. As represented in FIGURE 2, program code 202 (e.g., an
application program or operating system component or the like) may be developed
to output graphics data in one or more various ways, including via imaging 204, via
vectox graphic elements 206, and/or via function / method calls placed directly to a

visual application programming interface (API) layer 212. The use of vector graphic

9

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

elements 1s described in the aforementioned patent application entitled “Markup
Language and Object Model for Vector Graphics,” while direct interaction with the
API layer 1s further described in the aforementioned co-pending patent application
entitled “Visual and Scene Graph Interfaces.”

In general, the imaging mechanism 204 provides the program code
202 with a mechanism for loading, editing and saving images, e.g., bitmaps. These
images may be used by other parts of the system, and there is also a way to use the
primitive drawing code to draw to an image directly. Vector graphics elements 206
provide another way to draw graphics, consistent with the visual system’s object
model. Vector graphic elements 206 may be created via a markup language, which
an element / property system 208 and presenter system 210 processes to make
appropriate calls to the visual API layer 212. In general the vector graphic elements
206 are parsed 1nto objects of the object model from which a scene graph is drawn,
which may be provided to the scene graph via an element level via the element /
property system 208 and presenter system 210, or may be provided in a more
efficient manner at a resource level.

In one implementation, the graphics layer architecture 200 includes a
visual system 214, which includes or is otherwise associated with a scene graph 216
comprising hierarchically-arranged objects, constructed via direct or indirect calls to
the visual API 212. In general, the scene graph models the structural qualities and
specific rendering data generated by the API calls, and also prov\ides a set of read
services or propetrties for the application to query. In general, the visual API layer
212 provides the program code (and the presenter system) with an interface to the
scene graph 216, including the ability to create objects, open and close objects to
provide data to them, and so forth. In other words, the visual system 214 exposes a
unified media API layer 212 by which developers may express intentions about
graphics and media to display graphics information, and provide an underlying
platform with enough information such that the platform can optimize the use of the
hardware for the program code. For example, the underlying platform will be
responsible for caching, resource negotiation and media integration.

In accordance with an aspect of the present invention and as

described below, the visual system 214 acts as a client of the compositor (lower-

level composition and animation engine) 218, and communicates appropriate data to

10

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

the compositor such that the desired frame is rendered. In general, the visual system
214 includes a user interface component that typically performs more
computationally-expensive operations than the compositor 218, and thus this aspect
of the visual system 214 typically operates at a relatively slower rate with respect to
the operating rate of the compositor. Note that as used herein, the terms “high-
level” and “low-level” are similar to those used in other computing scenarios,
wherein in general, the lower a software component relative to higher components,
the closer the component is to the hardware. Thus, for example, graphics
information sent from the visual system’s high-level composition and animation
engine code may be received at the low-level desktop compositing and animation
engine, where the information 1s used to send graphics data to the graphics
subsystem 222 imncluding the hardware.

In accordance with an aspect of the present invention, the visual
system 212 (asynchronously) communicates various information such as scene
change data, instructions such as animation function data and possibly other data
(e.£., pointers to bitmaps) that is processed by a rendering thread into data provided
to the compositor 218. In other words, the visual system 212 includes a user
interface thread and rendering thread that build on a lower-level composition system
218, shared across multiple desktop applications, as described below. This lower-
level composition system 218 matches the device refresh rate, and resides 1in a
process distinct from the applications which send 1t content. This decoupling from
the individual client (applications’) visual systems permits the expense of an
ind1ividual application animation to be properly adjudged and handled by the system
schieduler. Further, the application-resident composition engine (thread) may group
its dedicated thread to a category that 1s common to Iike application-resident
cormposition threads. For example, using a CPU scheduling reserve system, an
upper and lower bound for CPU percentage consumption may be applied to the
applications executing on the system.

As described below, the visual system 214 integrates with the timing
and animation systems 220 to provide declarative (or other) animation control (e.g.,
animation functions, intervals and other parameters) and timing control. Note that
the animation system allows animate values to be passed essentially anywhere in the

system, including, for example, at the element property level, inside of the visual

11

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

API layer 212, and in any of the other resources. The timing system 1s exposed at
the element.and visual levels.

The compositor 218 manages the composing, animating and
rendering of the scene, which is then provided to the graphics subsystem 222. In
one implementation, the visual system includes a user interface thread that works in
conjunction with a second thread (in the same process) that provides animation and
composition functionality. Thus, there is a composition component in each visual
system that 1s decoupled from the composition components (in a different process)
that implement the rendering of graphics from the scenes of multiple applications.
Note, that at times 1t 1s advantageous for some of the rendering to happen at higher
levels, e.g., while the lower layers service requests from multiple applications, the
visual systems are instantiated' on a per-application basis, whereby 1s possible via the
imaging mechanisms to perform time-consuming or application-specific rendering at
higher levels, and pass references to a bitmap to the compositor 218.

It 1s the lower-level composition described above for the API
composition engine that is now shared between both the API composition engine
and the desktop composition engine. Combining the lower-level composition for the
both the API composition engine and the desktop composition engine results in the
unified composition engine of the present invention. The unified composition
engine effects the resource management for both the API composition engine and
the desktop composition engine to produce scenes for display, as described below in
the discussion of the 1llustrative implementation.

As represented mn FIGURE 3, alternatively or in addition to locally
displayed output, the compositor 218 (or one similar thereto) may provide the
rendering and animation instructions in an appropriate format to lower-level printing
code 230 for sending fixed image data to a printer 232 or the like, and/or may
provide rendering instructions and simple animation intervals in an appropriate
format to a lower-level terminal transport server 236 for transmission to remote
machines 238. Note that richer information also may be passed across the network,
e.g., 1t may be desirable to have the remote machine handle mouse rollover effects

locally, without any network traffic.

12

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

Illustrative Implementation

FIGURE 4 illustrates an overview architecture for utilizing a unified
composition engine in accordance with the present invention. The unified
composition engine architecture includes a master resource table 402, visual tree
404, composition device interface 406, change queue 408, notify queue 410,
composition tree 412, and slave resource table 414.

The unified compostition engine architecture is logically separated
into two layers: the top layer, or client layer 401 (i.e., visual system), includes the
visual tree 404 (1.e., hierarchical data structure) which 1s the primary client of the
unified composition engine and the lower layer 1s the unified composition engine
proper 420. The visual tree 404 provides the interaction between the unified
composition engine with its main client and the interaction between the resource
tables (e.g., 402, 414) maintained by the client and the unified composition engine.

In accordance with the present invention, the visual tree 404 may be
replaoed with the desktop window manager as the client for the unified composition
engine 420. The desktop window manager is the client when the unified
composition engine 420 1s used as the desktop composition engine. the same library
1s now executing the same compositions for when the visual tree 404 and the
desktop window manager is the client of the unified composition engine 420.
Different processing run for the application's visual tree and the desktop window
manager, and they each handle different data (i.e., the payload varies), but the
protocol for unified composition engine 420 remains constant. In one embodiment,
the protocols for use with the desktop window manager comprise a functional subset
of the protocols available when an appliéation is the clieﬁt.

As an example, interaction between the client layer 401 and the
unified composition engine 420, as well as resource management, is described below
for the situation when an application is a client. The visual tree 404 represents the
application’s or document’s representation of a scene to be displayed. This scene
may be very large, and possibly much larger than what is currently visible. The
contents of each visual (e.g., 405) are defined by a list of rendering instructions, or
RenderData, and the resources it uses such as geometry, points, pens, brush, images,
etc. These resources are managed by the master resource table 402 which contains

device and resolution independent data for each resource and in some cases a

13

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

collection or resource dependent forms. The master resource table 402 is
responsible for managing the lifetime of resources (e.g., via reference counting).

No mformation about a visual tree (e.g., 404) or resources is
transmitted to the unified composition engine 420 until the visual tree is to be
displayed. When a visual tree (e.g., 404) is associated with a render target, the
visual tree sends a representation of that tree, along with the appropriate resources to
the unified composition engine 420. The communication is asynchronous via the
change queue 408 of the composition device interface 406. Only the potentially
visible subset of visual tree 404, referred to herein collectively as composition tree
412 (1.e., compositor data structure), are represented in the unified composition
engine 420. A visual tree is displayed when it is connected to a known resolution
render target. Therefore, the full transtormation from object to render target space is
known for the client.

The resources sent to the unified composition engine 420 are directly
realizable by the unified composition engine 420 without callback or the required
realization is sent. Resources like "Text" and "Images" are expensive (in terms of
processing overhead) to realize and are therefore converted to the appropriate
"ready-to -render" form in the visual tree 404. Converting the resources to a form
that may be readily rendered conserves overhead for composition in the unified
composition engine 420. Resources are also realized in the visual tree 404 if they
require any céllbacks to user code. Other resources like "Geometry"” that may be
tessellated efficiently by the unified composition engine 420 to the correct resolution
when needed are realized by the unified composition engine 420 itself.

The umified composition engine 420 manages resources in the slave
resource table 414. In one embodiment, the slave resource table 414 does not
perform reference counting of any form so as to increase performance. This is
possible because slave resource table 414 resources are accessed on the single
composition thread for a composition device. In one embodiment, all resources in
the slave resource table 414 also exist in the master resource table 402. The master
resource table 402 explicitly controls the lifetime of slave resource table 414
resources via serialized change queue 408 requests. The unified composition engine
420 refers to resources by handle. In one embodiment, if resource lookup fails, the

unified composition engine 420 posts a message to the notification queue 410 and

14

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

simply skips the processing requiring that resource. The unified composition engine
420 runs as a single thread and runs in a constant composition loop.

One aspect of the present invention for the unified composition
architecture shown, is the architecture's use of resources. A resource may be defined
as "any object needed for rendering a scene that requires different realizations for
different resolutions and/or physical devices; that is used multiple times within a
composition tree; or that may change independently of its users such as via
animation." Resources are represented in the unified composition engine 420 and at
the client layer 401 as records in a table (e.g., master resource table 402), and are
referred to by handle. Objects that use the resource do so by handle. The handle can
be looked up in the resource table (e.g., master resource table 402), to get a pointer
to the actual object. Resources are able to serialize themselves, apply updates, and
provide a realization for a particular resolution and device.

Resources are generally separated into a few types, such as drawing
resources, value resources, and structural resources. Drawing resources are objects
detined by the rendering layer and may be consumed directly by that layer.
Examples of drawing resources include RenderData, Bitmap, Image, Glyphrun,
Geometry, and Brush. Drawing resources can be further divided into simple and
complex categories.

Drawing resources with very low and constant rendering cost can be
realized during composition directly from the device and resolution independent
source data. Geometry is a simple drawing resource because it can be tessellated to
the final required resolution efficiently in the composition loop of the unified
composition engine 420. In contrast, complex drawing resources require complex
computations, call backs to user code, or input/output to generate realizations. In
one embodiment, complex drawing resources are not realized by the unified
composition engine 420. Instead, the appropriate realizations are provided at the
client layer 401 in advance to composition. "Image" is an example of a complex
resource. Images are read from disk, decoded, sampled at the appropriate resolution
and filtered.

Value resources represent a simple changeable or animate value used
by another resource. Examples of value resources are Double, Point, Color, and

Iransform. For example, a RenderData resource may refer to a Point resource to

15

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

235

30

draw a line where one of the points is expected to change via animation or
imperative direction by the application. Value resources may be static or animate.
If the value resource is animate, the value resource contains animation interval data
defining how the value changes with time.

Structure resources are objects that play a role in the composition
process but are not directly part of rendering. These objects are implemented as
resources so that they may participate in updates via the change queue and use Value
Resources to update internal values. Some currently identified structure resources
include Composition Node and Render Targets.

In general, resources must be realized before théy can be used. A
realization may be referred to as "a representation of a resource that is appropriate
for a given resolution and is ready for use by a specific device." An example of a
realization is a geometry tessellated into triangles for a particular resolution and
transformation and potentially already loaded into a vertex buffer on the video card.
Realizations are either created on demand in the unified composition engine 420 or
are created at the client layer 401 and sent to the unified composition engine 420. If
a resource realization that is required cannot be found or created a notification is
queued via the notify queue 410 to the client level 401. The notification indicates
the resource handle, the transform, and the device needed, along with any transform
of the realization used.

Equally important to the resources themselves is how they are
managed. Resources have some potentially contradictory requirements: efficient
lifetime management so resources are eliminated as soon as possible; efficient
memory storage since they may be large; multi-thread safe handle processing; robust
code that functions even if expected resources are missing; and efficient lookup of
realizations to ensure smooth composition. The unified composition engine
architecture sho;wn allows the requirements to be split into two sets, with the master
resource table 402 meeting a first of the requirements and the slave resource table
414 meeting the second set of requirements. |

The master resource table 402 is fully reference counted for safe

efficient memory management and synchronized to be thread-safe. Reference

counting refers to the number of time a particular resource is utilized. In contrast,

16

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

30

the slave resource table 414 runs on a single thread and utilizes a reference and lock
free design.

The master resource table 402 manages all of the resources used
within the client layer 401 application. The master resource table 402 is responsible
for giving out handles; reference counting handle records, resources and realizations;
sending resources to the slave resource table 414 and controlling the lifetime of the
slave resource table 414 resources. The master resource table 402 may manage tens
of thousands of objects, most of which are not currently being displayed, however
the visual tree 404 does not create the resource until it utilized for display. When the
visual tree 404 is displayed, the visual tree 404 is walked and the necessary
resources are sent to the unified composition engine 420 where they are managed in
the slave resource table 414. When a particular resource 1s no longer required for
composition, the visual tree 404 communicates to the composition device (e.g., 218
of FIGURE 2) to delete the resource. If an application is multicast to multiple
viewers, the visual tree 404 sends the same information to multiple composition
devices. The master resource table 412 tracks which composition devices hold a
representation of each resource.

In one aspect of the present invention, the resource data is shared
between the client layer 401 and the unified composition engine 420. The resource
data may be shared when the shared data is classified "read-only" once created, the
shared data is complete before “copying” to the unified composition engine 420, the
visual tree 404 controls the lifetime of the shared data, and the unified composition
engine 420 object is deleted first by an explicit request from the visual tree 404.
This set of requirements ensures that data in the slave resource table 414 remains in
a state consistent with the master resource table 402.

FIGURE 5 1llustrates an overview architecture for multiple unified
composition engines (UCEs) for a single application domain in accordance with the
present invention. This architecture includes a single application domain at the
client layer, but multiple unified composition engines for composing the scene in
conjunction with the application. A logical composition device (e.g., composition
device to UCE C) defines a connection between the application (i.e., composition
client) and each of the multiple unified composition engines. An example of when

this architecture may be used is in the event of remote assistance or other situations

17

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

where a single application is displayed on more than one machine over a network.
The number of unified composition engines that may be used in conjunction with a
single application domain are not limited to the three shown, but may be any number
as desired.

FIGURE 6 1llustrates an overview architecture for multiple
application domains for a single unified composition engine in accordance with the
present invention. This architecture includes a multiple application domains at the
client layer, but a single unified composition engine for composing the scene in
conjunction with the multiple applications. A logical composition device (e.g.,
composition device to UCE C) defines a connection between each of the
applications (1.e., composition clients) and the unified composition engine. An
example of when this architecture may be used is in the event of multiple
applications on a single computing device that are required to each have their own
domain. The number of application domains that may be used in conjunction with a
single unified composition engine are not limited to the three shown, but may be any
number as desired.

The above specification, examples and data provide a complete
description of the manufacture and use of the composition of the invention. Since
many embodiments of the invention can be made without departing from the spirit

and scope of the invention, the invention resides in the claims hereinafter appended.

18

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421
WE CLAIM:
1. In a computing environment, a system comprising:

10

15

20

25

a visual system, the visual system receiving calls from one of a
program and a window desktop manager to construct a hierarchical data structure;
and

a unified composition engine, the unified composition engine
recelving commands from the visual system, wherein the unified composition engine
constructs a compositor data structure in response to the commands to provide

graphics output.

2. The system of claim 1, wherein the unified composition engine
comprises a first composition service decoupled from a second composition service,
the first composition service incorporated into the visual system, and configured to

provide data to the second composition service.

3. The system of claim 1, further comprising:

a master resource table included in the visual system, wherein the
master resource table comprises a first list of resource used by one of the application
and the desktop window manager; and

a slave resource table included in the unified composition engine,
wherein the slave resource table includes a second list of resources provided to the
unified composition engine, the slave resource table being managed by the master

resource table.

4, The system of claim 3, wherein the second list of resources is an

inclusive list of resources when compared to the first list of resources.

5. The system of claim 3, wherein the master resource table is
responsible for giving out handles, reference counting handle records, resources and
realizations, sending resources to the slave resource, and controlling the lifetime of

the slave resource table resources.

19

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

15

20

25

6. The system of claim 3, wherein the master resource table explicitly

controls the lifetime of slave resource table resources via serialized requests.

7. The system of claim 1, wherein the same library 1s executing the
same compositions when the unified composition engine operates in response to the
desktop window manager and when the unified composition engine operates in

response to a program.

8. The system of claim 1, wherein protocols for use by the unified
composition engine when responsive to the desktop window manager comprise a
functional subset of the protocols for use by the unified composition engine when

responsive to the program.

0. The system of claim 1, wherein the slave resource table resources are

accessed on a single composition thread.

10. The system of claim 1, wherein the unified composition engine runs

as a single thread and runs in a constant composition loop.

11. The system of claim 1, further comprising additional visual systems
that communicate to the unified composition engine such that the graphics output

corresponds to the visual systems.

12. The system of claim 1, further comprising additional unified
composition engines that communicate to the visual system such that multiple

graphics outputs are produces that correspond to the visual system.

13. In a computing system, a method comprising:
recerving calls from one of a program and a desktop window

manager, wherein a hierarchical scene structure is constructed in response to the

calls;

communicating information that represents changes to the

hierarchical data structure to a unified composition engine;

20

CA 02537138 2006-02-27
WO 2005/045580 PCT/US2004/024421

communication a set resources to the unified composition engine,
wherein the set of resources correspond to a master resource table that is related to

the hierarchical data structure;

updating information in the compositor data structure based on the
5> communicated information;
updating a slave resource table based on the communicated set of
resources, wherein the slave resource table is related to the compositor data

structure; and

processing the compositor data structure to output graphics

10 information.

14. The method of claim 13, wherein constructing the hierarchical scene
structure process 1s asynchronously performed in comparison to the processing of

the compositor data structure to produce the output graphics information.

15, The method of claim 13, wherein the slave resource table comprises a

15 list of resources that is an inclusive list of resources when compared to the master

resource table.

16. The method of claim 13, further comprising controlling the lifetime

of the slave resource table resources in response to the master resource table.

17. The method of claim 13, further comprising executing compositions
20 using the unified composition engine according to a first library when the unified
composition engine operates in response to the desktop window manager and
executing compositions using the unified composition engine according to the first

library when the unified composition engine operates in response to a program.

18. The method of claim 13, wherein protocols for use by the unified
25 composition engine when responsive to the desktop window manager comprise a

functional subset of the protocols for use by the unified composition engine when

responsive to the program.

21

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421

10

19. The method of claim 13, further comprising accessing the slawe

resource table resources on a single composition thread.

20. The method of claim 13, further comprising running the unified

composition engine as a single thread and in a constant composition loop.

21. The method of claim 13, further comprising communicating
additional information and additional sets of resources to the unified composition

engine such that the graphics output information corresponds to additional programs.

22. The method of claim 13, further comprising communicating the
information and set of resources to multiple unified composition engines such that
multiple graphics output information 1s produced that corresponds to the one of

program and desktop window manager.

22

CA 02537138 2006-02-27

PCT/US2004/024421

WO 2005/045580

1/6

____ SKWVY90dd
8L NOLLVYIITddY

410N3Y

(s)ioindwion
ajowdy |

\ JHOM]ON B3Iy 8PIM 71

191

asnopy €91
]

¢Ol pieoqhsy V9l

ell E mEEEREEEEREN

081l
0L —. 091

LLL 9oelalu|

}10M]ON
}IOM]ON BOdY |e207

Gol
dowd ™

961 Jesayduad
Indino

99eJIaJUu|

v\l/ 00L

SNVIO0dd

b OId

oI SITNAOW (GS¥L YL
NVYYDO0¥d

W31SAS

9OBLId)U|

Jnduj
19sn

061l

Ovl

9oeLIaUu]
Aowdn

‘JOA-UON
a|geAOWwId Yy

9oRLIdU|
Alowad|y "[OA-UON
9]BAOWDY-UON

0Gl LZL

sng Wa)sAg

9oeJia)u|

O3PIA N
m:_m.mooo._n_ 0ctL

VivQd
NVIO0Ud

/€1 SITNAOWN
NVHOO0Ud ¥IHIO

9cT SAVYO0Oud
NOILVOI'lddVY

por W3LSAS
ONILYH3dO

2cl (nvy)

cel soig

gL (Wow)
Aloway walsAg

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421
2/6

Program Code 202
. 220

206

200

Vector Graphic

Elements

U 208

Element / Property |/ |
System
y

Presenter
System

204

212
Timing and
Visual API Animation
System(s)

Visual System

Scene Graph

Imaging
Mechanism(s)

Compositor (Low-Level
Composition and Animation

Engine / Renderer)

218 l

Graphics
Sub-system

222

(Software and

Hardware) F I G. 2

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421
3/6

202

Application / Control /
Ul Component

Visual (Media)

Media Integration API

220
Layer |

214

Visual System Timing and

Animation

230

Terminal
Server
Transport

Level

Printing

| evel Compositor

232 222

Graphics
Sub-system

(Software and
Hardware)

Remote

A

Machine(s)

FIG. 3

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421
4/6

401
405 '/—-\

typ.
404 ‘
Visual Mastier Resource
Table
2 402
- Resource 1
Resource 2
Visual Visual —
\ — Resource N
Visu-al\
410 406 408

\

\ Change Queue

Notify Queue
Q O
53 o . m 5
E S g Composition Device Interface 83 5

5 ® =
: -

Comp .

2 NOd}/ Slave Resource

Table
——Handle Ref > Resource 1 3—"" 414

Resource 2

/ Com

— Resource N

corp
oQge
\— 420

Handle Ref

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421
5/6
Client Layer
Master Resource Table
Resource 1
Resource 2
Visb Resource N
Notify Composition Change || Notify Composition | Change || Notify Composition Change
Device to UCE A Device to UCE B Device to UCE C
Notify Composition |Change || Notify Composition Change|| Notify Composition Change
Device Device Device
f
UCE Processing Loop UCE Processing Loop UCE Processing Loop
EXACTLY ONE THRE.AD EXACTLY ONE THREAD EXACTLY ONE THREAD
}
Comp Comp Comp
Node Node Node
Slave Slave Slave
Handle Ref Resource Hand|e Ref Resource Hand|e Ref Resource
Table Table Table
—p» Resource 1 —p Resource 1 -—m Resource 1
Resousrce 2 Resource 2 Resource 2
%0® Handle Ref CO@ Handle Ref CO@ Handle Ref
ode Node Node \
— e
» Resource N » Resource N » Resource N
Handie Ref Handl|e Ref Handle Ref
Comp Comp Comp
Node Node Node
UCE A UCE B UCE C

FIG. 5

CA 02537138 2006-02-27

WO 2005/045580 PCT/US2004/024421
6/6
App Domain A App Domain B App Domain C
Visual Master Visual Master Visual Master
Resource Resource Resource
Table Table Table
Resource 1 » Resource 1 Resource 1
Resource 2 Resource 2 Resource 2
Visual Visual Visual
—-l_: Resource N —[_: Resource N -—l-: Resource N
ViSLD Vis;h VISID
Notify Composition Device |Change | Notify Composition Device |[Change ‘ Notify | Composition Device |Change
I
Notify Composition Change | Notify Composition Change || Notify Composition Change
Device from AD A Device from AD B Device from AD C
UCE Processing Loop
EXACTLY ONE THREAD
Comp Comp Comp
Node Node Node
Slave Slave Slave
Handlg Ref Resource Handig Ref Resource Handlp Ref Reasource
Table Table Table
—» Resource 1 — Resource 1 .—m! Resource 1
Resource 2 Resource 2 Resourcs 2
Conh Handle Ref Corm Handle Ref Corh Handle Ref
Nodj// | Noiii// Nodj/ |
» Resource N » Resource N » Resource N
Handle Ref Handle Ref Handlg Ref
Comp Comp Comp
Node Node Node
UCE

FIG. 6

401
105 o

Master Resource
Table

- Resource 1

404 Visual

Resource 2

Visual

Visual
\ — Resource N
Visu)

410\ 406 408\
Notify Queue { Change Queue

auibu3
uonisodwod
Woi4

Composition Device Interface

auilbug
uonisodwio?)
Ol

Comp
412 Nodj/ Slave Resource
Table
-~ ——~Handle Ref » Resource 1
Resource 2
@ rgg Handle Ref .
—— Resource N

®
Node
\, 420

Handle Ref

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

