发明名称
在半导体制造工艺中形成低K电介质的方法

摘要
一种低K电介质复合层(26，28)，由低K阻挡层(26)和阻挡层(26)上的低K电介质层(28)形成。采用氧等离子体处理阻挡层(26)以使表面从疏水性转变为亲水性，所述阻挡层(26)沉积的结果是具有疏水性的顶部表面。随后的水基清洗对于去除由于阻挡层(26)的表面转变而产生的阻挡层(26)上使成品率减少的缺陷是非常有效的。在水基清洗之后，在阻挡层(26)的表面上形成低K电介质层(28)，从而实现具有低K的复合层(26，28)。
1、一种在半导体衬底上方形成层的方法，包括：
 提供半导体衬底；
 在所述衬底的上方形成第一电介质层，所述电介质层包括疏水性的表面；
 转变所述疏水性表面为亲水性表面；
 擦洗所述亲水性表面；和
 在所述第一电介质层上方形成第二电介质层。
2、权利要求1的方法，其中所述第一电介质层包括硅、碳和氮。
3、权利要求1的方法，其中通过氧等离子体转变所述疏水性表面为所述亲水性表面。
4、权利要求1的方法，其中所述第二电介质层包括硅、碳、氧和氮。
5、权利要求2的方法，其中通过氧等离子体转变所述疏水性表面为所述亲水性表面。
6、权利要求5的方法，其中所述第二电介质层包括硅、碳、氧和氮。
7、权利要求6的方法，采用水基清洁擦洗所述亲水性表面。
8、权利要求7的方法，其中所述水基清洁包括氢氧化铵。
9、权利要求5的方法，其中所述第一电介质包括硅、氮和碳。
10、权利要求9的方法，采用水基清洁擦洗所述亲水性表面。
11、权利要求10的方法，其中所述水基清洁包括氢氧化铵。
12、权利要求5的方法，其中形成所述第一电介质层的步骤和转变所述疏水性表面为亲水性表面的步骤是在原位进行的。
13、权利要求1的方法，其中形成所述第一电介质层和转变所述疏水性表面为亲水性表面的步骤是在原位进行的。
14、权利要求1的方法，其中形成第一电介质是等离子体沉积的，且转变是通过等离子体进行的。
15. 一种在半导体衬底上方形成层的方法，包括：
提供半导体衬底；
在所述衬底上方形成第一电介质层；
采用氧等离子体处理所述第一电介质层；
采用水基溶液清洗所述第一电介质层；和
在所述清洁的第一电介质层的上方形成第二电介质层。
16. 权利要求 15 的方法，采用所述氧等离子体处理所述第一电介质层结果使得所述第一电介质层的疏水性表面转变为亲水性表面。
17. 权利要求 16 的方法，其中清洁所述第一电介质层的步骤包括采用所述水基溶液擦洗所述第一电介质层。
18. 权利要求 17 的方法，其中所述水基溶液包括氢氧化铵。
19. 权利要求 18 的方法，其中所述第一电介质层包括硅、碳和氮。
20. 权利要求 15 的方法，其中所述第一电介质层包括硅、碳和氮。
21. 权利要求 20 的方法，其中形成所述第一电介质层的步骤发生在第一室内。
22. 权利要求 21 的方法，其中采用所述氧等离子体处理所述第一电介质层的步骤发生在所述第一室内。
23. 一种形成半导体结构的方法：
提供半导体衬底；
在所述衬底上方形成包括硅、碳和氮的第一电介质层；
采用氧等离子体处理所述第一电介质层；
擦洗所述第一电介质层；和
在所述第一电介质层上方形成第二电介质层。
24. 权利要求 23 的方法，其中所述第一电介质层具有疏水性的表面。
25. 权利要求 24 的方法，其中处理所述第一电介质层的步骤基本上转变所述第一电介质层具有疏水性的表面为亲水性表面。
26. 权利要求 23 的方法，其中冲洗步骤包括采用水基清洁溶液冲洗。

27. 权利要求 26 的方法，其中所述水基清洁溶液包括氢氧化铵。

28. 权利要求 27 的方法，其中冲洗步骤包括机械清洁和化学清洁。

29. 权利要求 23 的方法，其中形成第一电介质层的方法包括:
形成硅、碳和氮的硅第一电介质层;
其中形成第一电介质和处理第一电介质层是在原位进行的。
在半导体制造工艺中形成低K电介质的方法

技术领域

本发明涉及集成电路制造，更具体地，涉及在集成电路制造中低K电介质薄膜的形成。

背景技术

在半导体的制造中，发展之一就是使用低K电介质作为层间电介质（ILD），该层位于半导体衬底上方的导电层之间。这种低K电介质是为了减小在被用作互连的导体之间的电容耦合。在速度高度优先的情况下，常常是这种情况，减小电容耦合是特别重要的。低K材料代表性地既不是最好的绝缘体也不是最容易以高成品率制造的。为了实现为成功操作所必需的全部特征，常常需要阻挡层和帽层。这些附加的层增加步骤，使工艺复杂并潜在地引入成品率问题。

因此，在半导体制造中存在对低K电介质的需要，所述低K电介质可以在对成品率具有更小的负面影响的情况下进行制作。

发明内容

根据本发明的一方面，提供一种在半导体衬底上方形成一层的方法，包括：提供半导体衬底；在所述衬底的上方形成第一电介质层，所述电介质层包括疏水性的表面；转变所述疏水性表面为亲水性表面；擦洗所述亲水性表面；和在所述第一电介质层上方形成第二电介质层。

根据本发明的另一方面，提供一种形成半导体结构的方法：提供半导体衬底；在所述衬底上方形成包括硅、碳和氮的第一电介质层；采用氧等离子体处理所述第一电介质层；擦洗所述第一电介质层；和在所述第一电介质层上方形成第二电介质层。
附图说明

通过附图以举例而非限制的方式对本发明进行说明，其中类似的标号指示相似的元件，其中：

图 1 是根据本发明的一种实施方式而制作的半导体器件结构的横截面；和

图 2 是在制作图 1 的器件中使用的根据本发明实施方式的工艺流程图。

技术人员理解图中的元件是为简化和清楚而说明的，没有必要按比例绘制。例如，图中的一些元件的尺寸可能相对于其他元件被夸张，从而帮助改善对本发明的实施方式的理解。

具体实施方式

在一种形式中，采用氧等离子体处理低 K 阻挡层以使其表面转变为亲水性的，所述低 K 阻挡层沉积时具有疏水性的表面。然后采用擦洗的方式对亲水性表面进行清洁。由于表面是亲水性的，擦洗具有显著增加的效力。在表面上形成处理低 K 电介质层之后，通过参考附图和下面的说明，对此更好地理解。

图 1 中所示的是半导体器件 10，所述器件 10 包括半导体衬底 12、形成在衬底 12 内的漏区 14、形成在衬底 12 内的源区 16、位于衬底 12 上方并基本上位于漏极 14 和源极 16 之间的栅极电介质 18、位于栅极电介质 18 的上方的栅极 20、围绕栅极 22 的侧壁隔层 22、位于栅极 20 的上方且围绕栅极 20 的电介质层 24、栅极 20 上的接触 25、在电介质层 24 上的低 K 阻挡电介质层 26、在低 K 阻挡电介质层 26 上的低 K 电介质层 28、在低 K 电介质层 28 上的帽层 32、在通道 25 上并被层 26,28 和 30 包围的导电层 30、在帽层 32 上的低 K 阻挡层 34、在低 K 阻挡层 34 上的低 K 电介质层 36、和在导电层 30 上并被层 34 和 36 包围的通道 38。半导体衬底 12 最好是 SOI 衬底，在所述衬底中半导体是硅或者可以是另一种半导体材料的另一类半导体衬底。栅极 20 最好是硅但可以是金属或不同层的复合物的其它材料。接触 25 最好是钨但可以是其它类型的导电材料。通道 38 最好是铜但可以是另一类
导电材料。导电层 30 最好是铜但可以是另一类导电材料。导层 32 最好是用四乙基原硅酸盐（TEOS）形成的氧化物，但也可以是其它的电介质材料。电介质 24 是多层复合物，其中顶层最好是 SiCOH 或用氟和 TEOS（FTEOS）形成的氧化物。CMP 处理被应用到电介质层 24，使得在 CMP 处理之后层 24 的表面上的材料可以变化。在进行 CMP 处理之前在层 24 上方的材料的优选组合是富硅的氧化物、富硅的氮氧化物、TEOS 氧化物，所述氧化物导致横过晶片的层 24 的顶部表面不相同，在所述晶片上器件 10 被操作。半导体器件 10 是通常的结构，可以通过除了在形成低 K 阻挡层 26 和低 K 电介质 28 的复合层和低 K 阻挡层 34 和低 K 电介质层 36 中的复合层方法之外的常规方法而形成。

形成这些复合层的方法被显示在图 2 的流程图 50 中。流程图 50 包括步骤 52, 54, 56 和 58。在步骤 52 中，层被沉积为具有疏水性的表面。低 K 阻挡层 26 和 34 是这样的。阻挡层 26 和 34 最好是 SiCN。低 K 电介质层 28 和 36 最好是 SiCOH。已经发现在保护 SiCOH 不受层 24 影响时 SiCN 是有效的阻挡。SiCN 具有有疏水性表面的特性。还发现 SiCN 在其表面上具有微粒。已经发现擦洗没有去除所有的颗粒。清洁不完全有效的一个可能原因是所沉积的 SiCN 层的表面是疏水性的。此外，已发现擦洗清洁破坏 SiCN 的结构，产生新的缺陷类型。步骤 54 是使 SiCN 层的表面从疏水性转变为亲水性。所述转变使用氧化等离子体实现。SiCN 的沉积和随后的 SiCN 层的等离子体处理最好在原位进行。由于 SiCN 是等离子体沉积的，随后的氧化等离子体步骤可以容易地进行而不必要从沉积室移出晶片。因此，层 26 在同一室内被沉积然后处理。以相同的方式，只是在导体 30 的沉积和 CMP 处理之后，层 34 也在同一室内沉积和处理。

步骤 56 是对已经等离子体处理的层的表面进行擦洗。因此，在层 26 已经被采用氧化等离子体处理之后采用擦洗清洁的方式对层 26 进行处理。对于层 34 也是这样的。擦洗清洁是水基清洁。所述水最好是去离子水，且进一步包括氢氧化铵。对于诸如擦洗清洁的水基清洁这是常规的成分。

步骤 58 是执行下一层的沉积，所述下一层是位于低 K 阻挡层 26
之上的低K电介质层28和位于阻挡层34之上的低K电介质层36。步骤52～58的所述组合联合完成用作低K电介质的复合层。

所述方法的好处的一个理论是阻挡层的等离子体沉积导致阻挡表面上的微粒，所述微粒可能引起使成品率降低的缺陷；由于阻挡层的表面使疏水性的，这些微粒不能通过擦洗而被有效地去除；阻挡层表面沉积后等离子体处理转变阻挡层的表面为亲水性的，使得擦洗有效去除微粒而没有随后产生新的缺陷类型。另一个理论是等离子体处理导致微粒与阻挡层之间更少的粘附，因此随后的擦洗更有效。在任何情况下，所述处理导致成品率显著提高。

在前面的说明中，已参考特殊的实施方式对本发明进行了说明。然而，本技术的一个普通的技术人员理解在不背离在权利要求中提出

的本发明的范围的情况下可以进行各种修改和改变。例如，得益于在等离子体处理后水基清洁，可以使用其它的电介质和阻挡材料。另一材料也可以在沉积时是疏水性的并通过等离子体处理被转变为亲水性的。等离子体处理可以采用氟之外的其它物质。低K材料可以是SiCN和SiCOH之外的其它材料，并可以被旋涂而不是通过等离子体处理。水基清洁不必是擦洗处理，而是简单地使用水基溶液而不需要刷子。因此，说明书和附图应被认为是说明性的而不是限制性的，而且所有这些修改意欲包括在本发明的范围之内。

已参照特殊的实施方式对好处、其它优点和对问题的解决进行了说明。然而，所述好处、优点、对问题的解决、以及可以导致任何好处、优点或者对产生问题的解决或变得更明确的要素并不被解释为任何或全部权利要求的关键的、必须的，或基本的特点或要素。这里所用的，“包括（comprises）”、“包含（comprising）”或者它们的其它任何变化，是意欲覆盖非排他性的内容，因此包含要素列表的工艺、方法、制品或设备并不仅仅包括那些要素而是可以包括没有明确列入或所述工艺、方法、制品或设备固有的其它要素。