AMMUNITION CARRYING DEVICE

Applicant: Illinois Tool Works Inc., Glenview, IL (US)

Inventors: CHRISTOPHER A.J. IANNELLO, ROLLING MEADOWS, IL (US); MARTIN J. NILSEN, HAMPSHIRE, IL (US); SEAN P. FORREST, PARK RIDGE, IL (US)

Appl. No.: 13/944,528

Filed: Jul. 17, 2013

Related U.S. Application Data

Provisional application No. 61/696,596, filed on Sep. 4, 2012, provisional application No. 61/736,960, filed on Dec. 13, 2012.

Publication Classification

(51) Int. Cl.
F42B 39/26 (2006.01)

(52) U.S. Cl.
CPC .. F42B 39/26 (2013.01)
USPC ... 206/3

ABSTRACT

A molded ammunition carrying device including a plurality of independently expandable "C" profile cradles. The cradles are adapted to wrap compressively in partial circumferential relation about a shell body or other large diameter ammunition to provide support despite variations in individual ammunition dimensions. The carrying device may be adapted for attachment to other structures including belts, webbing, quick reload devices, or other structures used by a shooter in the field.
AMMUNITION CARRYING DEVICE

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of, and priority from, U.S. provisional application 61/696,596 having a filing date of Sep. 4, 2012 and U.S. provisional application 61/736,960 having a filing date of Dec. 13, 2012. The contents of such applications and all documents referenced herein are hereby incorporated by reference as if set forth herein in their entirety.

TECHNICAL FIELD

[0002] This disclosure relates to ammunition carrying devices, and more particularly to a holding device for carrying shells for use in shotguns or other large bore firearms. The carrying device is readily adapted for attachment to other structures including belts, webbing or modular reload devices used by a shooter in the field.

BACKGROUND OF THE DISCLOSURE

[0003] Large bore firearms are widely used by sportsmen, law enforcement officers and military personnel. As will be well understood by those of skill in the art, shotgun shells and other large bore ammunition may incorporate a metal head with a generally tubular body projecting away from the head. A primer is located within the head which ignites powder to force one or more projectiles outwardly from the body when the weapon is fired. Due to the construction characteristics of such ammunition, there may be some variability in the perimeter shape of the body from shell to shell. This variability between shells may be particularly pronounced in shotgun shells having plastic bodies which are reloaded multiple times. Although this variability between shells may not impact performance of the ammunition, any storage or carrying structure must take such variability into account.

[0004] In the past, one common technique for carrying shells for large bore firearms in the field has been to insert the shells through individual sewn loops of elastomeric webbing material sewn to structures worn by users. However, over time, the elasticity of the sewn loops may diminish. Thus, the shells may not be held sufficiently tightly to avoid loss. Moreover, the use of elastic loops may make it difficult to extract the shells rapidly for loading into the firearm when they are to be used.

[0005] It has also been known to use molded plastic carrying devices with interconnected cradle structures for receipt of individual shells. However, prior known structures did not provide individual adjustment relative to the shell being held. Thus, some shells may be relatively loose within the cradle structures while others may be unduly tight. Loose shells may rattle within the carrying device, thereby causing undesired noise. Conversely, shells that are held too tightly may be difficult to extract for use in the field.

[0006] Accordingly, there is a continuing need for a modular device used to carry large bore ammunition in the field which holds each individual shell securely but without undue constriction despite variations between individual ammunition units.

SUMMARY OF THE DISCLOSURE

[0007] The present disclosure provides advantages and alternatives over the prior art by providing a molded ammunition carrying device including a plurality of independently expandable “C” profile cradles. The cradles are adapted to wrap compressively in partial circumferential relation about a shell body or other large diameter ammunition to provide support despite variations in individual ammunition dimensions. The carrying device may be adapted for attachment to other structures including belts, webbing, quick reload devices, or other structures used by a shooter in the field.

[0008] In accordance with one exemplary aspect, the present disclosure provides an ammunition carrying device adapted to support a plurality of shells for large bore firearms. The carrying device includes a plurality of expandable cradle elements disposed in molded-in integral relation to a bucking wall to define a unitary molded construction. The cradle elements each comprise a pair of complimentary, opposing resilient sidewalls oriented longitudinally on the carrying device and projecting away from the bucking wall. The sidewalls have free edges curved radially inwardly such that each of the cradle elements has a substantially “C” shaped cross section with a longitudinal slot between the free edges of the opposing resilient sidewalls of the cradle element. Each sidewall may be independently flexible relative to the opposing and adjacent sidewalls. The cradle elements are adapted to receive a shell by axial insertion of the shell between the opposing resilient sidewalls such that the complimentary, opposing resilient sidewalls wrap in circumferential compressible relation partially around a body portion of the shell.

[0009] Other objects and advantages of the carrying device will become apparent from a description of certain preferred embodiments thereof which are described and shown in the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is an upper elevation schematic perspective view illustrating an upper portion of an exemplary carrying device consistent with the present disclosure in empty condition;

[0011] FIG. 2 is a lower elevation schematic perspective view illustrating a lower portion of the exemplary carrying device of FIG. 1 in empty condition;

[0012] FIG. 3 is a schematic front perspective view illustrating the exemplary carrying device of FIG. 1 in filled condition;

[0013] FIG. 4 is a schematic rear perspective view illustrating the exemplary carrying device of FIG. 1 in filled condition;

[0014] FIG. 5 is a schematic rear elevation view illustrating the use of straps to attach an exemplary carrying device as shown in FIG. 1 to a belt;

[0015] FIG. 6 is a schematic front elevation view illustrating the use of straps to attach an exemplary carrying device as shown in FIG. 1 to a section of MOLLE/P.A.L.S. webbing as may be used in law enforcement or military garments;

[0016] FIG. 7 is a cut-away side view illustrating an exemplary carrying device as shown in FIG. 1 engaging a modular quick reload device in meshed relation;

[0017] FIG. 8 is a schematic perspective view illustrating the use of straps to attach an exemplary carrying device as shown in FIG. 1 to a modular quick reload device as shown in FIG. 7;

[0018] FIG. 9 is a partial cut-away view of another embodiment for an exemplary ammunition carrying device with an inserted locking clip for engagement with a belt or section of MOLLE/P.A.L.S. webbing;
FIG. 10 is a schematic view of an exemplary locking clip for insertion into the ammunition carrying device of FIG. 9. FIG. 11 is a view illustrating an assembled ammunition carrying device and locking clip of FIG. 9 engaging a belt. FIG. 12 is a sectional side view illustrating the clip of FIG. 9 inserted in an exemplary carrying device consistent with the present disclosure and engaging the modular quick reload device; and FIG. 13 is a schematic front perspective view illustrating another embodiment of the exemplary ammunition carrying device adapted to cover the primers of large diameter ammunition.

Before the exemplary embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is in no way limited in its application or construction to the details and the arrangements of the components set forth in the following description or illustrated in the drawings. Rather, the disclosure is capable of other embodiments and being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein are for purposes of description only and should not be regarded as limiting. The use herein of terms such as “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference will now be made to the various drawings, wherein to the extent possible, like reference numerals are used to designate like elements in the various views. Referring now jointly to FIGS. 1-4, a carrying device 10 is illustrated for the storage and transportation of one or more shells 12 (FIG. 3) such as shotgun shells or the like for use in large bore firearms. In this regard, it is to be understood that while the illustrated exemplary embodiment is adapted to hold three shells, it is contemplated that the carrying device likewise may be constructed to hold any greater or lesser number as may be desired. According to one exemplary practice, the carrying device 10 may be formed as a unitary structure by injection molding or other molding practices using materials such as high impact plastics and the like. However, other materials and forming techniques may likewise be used if desired.

As will be readily understood by those of skill in the art, shells 12 for shotguns typically incorporate a metal head 14 of brass or other suitable material with an enhanced diameter rim extending radially outwardly from a primer 16. A reduced diameter body 18 of generally cylindrical construction extends away from the head 14 in substantially coaxial relation to the head 14. The body 18 is used to contain pellets or other projectile elements to be expelled by the shell 12 when it is fired. In a shotgun shell, the body 18 may be formed from a relatively soft plastic or other deformable material and may be somewhat irregular in circumferential and/or linear dimensions after the projectile elements are packed and sealed therein.

As illustrated, the carrying device 10 may have a generally box shape configuration with a contoured backing wall 20 defining a base and with a plurality of integral, independently expandable concave cradle elements 22 extending away from the backing wall 20. In the illustrated exemplary arrangement, each of the cradle elements 22 has a generally “C” shaped cross-sectional profile with a pair of inwardly curved, independently flexible sidewalls 23 extending away from one side of the backing wall 20. The backing wall 20 may have a curved indented surface of substantially fixed dimensions between the sidewalls 23 to define a concave base of the cradle element 22. The base of the cradle elements between the sidewalls 23 may also be substantially flat if desired.

The sidewalls 23, and the flat or indented base surface of the backing wall 20 between the sidewalls cooperatively form the concave cradle elements 22 with a longitudinal spacing between the sidewalls 23 projecting away from the backing wall 20. This arrangement permits the shells 12 to slide axially into the cradle elements with the sidewalls 23 of the cradle elements 22 wrapped circumferentially in compressive relation partially about the reduced diameter bodies 18. In this regard, the effective diameter defined by the cradle elements 22 may be slightly smaller than the effective diameter of the bodies 18 of the shells 12 such that the opposing sidewalls 23 are caused to flex radially outwardly when the shells 12 are inserted.

As best seen through joint reference to FIGS. 1, 2, 5 and 6, in the illustrated exemplary construction, each of the cradle elements 22 incorporates independent resilient sidewalls 23 which are spaced apart from the sidewalls of the adjacent cradle elements. Moreover, any indentation at the base of the cradle elements 22 between the complimentary sidewalls may be molded into the face of the backing wall 20. Accordingly, each sidewall 23 may flex radially outwardly in a spring-like manner independently from its complementary or adjacent sidewalls as a shell 12 is inserted. Thus, each cradle element 22 may provide a secure wrap-around support without involvement of the adjacent cradle element and with each cradle element substantially conforming in shape as required based on the individual shell which is inserted. Moreover, in the radially outward flexed condition, the sidewalls 23 will provide a biasing force against the inserted shell such that a secure support is provided so as to prevent rattling.

As shown in FIG. 2, in the illustrated exemplary construction, one or more molded-in raised ribs 24 may be disposed at the base of one or more of the cradle elements 22 to urge the inserted shells 12 forward towards the longitudinal opening between the edges of the sidewalls 23. The presence of such raised ribs 24 may enhance the retention force between the sidewalls 23 and the shells 12, while accounting for dimensional differences between each shell.

According to one exemplary practice, the cradle elements 22 may extend about a circumference of about 270 degrees or greater. In this regard, the cradle elements 22 will preferably extend about a circumference such that the free edges 25 of the sidewalls 23 will apply a rearward clamping force against the shell in the direction of the backing wall 20 and the raised rib 24. That is, the free edges 25 will press the shell towards the base of the cradle element 22. As will be appreciated, while the raised ribs 24 are illustrated as having a generally diamond shape, it is contemplated that virtually any other suitable shape may likewise be used.

As best seen in FIGS. 2 and 3, the sidewalls 23 of the cradle elements 22 may include chamfered lower edges 26. As shown in FIG. 3, this arrangement results in reduced circumferential coverage by the sidewalls 23 at a distal end of the shell. In the illustrated exemplary construction, this cham-
fer may result in the sidewalls 23 extending about 180 degrees or less around the distal end of the shell such that rearward biasing force by the sidewalls 23 may be substantially eliminated at the distal ends of the shells. Such a chamfered arrangement also provides easy finger access to the distal ends of the shells such that the shells may be pushed axially upwardly for retrieval when desired.

[0032] As best seen through joint reference to FIGS. 1, 3 and 4, an upper ledge 28 may project away from the backing wall 20 at the top of the carrying device 10 to define a rearward platform surface of defined thickness. As shown, the upper ledge 28 may be substantially continuous along the entire width of the carrying device 10. Alternatively, the upper ledge 28 may be segmented if desired. In the illustrated exemplary construction, slots defining eyelets 30 may extend through the upper ledge 28 for pass-through receipt of a strap or other attachment device as will be described further hereinafter.

[0033] One or more box protrusions 32 may project away from the backing wall 20 at an elevation below the upper ledge 28 to define a lower ledge 34 in spaced-apart relation from the upper ledge 28. As shown, the box protrusions 32 may be segmented along the width of the carrying device 10. Alternatively, a single continuous box protrusion may be used if desired. The box protrusions 32 may be hollow to define pass-through slots for threading a strap or other attachment device through the box protrusions for attachment to other devices.

[0034] As best seen in FIG. 5, in one exemplary environment of use, a carrying device 10 in accordance with the present disclosure may be mounted to a belt 36 using commercially available attachment straps 40 made of plastic, fabric, or other suitable material. According to one exemplary practice, such attachment may be carried out by inserting the straps 40 through the eyelets 30 in the upper ledge 28 as well as through aligned pass-through openings in the box protrusions 32 and then wrapping the straps 40 around the belt 36 and securing the straps 40 in a cinched relation to the belt using a locking tab or other device integral with the straps. By way of example only, and not limitation, exemplary locking straps 40 which may be used are disclosed in commonly owned international application WO2013/016489 (incorporated by reference). Of course, other strap constructions may likewise be used if desired. As shown upon being attached to the belt 36, the cradle elements 22 will project outwardly away from the belt for easy access by the user.

[0035] As best seen in FIG. 6, the carrying device 10 may likewise be mounted to a webbing connection 42 on a vest, bag, sheet or other structure as may be used by law enforcement or military personnel using commercially available attachment straps 40 made of plastic, fabric, or other suitable material such as the locking straps described in WO2013/016489 or the like. In practice, such attachment may be carried out by inserting the straps 40 through eyelets 30 in the upper ledge 28 as well as through aligned openings in the box protrusions 32 and then weaving the ends through the loops of the webbing connection 42 and securing the straps 40 in a cinched relation to the webbing connection using a locking tab or other device integral with the straps. As shown, upon being attached to the webbing connection 42, the cradle elements 22 will project outwardly away from the webbing connection for easy access by the user.

[0036] Referring now to FIGS. 7 and 8, the carrying device 10 also may be mounted to a modular rapid reloading device 50 such as a FASTMAG™ device produced by Illinois Tool Works or the like. Such attachment may be carried out by nesting the contoured backing wall 20 of the carrying device with a complementary opposing face 52 of the reloading device having a contoured profile adapted to matingly receive portions of the contoured backing wall 20. As shown, ridges and recesses across the backing wall 20 may mate with complementary ridges and recesses on the face 52 of the reloading device 50 to facilitate a secure connection.

[0037] In accordance with one exemplary construction shown in FIG. 7, the face 52 of the reloading device 50 may include a depressed zone 54 adapted to matedly receive the box protrusions 32 on the carrying device in nested relation. Likewise, the opposing face 52 may include an upper detent zone 56 adapted to fit in nested relation between the upper ledge 28 and the lower ledge 34 of the carrying device backing wall 20. As shown, the upper detent zone 56 may include a multiplicity of individual detent structures 58, although a single raised detent structure may be used if desired. The opposing face 52 may also include a lower detent structure 60 adapted to fit in nested relation below the box protrusions 32 of the backing wall 20. As shown, the lower detent structure 60 may be formed from a single detent, although multiple stacked detents may be used if desired.

[0038] With the carrying device 10 in place relative to the reloading device 50, a secure attachment can be made by inserting one or more straps 40 as previously described through eyelets 30 in the upper ledge 28 as well as through one or more aligned openings in the detent structures 58, 60 and the box protrusions 32. The straps 40 may then be secured to themselves in a cinched relation using a locking tab or other device integral with the strap. Of course, it is also contemplated that the carrying device 10 may be mounted to virtually any other support structure as may be desired.

[0039] Referring now to FIGS. 9-11, an alternative embodiment of a carrying device 110 consistent with the present disclosure is illustrated wherein elements corresponding to those described previously are designated by like reference numerals increased by 100. As shown, in the illustrated exemplary construction, the backing wall 120 of the carrying device 110 includes one or more internal channels 170 oriented between the cradle elements (not shown) and the upper ledge 128. In this regard, the channels 170 are oriented to define tangents to the rear surfaces of the cradle elements. As will be appreciated, while two channels 170 are illustrated, it is likewise contemplated that a greater or lesser number of channels may be incorporated as desired.

[0040] As best seen through joint reference to FIGS. 9 and 10, a lock strap insert 174 of unitary molded plastic construction or the like may be provided for sliding insertion into the channels 170. In the illustrated exemplary construction, the exemplary lock strap insert 174 includes a pair of spring arms 176 adapted to lock in place upon insertion. In this regard, in the exemplary construction the spring arms 176 may each include an enhanced diameter distal head 178 with a shoulder undercut 180. Upon insertion of the lock strap insert 174 from the bottom of the channel 170, the spring arms 176 may deflect inwardly and then spring outwardly such that the shoulder undercuts 180 engage ledge structures 182 at the interior of the carrying device. The lock strap insert is thereby blocked from withdrawal unless the spring arms 176 are manually pressed towards one another. Of course, while only a single lock strap insert 174 is shown, it is contemplated that such an insert may be used in each channel 170 if desired.
As shown in FIG. 10, the exemplary lock strap insert 174 may have a generally “U” shaped or hairpin profile with one leg of the “U” defining an insertion pillar 186 supporting the spring arms 176. The other leg of the “U” defines a biasing leg 188 disposed in substantially parallel opposing relation to the insertion pillar. As shown, the insertion pillar 186 and the biasing leg 188 are joined at a base 190 to define a generally “U” shaped connection. As shown, the biasing leg 188 may have a generally hour-glass shape construction with a relatively broad proximal segment 192 at the base and a relatively broad distal segment 194 connected by an intermediate neck 196 of reduced width (shown in phantom). As will be appreciated, in such a construction the biasing leg may flex away from the insertion pillar 186 by flexing at the base such that the lock strap insert 174 may act in the manner of a leaf spring upon insertion into the channel 170.

As illustrated in FIG. 11, the carrying device 110 with lock strap inserts 174 in place may be secured to a belt 136 or other support structure such as webbing or the like by inserting the lock strap insert 174 behind the belt or other support structure such that the belt or other support structure is captured between the backing wall 120 and the distal segment 194 of the biasing leg 188. In this arrangement, a secure connection is maintained even during rigorous use.

FIG. 12 illustrates yet another embodiment for a carrying device 210 consistent with the present disclosure, adapted for attachment to a reloading device 250 wherein elements corresponding to those described previously are designated by like reference numerals within a 200 series. In the illustrated exemplary construction, the carrying device 210 includes internal channels as previously described in relation to FIG. 9 for receipt of one or more lock strap inserts 274. However, in the illustrated assembly, the lock strap inserts 274 have a hooked proximal end 275 with no upwardly extending biasing leg. The upper ledge 228 of the carrying device likewise has a downwardly extending leg 277.

As shown, by using the embodiment of FIG. 12, the downwardly extending leg 277 of the upper ledge may be inserted into a molded-in slot behind detent structures 258 at the upper face of the reloading device 250. Once the downwardly extending leg 277 is in place, the lock strap insert 274 may then be inserted in the manner as previously described such that spring arms 276 lock in place in the same manner as shown in FIG. 9. As illustrated, insertion of the lock strap insert 274 also causes the hooked proximal end 275 to enter a molded-in slot behind a lower detent 260 at the face of the reloading device 250. As will be appreciated, in this assembled condition, the carrying device 210 is secured to the reloading device 250. Of course, this attachment may be reversed by pressing the spring arms 276 towards one another such that the locking relation is released and the lock strap insert can be withdrawn.

FIG. 13 illustrates yet another embodiment for a carrying device 210 consistent with the present disclosure, adapted for safely transporting extremely large diameter projectiles 312 wherein elements corresponding to those described previously are designated by like reference numerals within a 300 series. In the illustrated exemplary construction, the carrying device 310 includes a hinge-mounted rotatable cover 385 attached adjacent the upper ledge 328. The rotatable cover 385 is preferably free to pivot about its hinge, such that it covers the head and primer of the projectile 312 without the application of substantial pressure. In this regard, a relatively lightweight open mesh grid construction such as the illustrated open honeycomb construction or the like may be useful to provide protection without applying substantial weight. Of course, other constructions may likewise be used.

In the illustrated exemplary construction of FIG. 13, the carrying device 310 may also include one or more outwardly projecting barbs 389. In practice, the barb 389 may engage a cord or other tie down element (not shown) which may be threaded through an eyelet in the cover 385 and then looped around the barb 389 to prevent the cover from opening unintentionally. As shown, the barb 389 may include an enhanced diameter distal head at its free end to block against unintended disengagement.

Of course, variations and modifications of the foregoing are within the scope of the present disclosure. Thus, it is to be understood that the disclosure disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present disclosure. The embodiments described herein explain the best modes known for practicing the disclosure and will enable others skilled in the art to utilize the disclosure. The claims are to be construed to include alternative embodiments and equivalents to the extent permitted by the prior art.

1. An ammunition carrying device adapted to support a plurality of shells for large bore firearms, the carrying device comprising:
 a plurality of expandable cradle elements disposed in molded-in integral relation to a backing wall to define a unitary molded construction, wherein the cradle elements each comprise a pair of complimentary, opposing resilient sidewalls oriented longitudinally on the carrying device and projecting away from the backing wall, the sidewalls having free edges curved radially inwardly such that each of the cradle elements has a substantially “C” shaped cross section with a longitudinal slot between the free edges of the opposing resilient sidewalls, and wherein the sidewalls of each cradle element are independently flexible relative to sidewalls of adjacent cradle elements, the cradle elements being adapted to receive a shell by axial insertion of the shell between the opposing resilient sidewalls such that the complimentary, opposing resilient sidewalls wrap in circumferential compressible relation partially around a body portion of the shell.

2. An ammunition carrying device as recited in claim 1, wherein at least one of the cradle elements comprises a curved depression in the backing wall defining a base of the cradle element.

3. An ammunition carrying device as recited in claim 2, wherein at least one raised rib is disposed on the curved depression.

4. An ammunition carrying device as recited in claim 1, wherein at least one of the cradle elements extends circumferentially around an angle of about 270 degrees or greater along at least a portion of its length.

5. An ammunition carrying device as recited in claim 4, wherein said at least one of the cradle elements comprises a curved depression in the backing wall defining a base of the cradle element, the base being of substantially fixed geometry.

6. An ammunition carrying device as recited in claim 5, wherein at least one raised rib is disposed on the curved depression.
7. An ammunition carrying device as recited in claim 6, wherein said at least one of the cradle elements extends circumferentially around an angle of about 270 degrees or greater along at least a portion of its length.

8. An ammunition carrying device as recited in claim 1, wherein at least one of the cradle elements comprises a chamfered lower end.

9. An ammunition carrying device as recited in claim 8, wherein said at least one of the cradle elements extends circumferentially around an angle of about 270 degrees or greater at a position above the chamfered lower end.

10. An ammunition carrying device as recited in claim 9, wherein said at least one of the cradle elements comprises a curved depression in the backing wall defining a base of the cradle element, the base being of substantially fixed geometry.

11. An ammunition carrying device as recited in claim 10, wherein at least one raised rib is disposed on the curved depression.

12. An ammunition carrying device as recited in claim 1, wherein the carrying device further comprising a first ledge projecting away from the backing wall in a direction facing away from the cradle elements, the first ledge including an eyelet opening, and wherein a box protrusion is disposed at an elevation below the first ledge in aligned relation to the eyelet opening in the first ledge to define a second ledge, wherein the box protrusion is hollow such that the eyelet opening and box protrusion are adapted to receive a connection strap in threaded relation.

13. An ammunition carrying device as recited in claim 12, wherein the box protrusion is hollow such that the eyelet opening and box protrusion are adapted to receive a connection strap in threaded relation.

14. An ammunition carrying device as recited in claim 1, wherein the carrying device further comprises at least one internal channel adapted to slidingly receive a lock strap insert in snap-in relation.

15. An ammunition carrying device as recited in claim 14, wherein the carrying device further comprising a first ledge projecting away from the backing wall in a direction facing away from the cradle elements, the first ledge including an eyelet opening, and wherein a box protrusion is disposed at an elevation below the first ledge in aligned relation to the eyelet opening in the first ledge to define a second ledge, and wherein a leg extends downwardly away from the ledge.

16. An ammunition carrying device as recited in claim 15, further comprising a rotatable cover adapted for disposition in covering relation head portions of shells held within the cradle elements.

17. An ammunition carrying device as recited in claim 16, wherein the cover has an open mesh grid construction.

18. An ammunition carrying device adapted to support a plurality of shells for large bore firearms, the carrying device comprising:

7. A plurality of expandable cradle elements disposed in molded-in integral relation to a backing wall to define a unitary molded construction, wherein one or more of the cradle elements comprise a curved depression in the backing wall defining a base of the cradle element, at least one raised rib being disposed on the curved depression and a pair of complimentary opposing resilient sidewalls oriented longitudinally on the carrying device and projecting away from the backing wall at opposing sides of the curved depression, the sidewalls of each cradle element having free edges curved radially inwardly such that each of the cradle elements has a substantially "C" shaped cross section with a longitudinal slot between the free edges of the opposing resilient sidewalls of the cradle element, and wherein the sidewalls of each cradle element are independently flexible relative to sidewalks of adjacent cradle elements, the cradle elements each being adapted to receive a shell by axial insertion of the shell between the opposing resilient sidewalls such that the complimentary opposing resilient sidewalls wrap in circumferential compressible relation partially around a body portion of the shell, wherein each of the cradle elements extends circumferentially around an angle of about 270 degrees or greater along at least a portion of its length, and wherein each of the cradle elements comprises a chamfered lower end.

19. An ammunition carrying device as recited in claim 18, wherein the carrying device further comprises a first ledge projecting away from the backing wall in a direction facing away from the cradle elements, the first ledge including an eyelet opening, and wherein a box protrusion is disposed at an elevation below the first ledge in aligned relation to the eyelet opening in the first ledge to define a second ledge, the box protrusion being hollow such that the eyelet opening and box protrusion are adapted to receive a connection strap in threaded relation.

20. An ammunition carrying device adapted to support a plurality of shells for large bore firearms, the carrying device comprising:

- a plurality of expandable cradle elements disposed in molded-in integral relation to a backing wall to define a unitary molded construction, wherein one or more of the cradle elements comprise a curved depression in the backing wall defining a base of the cradle element, at least one raised rib being disposed on the curved depression and a pair of complimentary opposing resilient sidewalls oriented longitudinally on the carrying device and projecting away from the backing wall at opposing sides of the curved depression, the sidewalls of each cradle element having free edges curved radially inwardly such that each of the cradle elements has a substantially "C" shaped cross section with a longitudinal slot between the free edges of the opposing resilient sidewalls of the cradle element, and wherein the sidewalls of each cradle element are independently flexible relative to sidewalks of adjacent cradle elements, the cradle elements each being adapted to receive a shell by axial insertion of the shell between the opposing resilient sidewalls such that the complimentary opposing resilient sidewalls wrap in circumferential compressible relation partially around a body portion of the shell;
- the carrying device further comprising a first ledge projecting away from the backing wall in a direction facing away from the cradle elements, the first ledge including an eyelet opening, a box protrusion being disposed at an elevation below the first ledge in aligned relation to the eyelet opening in the first ledge to define a second ledge, the box protrusion being hollow such that the eyelet opening and box protrusion are adapted to receive a connection strap in threaded relation;
- the carrying device further comprising at least one internal channel adapted to slidingly receive a lock strap insert in snap-in relation.

* * * *