05/119531 A2 IR 00O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
15 December 2005 (15.12.2005)

AT O 0O

(10) International Publication Number

WO 2005/119531 A2

GO6F 17/50

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2005/019188

(22) International Filing Date: 1 June 2005 (01.06.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/575,363 1 June 2004 (01.06.2004) US

(71) Applicant (for all designated States except US): TERA
SYSTEMS, INC. [US/US]; 1741 Technology Drive, Suite
300, San Jose, California 95110 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DECKER, John
[US/US]; 15 Southgate Drive, Annandale, New Jersey
08801 (US).

(74) Agent: GARRETT, PATRICK E.; Sterne, Kessler, Gold-
stein & Fox PL.L.C., 1100 New York Avenue, N.W., Wash-
ington, DC 20005 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,

[Continued on next page]

(54) Title: RULE-BASED DESIGN CONSULTANT AND METHOD FOR INTEGRATED CIRCUIT DESIGN

105

102

106

CONSTRAINTS

SYSTEM (LCS)

LIBRARY CHARACTERIZATION

STANDARD
CELL

STANDARD CELLS

VERILOG
NETLIST

VHDL
NETLIST

LIBRARY

PDEF
FILE 116

112 114

ADVANCED LIBRARY
FORMAT (ALF) MODELS

(OPTIONAL)

s

>\108

110

OBJECT
LIBRARY

100

& (57) Abstract: A rule-based design consultant and analysis method for an integrated circuit ("IC") layout design compares an IC de-
sign against a list of rules. The IC design information may be included in a set of databases, including a database containing physical
implementation and technology specific timing and area information. The consultant and method can be used with a graphical user
interface that displays a report of the rules run on the IC design. Cross-probing may be incorporated to display at least one diagram
of an object that is not compliant with a particular rule, as well as relevant source code for the object.

WO 2

WO 2005/119531 A2

0 000 RO

EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU,
ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW,
MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW,
BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS,

LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG,
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE,
LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE,
S1, SK, TR), OAPI patent (BE, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG)

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/119531 PCT/US2005/019188

RULE-BASED DESIGN CONSULTANT AND METHOD FOR
INTEGRATED CIRCUIT DESIGN

BACKGROUND OF THE INVENTION

[0001] Traditional rule checkers for integrated circuits ("ICs") were developed
primarily to check for functional verification and detection of simulation
issues. The first generation of these checkers were simple language semantic
checkers, such as Nova-Verilint, which is a language purification tool for
design analysis produced by Synopsys, and LEDA, also produced by
Synopsys. The basic technology component involved in this type of checking
was a parser for the language being checked. These semantic checkers had
limited effectiveness and little or no visualizations.

[0002] Semantic checkers evolved into structural rule checkers.” Structural
rule checkers mapped coded language for a design onto a simple generic
structural netlist or read a gate-level representation of the design. This process
allowed for a set of synthesizability checks, and more complex structural
checking such as the existence of latches, unregistered outputs, and simple
clock structure checks.

[0003] An example structural rule checker is Spyglass by Atrenta. Structural
rule checkers add the ability to do more complex checking involving logic
cones and searching a netlist. Structural checks also allow creation of basic
schematics and logic-level timing analysis, which uses rough estimates to
locate timing issues. LEDA, by Synopsys, also performs some clock gating
and cross-clock domain path checking on a structural level.

[0004] These traditional tools do not provide timing analysis or checks of the
physical implementation. What is needed therefore is a rule checking device

and method based on information from a physical layout of the IC.

BRIEF SUMMARY OF THE INVENTION

[0005] In addition to analyzing semantic checks and structural checks, a rule-
based design consultant and analysis method optionally checks of the actual

synthesis and physical implementation of the design as well as timing. The

WO 2005/119531 PCT/US2005/019188

2-

design consultant optionally incorporates a synthesis engine that maps to a
technology specific vendor library. This enables timing and area analysis
features that identify, for example, high-density areas and timing critical paths.
It optionally provides a physical prototype of the design that can be checked
for a wide range of physical design issues ranging from early congestion
analysis, area analysis, long wire detection, and timing based on the physical
prototype. The design consultant may also allow for reading in a PDEF file
generated by another floorplanning or placement tool. This provides the
availability of iterations between tools, or even the use of another floorplanner
to generate the floorplan that is to be analyzed by the design consultant.
Combining physical, timing, and structural checks provides a more accurate
and useful diagnosis for circuits compared to traditional rule checkers.

[0006] The design consultant may provide textual and/or graphical repotts to
help organize and view the results of rule analysis. Cross-probing allows a
rule to highlight the cells of interest in all views of the design. When issues
are detected, the report has access to generate schematics and/or floorplans,
highlight or color cells of interest, and provide links back to the original HDL.

[0007] Further embodiments, features, and advantages of the present
invention, as well as the structure and bperation of the various embodiments of
the present invention, are described in detail below with reference to the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0008] The accompanying drawings, which are incorporated herein and form a
part of the specification, illustrate the present invention and, together with the
description, further serve to explain the principles of the invention and to
enable a person skilled in the pertinent art to make and use the invention.

[0009] FIG. 1 is an example process flowchart for generating logic objects.

[0010] FIG. 2 is an example process flowchart for processing RTL using

objects.

WO 2005/119531 PCT/US2005/019188

-3-
[0011] FIG. 3 is a flowchart of an example integrated circuit design method.
[0012] FIG. 4 is a block diagram of an example design consultant according

to an embodiment of the present invention.

[0013] FIG. 5 is a screenshot of an example report created by a design
consultant according to an embodiment of the present invention.

[0014] FIG. 6 is a flowchart of an example rule-based design analysis method
according to an embodiment of the present invention.

[0015] FIG. 7 is a screenshot of an example graphical user interface for a

design consultant according to an embodiment of the present invention.

[0016] FIG. 8 is an illustration of a block having a large bit-width
multiplexer.

[0017] FIG. 9 is an illustration of a block having a large bit-width arithmetic
structure design.

[0018] FIG. 10 is an illustration of a large multiplexer tree.

[0019] FIG. 11 is an illustration of a cone of logic.

[0020] FIG. 12 is an illustration of major sub-blocks having a large number
of cell pins per area.

[0021] FIG. 13 is an illustration of a single built-in test source for multiple
RAMs.

[0022] FIG. 14 is an illustration of congestion resulting from a single bus
address and data feeding multiple RAMs.

[0023] FIG. 15 is an illustration of an IC chip with a global controller.

[0024] FIG. 16 is an illustration of an IC chip with global configuration
registers.

[0025] FIG. 17 is an illustration of a register with high fan-in and fan-out.

[0026] FIG. 18 is an illustration of a global multiplexer tree.

[0027] FIG. 19 is an illustration of a local multiplexer tree.

[0028] FIG. 20 is an illustration of an IC chip with a global register.

[0029] FIG. 21 is an illustration of an IC chip with duplicate registers.

[0030] The present invention will be described with reference to the

accompanying drawings. The drawing in which an element first appears is

WO 2005/119531 PCT/US2005/019188

A4

typically indicated by the leftmost digit(s) in the corresponding reference

number.

Detailed Description of the Invention

Table of Contents

L Integrated Circuit Design Overview
A. Front End: RTL and Synthesis
B. Back End: Place and Route
IL Advanced Optional Processing Features, Abstract Represgptations of
RTL, and Physical Synthesis
A. Standard Cell Objects
Logic Objects
Memory and IP Blocks
Hierarchies
Hard Objects, Pseudo Hard Objects, and Soft Objects

W o 0w

II. Example Environment for RTL Processing with Abstract
Objects
A. Generation of Libraries of Logic Objects
B. Physical Synthesis Using Libraries of Logic Objects
IV. Rule-Based Desigﬁ Consultant
A. Rule Analysis and Reporting
1. Rules and Information Databases
2. Congestion Analysis
3. Design Consultant and Method
B. Graphical User Interface
C. Cross-Probing Within the Design Consultant

WO 2005/119531 PCT/US2005/019188

5.

[0031] While specific configurations and arrangements are discussed, it
should be understood that this is done for illustrative purposes only. A person
skilled in the pertinent art will recognize that other configurations and
arrangements can be used without departing from the spirit and scope of the
present invention. It will be apparent to a person skilled in the pertinent art

that this invention can also be employed in a variety of other applications.

L Integrated Circuit Design Overview

[0032] Integrated circuits are designed using computer-based hardware
description languages ("HDLs"). Several types of HDL exist, including but not
limited to verilog, VHDL, systemC, and SystemVerilog. HDLs can be used at
a variety of design levels, including register transfer level ("RTL"), behavioral,
and electronic system level ("ESL"). Although the present application will
describe the invention with reference to RTL code, a person of ordinary skill
in the art Will recognize that any type of logic source code (e.g., any HDL), at
any design level, may be used.

[0033] EDA tools are typically classified as front-end or back-end tools.
Front-end EDA tools typically operate on HDL code and/or abstract
representations of functions associated with the HDL code. Conventional
front-end EDA tools attempt to optimize the HDL code and/or the abstract
representations. For example, synthesis and technology mapping, functional
verification, and/or initial timing analyses can be performed.

[0034] Conventional front-end EDA tools utilize rough estimates or statistical
estimations of characteristics of the eventual integrated circuit design. The
characteristics can include timing and/or power consumption. Because of the
rough estimates, conventional front-end processes are less than ideal, but can
be useful, nevertheless, because they can identify some problems at an early
stage.

[0035] During back-end processing, the HDL code and/or abstract objects

representative of the HDL code are converted to a layout design of the

WO 2005/119531 PCT/US2005/019188

-6-

integrated circuit. A typical layout design includes millions of gates and
associated interconnections. The back-end processing arranges and re-arranges
the gates in an attempt to obtain desired operational characteristics. This is
often referred to as a "place and route" operation. Because of the sheer number
of gates and interconnections, conventional back-end processing typically
takes days to converge on a solution.

[0036] In many cases, the initial back-end operation is unable to obtain or
converge on a design that meets the design criteria (i.e., desired operational
characteristics). For example, the circuit may consume more power than called
for, or may have internal gate or wire delays, which prevent proper operation.
When this occurs, designers must revise the HDL code and repeat the front-
end and back-end processes. EDA thus tends to be an iterative process, which
may take days, weeks, or months to converge on a workable design.

[0037] Additional features related to front-end and back-end processing are

provided below.

A Front End: HDL and Synthesis

[0038] Integrated circuit designers write desired functionality into HDL code.
During front-end design, the HDL code is converted, or synthesized, to a gate-
level list ("gate-level netlist") of transistor gates ("gates") and
interconnections. Synthesis typically includes optimization of the HDL code,
such as by elimination of redundant terms. Synthesis can also revise the
structure of the HDL code to improve performance.

[0039] Some conventional synthesis tools use models for certain types of
logic, such as adders and multipliers. Conventional systems do not, however,
utilize the models for placement operations and do not use actual physical
information in the models (e.g., actual wire lengths and gate delay
information). Thus, gate-level netlists generated by conventional synthesis
systems typically require extensive additional optimization and iterations at
the back end.

WO 2005/119531 PCT/US2005/019188

-7-

B. Back End: Place and Route

[0040] During back-end processing, the gate-level netlist is mapped onto an
integrated circuit design. This includes iteratively rearranging the placement of
the gates, and iteratively routing and re-routing interconnections so that the
circuit meets given timing and power constraints. In addition to moving the
gates around to minimize interconnection lengths (place and route), back end
operations can include sizing and/or buffering. Sizing refers to replacement of
one gate with another functionally equivalent gate to provide different drive.
Because of the sheer number of gates involved in typical designs, optimization
procedures that are executed in the back end are typically very time
consuming and computationally demanding. The back-end process also
involves the floorplanning of macros, black boxes, and user defined blocks, as
well as the placement of I/O pads. This process is typically very difficult,
requiring a lot of manual intervention, and is generally not in the skill set of a

typical front-end designer.

WO 2005/119531 PCT/US2005/019188

-8-

11 Advanced Optional Processing Features, Abstract Representations of
RTL, and Physical Synthesis

[0041] In order to reduce the work required during back end processing,
groups of associated gates are optionally represented as objects. The objects
represent functionality encoded by the HDL. Traditional back-end
optimization operations, such as, and without limitation, logic optimization,
floorplanning, placement, and/or routing operations can be performed on the
objects at a high level by the front-end designer. These optimization
operations done at a high level of abstraction reduce the work required in the
back end and thus reduce the overall time required to convert HDL code to an
integrated circuit design.

[0042] For example, Tera Systems, Itlc.; of San Jose, CA., has developed logic
objects (e.g., Tera Systems' TeraGates™), that provide realistic high-level
representations of integrated circuit building blocks. Tera Systems, Inc. has
also developed a number of processes for optimizing design layouts of objects,
including logic objects (e.g., Tera Systems' TeraForm™). The realistic high
level representations and associated processes allow for more accurate front
end and back end optimizations at a high level of abstraction. As a result, the
amount of work performed during back-end processing is significantly
reduced.

[0043] Logic objects represent HDL code, or portions thereof. Each logic
object typically represents multiple gates, sometimes thousands of gates.
Logic objects can represent, for example, AND functions, OR functions, and
more complex functions such as adders, multipliers, multiplexers and bit-
stacked objects such as a multi-bit register. The logic objects serve as high-
level or abstract representations of the components of the integrated circuit
design.

[0044] An important feature of/the logic objects is that they include actual
gate level physical information associated with the underlying gates. The
physical information can include structural information for the underlying

gates (e.g., net count, pin count, standard cell count, routing and blockage

WO 2005/119531 PCT/US2005/019188

-9-

information), placement-based wire-load models for wires between gates,
related placement information for gates included in the model, and actual
timing and power information for the gates. The gate level physical
information is obtained from integrated circuit fabrication facilities. Libraries
of logic objects can be generated to incorporate various design features that
are supported by a fabrication facility.

- [0045] Inclusion of physical information in the logic objects, including use of
placement-based wire-load models, and associated processes, are described in
U.S. Patent Nos. 6,145,117 and 6,360,356B1, and U.S. Patent Application Ser.
No. 10/040,852, all titled, "Creating Optimized Physical Implementations
from High-Level Descriptions of Electronic Design," all of which are
incorporated herein by reference in their entireties.

[0046] In operation, during front-end processing, HDL code, or portions
'thereof, is automatically converted to logic objects and other optional objects.
The objects are then placed and routed during front-end processing.

[0047] Advanced front-end operations are performed on hundreds or
thousands of logic objects and other types of optional objects, rather than the
millions of gates that are operated on during back-end processing. Advanced
front-end operations for processing logic objects include floorplanning, place
and route operations, which take into account the actual physical information
of the underlying circuitry that is represented by the logic objects.

[0048] Advanced front-end processing of objects essentially move back-end
operations to the front-end. At the same time, the product automates these
back-end operations to make the tool usable and accessible to conventional
front-end designers, without requiring the years of experience that
conventional back-end tools require for effective usage. As a result, design
problems are more likely to be identified early on by the actual system
designers instead of late in the design flow by the back-end engineering team.
In addition, when the advanced front-end process converges on a place and
route solution for the objects, the back-end process simply has to place and

route gates within the area that was assigned to corresponding logic objects. In

WO 2005/119531 PCT/US2005/019188

-10-

other words, there is generally no need for iterative back-end place and route
operations to be performed on the overall design. Thus, back-end processing
can typically be performed in a single pass.

[0049] When the advanced front-end synthesis process is performed with
actual physical information, the synthesis operation is referred to herein as a
"physical synthesis" operation. The front-end physical synthesis operation
generates a netlist of objects rather than a gate level netlist. The netlist of
objects includes gate level netlist information associated with each object that
is needed during back-end processing. Since the objects have been placed
during front-end processing, back-end processing can focus on detailed
placement of the gates within each object. This substantially reduces the
amount of work performed during back-end processing.

[0050] The objects optionally include information that maps the objects back
to the corresponding RTL code. As a result, debugging of a design, at any
level, can be mapped back to the corresponding RTL code.

[0051] RTL code can be converted into a variety of types of objects, examples
of which are provided below. The invention is not, however, limited to the
examples provided herein. Based on the description herein, one skilled in the
relevant art(s) will understand that other types of objects can be utilized, and
that objects may be of multiple types.

[0052] Objects, such as logic objects, allow the RTL code to be represented at
a level of abstraction that is above a gate level netlist. The objects can be
manipulated during front-end processing using fewer resources (e.g.,
computational resources and/or manpower resources) than what is required to
manipulate corresponding gate level components.

[0053] For example, placement operations are optionally performed on the
objects. Front-end placement operations provide placement information for the
objects. During back-end processing, gates within the abstract objects are
placed within the areas assigned to corresponding objects. Front-end
operations performed on abstract objects are relatively fast because there are

fewer objects to manipulate, compared to the number of gate level components

WO 2005/119531 PCT/US2005/019188

-11-

in a netlist. The high-level operations thus reduce the overall time to reduce

RTL code into an integrated circuit design.

A Standard Cell Objects

[0054] Some portions of RTL code provide support functions for other
features. Support functions can include, without limitation, glue logic, timing
logic, control logic, memory logic, interconnection, etc. The term glue logic is
used to broadly refer to features such as, and without limitation, buffers and/or
interfacing functions. RTL code that provides such supporting functions is
optionally represented as objects referred to herein as standard cell objects. A
standard cell object may be an abstraction representing one or more transistors
or gates, such as AND gates and OR gates. Standard cell objects can also
include relatively simple sequential elements such as flip-flops and latches.

[0055] A standard cell object may include information such as, and without
limitation, function(s) performed by the standard cell, area required to
implement the standard cell, interconnections with other objects, and/or
identification of the line(s) of RTL code that are associated with the standard

cell.

B. Logic Objects

[0056] Some portions of HDL code are typically directed to more complex
‘ logical functions, such as arrayed or high fan-in AND operations and OR
operations, multiplying operations, multiplexing operations, and more
complex sequential operations (e.g., shift register, register file). Such HDL
code is optionally represented by what is referred to herein as TeraGates™ or
logic objects. A logic object is an abstraction that typically represents multiple

gates and/or standard cells.
[0057] Logic objects include actual gate level physical information associated
with the underlying gates, as described above. Logic objects also include

information such as, and without limitation, function(s) performed by the logic

WO 2005/119531 PCT/US2005/019188

-12-

object, area required to implement the logic object, interconnections with other

objects, etc.

C. Memory and IP Blocks

[0058] A typical integrated circuit design includes one or more memory
blocks and/or one or more proprietary blocks. Proprietary blocks are often
referred to as intellectual property blocks or IP blocks. Memory. blocks and
proprietary blocks are optionally represented as objects during front-end

processing.
D. Hierarchies
[0059] Designers often write RTL code with hierarchies, in which functions

are grouped together according to some principle, such as according to an
associated engineering group responsible for the code, and/or according to
functions performed by the'associated code. RTL functional hierarchies,
and/or other hierarchies described below, are optionally maintained during
synthesis.

[0060] In the actual layout of the integrated circuit, it may make more sense to
re-group components from one hierarchy to another in order to optimize
timing, routing, area, and/or power requirements. In some situations, therefore,
functional RTL hierarchy designations are dissolved or ignored, in whole or in
part, during front-end and/or back-end processing. The underlying logic
encoded in the RTL is not ignored, only the grouping of logic functions.

E. Hard Objects, Pseudo Hard Objects, and Soft Objects

[0061] Objects are optionally defined as hard objects, pseudo hard objects, or
soft objects. Hard objects have fixed shape constraints. Pseudo hard objects
have one or more discrete shape constraints. Soft objects, on the other hand,

have no shape constraints.

WO 2005/119531 PCT/US2005/019188

-13-

[0062] Standard cell objects, memory, and IP blocks typically have fixed size
and/or shape and are thus generally referred to as hard objects. Logic objects
and hierarchies typically have variable size and/or area constraints and are
thus considered soft objects. Hierarchies (logic functions or clusters) which

contain hard and/or pseudo hard objects are considered pseudo hard objects.

IIl. Example Environment for RTL Processing with Logic Objects

[0063] FIGS. 1 and 2 are example process flowcharts according to
embodiments of the invention for processing RTL using logic objects. The
invention is not, however, limited to the examples of FIGS. 1 and 2. Based on
the description herein, one skilled in the relevant art(s) will understand that the

Jinvention can be implemented with other process flowcharts.

A. Generation of Libraries of Logic Objects

[0064] FIG. 1 is a process flowchart 100 for generating logic objects. A
‘library characterization system ("LCS") 102 receives standard cells 104 from a
library of standard cells 106. The standard cells 104 typically include a
plurality of standard logic cells such as, for example and without limitation,
AND cells, OR cells, flip-flops, and the like. The standard cells 104 are
optionally obtained from an integrated circuit fabrication facility, wherein the
standard cells 104 incorporate process-dependent features of the fabrication
facility, including timing, physical area, and power information.

[0065] The LCS 102 also receives constraints 105. The constraints 105
include gate level physical information for implementing the standard cells
104. The constraints 105 are typically associated with a fabrication facility
and, more particularly, with an implementation technology of the fabrication
facility. For example, and without limitation, the constraints 105 are optionally
tailored for speed, power consumption, and/or process, voltage, and/or

temperature operating ranges.

WO 2005/119531 PCT/US2005/019188

-14-

[0066] The LCS 102 generates, from standard cells 104 and in accordance
with constraints 105, abstract models 108, such as, for example, advanced
library format ("ALF") models 109, VHDL netlist 112, Verilog netlist 114,
and PDEF file 116. VHDL netlist 112 and Verilog netlist 114 may be used to
provide a complete gate-level netlist to back-end tools. This precludes the
need to run a separate gate-level synthesis in order to provide a full netlist to
the back-end. PDEF file 116 includes relative placement information, which
can be used to drive the detailed placement of back-end tools. This improves
overall correlation with back-end tools. The abstract models 108 represent,
for example and without limitation, one or more of the standard cells 104,
and/or more complex logic, such as multipliers, multiplexers, Boolean logic or
glue logic, and/or mega functions such as large adders, that are constructed
from multiple standard cells 104.

[0067] The abstract models 108 include a variety of information derived from
the physical gates needed to implement the logic object, such as pin
information associated with the gates, interconnection information between
the gate pins, detailed timing information, detailed area information, and/or
other physical information, such as placement-based wire load models.

[0068] The abstract models 108 can also include information provided as part
of the characterization process, such as bit widths, architecture, and constraints
used to build the object.

[0069] " The abstract models 108 are stored in an object library 110. The object
library 110 optionally includes one or more standard cells 104, with or without
physical information.

[0070] The library 110 is optionally generated, in whole or in part, in advance
of need and/or on-the-fly. The libraries can also contain a description of the
relative placement of gates within the object, which can be used to drive
downstream back-end implementation tools. Multiple libraries 110 can be

generated for different technologies using different sets of constraints 105.

WO 2005/119531 PCT/US2005/019188

-15-

B. Physical Synthesis Using Libraries of Logic Objects

[0071] FIG. 2 is a process flowchart 200 for synthesizing HDL code using
logic objects. The process flowchart 200 includes a front-end processing
section 202 and a back-end processing section 204.

[0072] A physical synthesis module 206 receives HDL code 208, abstract
models 108 from object library 110, and constraints 210. The constraints 210
are for the design in process and are not the same as constraints 105 in FIG. 1.
The physical synthesis module 206 optionally receives one or more standard
cells 104.

[0073] The physical synthesis module 206 synthesizes the RTL code 208
using the ALF models 108 and the constraints 210. The physical synthesis
module 206 optionally uses one or more standard cells 104. Physical synthesis
includes traditional RTL synthesis as well as ﬂoorplaﬁning, placement, and/or
routing of the objects using physical information associated with the ALF
models 108.

[0074] During synthesis, the physical synthesis module 206 generates
instances of the ALF models 108 (i.e., logic objects) as needed to represent
functionality encoded in the HDL 208. Each instance of a logic object retains
most, if not all, of the information originally contained within the
corresponding ALF model 108.

[0075] Each instance of a logic object is populated with an identification of
the portion(s) of the RTL code 208 associated with the instance of the logic
object. Each instance of the logic object is further populated with
interconnection information to other objects. Thus each instance of a logic
object includes gate level netlist information, timing and area information, and
mapping information to corresponding RTL code. The RTL mapping
information allows the objects to be mapped back to the RTL for
troubleshooting and/or other purposes.

[0076] During physical synthesis, the physical synthesis module 206
optionally performs one or more conventional synthesis operations on the RTL

code 208. Since each object represents multiple gates, manipulations of the

WO 2005/119531 PCT/US2005/019188

-16-

objects takes considerably less computer processing time than would be
required to perform similar manipulations of the individual gates at the back
end.

[0077] During physical synthesis, the physical synthesis module 206 also
optionally performs one or more unconventional synthesis operations on the

" RTL code 208, such as optimizing stacked logic. Stacked logic can be, for
example, a bus of data lines that are ANDed together. Rather than generating a
large number of small individual AND gates at the gate level, a single stacked,
multiple input AND gate is used. The single stacked AND presents a single
object to the tools, substantially improving the runtime and capacity. All of
the process operating at this higher level of abstraction take advantage of this
more advanced and efficient data model.

[0078] The physical synthesis module 206 outputs an object level netlist 212,
which includes instances of logic objects. Each logic object includes
associated gate level netlist information. The object level netlist 212 is passed
to the back-end process 204, where place and route operations are performed
on the gate level netlist information associated with the logic objects. This

gate level netlist can be provided, for example, by LCS 102.

IV. Rule-Based Design Consultant

[0079] A rule-based design consultant based on a physical layout and having
semantic and structural capabilities can optionally be used at any point during
the design process. A design consultant that considers the physical layout
goes beyond simple linting and structural checks and adds checking of the
actual synthesis and physical implementation of the design. Utilizing the
physical information can identify timing, physical and structural issues that
will ‘have a direct impact on the synthesis, floorplan, and/or physical
implementation of the design. Additionally, such a consultant may link
source RTL code to technology-specific checking through synthesis to
physical floorplanning and placement. Linking these issues back to the source

RTL allows front end designs to benefit from the added éccuracy and

WO 2005/119531 PCT/US2005/019188

-17-

capabilities of a full synthesis and optimization environment. Although the
design consultant will be described with references to logic objects, one of
skill in the relevant art will recognize that the design consultant may also be

used in conjunction with gate level objects and/or standard cells.

A. Rule Analysis and Reporting
1. Rules and Information Databases

[0080] Three types of rule analysis may be performed on an IC design. The
first type is semantic analysis. Semantic analysis involves language-based
rules. These rules typically check a parsed database to identify coding style
issues, such as naming conventions and file organization. Semantic analysis
may also determine whether the HDL code is synthesizable.

[0081] Structural analysis is another type of rule analysis. As the name
implies, structural analysis operates on structural relationships in a net list and
occurs after synthesis. Structural analysis reviews structural issues, such as,
for example, hierarchies, clock domains, and testability. ~Structural analysis
can also check for signs of congestion, such as multiplexer trees, large
structures, and high pin densities. Tools may also provide further delineation
of the structure checks, which may include but are not limited to testability
checking, simulation checking, and synthesizability checks. For the purpose
of this document, all of the above-mentioned checks are considered to be part
of the general structural analysis heading.

[0082] Another type of rule analysis is implementation analysis.
Implementation analysis includes, for example, constraint processing and
timing analysis. Implementation analysis operates on a design database and
can analyze methodology issues, such as constraints, timing, and routability.
Examples of constraints are whether the IC has any undefined and/or gated
clocks or cross clock-domain timing paths. In addition, the rule-based design
consultant can make sure the circuit is receiving all the timing information,

such as clock definitions and I/O constraints. Examples of routability analysis

WO 2005/119531 PCT/US2005/019188

-18-

are whether there are any top-level snake paths, unregistered output, high fan-
in or fan-out cells, or high congestion areas. Implementation analysis can also
check to verify that specific cells will fit within a given area. More advanced
implementation checking includes examining the physical floorplan and place
and route to identify congestion, timing, and routability issues. The physical
implementation is used to generate congestion maps and analysis based on
global routing and actual pin/cell locations.

[0083] Analysis and optimization of the RTL code based on semantic,
structural, and physical checks offers significant advantages over tools that
analyze at synthesis levels or without physical checks. The highest degree of
flexibility in an IC design is at the abstract RTL level, before the design has
been set into silicon. Physical RTL optimization relieves downstream burdens
at the back end. Additionally, RTL optimization creates a homogeneous
design style from a heterogeneous customer and designer base.

[0084] FIG. 3 is a flowchart of an example IC design method 300. Method
300 begins with step 302, performing parser elaboration on input RTL code
304. Step 302 produces an RTL database 306, also referred to as a logical
database. Although the present invention will be described as using logic
objects such as TeraGates™, one of skill in the relevant art(s) will recognize
that standard cells and/or gate-level objects may also be used without
departing from the spirit and scope of the present invention.

[0085] RTL database 306 is a parsed database reflecting the original RTL, and
offers a structural and connectivity model of the IC design. RTL database 306
may include information concerning, among other things, the type and number
of objects and/or cells in the IC design; connectivity; macros included in the
design; sequential series objects, such as latches; ports, including inputs,
outputs, and connections between the ports; and/or hierarchies in the design.
RTL database 306 may include information from a constraint database 307.
Constraint database 307 is typicalty produced by the system design team based

on chip level requirements. Constraint database 307 may include, for

WO 2005/119531 PCT/US2005/019188

-19-

example, IO delays; 1/O libraries; clocks; and/or clock rate and cycle path
exceptions.

[0086] After RTL database 306 is produced, method 300 proceeds to step 308,
performing synthesis and technblogy mapping. One of skill in the relevant
art(s) will recognize that synthesis may be performed separately from

- technology mapping. Synthesis and technology optimizations often reduce
long logic-level paths, with significant impact on timing. Without this type of
optimization, false or misleading violations may be reported by a rule checker.
Further, synthesis flags and switches provide detailed wire estimations
compared to simpler levels-of-logic type checks, and are important when
deciding whether the source RTL needs to be changed. Step 308 produces a
synthesis database 310, which in turn provides information to a timing
database 312. Synthesis database 310 includes a synthesis constraint database
314.

[0087] Synthesis database 310 is a fully mapped technology-dependent
database complete with, for example, SDC constraints and full timing and area
analysis. Synthesis database 310 may include information about, among other
things, area; net capacitance; pin capacitance; cell constraints, such as
maximum capacitance or maximum fan-out; leakage power and/or dynamic
power; the synthesis hierarchy; architecture selection; and/or timing.
Synthesis database 310 also includes an optimized netlist.

[0088] Method 300 then proceeds to step 316, in which floorplanning is
performed. Step 316 produces physical database 318. Physical database 318
includes information about, among other things, routing-based timing;
physical data, such as cell and pin locations, net length between pins, net
capacitance, number of horizontal and vertical nets and vias per metal layer,
and/or congestion based on routing; array-based pin placement; physical
floorplan, such as macro placement, I/O placement and/or hierarchy node
placement; physical hierarchy; total area; and/or utilization. Physical database
318 also includes a physical constraint database 320. Physical database 318

may supply information to timing database 312.

WO 2005/119531 PCT/US2005/019188

-20-

[0089] Step 322 is the next step in method 300. In step 322, placement and
routing is performed. Step 322 also contributes to physical database 318. The
information included in physical database 318 enables more accurate timing
and area analysis than synthesis database 310, and enables rule checking based
on the physical design. Each of databases 306, 310, and 318 may include a
constraint database (such as synthesis constraint database 314 and physical
constraint database 320), a structural database, and a timing database based on
information available at each processing level.

[0090] Steps 308, 316, and 322 may be performed in, for example, physical
synthesis module 206 shown in FIG. 2. Method 300 may output a netlist,
such as object level netlist 212 from FIG. 2.

2. Congestion Analysis

[0091] High congestion can slow down a circuit, and possibly result in
negative slack on various paths. Negative slack means that the logic leading
up to a register takes longer to run than it should. High congestion areas also
can have significant routing and congestion issues that can cause a design to
fail the implementation process, have signal integrity issues, or fail to fit in the
prescribed physical package. Once a physical layout is obtained, the
implementation can be analyzed for certain features which often cause
congestion. Several examples of congestion are described below with respect
to FIGS. 8 - 17. ’

[0092] FIG. 8 is an illustration of a block 800 having a large bit-width
multiplexer 802. In the example of FIG. 8, multiplexer 802 is an 8:1
multiplexer. Signal buses 804 from registers 806 are input to multiplexer 802.
If each of signal buses 804 is 128 bits wide, multiplexer 802 has a 1024-bit
input. Large bit-width multiplexers such as multiplexer 802 represent a large
number of signals coming together in a very small space. This can cause
routing problems if there are not enough routing resources to implement all the
connections to the multiplexer. Large bit-width multiplexers can be replaced

with other equivalent logic by making changes to the source RTL.

WO 2005/119531 PCT/US2005/019188

21-

[0093] FIG. 9 is an illustration of a block 900 having a large bit-width
arithmetic structure design. Block 900 includes a 64-bit multiplier 902, which
receives input from 4:1 multiplexer 904. Large bit-width arithmetic
components such as multiplier 902 can require many signals to converge in
one small area. This problem can be corrected in the source RTL by setting a
proper bit-width size threshald for arithmetic components or breaking the
offending operator into smaller components.

[0094] FIG. 10 is an illustration of a large multiplexer tree 1000. Multiplexer
tree 1000 includes a set of 2:1 multiplexers 1002, a set of 2:1 multiplexers
1004 which receive input from multiplexers 1002, and a 4:1 multiplexer 1006
which receives input from multiplexers 1004. Multiplexer tree 1000 is thus a
"degenerated multiplexer,” or a multiplexer broken down into smaller
multiplexers. Cascading multiplexer structures ("prioritized logic") or large
degenerated multiplexers can also cause routing problems because the
multiplexers are typically placed near one another and cause hot spots for
routing.

[0095] Multiplexer trees can be seen as having two different varieties. One
variety involves global multiplexing, where signals from across a chip are
multiplexed together. FIG. 18 is a block diagram of -an example global
multiplexer tree. In FIG. 18, each data source 1802 feeds directly into
multiplexer 1804. Thus, if there are 8 data sources 1802, multiplexer 1804
needs to be an 8:1 multiplexer. The other variety of multiplexer trees involves
local multiplexer trees, where the signals are in close proximity. FIG.19isa
block diagram of an example local multiplexer tree. Data sources 1902 are
combined locally through local multiplexers 1904. Data from multiplexers
1904 is then fed into multiplexer 1906. Detailed physical placement
information is required to identify which type of tree is used, and also to
define the proper solution to the problem.

[0096] This rule can also be used to drive automatic correction of the issue,
once it is of a known type. Global multiplexers can be resolved by locally

multiplexing close data sources. The location of the data sources is required in

WO 2005/119531 PCT/US2005/019188

22-

order to determine which multiplexers are close to each other. Local
multiplexers can often be resolved by relaxing the utilization goals.

[0097] FIG. 11 is an illustration of a cone of logic 1102. Cone of logic 1102
represents the amount of functionality required to resolve an endpoint. If the
cone has a large number of start-points associated with it, such as start-points
1104, this implies complexity that can be searched for with a rule checker.
Such congestion could have timing as well as routing problems and hot spots.

[0098] FIG. 12 is an illustration of major sub-blocks having a large number of
cell pins per area. Sub-block 1202 includes several registers 1204. Each
register 1204 includes a number of pins. Sub-block 1206 includes
significantly more registers 1204 than sub-block 1202. Thus, sub-block 1206
has a higher number of cell pins per area than sub-block 1202. A major sub-
block with a high pins-per-area count, such as sub-block 1206, indicates a
potential routing problem for the entire block if the pins-per-area number is
too high. This is a general congestion rule that points to an area of the design
rather than to a specific cell. This problem can be fixed in the source RTL by
re-partitioning the design.

[0100] FIG. 13 is an illustration of a single built-in self test ("BIST") source
1302 for multiple RAMs 1304. Bottlenecks 1306 occur when there is not
enough room between obstructions for all signals to get through. Hot spots
1308 occur because of the large number of signals entering and exiting BIST
source 1302. Early floorplanning, enabled by a physical implementation
design checker, helps anticipate the relationship between the top level blocks
in a design. Area can be traded for routability by duplicating critical function
blocks in the source RTL.

[0101] FIG. 14 is an illustration of congestion resulting from a single bus
address 1402 and data 1404 with multiple RAMs 1406. Placing obstructions,
such as RAMs 1406, too close together can leave insufficient space for routing
a design, and bottlenecks 1408 may form. While this is primarily a placement
issue, the solution might require rewriting the source RTL to relieve the

routing stress.

WO 2005/119531 PCT/US2005/019188

23

[0102] FIG. 15 is an illustration of an IC chip 1500 with a global controller
1502. Global controller 1502 controls registers 1504, 1506, 1508, 1510, and
1512, which are spread across the surface of IC chip 1500. Often, single
controllers such as global controller 1502 are created and used throughout the
chip to simplify design. However, global controllers can be slow since the
signals span the entire chip. Routability is also difficult because the signal is
so spread out. To reduce timing, the source RTL may need to be rewritten to
duplicate the controller and localize it to each location where it is needed.
Alternatively, the controller may be duplicated with a tradeoff of area.

[0103] FIG. 16 is an illustration of an IC chip 1600 with global configuration
registers 1602, 1604, 1606, 1608, and 1610. Global configuration registers are
useful to minimize the amount of logic for a design, but can be problematic if
control signals are routed across the chip and do not meet timing requirements.
Using the physical locations of the cells can determine if this is a global

.register and not a high fanout cell. The course of action is distinctly different
for each of these cases. For a global register, the source RTL can be rewritten
to duplicate the configuration registers to improve routability and speed with a
tradeoff of area. FIG. 20 is a block diagram of an IC chip 2000 having a
global register 2002 connected to cells 2004 and 2006. If register 2002 is
duplicated as register 2102, as shown in FIG. 21, the routing and timing can
bereduced. For a high fanout cell, the user may wish to manually buffer the
critical signals. Other tools cannot make this determination because they lack
the physical knowledge required to determine the relative locations of the cells
in question.

[0104] FIG. 17 is an illustration of a register 1702 having high fan-in and fan-
out. High fan-in means that register 1702 processes a large amount of logic
input. High fan-out means that register 1702 drives a large amount of logic as
output. If a register, such as register 1702, has high fan-in, the register will
take time to process each of the computations required. This takes time and

may cause negative slack. If a register has high fan-out, the output signals

WO 2005/119531 PCT/US2005/019188

24-

probably spread out over the chip, which could cause delay. If high fan-in or
fan-out is a problem, altering the source RTL may solve the problem.

[0105] Both global and local congestion issues, such as those described above,
can be identified using physical implementation information, such as that in
physical database 318 in FIG. 3. Global congestion refers to connections
between different hierarchical blocks. Local congestion refers to congestion
within a particular block, such as the number of pins in an area of a specific
block. Further checking can utilize the global routing information and pin and
cell location to better analyze the source of issues. Once these potential issues
are identified, they can be corrected or mitigated through analysis of the
related source RTL.

3. Design Consultant and Method

[0106] FIG. 4 is a block diagram of an example design consultant 400
-according to an embodiment of the present invention. Design consultant 400
centers around a design analyzer 402. Design analyzer 402 includes a-
database interface 404, which interfaces with a plurality of databases 406.
Database interface 404 may interface with plurality of databases 406 through,
for example, a Tcl programming language. Tcl is a general purpose
programming language originally designed to be used as an extension to other
applications. Tcl is common across EDA tools. A graphical user interface
("GUI") can be provided that runs on multiple operating systems. Java or a Tk
toolkit, an extension of Tcl, provides a GUI library that could be used for this
purpose. Tcl can also be used to configure applications in a variety of
operating systems. Although design consultant 400 will be described with
reference to Tcl and the Java toolkit, one of skill in the relevant art(s) will
recognize that any type of programming and/or GUI design language or tool
may be used without departing from the spirit and scope of the present
invention.

[0107] Plurality of databases 406 includes a timing and constraint database
408, a source code database 410, a synthesis database 412, and a physical

WO 2005/119531 PCT/US2005/019188

-25-

database 414. Timing database 408 may include information provided by an
outside vendor 416. Design analyzer 402 also receives as inputs a rules
database 418 and a rule set 420. The rules may be written, for example, in the
Tecl programming language. Rules database 418 includes information about
available rules. Rules database 418 may include rules written by a third party,
such as a vendor. Rule set 420 includes the rules actually selected to be run.
Design analyzer 402 may execute the rules by running an algorithm calling the
rules.

[0108] Either or both of rules database 418 and rule set 420 may be a
searchable database. If searchable, a user may search the appropriate
database(s) for a specific object, and report all the rules that are related to the
specific object.

[0109] Each rule in rule set 420 may include a small header section that
defines how the rule will interact with design analyzer 402. For example, the
header section may define how to display the rule and how to run the rule.
The header section may also define options and a required state for the rule.
The non-header portions of the rule may define the algorithm for running the
rule. The algorithm can be, for example, a simple one-line call to identify all
the latches in a design, or it could be many lines of code to identify complex
structures in the design. The level of complexity depends on the complexity
of the structure the rule is checking.

[0110] Design analyzer 402 may provide built-in Tcl commands for the most
common functions a rule would require. The base command
"Get_logic_cone" is used herein as an example. Adding one of "-to," "-from,"
and "-through" allows a rule to access specific logic cones. The extension "-
endpoints" finds the endpoints of a given path. The 'extension
"-through _filter" allows a rule to traverse through specific cells or pins, and is
usually used to find logic cones that ignore buffers and/or inverters. "-Path" is
an extension that returns the actual paths associated with the logic cone when

the default is to return a list of cells.

WO 2005/119531 PCT/US2005/019188

-26-

[0111] The base command "Get_cells/pins/nets" is another Tcl command to
which extensions can be added. The extension "-of objects" translates from a
pin to a cell, while the extension "-filter" filters a list to match a specific
criteria. Thus, "Get_cells -filter {@type = "latch"} will return instances of
latches in a given list. In another example, a structural rule searching for large
structures may instruct design analyzer 402 to traverse the netlist to find
structures above a given bit size.

[0112] In yet another example of a rule, the Tcl command "Get_attribute”
returns a list of attributes of design objects, such as pins, ports, cells,
const:raints, and designs.

[0113] Rule set 420 includes the individual rules selected to be run, as well as
any options available for the individual rules. Active rules, which are rules
capable of being run at a particular stage of the design, and their options may
be selected by a user from a total list of rules in rules database 418. For
.example, a user can setect whether non-compliance with a rule should result in
a violation or a warning. Alternatively or additionally, design consultant 400
can select or determine the rules and options to be run. Although rules
database 418 and rule set 420 are shown in FIG. 4 as two separate databases,
one of skill in the relevant art(s) will recognize that they may be combined
into a single rules database.

[0114] Rules that are based on information received from RTL database 410
optionally include congestion analysis rules that cause design analyzer 402 to
search for one or more of: large multiplexers or multiplexer trees, large
structures, modules having a large percentage of large structures, structures
having high fan-in and/or fan-out ratios, and other structures that typically
cause congestion problems. Congestion analysis rules can also be used to
identify modules with high utility, as well as modules with high pin density.
Congestion rules can be used to identify, for example, global registers that
should be duplicated to reduce traffic through each register. Congestion rules

can also be used to differentiate local multiplexers from global multiplexers.

WO 2005/119531 PCT/US2005/019188

27-

[0115] If timing information has been received from timing database 408,
timing analysis can also be performed on information received from RTL
database 410. Timing analysis can use different delay modes including logic
level, zero net-load, and zero-load models of timing. Any of timing,
structural, and/or physical implementation-based analysis can be used to
improve or report issues with physical partitioning.

[0116] Rules database 418 also includes synthesis-based rules that cause
design analyzer 402 to analyze information from synthesis database 412. For
instance, design analyzer 402 can determine whether large structures with
negative slack exist. If so, design analyzer 402 may recognize that the
complexity of the large structure causes the negative slack, and that the large
structure may need to be broken into multiple smaller structures. Similarly,
design analyzer 402 can search for high fan-in and/or fan-out registers with
negative slack. Other synthesis-based rule analyses may include, without
limitation, identifying unregistered input and/or output ports, identifying snake
paths, determining the utilization of the objects in the design, and/or
congestion analysis.

[0117] Rules database 418 also includes physical implementation-based rules.
Similarly to synthesis-based rules, implementation-based rules can be used to
analyze congestion and routing-based timing. Implementation-based rules can
also be used to analyze, for example and without limitation, pin-pair distance,
which checks whether distances between a component and a pin varies
between pins; net bounding box size, which follows the links between a
component and its pins to determine the total area covered by the net; critical
path length; maximum capacitance; partitioning; physical-to-physical
hierarchy node connections, which examine whether two nodes should be
placed together due to critical timing or due to the number of connections; and
the number of small partitions, which could slow a floorplanning tool that is
optimized for analyzing larger partitions. Implementation-based rules can also
be used to analyze congestion criteria such as, without limitation, pin spacing,

number of blocks in the center of the chip, number of pins in the center of the

WO 2005/119531 PCT/US2005/019188

-28-

chip, highly connected modules placed far apart, snake paths (where signals
are transferred between the same blocks multiple times), poor RAM/I/O
placement, and low porosity components.

[0118] Design analyzer 402 incorporates a synthesis engine 426 that can map
to a technology-specific vendor library such as object library 110 in FIG. 1 or
timing database 408 in FIG. 4. Technology-specific analysis is required for
some issues. For example, static timing analysis capabilities are required for
checking complex timing. Design analyzer 402 enables timing and area
analysis features that are not available in traditional systems. Because of this
mapping, design consultant 400 can identify, for example, high area
components or timing critical paths that require synthesis technology to
optimize logic with a vendor-specific library and with complex timing
constraints.

[0119] Design analyzer 402 may include a static timing analysis engine 428
that reads industry standard timing constraints, such as Synopsys SDC.
Timing analysis engine 428 may support a large set of constraints including,
for example, path exceptions with -from, -to, and -through options. Timing
analysis engine 428 is effective when using logic objects such as TeraGates™,
since logic objects provide a reduction in the number of instances that must be
analyzed. However, operation on a gate-level netlist is possible, though it is
inherently slower. Further, design analyzer 402 can examine a pre-mapped
netlist for checks such as missing clocks or unconstrained ports. Using logic
objects, design analyzer 402 optionally detects complex issues such as missing
multiple paths and false paths.

[0120] One or more rules in rules set 420 are optionally associated with one or
more databases. Thus, if information is not yet contained in a particular
database, the rule will return an error message and will not complete. For
example, if design analyzer 402 attempts to call a physical implementation-
based rule, the rule will query physical database 414. If physical information

has not yet been received through, for instance, floorplanning or placement,

WO 2005/119531 PCT/US2005/019188

-29-
physical database 414 will be empty. The rule query will recognize that the
database is empty and will report an error without completing its run.

[0121] Different types of rule analysis may be combined to identify the root
cause of issues. For example, physical implementation-based congestion
analysis may be correlated with structural analysis to identify RTL structures
that are the root cause of an issue. Physical implementation-based timing
analysis using actual net delays and structural analysis can be combined to
find structures at the root of a timing delay. Combining synthesis timing
results and structural analysis can identify objects causing slack issues, such as
large multiplexers and objects with high register fan-in and/or fan-out, as well
as perform logic level analysis with slack. High physical area related to large
objects and/or frequently-used modules can also be determined by combining
different styles of rule analysis.

[0122] Case analysis may also be performed by design analyzer 402. Case
analysis is required to do accurate timing analysis for today's advanced ASICs.
With case analysis, if issues develop, the real objects behind those issues are
identified by design analyzer 402. Case analysis helps prevent false reporting
of issues. Design analyzer 402 may then report the rules responsible for a
violation and give a suggestion on how to solve the violation. Design analyzer
402 then may provide insight into how much the design would improve if
changes were made. Case analysis allows testability issues to be checked
without test vectors or stimulation. For example, cross-clock domain can be
analyzed to determine whether two communicating registers are on different
clocks. Optionally, a synchronizer can be included in the case analysis so that
design analyzer 402 recognizes the most common synchronization circuit, and
reduces false positives.

[0123] In these ways, design implementation checking can verify that a design
meets timing and area goals. It can also verify that the physical
implementation is feasible. Structural issues affecting the implementation of
the design can be identified, and accordance with timing constraints can be
checked.

WO 2005/119531 PCT/US2005/019188

-30-

[0124] After at least one rule is run on the IC design, design analyzer 402
generates as output a status database 422 and at least one report 424. Report
424 can be either textual or graphical. FIG. 5 is a screenshot of an example
report 500 created by a design consultant such as design consultant 400.
Report 500 includes tabular subreports 502, 504, and 506 and graphical
subreports 508 and 510. One of skill in the relevant art(s) will understand that
any number and type of reports may be included in report 500.

[0125] In the example shown, tabular subreports 502, 504, and 506 are reports
on individual rules. Subreport 502 is a report of warnings resulting from a
rule searching for unregistered partition outputs. Subreport 504 is a report
showing a hierarchical tree of registers, while subreport 506 reports the
individual register resulting from a rule searching for all registers within the
hierarchy.

[0126] Individual rule reports may include graphical portions. For example,
graphical subreports 508 and 510 also include tabular sections. One of skilt in
the relevant art(s), however, will recognize that the graphical subreports may
be presented without related tabular reports. Subreport 510 includes results
from a rule searching for registers with negative slack, where slack is the
difference between the amount of time it should take for a register to run and
the amount of time it actually takes for a register to run. Negative slack means
that the register takes longer to run than it should, which could affect the
overall timing of the chip. Several types of graphical reports may be
displayed. For example, and without limitation, report 500 may include
histograms (like subreport 510), pie charts (like subreport 508), bar charts, tree
tables, simple tables, or any combination of the above. A report may include a
summary wherein selection of a portion of the summary will cause relevant
material to be displayed.

[0127] After synthesis-based rules are run, report 424 may include utilization
targets to feed forward to a physical implementation processor. After
implementation-based rules are run, report 424 may include congestion

reports, such as incremental congestion, repartitioning suggestions, or

WO 2005/119531 PCT/US2005/019188

-31-

simulation results. Additionally or alternatively, report 424 may include an
output floorplan, including, for example and without limitation, floorplan
constraints, timing budgets based on the physical design, a wireload model,
the source RTL, and/or a physical netlist.

[0128] Information contained in report 424 may be interpreted by a user
according to, for example, predetermined documentation such as a guide.
Additionally or alternatively, the information in report 424 may be interpreted
via automated analysis. Report 424 may offer suggestions for high level
optimization and/or restructure of the RTL and/or gate level netlist based on
one or more of timing, power, area, and congestion analysis in the physical
domain. For example, to reduce congestion, some local multiplexers may be
restructured to global multiplexers. In another example, global registers may
be duplicated. In yet another example, to reduce congestion, clusters of
objects may be created.

[0129] Report 424 may be saved by a user for future use. In an example
future use, a user may verify that one or more results in report 424 is an
acceptable violation. Therefore, the violation need not be disialayed in
subsequent reports. Such previously verified results may be flagged, for
example, manually or automatically. Subsequently, the design may be
analyzed again, based on a revised version of the source code, a revised
version of the software, a revised representation of the design due to changes
in the design analysis tool, and/or a revised version of the ruleset. Previously
verified results, such as the flagged results, may be removed from subsequent
design report so that only non-verified violations are reported.

[0130] In another example, a saved report may be compared with a current
report so that only differences between the saved and current report are
displayed. In this manner, each subsequent report displays only new rule
violations instead of all rule violations.

[0131] FIG. 6 is a flowchart of an example rule-based design analysis method
600. Method 600 may be performed, for example, by design consultant 400.

WO 2005/119531 PCT/US2005/019188

-32-

In step 602, source code is received. The source code may be, for example,
RTL source code, and may be received from, for example, an outside vendor.

[0132] In step 604, the source code received in step 602 is converted to a
plurality of objects. These objects may be gate-level objects or logic objects,
such as standard cells and/or gate abstractions, such as described above with
reference to FIGS. 1 and 2. Step 604 occurs in, for example, a parser, and
produces an RTL database such as, for example, RTL database 306.

[0133] Method 600 then proceeds to decision step 606. If no physical layout
exists, then method 600 proceeds to either step 608 or step 610, which are
used to produce a physical layout. If a physical layout already exists, method
600 proceeds to step 616 in which the physical layout is analyzed.

[0134] In step 608, the plurality of objects produced in step 604 may be
analyzed to identify semantic issues. Since synthesis has not yet occurred,
more advanced analysis is not yet possible. Step 608 may be performed, for
example, by design analyzer 402 in design consultant 400.

[0135] After step 608, method 600 proceeds to step 610. Alternatively, step
610 can be reached by skipping step 608. In step 610, the plurality of objects
is synthesized. Step 610 may correspond to step 308 in method 300, discussed
above. Step 610 produces a synthesis database, sﬁch as synthesis database
310.

[0136] In step 612, the synthesized objects are analyzed to identify synthesis,
timing, or area issues. Step 612 incorporates technology-specific timing and
area optimization. This removes false positive reports, and allows hierarchy
manipulations (e.g., grouping and/or ungrouping) to accurately represent
design flow. " These hierarchy manipulations may be performed automatically
in step 612, manually by a user, or a combination of the two.

[0137] Physical layout of the objects occurs in step 614 through floorplanning,
placement, and routing. This provides a physical prototype of the design that
can be checked for a wide range of physical design issues such as, for example
and without limitation, early congestion analysis, area analysis, long wire

detection, and timing based on the physical prototype. Access to actual

WO 2005/119531 PCT/US2005/019188

-33-

physical implementation details, and ability to verify a design with these
details, offers significant advantage over rule checkers that do not include an
analysis of the physical implementation. Physical implementation checking
considers timing based on a detailed physical model, and can identify
floorplan issues such as, without limitation, long wires and pin congestion.
Early analysis of the physical implementation finds issues and develops a
viable floorplan before RTL handoff to the back end, reducing the number of
back-end iterations required. Step 614 combines steps 316 and 322 of method
300, and produces a physical database, such as physical database 318.

[0138] In step 616, the objects and their connections are analyzed to identify
semantic, structural, and/or implementation issues. This analysis may occur
by, for example and without limitation, searching through the design layout
for specific types of connections or searching through the netlist for specific
types of objects. In one embodiment, information concerning the objects and
their connections results from step 612 of method 600. In another
embodiment, the physical layout is generated separately, and the information
is passed into method 600 for analysis. For example, a physical design
exchange format ("PDEF") ﬁle generated by another floorplanning or
placement tool may be read into, for example, design consultant 400. This
provides the availability of iterations between tools, or even use of another
ﬂoorplanher to generate the floorplan to be analyzéd by method 600.
Although method 600 will be described with reference to PDEF files, one of
skill in the relevant art(s) will recognize that any physical description
language, including but not limited to Cadence DEF and SOCE "fp" files, may
be used without departing from the spirit and scope of the present invention.

[0139] In step 620, a status report is generated detailing the analysis of step
616. The status report generated may be, for example, textual and/or graphical
as described with respect to FIG. 5. Reports generated by method 600
identify all types of issues at the RTL level, where it is more effective to fix
than after back-end implementation. If changes are made to fix any issues

found, method 600 can be repeated. The use of abstracted logic objects such

WO 2005/119531 PCT/US2005/019188

-34-

as TeraGates™ shorten the runtime of method 600 to allow flexibility and
time for repeating method 600 if needed. Any changes may be made manually
by a user or automatically by, for example, a repair manager within design
analyzer 402.

[0140] After method 600 runs successfully, in that it finds few non-compliant
objects, a front-end floorplan may be developed. The floorplan can then be
fed forward to a back-end processor. Synthesis, physical constraints, and
partitioning based on RTL analysis may also be fed forward, as can an
optimized physical netlist. If a back-end processor further updates the
floorplan, method 600 may be re-run on the updated floorplan to verify
compliance with the ruleset.

[0141] Several types of constraints are useful if the information is fed forward
to a back-end tool. In an example, utilization targets for each module based on
structural and/or physical analysis prevent congestion due to over-utilization.
In another example, the placement of different modules can also be seeded, or
given an order of priority. For instance, an ordered list of nets to place and
route can be identified based on high fan-out nets or by timing analysis in
synthesis or physical domains. In yet another example, net weights on objects
such as critical path objects or high fan-in or fan-out registers can be
determined, as can groupings based on local or global multiplexing, identified
control registers, and/or data path analysis.

[0142] Options, scripts, and/or flags for gate-level synthesis or gate-level
place and route tools may also be provided, such as identifying the proper run
script based on the structural analysis of the design. For example, if the design
is data path centric, use of MC-Inside, a module compiler designed by
Synopsys, may be appropriate. If the sub-design is mostly control logic and
on the critical path, flattening in a design compiler may be useful. Or, if the
sub-design is estimated to be high power and/or have a high area, proper flags
can be used to reduce both. In this manner, the design consultant can identify

the best program to complete portions of the IC design process.

WO 2005/119531 PCT/US2005/019188

-35-

B. Graphical User Interface

[0143] A design consultant such as design consultant 400 may be operated via
a graphical user interface ("GUI"). FIG. 7 is a screenshot of an example GUI
700. GUI 700 includes a rule set interface 702, source RTL window 704,
timing window 706, summary report window 708, and individual rule report
window 710. GUI 700 may be implemented through a graphical design
language, such as Java or Tcl/TK. Design consultant 400 may provide the
reports in GUI 700, but may additionally allow for connections to external Tcl
and Tk applications for customized views and reporting.

[0144] Rule set interface 702 lists various rules available for the phase in the
IC design process at which the consultant is being run. For example, if
synthesis has not been run, rule set interface 702 can optionally hide rules that
require synthesis before they are run. Rule set interface 702 includes several
tabs. FEach tab includes rules pertaining to a particular category. In the
example of FIG. 7, the rule categories are General, Constraints, Design,
Physical Implementation, Chip Integration, and Methodology. After the rule
analysis is complete, rule set interface 702 displays the status of each rule.

[0145] For example, in interface 702, rules Gated Clock Check, Gated Async
Set/Clear, and Clocks Used As Data ran and passed. Rules Cross Clock
Domain Paths, Unregistered Outputs, and Feed Through Paths ran and failed.
Rules Back To Back Registers and Combinational Feedback Loops were not
run. As shown, options can be selected for each rule, and each rule can be
viewed through rule set interface 702.

[0146] Source RTL window 704 displays the source RTL for the design being
analyzed. If cross-probing is enabled, which will be described further below,
source RTL window will display the lines of RTL relevant to a particular
object or register in the IC design.

[0147] Timing window 706 includes critical path list 712, critical path object
list 714, and critical path schematic 716. Critical path list 712 may display,
for example, results of a rule searching for paths that do not meet given timing

constraints. Paths that do not meet timing are referred to as critical paths.

WO 2005/119531 PCT/US2005/019188

-36-

Critical path object list 714 displays information about each element in the
critical path, such as delay through the object and net capacitance. Critical
path schematic 716 includes a schematic showing the connections between
each element in the critical path, along with the timing for each element in the
critical path. Timing window 706 may display multiple critical path
schematics when multiple paths do not meet timing constraints.

[0148] Summary report window 708 lists the available rules along with their
status. In the present example, summary report window 708 also lists the
number of warnings and errors associated with each of the rules.

[0149] Individual rule report window 710 reports on a specific rule, such as, in
the window shown, a Cross Clock Domain rule. Individual rule report
window 710 may include, for example, timing information on registers that
are flagged by the rule.

[0150] Additional schematic views (not shown) may be available for all
logical, synthesis, physical, and timing modes of the tool. The schematics
may provide a number of features that allow for increased analysis. For
example, coloring may be user settable or may be controllable through the Tcl
code for the rules and the java code for the GUI 700. Different types of
objects, such as logic objects, may have a default coloring to allow a quick
overview of design structures. Alternatively or additionally, GUI 700 may
include a gray mode, which selected cells red, for example, and all other cells
gray. This makes it easier to identify selected objects in large schematics.
GUI 700 may also include bus-level schematics, which simplify schematics by
minimizing the number of routes shown. Related objects may automatically
be grouped in various schematics. GUI 700 may have the capability of
selecting fan-in and/or fan-out cones. The underlying Tcl language may allow
a user to set and/or manipulate a selection set through the Tcl code.

[0151] A person of skill in the relevant art(s) will recognize that alternative
numbers and types of windows may be displayed by a GUI such as GUI 700

without departing from the spirit and scope of the present invention.

WO 2005/119531 PCT/US2005/019188

-37-

[0152] The use of logic objects, such as TeraGates™, make it easier to
analyze the structure of a design in schematic and/or timing views, such as
critical path schematic 716. Logic object-level schematics are more readable
since they include fewer objects than a corresponding gate-level schematic.
For example, an ADDER, which includes hundreds of individual gates, can be
displayed as a single logic object. Bit-stacking, wherein a multi-bit register is

treated as a single component, may provide further simplification.

C. Cross-Probing Within the Design Consultant

[0153] Additionally, through the use of cross-probing, objects in the IC design
can be mapped back to the source RTL for easy inspection and/or alteration of
relevant source RTL. Cross-probing pinpoints problems that would be
difficult or impossible to correlate with a source RTL issue without the link
back to the source RTL. For example, an IC design tool may generate
instances of objects representative of one or more features within the source
code. Graphical representations of the source RTL include a reference,
sometimes referred to as the location attribute, to the section of source RTL
that defines the object. Since each graphical representation contains a
reference to the source code, each representation of a particular object can be
linked to other representations of the same object. This is referred to herein as
cross-probing between graphical representations of the source code. Methods
and systems for cross-probing can be found in Application No.

, filed (Attorney Docket No. 2210.0070001),

entitled "Methods and Systems for Cross-Probing in an Integrated Circuit

Design," which is incorporated herein by reference in its entirety. The
location attribute may be maintained through all design phases, including
analysis, elaboration, synthesis, physical prototyping, and optimization.

[0154] In the design consultant 400, when a particular component is not
compliant with a rule, cross-probing can be used to quickly locate the relevant
lines of source RTL. Cross-probing can also be used to display other

representations of the same object, making reasons for non-compliance easily

WO 2005/119531 PCT/US2005/019188

-38-

found. Once the problem is discovered, changes can be made, if necessary,
directly to the source RTL. Correlating design issues directly with the source
RTL allows physical implementation problems to be checked at the RTL level
where they are more easily fixed, rather than by attempting to fix them
through placement at the back end. For example, the congestion issues
discussed with respect to FIGS. 8 - 16 could be solved when a design
consultant identifies the issues and automatically links to the source RTL to
correct those issues.

[0155] Cross-probing can also be used as a visualization tool in generating
reports. When a non-compliant cell or cells is found, the design analyzer, such
as design analyzer 402, has access to the source RTL and can, for example,
generate schematics, highlight or color cells of interest, and provide links back
to the original RTL.

[0156] For example, individual rule report window 710 of GUI 700 may
report on a rule analyzing congestion. The congestion rule may flag a
particular object. That object may be highlighted automatically or by a user.
Because of cross-probing, a representation of that object in timing window
706 will also be highlighted. The source code related to that object will be
displayed source RTL window 704. Each window can be analyzed, either
manually or automatically, to determine reasons for the lack of compliance.
Once the reason is determined, the problem may be fixed by, for example,
changing the source RTL. The design consultant may allow a user to fix a
problem manually or the design consultant may automatically fix any
problems discovered through, for example, a repair manager within, for
example, design analyzer 402.

[0157] Additionally, cross-probing can generate a layout overlay report. A
layout overlay report provides a "snapshot" of a layout view and allows a
particular rule to color that layout by any criteria. For example, a congestion
rule could highlight objects based on pins-per-area. The layout overlay could
also be used to highlight by clock domain, timing slack, or any number of

other criteria.

WO 2005/119531 PCT/US2005/019188

-30-

[0158] Cross-probing may also be used between two or more rule report
windows. The rule report windows may be the result of running a single
ruleset. If an object is identified in one rule report as a problem for the design,
cross-probing between rule report windows allows for an indication of other
rules for which the object is a problem. For example, a multiplexer may be
reported for both a "high congestion" rule and a "timing critical path" rule. If
a user selects the multiplexer in the high congestion rule report, other reports
in which the multiplexer appears, such as the timing critical path report, may
also be displayed. Cross-probing results in a selection of the multiplexer in
the timing critical path rule report, as well as any other rule reports the
multiplexer appears in.

[0159] Using cross-probing, a design consultant according to the present
invention can integrate RTL analysis with technology-specific timing and
physical implementation. Thus the design consultant can include a flexible
platform for checking designs with a focus on identifying timing, area, and
physical design issues at the RTL level. Maintaining the cross-probing
references through the back end simplifies any changes that may be caused
due to implementation at the back end. If iterations are required, the cross-
probing references can be used by designers at either the back end or front end
to update the appropriate source RTL. The cross-probing may also be used
with a feedforward flow to provide links to external synthesis and place and
route tools. An example is the Tera Systems' generated two way link between
Cadence SOCE and the TeraForm product. ‘

[0160] While various embodiments of the present invention have been
described above, it should be understood that they have been presented by way
of example only, and not limitation. It will be apparent to persons skilled in
the relevant art that various changes in form and detail can be made therein
without departing from the spirit and scope of the invention. Thus, the breadth
and scope of the present invention should not be limited by any of the above-
described exemplary embodiments, but should be defined only in accordance

with the following claims and their equivalents.

WO 2005/119531 PCT/US2005/019188

-40-

What is Claimed Is:

L. A method of automated rule analysis in an integrated circuit design,
comprising:

(a) receiving source code representative of the integrated circuit
design;

(b) converting the source code to a plurality of objects
representative of the source code; and

(c) analyzing the objects to identify design issues based on a
physical layout of the objects, wherein the physical layout
includes information about interconnections between objects in
the plurality of objects, a physical size of objects in the
plurality of objects, a physical shape of objects in the plurality

of objects, or placement of objects in the plurality of objects.

2. The method of claim 1, wherein said step (c) comprises:
@ inputting a set of rules;
(i) analyzing the objects for compliance with the set of
rules; and

(iif) outputting a result report.

3. The method of claim 2, wherein the set of rules includes physical

hierarchy and partitioning rules.

4. The method of claim 2, wherein the set of rules includes congestion
rules.
5. The method of claim 2, wherein the set of rules is based on a set of

constraints, wherein said set of constraints includes at least one of
structural constraints, timing constraints, physical constraints, and

feedforward constraints.

WO 2005/119531

10.

11.

12.

-41-

The method of claim 5, wherein the set of rules is based on one or
more of a combination of physical and structural constraints or a

combination of timing and structural constraints.

The method of claim 2, wherein said step (c) further comprises:

(iv) interpreting the result report.

The method of claim 7, wherein the result report is interpreted

according to predetermined documentation.

The method of claim 7, wherein the result report is interpreted

automatically to produce at least one solution to a design issue.

The method of claim 2, wherien the set of rules is included in a

searchable rules database.

The method of claim 2, wherein said step (c) further comprises:
(iv) selecting an object in the rule result report;
(v) displaying a list of other rule result reports in which the
selected object appears; and
(vi) cross-probing between the rule result report of said step
"~ (c)(iii) and the other rule result reports in which the

selected object appears.

The method of ciaim 2, wherein said step (c) further comprises:
(iv) verifying at least one result in the result report;
(v) repeating said steps (2), (b), (c)(), (c)(ii), and (c)(iii) for
an updated representation of the design based on at least

one of the group consisting of a revised source

PCT/US2005/019188

WO 2005/119531 PCT/US2005/019188

13.

14.

15.

16.

17.

-42-

description, revised software, revised options to the
software, and a revised ruleset; and
(vi) removing from the repeated result report the at least one

verified result.

The method of claim 2, wherein said step (c) further comprises:

(iv) saving the result report as a saved result report;

(v) repeating said steps (a), (b), (c)(i), and (c)(ii) for an
updated representation of the design based on at least
one of the group consisting of a revised source
description, revised software, revised options to the
software, and a revised ruleset;

(vi) outputting a current result report for the updated
representation of the design; and

(vi) reporting the differences between the saved result report

and the current result report.

The method of claim 1, wherein said step (c) further comprises
analyzing the objects to identify design issues based on physical

structures of individual objects.

The method of claim 1, wherein the objects include references to
associated lines of the source code, and wherein said step (c) comprises
cross-probing between the objects and the source code when design

issues are identified.

The method of claim 1, wherein the design issues relate to a timing

status of at least one of the objects.

The method of claim 1, further comprising:

WO 2005/119531 PCT/US2005/019188

-43-

synthesizing the objects; and
analyzing the objects to identify synthesis-based design issues.

18. The method of claim 1, further comprising:

supplying object analysis from the analysis step to downstream
synthesis and physical implementation tools; and

generating proper settings for the tools based on the object
analysis, such that at least one of area, timing, power, and congestion results

of the tools is improved.

19. The method of claim 1, wherein at least one object in the plurality of

objects is an aggregate of smaller objects

20. A method of automated rule analysis of an integrated circuit design,
comprising:

(a) receiving source code including gate-level netlists;

(b) converting the source code to a plurality of cells representative
of the source code, wherein at least one cell in the plurality of
cells includes a reference to associated lines of the source code;
and

(c) analyzing the plurality of cells for compliance with a set of

rules.

21. The method of claim 20, further comprising before said step (c):
synthesizing the plurality of cells.

22. The method of claim 21, further comprising before said step (c):
floorplanning the plurality of cells.

23. The method of claim 22, further comprising before said step (c):
placing and routing the plurality of cells.

WO 2005/119531 PCT/US2005/019188

A4

24. The method of claim 20, wherein the set of rules includes at least one
of a semantic rule, a structural rule, an implementation rule, a

congestion rule, and a timing rule.

25. The method of claim 20, wherein the plurality of cells is analyzed
based on a physical layout of the plurality of cells.

26. The method of claim 20, further comprising:
(d) generating a report regarding the compliance status of the

integrated circuit design.

27. The method of claim 26, wherein the report is generated based on a

case analysis of the integrated circuit design.

28. A rule-based design consultant for an integrated circuit design,
comprising:

(a) arule library;

(b) a database interface to link the rule-based design consultant
with at least one database, wherein the at least one database
includes information about cells in the integrated circuit design,
and wherein the at least one database includes a physical
database;

(©) a rule analyzer for analyzing the information in the at least one
database accordihg to at least one rule in the rule library; and

(d) areport generator.

29. The rule-based design consultant of claim 28, wherein the at least one

database further includes a timing database.

WO 2005/119531 PCT/US2005/019188

-45-

30. The rule-based design consultant of claim 29, wherein the at least one
database further includes a source code database and a synthesis

database.

31. The rule-based design consultant of claim 28, further comprising a
status database, wherein the status database includes information about
cells in the integrated circuit design that do not comply with at least
one rule in the rule library, and wherein the report generator generates

reports based on the information in the status database.

32. The rule-based design consultant of claim 28, wherein the report

generator generates both graphical and textual reports.

33. The rule-based design consultant of claim 32, wherein the graphical
reports include at least one of piecharts; bar graphs; histograms;
hierarchical reports; placement, routing, and congestion views; and

synthesis, physical, or timing schematics.

34. The rule-based design consultant of claim 28, further comprising a
repair manager, wherein the repair manager automatically responds to

non-compliant cells indicated by the rule anaiyzer.

35. The rule-based design consultant of claim 34, wherein the repair
manager responds to non-compliant cells by altering source code for

the integrated circuit design.

36. The rule-based design consultant of claim 28, wherein the rule library

includes a list of rules and options for each rule in the list of rules.

WO 2005/119531 PCT/US2005/019188

-46-

37. The rule-based design consultant of claim 36, wherein the options for

each rule are user-customizable.

38. The rule-based design consultant of claim 36, wherein the list of rules
includes at least one of a combination physical and structural rule and a

combination timing and structural rule.

PCT/US2005/019188

WO 2005/119531

1/18

g

Advaer
T30
(UVANVLS

LN

-

901

(IWNOILdO)

1 "OId

9t1

(ST Gvaws -

\

¥01

AdvHEr
~{ 193rg0 0oL
0Ll
80!
STIQOW (47v) LyWyO4
AMVEEN GIONVAQY yll -
] ‘
T4 ISNI3AN
ISIL3N
m_e/ 90T TGHA
(S07) WALSAS v
NOLLYZINALOVHYHD Advdan A|A Mzz&mzoo
201 G0l

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/019188

WO 2005/119531

2/18

INIER
JE/ERREINR)

i

¢ 9l

002
31N0Y % 30V1d
307 T V9
N3-MOve I
707
(N3-LNO¥4 LSINLIN
TIATT 193080 201
AY A m
\\ﬂ ST300W ATV
SISTHINAS
ﬂvz_émzoo T TWOISAHd
STI30 QVONVLS
oLz \ i
902 S~
1 vol

80¢

N

AdvdaIn
103r80

0l

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

3/18
300
304 /
RTL 206
307
r D
302——7 _ PARSER RTL CONSTRAINT
ELABORATION OATABASE DATABASE
! 310
SYNTHESIS
308 —— TECHNOLOG/Y . SYNTHESIS 312
cHNoLO DATABASE

! 318
316~~~ FLOORPLANNING

TIMING
DATABASE

PHYSICAL

DATABASE
v

!

PLACEMENT AND
522~ ROUTING

NS

320

FIG.3

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

4/18

418 400

420
— /
RULE
RULES

_>< REPORT >~424

DESIGN ANALYZER

426 478 ——
402~ / p STATUSk~_ 422

DATABASE INTERFACE

408 410 412 414
< e < <
TIMING CODE SYNTH| | PHYS
DB DB DB DB
J

A
VAN
i Y
VENDOR 406
LIBRARY
416
FIG.4

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/019188

WO 2005/119531

5/18

G'Old
! >
=Y 007 P Jus™) 5T JesgoTss IS OUT NS 39pTap [199p nap nda
._vZ_M& E 00 (Tpaue™ 7T bospraT) jpisTsssa s 33p79p {1290 nap nda
S _V Pradus”) S Iw 78Ty DAL [0)STSS IS 3apTap §199p napnda
{0 g]bs o o gpadus™) s T paa87)y bad ssnraws 33pTop 1129p ndp nda
A O QP 31U | 5 31038 14y dp pownns d y1w nd)/ndy 312986 G 100 0 £10%) a0 Baryoo gpsT) sl 767y oo surmhws* 33p™3p [193p°adp ndd
(g o]wmeoiop 1d AP 667 t 1000 foJbas 300 [0]697100 P sus™}j"s M B Laopuud 2359p"1120p nap nd
[0 0] Jppona; 19 A2 160 ¥10 0~ o —. m TalBe1 1m0 {0]627 10 g p=aus™py~s"Ta Ba5—g9™aw 23pap {}o3p nop ndz
D S)i s MpJsjiggds I 0131 Jpul X553 nj/n) A2 1809 1906 _olumg [0)6amjno-g paus™yy s w jarpya”y bysTss i 99p™ap §303p nop ndd T
DP S J) STND S J) Lj S 1) 0 LD It pwr Xe Xo i A2 1518 110 _a ba) Yo [p]Be.rye0 gTpTaus’ ~3y7s"Tw BarBuryoynataaan asp™op 1199p nap nds vm i
1621 Jn0 § p a4us Jj < wino| §) dp bssljumu 1 wow'nd d fw 891 9 89l O {06 00 Tilbr100 Fps 75 1w e rbuigiaai 3ap°2p 1393 M 13 wo.mu “
0D 1573 70 6 7 s 1) 5 % 1) PROT sopoer v @ “"o Mw” M N“” N.. To 1851 1m0 QTPTOIUST) 7St (3087} } B[[01STSS AN 33p79p 1199p N9 Ny “ I
FEE R B {0 (]632 o S7Y00 (pmaaus™) s Tw graus™yy BasTsswrnr 3apTap [199p nap nda 1 “
Mo 0 B9l O _o nw.mu.. e o ()beimino g7pmsTyy s Tw g7y BaumaTysmTmi sapTap §393p nop ndo 1
X1 6L 9 591 O [0)83 yna [p z)boamino gpmsyys~fw g7s=j) bass™ysn|y sopTop 1y90p nap-nds g 1 |
N AR I T TR TN N S8 SO [oJbaJ o [0]6a3™1n0 qpaus™ 51" Bayp=0ka™111) 29p=9p 1123p nap°nds wo,m 1
) 7 0% 1) S T8) 45)) 0845 1) 0 1919 Jpu1 JpaL %o s mJn] 15 152 8 152 0 0 Zj63J o [p Z]Bayno GpausTy s T 787y BaiT100 33p7ap {193p n3p ndd IDE.w-&
G xS T T 5 S b e nis g
pu3 [49059 pu3 [Aojen] yonis nsod-£
wnjoy [| wun(oy | 0 wunjod ni
2 8 B = 8 % 8 8 9 3 3oL || |1 777 B %m
I L A s O v 1s30a0 | | ST 7 ns !
| I I t 0 [YRNd 0}y doop [fisd) -1 _ s
F Mm vd~doy"oop~doop | | |17eTy 18 3 Y lmm_ ;. o1
fo [olbrdidTdoes 1) Grg 9 ajl b s ! n)
| |cdoiiirdoop || 5T) o] [+ ! m
o5 [vedoyoop=doop || IF NP [1351 oy I 4154 1021 1p 0381 bHH ! m
gy | id¢doyiddoop <095 | 70> (sJ9)s16a. 0cg)staysibayrsaysifay] -8 1 0
171 faobeiog 05T Jppp n1g-i8 “)
£ yjodpnal-gt n
<095 g°#¥>{(sq1nd ggpjeuoyypjora ojn ou uniboys|y u___etzn_._d:_u op 1332 _-.m] L}
— nA (- nyt
Z1vddoyoopdoop :M_ & =)
n %!m nap
:%.% ap
149470} 1j~doop IV} nas-8 nl
- D D31YdIDJD | n
SIS — ypinyig| e3siboy Y3od |D21Y IH :
£Laivd™0J17d00p O] <08s 176> (s4o1s1bad (gg)sJa1s1bay: s18)8109y[
T ZCIsUld [0 %@ %8 NI BXZONY @ do umopsaned Nt ni n|
\ A gggiisurt o BXZONY a7foipTpTnl ni n
| [¥ddo3o0p~dbDp .VO@ 4 {013SWI (32 %a xa ni MY 27{p123ds ™01 n9p ni
L gg6zisurs_nar ZONY Jpponai~id [E]
A 115utd “nsad FXTON uxopsasod nsad nsad nsad
wom e G 3y 0-doDp K T oI Ieeid JJu3 91 J199} Ao PXTONY Wnopsamed L1 n3] N3] o1
uld Jarrig EE Hog [vori3ang
[T Hoputy 11oday O Nom _uml_m ¢r> (Burusom |22 gg} SInding uotilng _Utxm_.mz.s“ta.ﬂ__%e_sD

006

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

6/18

602
RECEIVE SOURCE CODE |~

!

CONVERT SOURCE CODE TO 604
A PLURALTY OF OBJECTS [

606

ANALYZE THE OBJECTS TO 608
IDENTIFY SEMANTIC ISSUES [~

LAYOUT

EXIMO

YES !

SYNTHESIZE THE PLURALITY 610
OF OBJECTS it

|
ANALYZE THE OBJECTS TO
IDENTIFY SYNTHESIS, TIMING, /_/612

AND/OR AREA ISSUES

Y

PERFORM FLOORPLANNING, 614
PLACEMENT, AND ROUTING | —
ON THE PLURALITY OF OBJECTS

Y

Y

Y

ANALYZE THE OBUECTS AND 616
| THEIR CONNECTIONS TO IDENTIFY p—~
™| SEMANTIC, STRUCTURAL, AND/OR
IMPLEMENTATION ISSUES

! 620
/ GENERATE STATUS REPORT b~

600
FIG.6

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/019188

WO 2005/119531

L Dl

1L —

[[[T
] :325%»3&.“...__”&%__“ M ” “M TM“M”“ ““ \:.53023.. 1ot138
E_su 7 7753) s_%?&ﬁﬁ“%z [0 (£]5%4 535 195 O
passog [passng OISR 8 0 5¢asb8.7180p 0}
3 i 20t (LI sjadingbasun - [] 0 \gj6r B3 18 o
- 0] un jop ¥I0qpa3 Jquiad: [} 0 1£]635 03, yhop o} juiffjand™300; 9141710118 B32708y) op1jur /130073903 Ry~ {R1 98
va%mn 0 —HMMMM uu%wuﬁ“” \&mﬁ\ 0 1] 99.3__8) .\:378_55 .e.gﬂs§\ e _m=a 5327011} 0)tju1 /13 08"530) Y0101 135
9[0447/ 777, £ e v] [0 n_sﬁsn.&_ e._u_\:a...at.____ joLIzE 62 Fay e oj1jui/(1.067330) 3 o1 3e
&M& \\mm \\\\hwk _uwwu 772% “&mvms | paboi] 1935163y 150 | Jaisibay g
Fing B) [dbisag T IS
L) 0 0 SUIDIEUD).
pajod [} 0 _unﬁu
wo N. \l/ uny sihuy [sbunoy snpis | sug sug p1a) d
° W00y Kowwng sug] suz! A0 SIS 1 Of)
[POBJ] | pouagog | WopBd | yuopoig |
g t&& upwog Y20 09 o] [ouwry
-

|81 oy 03 g7 “mm.__Eu;

Sl

)

o ymym I I~ - cl 8& el g %% -
| HBBTE 55 8 BE ER EES !] Geg snog Wi o3 1
/
IO 0oxang BN .
Ay oo M B @ i pLHS Bl [en] [wxo] FFse] g 5 posp 9po) [
/ - \N\\G“\N\na\. ; Vogpul oss 77 -
g - i d M3y 9]
S Db 6200 AORSurojul ouWND ISH — [ren] [Frono] T g pasiann 1
K [jnoun)[anm [doojeu] 030} | Apjep | uid] adf}

sdoo yo0gpasy [ouogouiuioy [

219 7 = Yodd30d
uibag 982 F == 1p))
L+ 3dpa = ydpa
(ydpa)oyyy => Besmynop
uibaq (bas~uin)s | (¥ =| ydpa)) 4t
ubaq (y08(as™p1) ! asjs

_uwubum aufsy palo9 [

siajsibay pog o) wog [J

[%n] [wondo] PR

stjpg uipwoq ¥}y ssox) [

49949 009 p0Y [J

pua
00000000009 91 => BaJynop

__mmmc SjUDRSUCY

1 [o13u85]

LB EERY] _3@_& |

vopeubajy) digy

1 %oppoypn]

004

.VON \\\../I.l\ oooopwv => oldp) Paan|g -epDjS UbIsaq |
wbaq (u=ysi-) 4 dignsay satiml ubisag
uibaq (u™)s1 abpabau Jo yo~ps sbpasod)p shomjp —1 NO N
v Il yupynsuony ubissq 1~
—F
] 0H E_a__s ubseg
0w oy [T TR 1] CTTofolol] __Z_E_mﬂl
dF mopufy s} spd] suond) posAyg poibo] aondsop
o] 20))/dun/~uuo3oie) [a

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

8/18
a[127:0]
~
ALL INPUTS BUSES ARE
/ 128 BITS WIDE
802
4 |2[127:0]
806 ﬁ 8:1 —— 800
\ # INPUTS=1024 BITS
- -
804
FIG.8

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/019188

WO 2005/119531

9/18

6 Old

¢0

-—
——

006

[0:2z1]b

¥06

¢06

24

e
<
~

(sug +9) \

34NN 39V

|os

[o:c9lp
[¥9:zLlo
[0:¢9]o
[0:c9]q
[0:¢9]p

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

10/18
[
2:1
-
2:1 }u 1000
L~ /'
?1 16:1 MUX

DE—GENERATED

/__/

4:11

ACTA

/\j

21 1006
-
2:1 E
—1 .
—_\
2:1
—*/
4 v J k__v____J
1002 1004
FIG.10

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531

11/18

PCT/US2005/019188

FIG.11

1104 <

STARTPOINTS

>200

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

12/18

1204 1206

:’: \ \- N
—E E: ::]:§l§5 EE E-—
= ™] o E = = »
— = = F 4 N S
4 = — - -
— 3 :.EE = |- E S
- *—F3 E3i_Eg 7 —"F EL
A E 7 1 F g i —F
= = = EE g_ _E E: :_
-1 = = I S - 3 = 3 E
E E E E T a
— 3 E3{ E§J EL_FE E
—1 3 E - = - > T B
= - 3 i
-] = = nd = = I~ = -
E S = = E E
T EIE\ = = a S
— 3 == 4 L n
3 = 3 =
= =
] -] |- — E S
3 E e = 3 3 = =
] = b= = 3 E__.
3 E - -
— = E . L .
] _—:' E o - ' g L
A = 3 = = =
= = = =
1§ F 3 F -
—] E o = =
] = 55 = - - —
RE L S E = 3 E 4 -
. 3 = = - -
3 = = .

FIG.12

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531

13/18

PCT/US2005/019188

> 1304

|
ADDRESS 1
RAM
HOT DATA 2 DATA 1
SPOT BOTTLENECK
— ADDRESS 2
N
T 7
//// ADDRESS 1
~_1 1
BIST DATA 2 A DATA 1
1302 —"1>
d \\\\\\ ADDRESS 2
~J
7 \
7 \\\),
N ,/// ~— ADDRESS 1
gggT BOTTLENECK
1306 RAM
1308 DATA 2 DATA 1
ADDRESS 2
]
FIG.13

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531

14/18

PCT/US2005/019188

j ™
ADDRESS 1
RAM
DATA 2 DATA 1
ADDRESS 2
1/
DRESS 1
BOTTLENECKS
1408 RAM - 1406
DATA 2 DATA 1
1402
L\\ ADDRESS 2
N []
\)
addr1 71
addr2 ~— | —ADDRESS 1
RAM
¢—{DATA 2 DATA 1
datad ADDE%ESS 9
datal)
1404
FIG.14

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531

15/18

PCT/US2005/019188

1504 1506
~ ~ 1500
A
1502
F/
FSM
1510
Y V ~
1508 A ~1512
FIG.1b
BN A 1606 ——
1602 -
cti[7:0] _ 1608
| _1610
FIG.16

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

16/18

1702

.
—
—

FIG.17

SUBSTITUTE SHEET (RULE 26)

00000000000000000000000000000

17/18

] 1906

>
)
\)

256
_

— N o~
N ~ \\\\ x©
N ~—
e}
2 B O
T i L

1802

vyl

I
256

256

SUBSTITUTE SHEET (RULE 26)

WO 2005/119531 PCT/US2005/019188

18/18

2006

\
¢
5 N
S O
Al s
BN
§\ ’\\\\‘“g
N S
. { S
S LL
\
\\\\\\\ -

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

