(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(40) PCT

(51) Internationale Patentklassifikation*: C08L 61/28,
C08G 12/32, 12/38, C08L 61/30

(21) Internationales Aktenzeichen: PCT/EP01/14582

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

(72) Erfinder: und

(75) Erfinder/Anmelder (nur für US): RÄTZSCH, Manfred [DE/AT]; Langbauernweg 4, A-4062 Wilhering/Thalheim

(81) Bestimmungsstaaten (national): BY, CA, CZ, EE, HU, NO, PL, RU, SK, TR, UA, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Veröffentlicht:
— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR CURING AMINOPLAST RESINS

(54) Bezeichnung: VERFAHREN ZUM HÄRTEN VON AMINOPLASTHARZEN

(57) Abstract: The invention relates to a method for curing aminoplast resins according to which inorganic particles, which have a laminated structure and which comprise interlamellarly exchangeable cations of the flowing type: alkali cations, alkaline-earth cations, aluminum cations, iron cations and/or manganese cations, are used as curing agents. The invention also relates to aminoplast resins cured in such a manner, to semi-finished products and to molding materials.

Verfahren zum Härten von Aminoplastharzen

Die Erfindung betrifft ein Verfahren zum Härten von Aminoplastharzen mit besserer Zähigkeit sowie derart gehärtete Aminoplastharze.

Es sind eine Reihe von Verfahren bekannt, die Zähigkeit von Halbzeugen und Formstoffen aus Aminoplasten zu verbessern.

Bei der Herstellung von Schaumstoffen auf Basis von Harnstoffharzen erzielt man Schaumstoffe verbesserter Zähigkeit, wenn mit Polyalkoholen wie Pentaerythrit, Arabin oder Sorbit (DAS 1 054 232) oder mit Polyethylenglyolen (US 2 807 595) modifizierte Harnstoffharze eingesetzt werden.

Von Nachteil bei diesen Verfahren ist es, dass die Zunahme der Zähigkeit mit einem Abfall der Festigkeit der Halbzeuge und Formstoffe verbunden ist.

Die Aufgabe der Erfindung bestand in der Entwicklung von Halbzeugen und Form stoffen aus Aminoplasten, die eine verbesserte Zähigkeit bei gleichzeitig hoher Festigkeit besitzen.

Überraschenderweise wurde gefunden, dass sich durch Einsatz von Härtern aus anorganischen Partikeln mit Schichtstruktur, die interlamellar austauschbare Kationen enthalten, Aminoplaste hoher Zähigkeit und Festigkeit herstellen lassen.

Gegenstand der Erfindung ist demnach ein Verfahren zum Härten von Aminoplastharzen, das dadurch gekennzeichnet ist, dass als Härter anorganische Partikel mit Schichtstruktur, die interlamellar austauschbare Kationen vom Typ Alkali-, Erdalkali-, Aluminium-, Eisen- und/oder Mangan-Kationen besitzen, verwendet werden.

Die Aminoplastharze und die daraus hergestellten Halbzeuge und Formstoffe ent halten als Härter 1 bis 30 Masse%, bezogen auf die Halbzeuge und Formstoffe, anorganische Partikel mit Schichtstruktur, die interlamellar austauschbare Kationen von Typ Alkali-, Erdalkali-, Aluminium-, Eisen- und/oder Mangan-Kationen besitzen, wobei die Halbzeuge und Formstoffe gegebenenfalls, jeweils bezogen auf die Aminoplastharze, 20 bis 5000 Masse% flächen Trägermaterialien, 1 bis 400 Masse% Füll und/oder Verstärkerstoffe, 0,1 bis 5 Masse% polymere Dispergatoren und/oder 0,1 bis 5 Masse% übliche Zusatzstoffe enthalten können.
Bevorzugt sind die Halbzeuge und Formstoffe Pressteile, Spritzgussteile, Profile, Mikrokapseln, Fasern, geschlossenzellige oder offenzellige Schaumstoffe, Beschichtungen, Laminate, Schichtpressstoffe oder imprägnierte flächige Trägermaterialien.

Als Aminoplastharze werden Melaminharze, Harnstoffharze, Cyanamidharze, Dicyandiamidharze, Guanaminharze, Sulfonamidharze und/oder Anilinharze bevorzugt.

Die Melaminharze können ebenfalls 0,1 bis 10 Masse%, bezogen auf die Summe von Melamin und Melaminderivaten, eingebaute Phenole und/oder Harnstoff enthalten. Als Phenolkomponenten sind dabei Phenol, C₁₉-C₉-Alkylphenole, Hydroxyphenole und/oder Bisphenole geeignet.

Beispiele für partielle Veretherungsprodukte von Melaminharzen mit C₁₉-C₁₀-Alkoholen sind methylierte oder butylierte Melaminharze.
Beispiele für die in den Halbzeugen oder Formstoffen als Aminoplaste gegebenenfalls enthaltenen Harnstoffharze sind neben Harnstoff-Formaldehyd-Harzen ebenfalls Mischkondensate mit Phenolen, Säureamiden oder Sulfonsäureamiden.

Beispiele für die in den Halbzeugen oder Formstoffen als Aminoplaste gegebenenfalls enthaltenen Sulfonamidharze sind Sulfonamidharze aus p-Toluolsulfonamid und Formaldehyd.

Beispiele für die in den Halbzeugen oder Formstoffen als Aminoplaste gegebenenfalls enthaltenen Guanaminharze sind Harze, die als Guanaminkomponente Benzoguanamin, Acetoguanamin, Tetramethoxymethylbenzoguanamin, Caprinoguanamin und/oder Butyroguanamin enthalten.

Beispiele für die in den Halbzeugen oder Formstoffen als Aminoplaste gegebenenfalls enthaltenen Anilinharze sind Anilinharze, die als aromatische Diamine neben Anilin ebenfalls Toluidin und/oder Xyldine enthalten können.

Beispiele für geeignete Phosphate mit Schichtstruktur sind Verbindungen der Formel H₂[MP⁴(PO₄)₂] · xH₂O (M⁴⁺=Zr, Ti, Ge, Sn, Pb) und CaPO₄·R·H₂O (R=CH₃; C₂H₅).

Beispiele für geeignete Arsenate mit Schichtstruktur sind Verbindungen der Formel H₂[MAr⁴(AsO₄)₂] · xH₂O und H[Mn(AsO₄)₂] · xH₂O.
Beispiele für geeignete Titanate mit Schichtstruktur sind Verbindungen der Formel \(\text{Na}_4\text{Ti}_5\text{O}_{20-n}\text{H}_2\text{O} \) und \(\text{K}_2\text{Ln}_2\text{Ti}_3\text{O}_{10-n}\text{H}_2\text{O} \).

Synthetische Schichtsilikate werden beispielsweise durch Umsetzung von natürlichen Schichtsilikaten mit Natriumhexafluorosilikat erzielt.

Insbesondere werden solche Schichtsilikate bevorzugt, deren Schichten einen Schichtabstand von rd. 0,4 nm bis 1,5 nm besitzen.

Bevorzugte flächige Trägermaterialien, die in den erfindungsgemässen Halbzeugen und Formstoffen enthaltenen sein können, sind Papier, Pappe, Holzerzeugnisse, Holzfaserplatten, Holzspanplatten, Glasfasergewebe, Vliese, Textilgewebe, Kunststofffolien, Kunststoffplatten, flächige Kunststoffteile, Metallfolien oder flächige Metallteile wie Karosserieteile im Automobilbereich oder Abdeckungen im Geräte- und Maschinenbau.

Als Füllstoffe können in den erfindungsgemässen Halbzeugen oder Formstoffen Al\(_2\)O\(_3\), Al(OH)\(_3\), Bariumsulfat, Calciumcarbonat, Glaskugeln, Kieselerde, Glimmer, Quarzmehl, Schiefermehl, Mikrohohlkugeln, Ruß, Talkum, Gesteinsmehl, Holzmehl, Cellulosepulver und/oder Schalen- und Kernmehle wie Erdnussschalenmehl oder Olivenkernmehl enthalten sein.

Beispiele für Verstärkerstoffe, die in den erfindungsgemässen Halbzeugen oder Formstoffen enthalten sein können, sind Holzfasern, Cellulosefasern, Flachs, Jute und Kenaf.

Bevorzugte Verstärkerstoffe sind anorganische Fasern, insbesondere Glasfasern und/oder Kohlenstofffasern, Naturfasern, insbesondere Cellulosefasern, und/oder
Kunststofffasern, insbesondere Fasern aus Polyacrylnitril, Polyvinylalkohol, Polyvinylacetat, Polypropylen, Polyestern und/oder Polyamiden.

Bevorzugte polymere Dispergatoren, die in den erfindungsgemässen Halbzeugen oder Formstoffen enthalten sein können, sind wasserlösliche, in Wasser dispergierbare und/oder in Wasser emulgierbare Polymere.

Beispiele für wasserlösliche Polymere, die in den erfindungsgemässen Halbzeugen oder Formstoffen enthalten sein können, sind Polyvinylalkohol, Polyacrylamid, Polyvinylpyrrolidon, Polyethylenoxid, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und/oder Carboxymethylcellulose.

Die in den erfindungsgemässen Halbzeugen oder Formstoffen gegebenenfalls enthaltenen Wasser dispergierbaren bzw. in Wasser emulgierbaren Polymere sind Thermoplaste, Elastomere und/oder Wachse.

Beispiele für in Wasser dispergierbare bzw. in Wasser emulgierbare Elaste sind Styren-Butadien-Kautschuke, Acrylatkautschuke, Polyurethane und/oder Fluorelastomere.

Beispiele für geeignete Wachse sind Polyolefinoxidatwachse wie Polyethylenwachsoxidate oder Wachse auf Basis von Ethylen-Vinylacetat-Copolymeren.
Besonders bevorzugte polymere Dispergatoren, die in den erfindungsgemässen Halbzeu-gen oder Formstoffen gegebenenfalls enthalten sind, sind Polyvinylalkohol, Polyvinylacetat, Maleinsäureanhydrid-Copolymere und/oder ungesättigte bzw. gesättigte Polyester.

Die üblichen Zusatzstoffe, die in den erfindungsgemässen Halbzeugen und Formstoffen enthalten sein können, sind insbesondere 0,1 bis 30 Masse% Flammschutzmittel und/oder 0,05 bis 1 Masse% Stabilisatoren.

Beispiele für geeignete Flammschutzmittel, die gegebenenfalls in den Halbzeugen oder Formstoffen enthalten sein können, sind Ammoniumphosphat, Ammoniumpolyphosphat, Antimontrioxid, Magnesiumphosphat, Decabromdiphenylether, Trisdibrompropylisocyanurat, Tetrabrombisphenol-bis-dibrompropylether und/oder Tris(trisbromneopentyl)phosphat.

Beispiele für geeignete Stabilisatoren, die insbesondere bei Lackharzbeschichtungen eingesetzt werden können, sind Bis(2,2,6,6-tetramethyl-4-piperidiny1)sebazat oder Benztriazolderivate wie 2-(2-Hydroxy-3,5-di-tert-amylphenyl)-2H-benztriazol oder 2-(2-Hydroxy-3-tert butyl-5-methylphenyl)benztriazol.

Die Halbzeuge und Formstoffe aus Aminoplasten mit verbesserter Zähigkeit werden erfindungsgemäss nach einem Verfahren hergestellt, bei dem Mischungen aus Aminoplast-Vorkondensaten und, als Härter, 1 bis 30 Masse%, bezogen auf die Aminoplast-Vorkondensate, anorganischen Partikeln mit Schichtstruktur, die interlamellar austauschbare Kationen von Typ Alkali-, Erdalkali-, Aluminium-, Eisen- und/oder Mangan-Kationen besitzen, in Form wässriger Dispersionen bzw. Emulsionen mit einem Feststoffgehalt von 30 bis 80 Masse%, die gegebenenfalls bis 50 Masse% C1-C6-Alkohole, 0,1 bis 5 Masse% polymere Disper-gatoren und 0,01 bis 3 Masse% Detergentien enthalten können, nach an sich bekannten Verfahren.
- nach Trocknung und nachfolgender thermischer Verarbeitung der Formmassen durch Pressen, Spritzguss, Schmelzspinnen oder Extrusion zu Presssteilen, Spritzgussteilen, Fäden oder Profilen ausgeformt und ausgehärtet werden, oder

- nach Konzentrierung der wässrigen Lösungen durch Zentrifugenspinnen, Fadenziehen, Extrudieren oder Fibrillierungsprozesse, gegebenenfalls unter nachfolgender Reckung, und Härting zu Aminoplastfasern verarbeitet werden, oder

- durch Eintrag in eine emulgatorfreie wässrige Dispersion von festen oder flüssigen Kapselkernbildnern, Aushärtung und Sprühtrocknung zu Mikrokapseln verarbeitet werden, oder

- durch Eintrag in eine emulgatorfreie wässrige Dispersion von flüchtigen Kohlenwasserstoffen, Inertgasen und/oder anorganischen Carbonaten, und Austrag der Hohlpartikel entweder in Formen und Aushärtung zu geschlossenzellen Schaumstoffen oder durch ein Formwerkzeug und Aushärtung zu geschlossenzelligen geschäumten Profilen verarbeitet werden, oder

- durch Eintrag in eine wässrige Treibmittelemulsion von flüchtigen Kohlenwasserstoffen, Inertgasen und/oder anorganischen Carbonaten, Erwärmung auf die Siede- bzw. Zersetzungstemperatur des Treibmittels und Austrag entweder in Formen und Aushärtung zu offenzelligen Schaumstoffen oder durch ein Formwerkzeug und Aushärtung zu offenzelligen geschäumten Profilen verarbeitet werden, oder

- nach Rezepturierung zu Lackharzlösungen bzw. Lackharzdispersionen und nachfolgend durch Auftrag der Lackharzlösungen bzw. Lackharzdispersionen auf flächige Trägermaterialien, Trocknung und Härting zu Lackharzbeschichtungen verarbeitet werden, oder

- nach Rezepturierung zu Tränkharzlösungen bzw. Tränkharzdispersionen nachfolgend durch Tränkung von flächigen Trägermaterialien, Laminierung und Härting zu Schichtpressstoffen bzw. Laminaten verarbeitet werden,
wobei, jeweils bezogen auf die Aminoplaste, 1 bis 400 Masse% Füll- und/oder Verstärkerstoffe und/oder 0,1 bis 5 Masse% übliche Zusatzstoffe vor und/oder während der Verarbeitung zu Halbzeugen oder Formstoffen zugesetzt werden können.

Die üblichen Zusatzstoffe, die bei dem erfindungsgemäßen Verfahren zur Herstellung von Halbzeugen und Formstoffen aus Aminoplasten mit verbesserter Zähigkeit eingesetzt werden können, sind insbesondere 0,1 bis 3 Masse%, vorzugsweise 0,1 bis 0,6 Masse%, Tenside, 0,1 bis 2 Masse% Gleitmittel, 0,1 bis 30 Masse% Flammenschutzmittel und/oder 0,05 bis 1 Masse% Stabilisatoren.

Als Tenside können bei dem Verfahren zur Herstellung von Halbzeugen und Formstoffen C₁₂-C₂₂- gesättigte oder ungesättigte Kohlenwasserstoffe mit Hydroxy- und/oder Carboxy-gruppen, anionenaktive Tenside, kationenaktive Tenside oder nichtionische Tenside eingesetzt werden.

Beispiele für C₁₂-C₂₂- gesättigte Kohlenwasserstoffe mit Hydroxy- und/oder Carboxy-gruppen sind Laurinsäure, Stearinsäure, Behensäure, Laurylalkohol, Stearylalkohol und Behenalkohol.

Beispiele für C₁₂-C₂₂- ungesättigte Kohlenwasserstoffe mit Hydroxy- und/oder Carboxygruppen sind Linolsäure, Linolensäure, Eleostearinsäure, Ölsäure, Eurucasäure, Oleylalkohol, Elaidylalkohol und Eurucylalkohol.

Beispiele für kationenaktive Tenside sind Ölsäuretriethanolaminester und Laurinpyridiniumchlorid.

Beispiele für nichtionische Tenside sind ethoxyliertes Ricinusöl, ethoxylierte Talkfettalkohole, ethoxylierte Stearinsäure oder Ölsäure oder ethoxyliertes Nonylphenol.

Geeignete Verarbeitungshilfsmittel, die als übliche Zusatzstoffe bei der Herstellung der Halbzeuge oder Formstoffe zugesetzt werden können, sind Calciumstearat, Magnesiumstearat und/oder Wachse.

Bei der Herstellung von Melaminharzfasern als Aminoplasthalbzeuge werden Melamin mit Formaldehyd und/oder Mischungen aus 20 bis 99,9 Masse% Melamin und
0,1 bis 80 Masse% Melaminderivate und/oder Triazinderivate, gegebenenfalls unter Zusatz von 0,1 bis 10 Masse%, bezogen auf die Summe von Melamin, Melaminderivaten und Triazinderivaten, an Phenolen, mit Formaldehyd kondensiert, wobei das Molverhältnis Melamin/Formaldehyd bzw. Melamin + Melaminderivat bzw. Triazinderivat/Formaldehyd bevorzugt 1 : 1,0 bis 1 : 4 beträgt. Die Faserherstellung erfolgt aus den hochkonzentrierten wässrigen Lösungen der Polykondensate (Feststoffgehalt 50 bis 70 Masse%) nach Zusatz an anorganischen Partikeln mit Schichtstruktur, die interlamellare austauschbare Kationen von Typ Alkali-, Erdalkali-, Aluminium-, Eisen- und/oder Mangan-Kationen besitzen, als Härter, durch Zentrifugenspinnen, Fadenziehen, Extrudieren oder Fibrillierungsprozesse, gegebenenfalls nachfolgende Reckung, und Härtung. Beim Extrusionsverfahren wird die Spinnlösung durch eine Düse in eine auf 170 bis 320°C beheizte Atmosphäre (Luft oder Inertgas) gepresst, um die Entfernung der in der Spinnlösung enthaltenen Lösungsmittel und die Härtung der Faser in möglichst kurzer Zeit zu erreichen.

Bei der Herstellung der geschlossenzelligen Schaumstoffe oder geschlossenzelligen geschäumten Profile als Aminoplast-Halbleuge ist es von Vorteil, zur Erzielung einer feinteiligen emulgatorfreien wässrigen Dispersion der eingesetzten flüchtigen Koh-

Beispiele für geeignete flüchtige Kohlenwasserstoffe, die bei der Herstellung der geschlossenzelligen bzw. offenzelligen Halbzeuge oder Formstoffe aus Aminoplasten eingesetzt werden können, sind Butan, Pentan, Isopentan und/oder Hexan.

Bedeutung, bei denen bei geringen Biegeradien während der thermischen Nachverarbeitung eine Rissbildung ausgeschlossen werden muss.

Die als polymere Dispergatoren gegebenenfalls eingesetzten wasserlöslichen, in Wasser dispergierbaren und/oder in Wasser emulgierbaren Polymere können bei der Herstellung der erfindungsgemäßen Halbzeuge und Formstoffe aus Aminoplasten in Abhängigkeit vom Dispergator als Lösung, Dispersion oder Emulsion in Wasser oder organischen Lösungsmitteln eingesetzt werden.

Die erfindungsgemäßen Halbzeuge und Formstoffe verbesserter Zähigkeit sind insbesondere in Form von Pressteilen, Spritzgussteilen oder Profilen in der Elektrotechnik, Elektronik, im Küchen- und Sanitärbereich, der Geräteindustrie und im Maschinenbau; in Form von Feststoffe oder Flüssigkeiten enthaltenden Mikrokapseln für fotoempfindliche und druckempfindliche Foto- und Kopierpapiere sowie in der Pharmazie und Agrochemie; in Form von Fasern für Filtermaterialien und nichtbrennbare Textilien; in Form von geschlossenzelligen oder offenzelligen Schaumstoffen zur Wärme- und Schalldämmung im Bauwesen und in der Fahrzeugindustrie; in Form von Beschichtungen als Einbrennlackierungen in der Fahrzeug- und Geräteindustrie sowie für kratzfeste Holzlackierungen; in Form von imprägnierten flächigen Trager-
materialien in der Textilindustrie und Papierindustrie, und in Form von Laminaten oder Schichtpressstoffen im Bauwesen und in der Möbelindustrie geeignet.

Beispiel 1

In einem 150 Liter - Rührreaktor werden 35 kg 30% wässrige Formalinlösung, 9 kg Melamin, 3 kg Benzoguanamin und 2,5 kg Hamstoff eingetragen, mit Natronlauge auf pH=8,0 eingestellt und bei 75°C unter Rühren innerhalb 40 min kondensiert. Nach Abkühlung auf Raumtemperatur werden in der Lösung des Aminoplastvorkondensats 900 g Natriummontmorillonit (Südchemie AG Moosburg, BRD) dispergiert.

Im beheizbaren Kneter wird eine Mischung aus 3,3 kg gebleichter Sulfitcellulose, 1 kg Kreide und 120 g Magnesiumstearat mit 9 l der Natriummontmorillonit als Härter enthaltenden Aminoplastlösung imprägnierts, homogenisiert, bei 80°C getrocknet, ausgetragen und granuliert und die Formmassenpartikel in einer beheizbaren Presse bei einer Werkzeugtemperatur von 170°C und einem Pressdruck von 250 bar zu 4 mm - Platten 100 x 100 mm verarbeitet.

Ausgefärste Prüfstäbe besitzen folgende Eigenschaften:
Zugfestigkeit: 29 MPa Biegefestigkeit: 82 MPa Biege-E-Modul: 7600 MPa
Schlagzähigkeit: 11,0 kJ/m² Kerbschlagzähigkeit: 4,0 kJ/m²

Beispiel 2

In einem 150 l - Rührreaktor werden 33 kg 30% wässrige Formalinlösung und 10 kg Melamin und 2,2 kg Hamstoff eingetragen und bei 80°C unter Rühren innerhalb 120 min kondensiert. Nach Abkühlung auf Raumtemperatur werden zu der Lösung des
Aminoplastvorkondensats 950 g Aluminiummontmorillonit (hergestellt aus Natrium-montmorillonit durch Kationenaustausch Natrium gegen Aluminium) hinzugefügt und dispergiert.

Im beheizbaren Kneter wird eine Mischung aus 3,5 kg Textilschnitzzel, 1 kg Lithopone und 120 g Calciumstearat mit 9,5 l der Aluminiummontmorillonit als Härter enthalten-den Aminoplastlösung imprägniert, homogenisiert, bei 80°C getrocknet, ausgetragen und granuliert und die Formmassenpartikel in einer beheizbaren Presse bei einer Werkzeugtemperatur von 170°C und einem Pressdruck von 250 bar zu 4 mm - Platten 100 x 100 mm verarbeitet.

Ausgefräste Prüfstäbe besitzen folgende Eigenschaften:
Zugfestigkeit: 31 MPa Biegefestigkeit: 85 MPa Biege-E-Modul: 8200 MPa
Schlagzähigkeit: 12,0 kJ/m² Kerbschlagzähigkeit: 5,0 kJ/m²

Beispiel 3

In einem 150 Liter - Rührreaktor mit Rückflusskühler und Hochgeschwindigkeitsdispergator werden 30 kg einer 30% wässrigen Aldehydlösung aus Formaldehyd/Glyoxal 9:1, 7,5 kg Melamin, 2 kg Anilin und 2,0 kg 2-(2-Hydroxyethyl-amino)-4,6-diamino-1,3,5-triazin eingetragen, mit Natronlauge auf pH=7,0 eingestellt und bei 85°C unter Rühren innerhalb 30 min kondensiert. Nach Abkühlung auf Raumtemperatur werden in die Lösung des Aminoplastvorkondensats 850 g Natriummontmorillonit (Südchemie AG Moosburg, BRD) eingetragen und dispergiert.

Zur Herstellung der Laminate wird mit der Lösung des Aminoplastvorkondensats, die Natriummontmorillonit (Südchemie AG Moosburg, BRD) als Härter enthält und der noch jeweils 1 Masse% Benetzungs- und Trennmittel zugefügt werden, ein Dekorpa-pier (Flächenmasse 80 g/m²) und ein Kraftpapier als Kernpapier (Flächenmasse 180

Zur Prüfung der Zähigkeit wurde die Nachverformbarkeit des resultierenden Laminats untersucht. Bei Biegung des Laminats um einen auf 160°C aufgeheizten 3 mm Metallstand trat keine Rissbildung des Laminats auf.
Patentansprüche

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Aminoplastharze Melaminharze, Harnstoffharze, Cyanamidharze, Dicyandiamidharze, Guamaninharze, Sulfonamidharze und/oder Anilinharze sind.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Aminoplastharze Polykondensate aus Melamin bzw. Melaminderivaten und C₁-C₁₀-Aldehydeynen mit einem Molverhältnis Melamin bzw. Melaminderivat / C₁-C₁₀-Aldehydeyn 1 : 1 bis 1 : 6 sowie deren partielle Veretherungsprodukte mit C₁-C₁₀-Alkoholen sind, wobei die Melamin- und Melamin-alkylalkyl(oxa-C₂-C₄-alkyl)-1,5-gruppen und/oder durch Amino-C₁-C₁₂-alkylgruppen substituierte Melamine, Diaminomethyltriazine und/oder Diaminophenyltriazine, besonders bevorzugt 2-(2-Hydroxyethy lamino)-4,6-diamino-1,3,5-triazin, 2-(5-Hydroxy-3-oxa-pentylamino)-4,6-diamino-1,3,5-triazin und/oder 2,4,6-Tris-(6-amino-hexylamino)-1,3,5-triazin, Ammelin, Ammelid, Melem, Melam, Benzoguanamin, Acetoguanamin, Tetramethoxy-methylbenzoguanamin, Caprino guanamin und/oder Butyroguanamin sind, und die C₁-C₁₀-Aldehyde bevorzugt
Formaldehyd, Acetaldehyd, Trimethylolacetaldehyd, Acrolein, Furfurol, Glyoxal und/oder Glutaraldehyd, besonders bevorzugt Formaldehyd, sind.

5. Verfahren zur Herstellung von Aminoplastharzen mit verbesserter Zähigkeit, dadurch gekennzeichnet, dass eine Mischung aus Aminoplastvorkondensat, mit anorganischen Partikeln mit Schichtstruktur, die interlamellars austauschbare Kationen vom Typ Alkali-, Erdalkali-, Aluminium-, Eisen- und/oder Mangan-Kationen besitzen, in Form währiger Dispersionen bzw. Emulsionen mit einem Feststoffgehalt von 30 – 80 Masse%, die gegebenenfalls bis 50 Masse% C1–C8-Alkohole, 0,1 – 5 Masse% polymere Dispersgatoren und 0,01 bis 3 Masse% Detergentien enthalten können, versetzt wird und

- nach Trocknung und nachfolgender thermischer Verarbeitung der Formmassen durch Pressen, Spritzguß, Schmelzspinnen oder Extrusion zu Pressteilen, Spritzgussteilen, Fäden oder Profilen ausgeformt und ausgehärtet werden, oder

- nach Konzentrierung der wäßrigen Lösungen durch Zentrifugenspinnen, Fadenziehen, Extrudieren oder Fibrillierungsprozesse, gegebenenfalls unter nachfolgender Reckung, und Härtung zu Aminoplastfasern verarbeitet werden, oder

- durch Eintrag in eine emulgatorfreie wäßrige Dispersion von festen oder flüssigen Kapselkernbildnern, Aushärtung und Sprührochung zu Mikrokapseln verarbeitet werden, oder

- durch Eintrag in eine emulgatorfreie wäßrige Dispersion von flüchtigen Kohlenwasserstoffen, Inertgasen und/oder anorganischen Carbonaten, und Austrag der Hohlpartikel entweder in Formen und Aushärtung zu geschlossenzeligen Schaumstoffen oder durch ein Formwerkzeug und Aushärtung zu geschlossenzeligen geschäumten Profilen verarbeitet werden, oder
- durch Eintrag in eine wässrige Treibmittelemulsion von flüchtigen Kohlenwasserstoffen, Inertgasen und/oder anorganischen Carbonaten, Erwärmung auf die Siede- bzw. Zersetzungstemperatur des Treibmittels und Austrag entweder in Formen und Aushärtung zu offenzelliglen Schaumstoffen oder durch ein Formwerkzeug und Aushärtung zu offenzelliglen geschäumten Profilen verarbeitet werden, oder

- nach Rezepturierung zu Lackharzlösungen bzw. Lackharzdispersionen und nachfolgend durch Auftrag der Lackharzlösungen bzw. Lackharzdispersionen auf flächige Trägermaterialien, Trocknung und Härtung zu Lackharzbeschichtungen verarbeitet werden, oder

- nach Rezepturierung zu Tränkharzlösungen bzw. Tränkharzdispersionen nachfolgend durch Tränkung von flächigen Trägermaterialien, Laminierung und Härtung zu Schichtpressstoffen bzw. Laminaten verarbeitet werden,

wobei, jeweils bezogen auf die Aminoplaste, 1 bis 400 Masse% Füll- und/oder Verstärkerstoffe und/oder 0,1 bis 5 Masse% übliche Zusatzstoffe vor und/oder während der Verarbeitung zugesetzt werden können.

7. Ausgehärtete Aminoplastharze nach Anspruch 6, dadurch gekennzeichnet, dass sie Pressteile Spritzgussteile, Profile, Mikrokapseln, Fasern, geschlossenzellige oder offenzellige Schaumstoffe, Beschichtungen, Laminate, Schichtpressstoffe oder imprägnierte flächige Trägermaterialien sind.
8. Ausgehärtete Aminoplastharze nach Anspruch 6, dadurch gekennzeichnet, dass sie Pressstelle, Spritzgussteile oder Profilen in der Elektrotechnik, Elektronik, im Küchen- und Sanitärbereich, der Geräteindustrie und im Maschinenbau; in Form von Feststoffe oder Flüssigkeiten enthaltenden Mikrokapseln für fotoempfindliche und druckempfindliche Foto- und Kopierpapiere sowie in der Pharmazie und Agrochemie; in Form von Fasern für Filtermaterialien und nichtbrennbare Textilien; in Form von geschlossenzelligen oder offenzelligen Schaumstoffen zur Wärme- und Schalldämmung im Bauwesen und in der Fahrzeugindustrie; in Form von Beschichtungen als Einbrennlackierungen in der Fahrzeug- und Geräteindustrie sowie für kratzfeste Holzlackierungen; in Form von imprägnierten flächigen Trägermaterialien in der Textilindustrie und Papierindustrie, und in Form von Laminaten oder Schichtpressstoffen im Bauwesen und in der Möbelindustrie sind.