

United States Patent [19]

Harris

[11] 3,758,262

[45] Sept. 11, 1973

[54] **PORTABLE GAS LIGHTER WITH MAGNETICALLY OPERATED LID**

[75] Inventor: **Anthony Roberts Harris, Hanworth, England**

[73] Assignee: **Dunhill Lighters Limited, London, England**

[22] Filed: **July 14, 1972**

[21] Appl. No.: **271,671**

[52] U.S. Cl. **431/130, 431/132, 431/255, 317/96, 200/67 F, 292/251.5, 335/205**

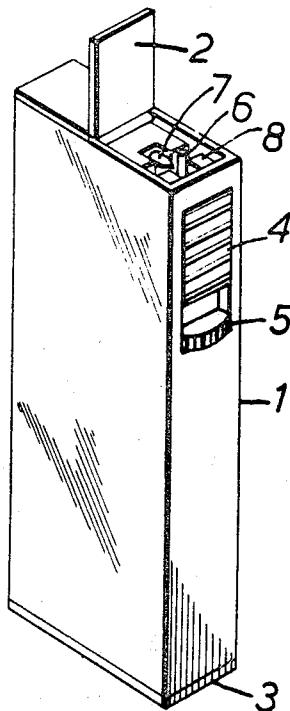
[51] Int. Cl. **F23g 3/01**

[58] Field of Search **317/81, 92, 93, 96, 200/67 F, 61.62; 335/285, 186, 205; 219/441, 442; 292/251.5; 431/130, 132, 255, 264, 466; 248/206 A**

[56] **References Cited**
UNITED STATES PATENTS

3,442,598 5/1969 Halm 431/255

2,219,186	10/1940	Hornfeck	292/251.5 X
2,770,697	11/1956	Kellett	335/205
2,950,139	8/1960	Carbary	292/251.5
2,983,538	5/1961	Fletcher	292/251.5
3,025,372	3/1962	Benjetsky	200/67 F X
3,328,561	6/1967	Sakamoto et al.	219/442
3,612,736	10/1971	Steuernagel	431/130
3,675,845	7/1972	Scheerer	292/251.5 X


Primary Examiner—Volodymyr Y. Mayewsky
Attorney—Joseph F. Brisebois et al.

[57]

ABSTRACT

The lid of a smoker's lighter is retained normally closed by means of a magnet. The lid is spring biased towards an open position and the magnet acts directly against the lid which is of a ferromagnetic material. A slide switch is provided to move the magnet away from the lid so as to cause the lid to open. The slide switch also makes an electrical contact which actuates an electric ignition system.

5 Claims, 20 Drawing Figures

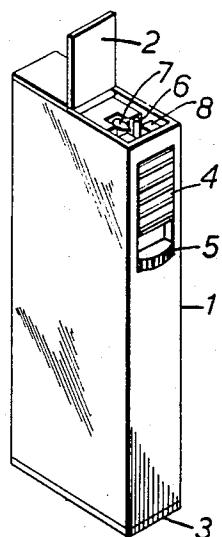


FIG. 1.

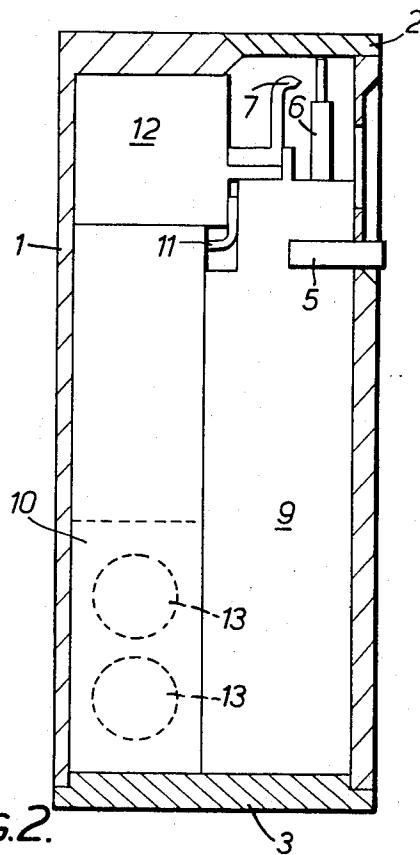


FIG. 2.

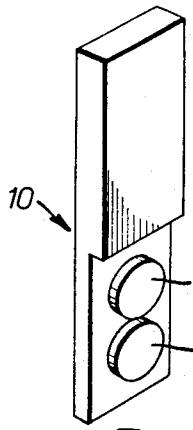


FIG. 3.

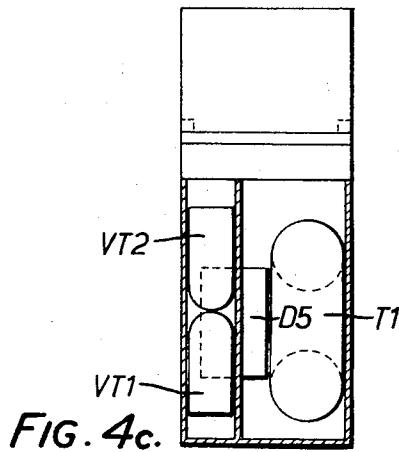


FIG. 4c.

PATENTED SEP 11 1978

3,758,262

SHEET 2 OF 6

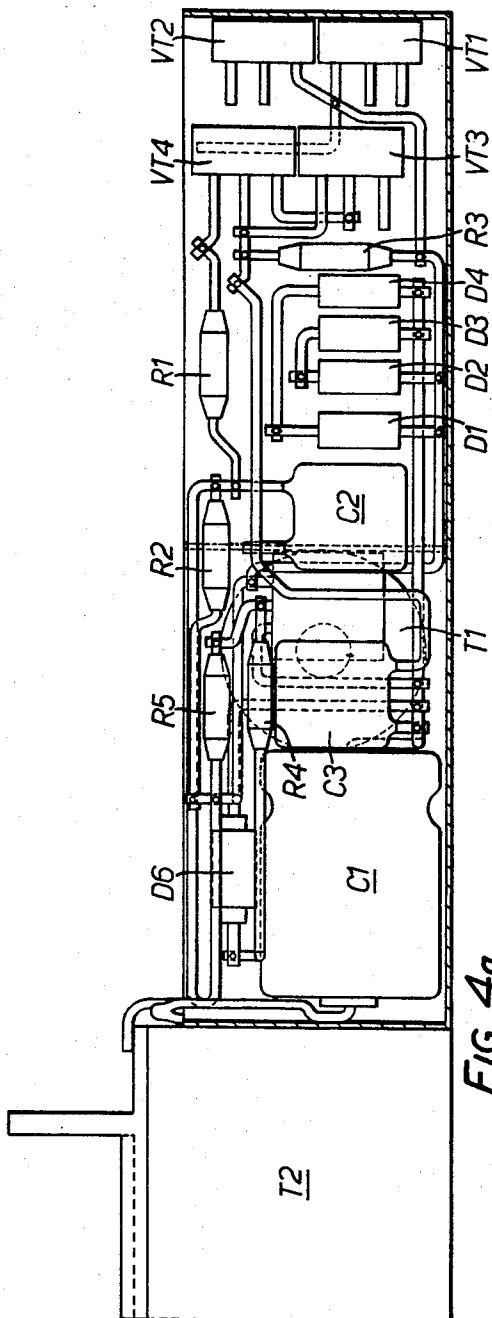


FIG. 4a.

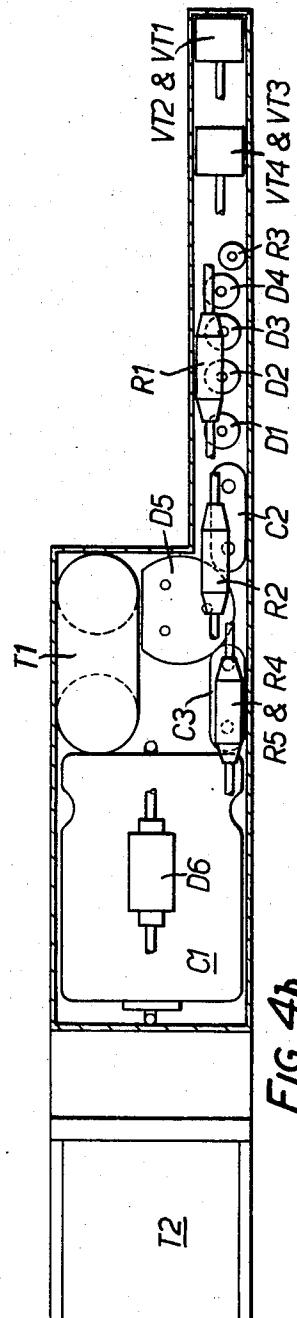


FIG. 4b.

PATENTED SEP 11 1973

3,758,262

SHEET 3 OF 6

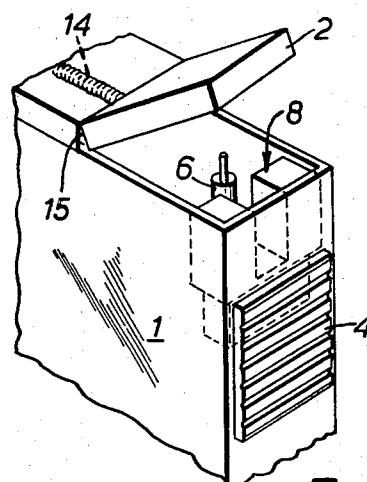


FIG. 5.

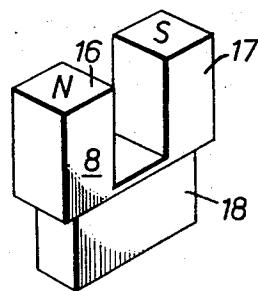
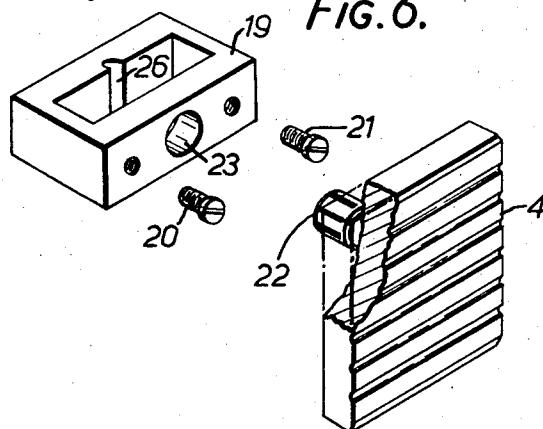



FIG. 6.

PATENTED SEP 11 1973

3,758,262

SHEET 4 OF 6

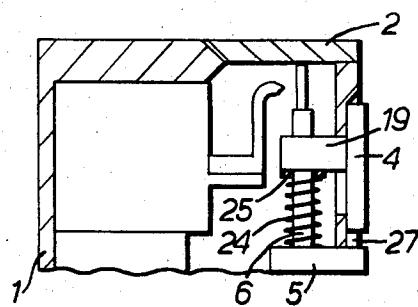


FIG. 7.

FIG. 8.

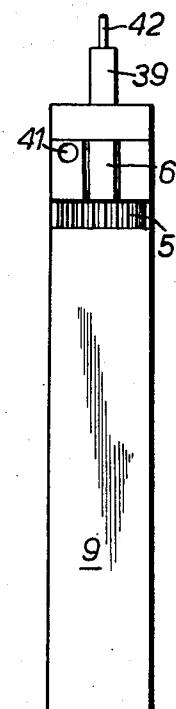


FIG. 10.

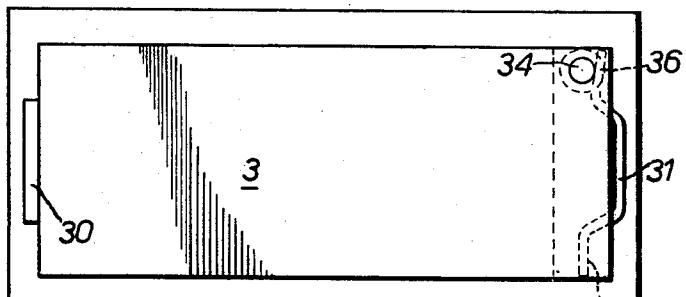


FIG. 9.

PATENTED SEP 11 1973

3,758,262

SHEET 5 OF 6

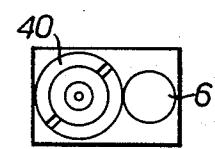
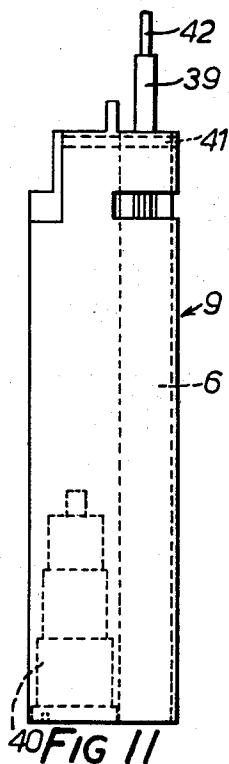



FIG. 12.

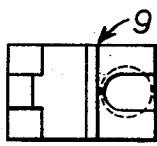


FIG. 13.

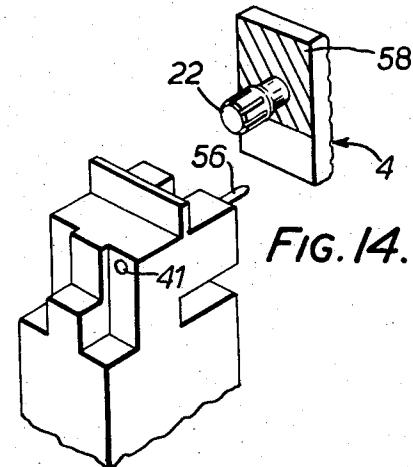


FIG. 14.

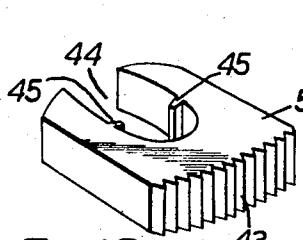


FIG. 15.

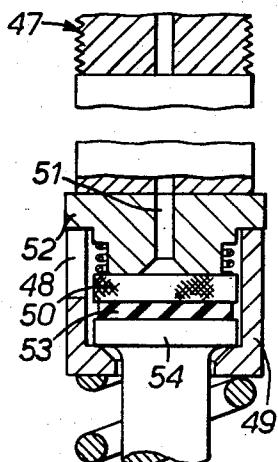
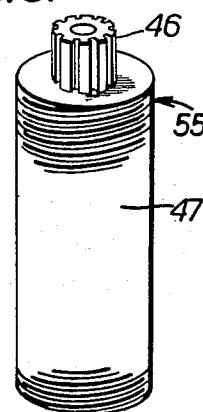



FIG. 16.

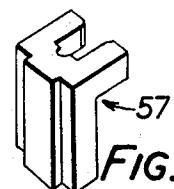


FIG. 17.

PATENTED SEP 11 1973

3,758,262

SHEET 6 OF 6

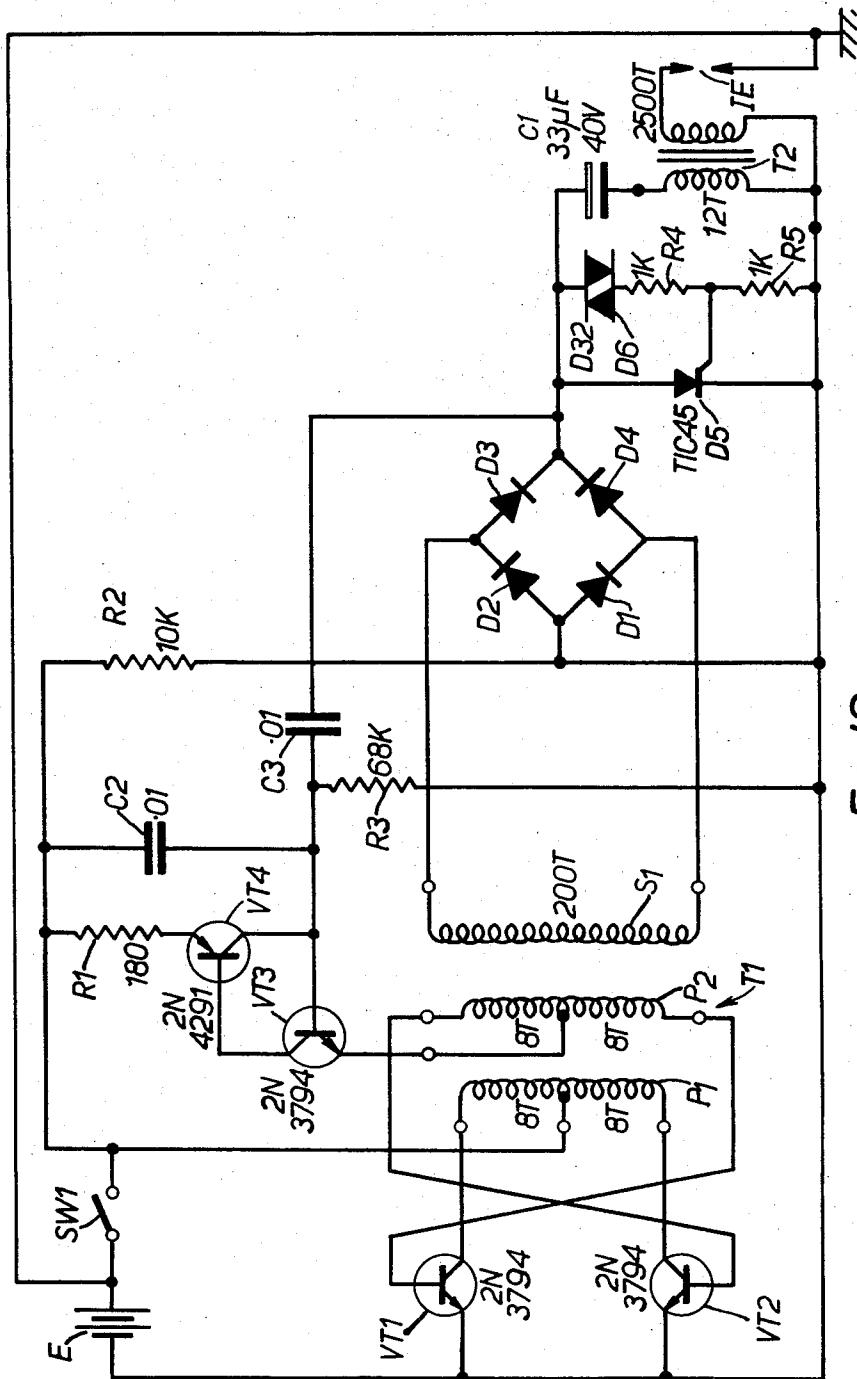


FIG. 18.

PORTABLE GAS LIGHTER WITH MAGNETICALLY OPERATED LID

This invention relates to lighters of the type having an internal fuel reservoir and primarily intended for lighting such items as cigars, cigarettes and pipes. Such a lighter will be termed herein a "smoker's lighter."

It is usual to provide a lid on a smoker's lighter to cover the burner when the lighter is not in use.

According to the present invention means to retain the lid of a smoker's lighter normally closed comprises a magnet. Preferably, the magnet acts directly against a spring biased lid of ferromagnetic material.

The invention can be embodied in either a pocket lighter or a table lighter.

By way of example only, a preferred embodiment of the invention will now be described with reference to the accompanying drawings, in which:

FIG. 1 shows an isometric view of a pocket smoker's lighter embodying the invention,

FIG. 2 is a part sectional view illustrating the internal arrangement of parts of the lighter with certain parts omitted for clarity,

FIG. 3 shows an isometric view of potted electronic circuitry employed in the lighter and cells used for 25 powering the lighter,

FIGS. 4a, b and c show the arrangement of components in the potted electronic circuitry,

FIG. 5 is a diagrammatic isometric view of a lid catch for the lighter,

FIG. 6 is an "exploded" view of some of the component parts of the lid catch,

FIG. 7 corresponds generally to FIG. 2 but shows different details of construction,

FIGS. 8 and 9 show to an enlarged scale details of 35 construction of a base plate used in the lighter, FIG. 8 being a sectional view and FIG. 9 a plan view,

FIG. 10 illustrates the fuel tank and burner assembly of the lighter,

FIG. 11 shows a side elevation of the fuel tank,

FIG. 12 shows a view from beneath of the fuel tank,

FIG. 13 shows a plan view of the fuel tank,

FIG. 14 shows an "exploded" isometric view of the top of the fuel tank and part of a switch mechanism,

FIG. 15 shows an "exploded" isometric view of flame regulation components,

FIG. 16 shows a partly sectional view of flame regulation components,

FIG. 17 shows an insulator used in the lighter and

FIG. 18 shows the electronic circuit of the lighter.

It should be noted that the FIGURES are not all to the same scale and that in the interests of clarity parts may be omitted or simplified.

Referring to FIG. 1, the butane gas smoker's lighter there shown comprises a hollow rectangular casing 1 having a sprung lid 2 and base plate 3, a slide switch 4, a flame adjustment wheel 5, a burner assembly 6 (only a part of which can be seen in FIG. 1) and an ignition electrode 7. When the lighter is not in use the sprung lid 2 is retained closed by a magnet 8. As will be appreciated the external parts of the lighter are desirably given a high quality ornamental finish to appeal to the eye. In particular the casing 1 and base plate 3 can be made of, or plated with, a precious metal. The lid 2 is required to be in part at least of a ferromagnetic material so as to be attracted by the magnet 8 but can of course be plated with a precious metal.

Assuming the lid 2 to be closed, the lighter is operated by depressing the slide switch 4 towards the base of the lighter whereupon the lid 2 flies open, an electrical contact is made within the lighter and a valve in the burner assembly 6 opens to allow gas to exit for ignition. The slide switch is maintained in a depressed condition and after a very short period of time (scarcely perceptible to the user) a spark is generated at the ignition electrode 7 and the gas ignites. The flow of gas is pre-set to some convenient level by means of the flow adjustment wheel 5. Pipe smokers will generally use a higher flow rate setting than cigarette smokers. After use of the lighter the sprung lid 2 is manually closed and the magnet 8 retains the lid closed until the next 15 occasion on which the slide switch 4 is operated. Closure of the lid 2 stops the flow of gas through the burner assembly 6.

Now that a general description of the lighter has been given its component parts will be described in detail. 20 For this purpose the description can be dealt with under several separate headings, viz. general internal layout; lid catch; fuel tank; base-plate; gas control mechanism; electronic circuitry and mechanical aspects of the electronic circuitry.

GENERAL INTERNAL LAYOUT

FIG. 2 shows most of the major internal component parts of the lighter although certain parts are omitted for clarity of illustration. Most of the internal space is 30 taken up by a gas tank 9 and electronic circuitry 10 potted in an epoxy resin or other suitable material. The electronic circuitry 10 is connected to a switch contact wire 11 and to a transformer 12 (T2 in the circuit diagram). The electronics circuitry 10 is potted so as to be in the shape of a rectangular box with a "step" therein as can be seen in FIG. 3. The "step" is used to accommodate two electric cells 13 which are held in a plastics material tray (not shown) including means for making connection to the cells. The cells are connected in series and the positive pole of the series connected cells is connected to the casing 1.

The arrangement of parts within the potted circuitry 10 is shown in FIGS. 4a, b and c. FIG. 4a shows the component layout with a direction of view corresponding to that of FIG. 2. FIG. 4b and 4c show views at right angles to the direction of view of FIG. 4a, FIG. 4b being a side view and FIG. 4c an end view. The component reference numbers are the same as those used in the circuit diagram FIG. 18. The layout shown in FIGS. 4a, b and c is thus considered to be self-explanatory.

LID CATCH

FIG. 5 shows a diagrammatic view of the lid catch. A compression spring 14 shown in broken outline is provided to urge the lid 2 open, the lid being provided with a hinge (not shown) at 15. As may best be seen in FIG. 6, the magnet 8 is generally "U" shaped with a north pole piece 16 and a south pole piece 17 and has a base portion 18 which is received in a rectangular yoke 19. Screws 20 and 21 are provided to bear upon and so retain the magnet 8 in the yoke 19. The slide switch 4 is attached to the yoke 19 by means of a push-fit location lug 22 received in a hole 23 in the yoke 19.

FIG. 7 shows the mechanical arrangements for biasing the slide switch 4 in its UP position (it should be noted that the magnet 8 is omitted from FIG. 7). A helical compression spring 24 disposed coaxially about a

tube 39 forming part of the burner assembly 6 acts at its lower end against a washer 25 positioned directly beneath the yoke 19. The yoke 19 is shaped at 26 so as to conform to the shape of the tube 39 against which it lies so that the yoke can slide vertically. It will be seen that the casing 1 is recessed at 27 to provide a sliding surface for the slide switch 4. When the slide switch 4 is in its UP position and the lid 2 is closed the poles of the magnet 8 are in contact with the under surface of the lid. The lid 2 which (as previously explained) is at least in part of ferromagnetic material is retained closed against the action of the spring 14 by the force of magnetic attraction. When the slide switch 4 is depressed the poles of the magnet 8 are moved away from the lid and the force of the spring 14 becomes more powerful than the magnetic attraction and the lid springs open to assume a vertical position. The return of the lid 2 to its closed position is achieved manually.

FUEL TANK

Details of the fuel tank 9 are shown in FIGS. 10 to 14. The fuel tank is moulded from a plastics material such as that known as "DELRIN" (registered Trade Mark). The burner assembly 6 and filler valve 40 are moulded during manufacture of the tank into the positions shown. Burner tubes and filler valves are components quite familiar to those skilled in the art of making smokers' lighters and hence a detailed description is not necessary here. The burner assembly 6 is preferably of the type described in British Pat. No. 822,374 or No. 828,813 and the filler valve can, for example, be of the type described in British Patent Specification No. 784,357 or No. 966,967.

The fuel tank 9 includes a hole 41 for reception of switch components as will be further described later. Typically the wall thickness of the tank will be 0.04 inches.

BASE-PLATE

Details of the base-plate 3 and the means by which it is retained in position are shown in FIGS. 8 and 9. Referring to FIG. 8, the lower end of the casing 1 is provided with recessed portions 28 and 29. The base-plate 3 is provided with a projection 30 for entry into the recessed portion 30 and a retractable projection 31 for entry into the recessed portion 29. The base plate 3 has a groove 32 formed therein which acts as a mounting for the retractable projection 31. The retractable projection 31 consists of a short length of springy wire of slightly smaller diameter than the width of the groove 32. The shape of the wire could generally be described as a flattened "Ω". One end, 33, of the wire is secured in the groove 32 by stamping the upper wall of the groove at point to bend the upper wall towards the lower wall to trap the wire in position. A threaded screw hole 34 is provided in the base-plate 3 to receive a retaining screw 35 (shown in broken outline). When the screw 35 is removed from its hole the natural springiness of the wire causes its end 36 (shown in broken outline) to move into a position a little to the right (as shown) of the position normally occupied by the central axis of the screw 35 so that the projection 31 is retracted to allow the base-plate 3 to be removed from the casing 1 for cell replacement and refuelling. When (with the base-plate 3 in position) the screw 36 is inserted the point of the screw (which is suitably shaped) displaces the end 36 of the wire so that the projection

31 is thrust outwards into the recessed portion 29 so retaining the base-plate 3 in the casing 1.

It will be understood that other types of base-plate can be used. For example, a base-plate which requires 5 to be slid sideways against spring pressure to disengage a projection from a recess can be used. Alternatively a "snap-in" type base-plate can be used. If desired a hole and dust cap, corresponding in position to the filler valve, can be provided in the base-plate so that the lighter can be refuelled without removing the base-plate.

GAS CONTROL MECHANISM

Gas control mechanisms for smokers' lighters are well known to those skilled in the art and therefore a lengthy description is not necessary here. As previously stated, the burner assembly 6 is preferably of the type described in British Patent No. 822,374 or No. 828,813. FIG. 10 shows a view of the fuel tank 9, flame adjustment wheel 5 and burner assembly 6 with other components omitted. The burner assembly 6 comprises a central spring mounted rod 42 fitted coaxially within the tube 39. The rod 42 is able to move longitudinally against the action of the spring (not shown) which urges the rod 42 upwards (as seen in the drawing). The rod 42 is connected to a valve (not shown) which allows gas from the fuel tank to exit through the tube 39 when the rod is in its "UP" position. The top end of the rod is arranged to act against the lid 2 of the lighter. When the lid 2 is closed the rod 42 is depressed against the action of the spring and the valve (not shown) is closed. When the lid is open the rod 42 moves upwards, the valve opens and gas flows out of the fuel tank 9. Closure of the lid once more depresses the rod against its spring and shuts off the gas. By this means, opening and closure of the lid 2 of the lighter is made to provide a simple but effective on/off control over the flow of gas.

The component parts of the lighter used for flame 40 regulation are shown in FIGS. 15 and 16 (FIG. 16 being to a larger scale than FIG. 15) with other parts omitted. Flame regulation in smokers' lighters is within the knowledge of those skilled in the art so that a simple description here will suffice.

45 The flame adjustment wheel 5 is of a resilient plastics material and has a knurled front 43 for operation by the user and a hole 44 with projections 45 arranged to push onto and mate with a splined shaft 46 on an screw member 47. Gas from the fuel tank 9 exists to the tube 39 by way of a slot 48 in a housing 49, thence through a wick 50 and a central passage 51 in a compression member 52, and thence by way of the gas on/off valve (not shown) to the tube 39. The wick 50 lies between the compression member 52 and a seating comprising a rubber pad 53 and a lower compression member 54. The screw member 47 has an external thread 55 arranged to mate with a corresponding thread in the part (not shown) in which it is fitted. Thus operation of the flame adjustment wheel 5 causes axial movement of the screw member 47 so that the wick 50 is compressed to a greater or lesser degree according to the sense of movement of the flame adjustment wheel 5. As will readily be understood, the wick 50 in a highly compressed condition will resist the passage of gas there-through to a greater extent than when the wick is less compressed and control over the rate of flow of gas is thus achieved.

ELECTRONIC CIRCUITRY

Referring to FIG. 18, a battery E is connected to supply the ignition system of the lighter which comprises an ignition switch SW1; an inverter constituted by transistors VT1 and VT2, and a transformer T₁; an inverter control circuit constituted by transistors VT3 and VT4; resistors R₁, R₂, R₃ and capacitors C₂ and C₃; a full-wave bridge rectifier constituted by diodes D₁, D₂, D₃ and D₄; a triggering circuit constituted by triggering diode D₆ and resistors R₄ and R₅; and a discharge circuit constituted by a capacitor C₁, a step-up transformer T₂, a thyristor D₅, and ignition electrodes IE. As will be explained in more detail later, operation of the switch SW1 causes the production of an electric spark at the ignition electrodes IE to ignite the fuel of the lighter. Examples of suitable types and values of components for the circuit are set out in the table below.

Component	Type or Value
E	Two mercury cells each type MP625H each 2N3794
VT1, VT2, VT3	2N4291
VT4	180 Ω ± 5% 0.1W
R ₁	10k Ω ± 5% 0.1W
R ₂	68k Ω ± 5% 0.1W
R ₃	each 1kΩ ± 5% 0.1W
R ₄ , R ₅	33μ F 40V electrolytic
C ₁	each 0.1μ F 30V
C ₂ , C ₃	each IN4148
D ₁ , D ₂ , D ₃ , D ₄	TIC45
D ₅	D32
T ₁	first primary P ₁ 16 turns centre-tapped second primary P ₂ 16 turns centre-tapped secondary S ₂ 200 turns on an 8 mm diameter toroidal ferrite core
T ₂	primary 12 turns secondary 2500 turns
SW1	normally open single pole switch

Transformer T₂ is preferably of the type described in British Patent Application No. 5981/72 entitled "Formers for Inductive Devices and Devices and Apparatus Employing Same."

The inverter is designed to have a high efficiency so that the time taken to charge the capacitor C₁ can be kept low. In this respect, silicon transistors selected for low collector-emitter saturation voltage at the operating currents involved are employed in conjunction with a toroidal ferrite transformer. The bridge rectifier diodes are high frequency types also chosen to maintain high efficiency. In this respect a full-wave rectifier arrangement is preferred to a half wave arrangement.

The collectors of transistors VT1 and VT2 are connected to respective ends of the primary winding P₁ of transformer T₁ and their emitters are connected in common to the negative pole of battery E. The bases of transistors VT1 and VT2 are connected to respective ends of the primary winding P₂ of transformer T₁. As will be explained in more detail later, transistors VT3 and VT4 are connected to control the base current to transistors VT1 and VT2 and so control operation of the inverter. The inverter functions in a known manner as a multivibrator square-wave oscillator with transformer coupling to provide the necessary feedback.

The secondary winding of transformer T₁ has one end connected to the cathode of diode D₁ and the anode of diode D₄ and its other end connected to the cathode of diode D₃ and the anode of diode D₂. The anodes of di-

odes D₁ and D₂ are connected in common to the negative pole of the battery E. The cathode of diodes D₃ and D₄ are connected in common to one end of trigger diode D₆ whose other end is connected to one end of resistor R₄ whose other end is connected through resistor R₅ to the negative pole of the battery E. Thyristor D₅ has its anode connected to the cathodes of diodes D₃ and D₄ and its cathode connected to the negative pole of the battery E. The trigger electrode of thyristor D₅ is connected to the junction of resistors R₄ and R₅. The full-wave rectified output of transformer T₁ thus appears across thyristor D₅.

Components VT3, VT4, R₁, R₂, R₃, C₂ and C₃ constitute the inverter control circuit. The emitter of transistor VT3 is connected to the centre-tap of primary-winding P₂ of transformer T₁ and its collector is connected to the base of transistor VT4. The collector of transistor VT4 is connected in common to the base of transistor VT3, one end of capacitor C₂, one end of capacitor C₃ and one end of resistor R₃. The emitter of transistor VT4 is connected to one end of resistor R₁, the other end of which is connected to the end of capacitor C₂ remote from the base of transistor VT3. The end of resistor R₃ remote from the base of transistor VT3 is connected to the negative pole of the battery E. Resistor R₂ is connected from the junction of resistor R₁ and capacitor C₂ to the negative pole of battery E. The common ends of resistors R₁ and R₂ and capacitor C₂ are connected to the centre-tap of primary winding P₁ of transformer T₁ and to the pole of switch SW1 remote from the battery E. The end of capacitor C₃ remote from transistor VT3 is connected to the positive output (cathodes D₃ and D₄) of the bridge circuit constituted by diodes D₁, D₂, D₃, D₄.

The positive pole of electrolytic capacitor C₁ is connected to the cathodes of diodes D₃ and D₄ and its negative pole is connected to one end of the primary winding of transformer T₂. The other end of the primary winding is connected to the negative pole of the battery E. One end of the secondary winding of transformer T₂ is connected to the negative pole of the battery E. The other end of the secondary winding of transformer T₂ is connected to the ignition electrode 7. The other ignition electrode is constituted by the rod 42 which is connected to the positive pole of the battery E. The positive pole of battery E is connected to the casing 1.

On closure of the switch SW1 the positive pole of the battery E is connected to the top end (as shown) of capacitor C₂ and a positive going waveform consequently appears at the base of transistor VT3. The emitter of transistor VT3 is connected to the negative pole of the battery E by way of the centre-tap of the primary winding P₂ so that the said positive going waveform tends to turn transistor VT3 ON. As a result collector current for transistor VT3 is drawn from the base of transistor VT4 which tends to turn VT4 ON. Collector current from transistor VT4 feeds the base of transistor VT3 which in turn draws more current from the base of transistor VT4. Thus, transistors VT3 and VT4 form a complementary pair switch and closure of switch SW1 results in both of transistors VT3 and VT4 turning ON.

Transistor VT3 feeds base current to transistors VT1 and VT2 of the inverter which oscillates and continues oscillating so long as the switch SW1 is closed to supply collector current and so long as transistor VT3 supplies base current to the transistors of the inverter.

When the inverter is functioning a square-wave output appears at the secondary winding S_1 of transformer T_1 of approximately 70V peak to peak amplitude at a frequency of approximately 40kHz. The output of the circuit will, of course, be somewhat less if the battery has deteriorated through age or use. The inverter and rectifier change the battery voltage from a level of a few volts to a level considerably greater.

The full-wave rectified output of the secondary winding S_1 charged capacitor C_1 through the primary winding of transformer T_2 . Trigger diode D_6 remains non-conducting until its breakdown voltage is reached and so long as the voltage across trigger diode D_6 is less than the breakdown voltage the voltage drop across resistors R_4 and R_5 is effectively zero. A point is soon reached as capacitor C_1 charges when the voltage across trigger diode D_6 is equal to its breakdown voltage, whereupon the diode D_6 conducts and a signal appears at the junction of resistors R_4 and R_5 which triggers the thyristor D_5 into a state of conduction. Capacitor C_1 now rapidly discharges through the primary winding of transformer T_2 and thyristor D_5 (which, of course, remains conducting until the current through it becomes equal to zero) and as a result a very high voltage (about 7kV) is induced in the secondary winding of transformer T_2 . The high secondary voltage causes a fuel-igniting spark to occur between the ignition electrodes IE.

The energy required to ignite the butane gas of the lighter is approximately 2mJ and in the present circuit at least 15mJ would be stored in capacitor C_1 . While the energy available in the spark depends upon the efficiency of the transformer T_2 this value of stored energy in capacitor C_1 more than compensates for expected losses in transformer T_2 .

The use of trigger diode D_6 and thyristor D_5 allows a high charging rate of capacitor C_1 to be employed since the open circuit output voltage of the inverter and rectifier can be made significantly greater than the maximum working voltage of the capacitor C_1 . This fact is advantageous because the size of capacitors of a given value increases with their rated working voltage.

The discharge of capacitor C_1 also results in a negative going spike being applied through capacitor C_3 to the base of transistor VT_3 . This negative going spike causes both transistors VT_3 and VT_4 of the inverter control circuit to turn OFF. As a result the flow of base current to the transistors of the inverter ceases and the inverter stops oscillating. The negative going spike will charge capacitor C_2 in such a manner as to maintain the transistors VT_3 and VT_4 OFF. This charge decays through the resistances associated with capacitor C_2 but the transistors VT_3 and VT_4 remain OFF until a positive going waveform is again applied at the base of transistor VT_3 by a further actuation of the switch SW_1 .

It will be appreciated that to obtain the spark discharge the user must continue to operate the switch SW_1 for the multivibrator to function sufficiently long for the voltage on capacitor C_1 to be built up. Once capacitor C_1 has discharged it will be observed that the inverter is turned off. Thus, for a single actuation of the switch the inverter runs for a sufficient time to produce the spark, after which it remains off irrespective of whether or not the user keeps the switch depressed.

The switch action does not need to be mechanically timed — providing the contact is made the inverter will

run only for the time necessary to charge the capacitor with sufficient energy to create one ignition spark. This means that no energy is wasted after the capacitor is fully charged (a fixed time charging system would have to allow sufficient time for a partially used battery to charge the capacitor, which would thus be more than necessary for a fresh battery). The time (normally scarcely perceptible to the user) required for the capacitor to charge and a spark to be produced will increase as the battery ages and can serve as a useful indication of the necessity to renew the battery. Nevertheless, the ignition system should continue to operate even with fairly extended charging times.

MECHANICAL ASPECTS OF THE ELECTRONIC CIRCUITRY

The mechanical details of the switch SW_1 are illustrated in FIG. 2 and 14. A helical compression spring (not shown) is located in the hole 41 (FIG. 14,) so as to act against the switch contact wire 11 (FIG. 2). A contact pin 56 is inserted in the end of the hole 41 remote from the contact wire 11 and is biased by the spring into contact with the internal face of the slide switch 4. The slide switch 4 is made of an insulating material with a fluted front face and an area 58 of conducting material on its inside face. The conducting area 58 is connected to the positive pole of the battery through the casing 1 (the area 58 slides against the casing 1). When the slide switch 4 is in its UP position the contact pin touches the insulated part of the slide switch 4, but when the switch 4 is depressed the pin 56 comes into contact with the area 58 and connection is made through the spring in hole 41 to contact wire 11 which in turn is connected to the electronic components.

The high voltage parts of the circuit need careful insulation to ensure that unwanted discharges do not occur. The shaping of the insulation about the ignition electrode 7 can be seen in the Figures. A shield 57 (FIGS. 1 and 17) of a ceramic or other heat resistant insulating material is placed about ignition electrode 7 to help avoid such unwanted discharges. The burner assembly 6 is connected to the positive pole of the battery E through the yoke 19 (which is of metal) and the casing 1.

It will be appreciated that the described embodiment has many advantages over prior art lighters. The provision of the inverter and rectifier to change the level of voltage supplied by the battery to a higher level enables a smaller capacitor to be employed for the storage of a given amount of energy than if the capacitor has been charged by the battery alone. This provides an advantageous economy in the space required within the lighter for the electrical components (the height of the lighter shown in FIG. 1 can be as little as 7 cms). Further, low voltage cells are employed which are relatively cheap and easily obtainable. The use of the inverter also provides a rapid means for charging the capacitor which is desirable in respect of repeated operation of the lighter and further no load is imposed on the cells during a period of non-use. The use of the trigger diode is particularly advantageous in respect of the speed of charging the capacitor and the use of the thyristor ensures a rapid discharge of the capacitor without any problems of the "contact bounce" type (a thyristor, once triggered, remains conducting until the voltage across it drops to zero).

Other forms and modifications are possible within the scope of the invention. For example, the invention can be embodied in a table lighter. In a table lighter a more squat arrangement of components would generally be desirable. The thyristor can if desired be replaced by a mechanical switch contact and the trigger diode can be omitted, but the use of the components shown to provide automatic ignition is preferred. Transistors of the opposite conductivity types to those shown can be employed and other inverter arrangements are possible. For example, an oscillator employing a single transistor could be used. The inverter could employ a piezo-electric solid-state transformer. It is also contemplated that a voltage multiplier of the diode voltage-doubler type could be used. At least some of the electrical components of the lighter could be made in integrated circuit form. One or more rechargeable cells could be used to power the lighter. It is not essential for the electronic components to be potted as described.

I claim:

1. A smoker's lighter comprising:
an outer casing of such small dimensions that the lighter can be used as a pocket lighter,
a lid having at least a part of ferromagnetic material, 25
said lid forming an openable part of said casing and being connected thereto by hinge means,
spring means arranged to urge said lid to an open position,
a fuel tank mounted in the casing, 30
a gas control valve connected to said fuel tank to control the flow of gas therefrom and arranged to open when the lighter is operated,
a burner assembly mounted in the casing so as to be covered by said lid in its closed position and connected to receive gas from the gas control valve, 35
a magnet assembly movably mounted in the casing and arranged to act directly on said lid in its closed position to retain said lid closed against the force exerted by the spring means,
cell holder means mounted in the casing and adapted to receive at least one electric cell,
a spark ignition circuit electrically connected to said cell holder means, 40
switch means connected in said spark ignition circuit to control the operation thereof,
spark ignition electrode means connected to the output of said spark ignition circuit and mounted in the casing so as to co-operate with the burner assembly to ignite gas issuing therefrom, and
actuating means having an exterior part adapted for manual operation, said actuating means being coupled to said magnet assembly and said switch means, and being operative upon manual operation of said exterior part to move said magnet assembly 55 away from said lid so as to decrease the force of magnetic attraction thereon to allow the lid to open under the force exerted by said spring means, and to actuate said switch means.
2. A lighter as claimed in claim 1, wherein the casing 60 is generally rectangular, the lid forms a part of the top

face of the casing, and said exterior part of said actuating means is located in a side face of said casing.

3. A lighter as claimed in claim 1, wherein said burner assembly includes an elongate burner tube, said magnet assembly includes a generally "U"-shaped magnet having a pole-piece on each side of said burner tube, and said magnet assembly is mounted on resilient mounting means biasing said magnet assembly towards said lid in its closed position.

4. A smoker's lighter comprising:
an outer casing provided with an openable lid, the lid having at least a part of ferromagnetic material, spring means arranged to urge said lid to an open position,
a fuel tank mounted in the casing,
a burner assembly including a gas control valve, said assembly being mounted in the casing so as to be covered by said lid in its closed position and being connected to the fuel tank,
a sensor rod forming part of the burner assembly, said rod being biased against the lid in its closed position and adapted to open said gas control valve when said lid is opened and to close said valve when said lid is closed,
a magnet assembly movably mounted in said casing, arranged to retain said lid closed by the force of magnetic attraction,
cell holder means mounted in the casing and adapted to receive and make electrical connection to at least one electric cell,
a circuit for generating a high voltage electric spark connected to said cell holder means,
mechanically operable contact means connected in said circuit to actuate said circuit on closure of the contact means,
spark electrode means connected to the output of said circuit and mounted in the casing so as to co-operate with said burner assembly to ignite gas issuing therefrom, and
actuating means having a part on the outside of said casing adapted for manual operation, said actuating means being coupled to said magnet assembly and said switch means, and being effective when said manual operation is performed to move said magnet assembly to decrease the magnetic attraction on the lid to allow said lid to open under the influence of said spring means, and to close said contact means, thereby effecting automatic opening and lighting of the lighter.
5. A lighter as claimed in claim 4, wherein said burner assembly includes flame adjustment means comprising:
wick means located in the path of gas through the burner assembly,
a compression member arranged to compress said wick means to increase its resistance to gas flow, and
a manually operable flame control coupled to said compression member to adjust the degree of compression of said wick means.

* * * * *