发明名称：数据传输装置和数据传输方法

摘要：奇偶校验位形成部 110 从发送数据形成用于纠错的 FEC 的奇偶校验位。发送功率决定部 111 根据发送数据的信息比特和奇偶校验位的比特数来决定奇偶校验位再发时的发送功率。发送功率控制部 112 根据发送功率决定部 111 决定的信息来控制发送功率并输出到发送无线部 104。
1. 一种数据传输装置，在数据的再发中发送用于纠错的奇偶校验位，其特征在于，包括:

发送功率控制部件，以使所述数据的发送功率和所述奇偶校验位的发送功率之比与所述数据的比特数和所述奇偶校验位的比特数之比相同来控制所述奇偶校验位的发送功率；以及

发送部件，发送控制发送功率后的奇偶校验位。

2. 如权利要求1所述的数据传输装置，其特征在于，所述发送功率控制部件在控制所述奇偶校验位的发送功率中利用相对于由自身装置发送的数据的来自对方装置的接收品质信息。

3. 如权利要求2所述的数据传输装置，其特征在于，所述发送功率控制部件求出使所述数据的发送功率和所述奇偶校验位的发送功率之比与所述数据的比特数和所述奇偶校验位的比特数之比相同的所述奇偶校验位的发送功率之后，还对该奇偶校验位的发送功率根据接收品质信息进行修改，即在接收品质差的情况下提高奇偶校验位的发送功率，而在接收品质良好的情况下降低奇偶校验位的发送功率。

4. 如权利要求1所述的数据传输装置，其特征在于，包括测定接收的数据的接收品质的接收品质测定部件，所述发送部件发送表示由所述接收品质测定部件测定的接收品质的接收品质信息。

5. 一种数据传输方法，在数据的再发中发送用于纠错的奇偶校验位，其特征在于，

以使所述数据的发送功率和所述奇偶校验位的发送功率之比与所述数据的比特数和所述奇偶校验位的比特数之比相同来控制所述奇偶校验位的发送功率。
说明书

数据传输装置和数据传输方法

技术领域

本发明涉及移动通信系统的通信终端装置和基站装置中使用的数据传输装置和数据传输方法。

背景技术

以往，作为数据传输中的纠错方法，例如有称为类型 II 混合网络 ARQ 方式（冈秀一：移动通信，240 页，オーム出版局）的方式。该纠错方式最初仅发送信息比特，在相对于该发送需要再生的情况下（即时，接收端对该信息比特不能正常地解调的情况），仅再发送用纠错的纠错码（FEC：Forward Error Correction（前向纠错））的奇偶校验位（冗余比特），接收端通过前面接受的信息比特和本次接受的奇偶校验位来进行纠错。

但是，在现有的数据传输方法中，由于以相同的功率进行信息比特的发送和奇偶校验位的再发，所以在再发奇偶校验位时存在对其他用户产生与信息比特的发送时相同或其以上的干扰的问题。特别是由于奇偶校验位在一般情况下其比特数比信息比特少，所以如果将信息比特的发送和奇偶校验位的再发以相同的功率来发送，那么奇偶校验位的平均 1 比特的发送功率比信息比特大。因此，由于以需要以上的发送功率将奇偶校验位再发，所以产生上述问题。

具体地说明该问题时，例如设信息比特为 1000 比特，奇偶校验位为 10 比特，如果将信息比特以功率 P 来发送，那么平均 1 比特的功率为 P/1000。设奇偶校验位的再发也以相同的功率 P 来发送，那么平均 1 比特的功率为 P/10，比信息比特的发送功率大。于是，在以相同的功率 P 发送的情况下，由于奇偶校验位的平均 1 位的功率比信息比特的功率大，所以在奇偶校验位的再发时对其他用户产生与信息比特的发送时相同或其以上的干扰的比例增大。该问题不限于类型 II 混合网络 ARQ 方式，可以说，存在于在发送数据
的发送时和再发时功率相同的所有方式。

发明内容

5 本发明的目的在于提供一种数据传输装置和数据传输方法，在发送数据的再发中能够将对其他用户的干扰抑制到最小限度。

该目的如下实现：在发送数据的发送后，在该发送数据的再发中控制发送功率。

本发明提供一种数据传输装置，在数据的再发中发送用于纠错的奇偶校验位，它包括：发送功率控制部件，以使所述数据的发送功率和所述奇偶校验位的发送功率之比与所述数据的比特数和所述奇偶校验位的比特数之比相同来控制所述奇偶校验位的发送功率；以及发送部件，发送控制发送功率后的奇偶校验位。

附图说明

图 1 表示本发明实施例 1 的基站装置和通信终端装置各自的结构方框图；图 2 是说明本发明实施例 1 的基站装置中的数据传输的图；以及

图 3 表示本发明实施例 2 的基站装置和通信终端装置各自的结构方框图。

具体实施方式

以下，参照附图来详细说明用于实施发明的优选实施例。

（实施例 1）

图 1 表示本发明实施例 1 的基站装置和通信终端装置各自的结构方框图。

在图 1 中，基站装置 100A 包括：暂时保持发送数据的缓冲器 101；形成发送帧的发送帧形成部 102；对发送帧形成部 102 形成的发送帧进行调制来生成调制信号的调制部 103；将调制部 103 生成的调制信号放大至规定电平的功率并输出的发送无线部 104；将天线 106 分配给发送系统和接收系统的天线共用部 105；天线 106；接收由天线 106 捕捉的电波并输出调制信号的接
收无线部 107; 对接收无线部 107 接收到的调制信号进行解调的解调部 108; 从解调部 108 解调的信号中分离出接收数据和发送请求信号（称为 ACK（Acknowledgment）信号）或再发送求信号（称为 NACK（Negative Acknowledgement）信号）的分离部 109; 根据发送数据形成用于进行纠错的纠错码（FEC：Forward Error Correction）的奇偶校验位（冗余位）的奇偶校验位形成部 110; 根据发送数据的信息比特和奇偶校验位的比特数来决定奇
偶校帧数据发送的发送功率的发送功率决定部 111；以及以发送功率决定部 111 决定的发送功率来控制发送无线部 104 的发送功率控制部 112。

上述发送无线部 104 对应于发送部件。此外，发送功率决定部 111 和发送功率控制部 112 构成发送功率控制部件。

另一方面，通信终端装置 100B 包括：天线 113；将天线 113 分配给发送系统和接收系统的天线共用部 114；接收天线 113 捕捉的电波并输出调制信号的接收无线部 115；根据从接收无线部 115 输出的调制信号对数据进行解调的解调部 116；保持由解调部 116 解调的数据的数据保持部 117；检测由数据保持部 117 保持的数据和由纠错部 122 纠错过数据的差错的差错检测部 118；根据发送数据和 ACK 信号或 NACK 信号来形成发送帧的发送帧形成部 119；对发送帧形成部 119 形成的发送帧进行调制并生成调制信号的调制部 120；将来自调制部 120 的调制信号放大至规定电平的功率并输出的发送无线部 121；以及对数据保持部 117 保持的数据的差错进行纠错的纠错部 122。

在基站装置 100A 中，输入的发送数据被存储到缓冲器 101 后，不用发送帧形成部 102 实施纠错编码，而仅用发送数据形成发送帧。形成的发送帧由调制部 103 进行调制后，由发送无线部 104 放大至规定电平的功率，经天线共用部 105 从天线 106 向空中发射。

在通信终端装置 100B 中，由天线 113 捕捉到的电波经天线共用部 114 由接收无线部 115 接收并输出调制信号。从接收无线部 115 输出的调制信号由解调部 116 进行解调并保持在数据保持部 117 中。数据保持部 117 中保持的数据由差错检测部 118 进行差错检测，在数据保持部 117 保持的数据中有差错的情况下，NACK 信号从差错检测部 118 被输入到发送帧形成部 119。发送帧形成部 119 根据输入 NACK 信号和发送数据来形成发送帧。发送帧形成部 119 形成的发送帧由调制部 120 进行调制后，由发送无线部 121 放大至规定电平的功率，经天线共用部 114 从天线 113 向空中发射。

在基站装置 100A 中，天线 106 捕捉到的电波经天线共用部 105 由接收无线部 107 接收，并输出调制信号。从接收无线部 107 输出的调制信号由解调部 108 进行解调。解调过数据被输入到分离部 109 而分离成接收数据和 NACK 信号, 接收数据被原封不动地输出，而 NACK 信号被输入到缓冲器 101。在 NACK 信号被输入到缓冲器 101 后，缓冲器 101 中存储的发送数据被输入到奇偶校验位形成部 110。然后，奇偶校验位形成部 110 根据发送数据来形成
用于纠错的纠错码的奇偶校验位，并输入到发送帧形成部 102。

发送数据的信息比特和奇偶校验位的比特数被输入到发送功率决定部 111，根据它们的比特数来决定奇偶校验位再发时的发送功率。例如，设发送数据的信息比特的比特数为‘100’，奇偶校验位的比特数为‘10’，将发送数据以功率 P 发送，那么平均 1 比特的功率为 P/1000。在奇偶校验位的再发时，为了使平均 1 比特的功率与发送数据相同，以 P/100 来决定功率。于是，使发送数据和奇偶校验位的功率比与信息比特和奇偶校验位的比特数之比相同 (即，使平均 1 比特的发送功率相同)。

发送功率决定部 111 决定的发送功率信息被输入到发送功率控制部 112。

发送功率控制部 112 根据输入的发送功率信息来控制发送无线部 104 的发送功率，另一方面，奇偶校验位形成部 110 形成的奇偶校验位被输入到发送帧形成部 102，形成发送帧。形成的发送帧由调制部 103 调制，并被输入到发送无线部 104。输入到发送无线部 104 的调制信号以发送功率控制部 112 控制的发送功率经天线共用部 105 从天线 106 向空中发射。

在通信终端装置 100B 中，接收到从基站装置 100A 再发的奇偶校验位后，数据保持部 117 保持的数据和奇偶校验位被输入到纠错部 122 并进行纠错。纠错过数据被输入到差错检测部 118 并进行差错检测。差错检测部 118 重复进行一连串的操作直至未检测出差错。在未检测出差错后，将纠错后的数据作为接收数据来输出，同时将数据保持部 117 的内容复位。然后，求下个数据发送的 ACK 信号从差错检测部 118 被输入到发送帧形成部 119，与发送数据一起形成发送帧。

在基站装置 100A 中，接收到 ACK 信号后，该信号被输入到缓冲器 101，其内容被复位。由此，使下个数据的发送开始。

这里，在图 2 中显示出信息比特和奇偶校验位的功率的不同。

在发送了信息比特后，接收到 NACK 信号时，决定奇偶校验位的发送功率并以该决定的功率来发送奇偶校验位。这种情况下，设奇偶校验位的比特数与信息比特的比特数少。在发送了奇偶校验位后，接收到 ACK 信号时，将下个信息比特以与前面的信息比特相同的功率（或通过发送功率控制决定的功率）来发送。

于是，根据本实施例，在需要对发送数据进行再发的情况下，在仅发送用于纠错的纠错码的奇偶校验位的情况下，由于将奇偶校验位的发送功率设
定得比发送数据的发送功率低，所以可以将发送奇偶校验位造成的对其他用户的干扰抑制得低。

在本实施例中，基站装置 100A 和通信终端装置 100B 也可以彼此相反。即，以 100A 作为通信终端装置，以 100B 作为基站装置也可以。

(实施例 2)

图 3 表示本发明实施例 2 的基站装置和通信终端装置各自的结构方框图。在该图中，与上述图 1 相同的部分附以相同的标号，并省略其说明。

在上述实施例 1 中，作为纠错码的奇偶校验位再发时的发送功率决定方法，根据发送数据的信息比特和奇偶校验位的比特数之比来决定发送数据和奇偶校验位的功率之比，但在本实施例中，除了发送数据的信息比特和奇偶校验位的比特数之比以外，还根据接收品质信息来决定奇偶校验位再发时的发送功率。

在通信终端装置 100C 中，接收无线部 115 接收到的调制信号由解调部 116 进行解调，同时由接收品质测定部（接收品质测定部件）301 测定接收品质。解调部 116 解调的数据由数据保持部 117 保持。另一方面，接收品质测定部 301 测定接收品质得到的接收品质信息被输入到发送帧形成部 119，与 ACK 信号或 NACK 信号及发送数据一起形成发送帧。

另一方面，在基站装置 100A 中，接收无线部 107 接收的调制信号由解调部 108 进行解调。解调部 108 解调过的数据从分离部 109 分离为接收数据、ACK 信号或 NACK 信号和接收品质信息。分离出的接收数据被原封不动地输出，NACK 信号被输入到缓冲器 101，而接收品质信息被输入到发送功率决定部 111。

发送功率决定部 111 利用接收品质信息来决定发送功率。例如，在按与上述实施例 1 相同的方法来决定的发送功率，并且根据接收品质信息接收品质恶化的情况下，形成比决定的发送功率大的功率，而在接收品质良好的情况下，形成比决定的发送功率小的功率。由此，在接收品质差的情况下，减少奇偶校验位错误的概率，而在接收品质良好的情况下，通过使功率下降可以降低对其他用户的干扰。

在本实施例中，基站装置 100A 和通信终端装置 100C 也可以彼此相反。即，以 100A 作为通信终端装置，以 100C 作为基站装置也可以。

在上述实施例 1、2 中，在发送数据和奇偶校验位的发送中，控制发送功
率而使得平均 1 比特的发送功率相同，但不一定必须相同。例如，与发送数
据的信息比特和奇偶校验位的比特数的比率相比，可以提高也可以降低奇偶
校验位的发送功率。这种情况下，如果奇偶校验位的平均 1 比特的发送功率
大，那么纠错能力提高，但对其他用户的干扰增大。相反，如果奇偶校验位
的平均 1 比特的发送功率小，那么对其他用户的干扰变小，但纠错能力下降。
也可以对于不容许再发延迟的数据提高发送功率，而对于容许延迟的数
据降低发送功率。也可以考虑到这些方面来适当改变发送功率。

在上述实施例 1、2 中，都形成 ACK 信号和 NACK 信号发回的结构，而
NACK 信号不一定必须发回。例如，在数据发送后规定时间以内，如果 ACK
信号不到来，那么在采用再发数据的方式情况下，不需要发回 NACK 信号。

在上述实施例 1、2 中，限定于在最初的发送中未进行纠错的信息比特、
在再发中的奇偶校验位，但无论最初的发送还是再发，都可以发送信息比特
和奇偶校验位或其中某一个的组合。

以上说明，根据本文，对发送数据的再发中可以将对其他用户的干
扰抑制到最小限度，能够实现良好的通信。

本说明书基于 2000 年 6 月 23 日申请的特愿 2000-190229（日本专利）。其
内容全部包含于此。

产业上的可利用性

本发明适用于移动通信系统的通信终端装置和基站装置。