① Veröffentlichungsnummer: 0 131 741

B1

12

EUROPÄISCHE PATENTSCHRIFT

- Veröffentlichungstag der Patentschrift: 12.08.87
- (51) Int. Cl.4: A 61 G 7/10

(21) Anmeldenummer: 84106561.8

Anmeldetag: 08.06.84

- 54) Badewannenlift für Behinderte.
- Priorität: 06.07.83 DE 3324294
- Veröffentlichungstag der Anmeldung: 23.01.85 Patentblatt 85/4
- Bekanntmachung des Hinweises auf die Patenterteilung: 12.08.87 Patentblatt 87/33
- Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE
- Entgegenhaltungen: EP-A-0 074 460 CH-A-300 436 FR-A-2 146 098 US-A-3 228 659

- Patentinhaber: Schmidt, Peter, D-7989 Enkenhofen Gde. Argenbühl (DE)
- Erfinder: Schmidt, Peter, D-7989 Enkenhofen Gde. Argenbühl (DE)
- Vertreter: Hübner, Hans- Jürgen, Dipl.- Ing., Mozartstrasse 21, D-8960 Kempten (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents im Europäischen Patentblatt kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

10

15

20

25

30

35

40

45

50

55

60

Beschreibung

Die Erfindung betrifft einen Badewannenlift für Behinderte, mit einem Bodenrahmen, mindestens einem, an diesem angebrachten Führungsgestell, einer von diesem abgestützten Hubplatte, einer zwischen dieser und dem Bodenrahmen angeordneten, mit Druckwasser betätigbaren Hubeinrichtung und einem Handsteuerventil zum Füllen bzw. Entleeren der Hubeinrichtung, wobei das Führungsgestell zwei in Querrichtung der Badewanne nebeneinander im Abstand angeordnete Scherenarmpaare aufweist und die Scherenarme jedes Armpaares in der Mitte miteinander schwenkbar verbunden sind und wobei jeweils der eine Scherenarm eines Armpaares mit einem Ende in einem festen Schwenklager am Bodenrahmen gelagert ist und an seinem anderen Ende ein in einer an der Hubplatte befestigten Schiene verschiebbares Schiebelager aufweist und wobei jeweils der andere Scherenarm eines Armpaares mit einem Ende in einem festen Schwenklager an der Hubplatte gelagert ist und an seinem anderen Ende ein in einer am Bodenrahmen befestigten Schiene verschiebbares Schiebelager aufweist.

Ein derartiger Badewannenlift ist aus der EP-A-0 074 460 bekannt. Bei einem solchen Badewannenlift besteht das Problem, daß beim Hochfahren der Hubplatte die gewünschte Hochlage automatisch erreicht und diese Hochlage nicht überfahren wird, um eine Beschädigung des Badewannenliftes zu vermeiden.

Aus der US-A-3 228 659 ist ein ähnlicher Lift zum Heben und Senken von Lasten bekannt, bei dem in der Bewegungsbahn einer, dem beweglichen Schiebelager eines Scherenarms entsprechenden Laufrolle ein elektrischer Endschalter befestigt ist, der von der Laufrolle berührt wird und den Stromkreis des Motors einer Hydraulikpumpe unterbricht. Die Zufuhr des Hydraulikmittels in einen, die Hubeinrichtung bildenden Zylinder wird aber nicht schlagartig gestoppt, weil ein Drosselventil noch Hydraulikmittel bis zum Druckausgleich nachströmen läßt. Die Hochlage ist somit nur angenähert ansteuerbar und ist darüber lastabhängig. Weiterhin ist eine Sicherheitsschaltung vorgesehen, die eine, von einer Laufrolle betätigte Querstange verschwenkt, welche bei einem Versagen des Endschalters ein Ventil in einer zur Pumpensaugseite führenden Bypaßleitung öffnet.

Die FR-A-2 146 098 zeigt einen ähnlichen Lift, der pneumatisch betätigt wird und gemäß einer ersten Alternative einen verstellbaren mechanischen Anschlag in einer, die Laufrolle eines Scherenarms führenden Schiene und gemäß einer zweiten Alternative einen Endschalter anstelle des mechanischen Anschlags aufweist, um die Druckluftzufuhr abzuschalten, wenn die Hochlage einer Hubplatte erreicht ist. Ein mechanischer Anschlag kann zu einem Verbiegen des Führungsgestells führen.

Das Stillsetzen der Druckluftversorgungseinrichtung beim Erreichen der Hochlage hat dieselben Nachteile wie beim vorbeschriebenen Lift.

Aufgabe der Erfindung ist es, den bekannten Badewannenlift so weiterzubilden, daß die Hubplatte unabhängig von einer Betätigung des Steuerventils in einer vorgegebenen Hochstellung sicher und genau angehalten wird, ohne daß unzulässige Kräfte auf das Führungsgestell ausgeübt werden.

Diese Aufgabe wird bei einem Badewannenlift der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß in mindestens einer Schiene der Hubplatte in der Bewegungsbahn des Schiebelagers ein Schiebestück verschiebbar aufgenommen ist, daß eine Querstange in die Bewegungsbahn des Schiebestückes eingreift und von diesem mitbewegbar ist, daß das Schiebestück nahe der, einer bestimmten Hochlage der Hubplatte entsprechenden Endstellung des Schiebelagers angeordnet und fur eine Mitnahme durch das Schiebelager während dessen letzten Bewegungsabschnittes eingerichtet ist und daß die Querstange von dem Schiebelager in eine Endstellung bewegbar ist, in welcher sie auf ein Betätigungsorgan eines separaten in der zum Handsteuerventil führenden Druckwasserleitung eingeschalteten oder eines in das Handsteuerventil integrierten Absperrventils einwirkt, um den Druckwasserzulauf zu sperren.

Dank der Hubbegrenzung durch Absperren der Wasserversorgungsleitung wird eine Anpassung des Druckes in der Hubeinrichtung an die jeweilige Belastung der Hubplatte erzielt. Die Hubeinrichtung wird nur gerade mit dem notwendigen Druck betrieben, der zum Heben der Hubplatte notwendig ist. Ist die Hubplatte unbelastet, so wird die Hubeinrichtung zwar mit Wasser gefüllt, jedoch ist der Überdruck gering. Wird die Hubplatte nun belastet, so senkt sie sich etwas ab, das Absperrventil öffnet jedoch sogleich und der Druck in der Hubeinrichtung steigt und kompensiert die Belastung, wobei die ursprüngliche Soll-Hochlage wieder erreicht wird

Das Absperrventil ist gemäß einer Ausführungsform vom Handsteuerventil getrennt. Alternativ ist es in das Handsteuerventil integriert, z. B. indem das Betätigungsorgan am Steuerhebel des Handsteuerventils angreift und den Steuerhebel in die Neutral- oder Absperrstellung zurückstellt, wenn die Soll-Hochlage der Hubplatte erreicht ist.

Ausgestaltungen der Erfindung bestehen darin, daß die wirksame Länge des Schiebestückes zwischen seiner mit dem Schiebelager zusammenwirkenden Endfläche und der Querstange einstellbar ist und daß der Bewegungshub der Querstange gleich demjenigen des Betätigungsorgans ist und weiterhin darin, daß die Querstange ein Langloch der Schiene verschiebbar durchsetzt und bei Anlage an einem Ende des Langloches einen

20

35

40

45

50

55

60

mechanischen Anschlag für das Schiebestück bildet.

Bei der weiteren vorteilhaften Ausgestaltung weist das äußere Ende des Betätigungsorgans einen Querschlitz auf, der von der Querstange durchsetzt ist, und das innere Ende des Betätigungsorgans trägt den Ventilschließkörper.

Vorteilhaft ist weiterhin, daß ein Ventilschließkörper des separaten Absperrventils eine Ringnut aufweist, in die ein elastischer Ring eingreift, dessen Außenumfang in einem Gehäuse des Absperrventils festgeklemmt ist und daß der elastische Ring in der Offenstellung des Absperrventils eine im wesentlichen ebene Form und in der Schließstellung eine angenähert konische Form mit Rückstellwirkung einnimmt.

Zur Feineinstellung ist vorgesehen, daß zwischen dem Betätigungsorgan des Absperrventils und der Querstange eine in Verstellrichtung wirksame Justiereinrichtung vorgesehen ist, die vorzugsweise in Form einer, in der Bodenfläche des Querschlitzes des Betätigungsorgans verschraubbar angeordneten koaxialen Schraube ausgebildet ist.

Schließlich sind Weiterbildungen darin zu sehen, daß die Querstange mit ihren beiden Enden in die Bewegungsbahnen von in beiden Schienen der Hubplatte angeordneten Schiebestücken eingreift und daß die Querstange eine Abkröpfung aufweist, die in ihrer Endstellung auf das Betätigungsorgan einwirkt.

Anwand der Zeichnung, die ein Ausführungsbeispiel darstellt sei die Erfindung näher beschrieben.

Es zeigen:

Fig. 1 eine schematische Seitenansicht eines Badewannenliftes mit in Soll-Hochlage befindlicher Hubplatte,

Fig. 2 eine Draufsicht auf den Badewannenlift gemäß Fig. 1,

Fig. 3 einen Längsschnitt in geringem Abstand unter der Hubplatte in größerem Maßstab,

Fig. 4 eine Schnittansicht durch das in Fig. 3 schematisch gezeigte Absperrventil, und

Fig. 5 einen Schnitt ähnlich Fig. 3 jedoch durch eine abgewandelte Ausführungsform.

Der allgemein mit 10 bezeichnete Badewannenlift hat einen Bodenrahmen 12, zwei an diesem angeordnete Führungsgestelle 14, 16 und eine von diesen abgestützte Hubplatte 18. Jedes Führungsgestell 14 bzw. 16 besteht aus zwei Scherenarmpaaren 20, 22, von denen die beiden Scherenarme 20 an den unteren Enden in Gelenken des Bodenrahmens und die oberen Enden als in Schienen 24 mit C-förmigem Querschnitt verschiebbare Schiebelager 26 ausgeführt sind. Die beiden anderen Scherenarme 22 jedes Führungsgestells 14 sind oben an der Hubplatte 18 schwenkbar jedoch nicht verschiebbar gelagert, während die unteren Enden Schiebelager 30 aufweisen, die in am Bodenrahmen 12 befestigten Schienen 32 verschiebbar sind. Die beiden Scherenarme 20, 22 jedes Führungsgestells 14 bzw. 16 sind in der

Mitte durch ein Gelenk 34 miteinander verbunden. Die beiden Gelenke 34 können durch eine Stange 36 verbunden sein, wie Fig.2 veranschaulicht. Die unteren Schiebelager 30 des Führungsgestells 14 sind mit den entsprechenden unteren Schiebelagern 30 des anderen Führungsgestells 16 über je eine Strebe 64 gelenkig verbunden, sodaß eine Getriebekopplung erreicht wird, die eine Vertikalverstellung der Hubplatte 18 gewährleistet.

Zwischen dem Bodenrahmen 12 und der Hubplatte 18 befinden sich zwei jeweils als Druckwasserschläuche ausgebildete Hubeinrichtungen 38, 40 die jeweils einem der Führungsgestelle 14, 16 zugeordnet sind. Es werden Gewebeschläuche verwendet, die einen Durchmesser von etwa 80 mm bis 100 mm haben. Die Enden der Schläuche sind abgedichtet und an dem Bodenrahmen 12 und an der Hubplatte 18 festgeschraubt. Verbindungsschläuche 42, die von einem Handsteuerventil 44 ausgehen und parallel geschaltet sind, münden jeweils in die oberen Enden der Hubeinrichtungen 38, 40.

An der Unterseite der Hubplatte 18 ist ein Absperrventil 46 befestigt, das an einen Druckwasserversorgungsschlauch 48 angeschlossen ist. Der Ausgang des Absperrventils 46 ist über einen
Verbindungsschlauch 50 an das Handsteuerventil 44 angeschlossen. Vom Handsteuerventil 44 führt ein Entleerungsschlauch 49 (Fig. 5) z. B. in ein benachbartes Waschbecken.

Die Schienen 24 für die oberen Schiebelager 26 weisen im Bereich des Führungsgestells 16 quer ausgerichtete Längsschlitze oder Langlöcher 52 auf, in die nach außen abgekröpfte und miteinander guer ausgerichtete Arme einer Uförmigen Querstange 56 eingreifen, deren jochförmige Abkröpfung 58 das Betätigungsorgan 60 eines Ventilkörpers 74 des Absperrventils 46 durchsetzt. In den Schienen 24 ist jeweils ein Schiebestück 62 eingesetzt, dessen Länge die Soll-Hochlage der Hubplatte 18 bestimmt. Diese Schiebestücke sind auf Länge geschnittene Kunststoffkörper, von denen auch mehrere hintereinander angeordnet werden können und zwar so, daß die Schiebelager 26 die Schiebestücke 62 gegen die Arme 54 schieben, unmittelbar bevor die gewünschte Soll-Hochlage der Hubplatte 18 erreicht ist. Fahren nämlich die oberen Schiebelager 26 beim weiteren Heben der Hubplatte nur um wenige mm nach links (Fig. 1 und 2) so wird die Querstange 56 um diese Strecke mit nach links bewegt und das Betätigungsorgan 60 in das Absperrventil 46 hineingeschoben, bis dieses geschlossen ist. In diesem Moment ist die Druckwasserzufuhr

Der Steuerhebel 51 des Handsteuerventils 44 hat drei Stellungen. In der mittleren Neutral- oder Absperrstellung gemäß Fig. 1 sind die

beendet. Die Bewegungsstrecke der Querstange

unterbrochen und der Hub der Hubplatte 18

56 ist hier gleich dem Verstellhub des

Betätigungsorgans 60.

10

15

20

25

30

35

40

45

50

55

60

5

Hubeinrichtungen 38, 40 abgesperrt. In dieser Stellung kann die Hubplatte in jeder gewünschten Höhenlage arretiert werden. In der einen Schwenkstellung sind die Hubeinrichtungen 38, 40 mit dem Entleerungsschlauch 49 verbunden, sodaß sich die Hubplatte 18 absenkt. In der anderen Schwenkstellung des Steuerhebels 51 werden die Hubeinrichtungen mit dem Druckwasserversorgungsschlauch 48 über das offene Absperrventil 46 verbunden, sodaß Wasser einströmen kann, jedoch gerade mit einem solchen Druck, der der jeweiligen Belastung der Hubplatte 18 entspricht.

Fig. 4 veranschaulicht das Absperrventil 46 im Schnitt. In einem Gehäuse 66 ist eine Durchgangsbohrung 68 mit einer Engstelle 70 vorgesehen, die einen Ventilsitz bildet. In die Durchgangsbohrung 68 mündet eine Querbohrung 72 zum Anschluß des Druckwasserversorgungsschlauches 48. In das linksseitige Ende der Durchgangsbohrung 68 stromab des Ventilsitzes 70 ist der Verbindungsschlauch 50 angeschlossen. In der Durchgangsbohrung 68 ist ein Ventilschließkörper 74 des Betätigungsorgans 60 in Längsrichtung verschiebbar gelagert. Am Vorderende trägt der Ventilschließkörper 74 eine Gummischeibe 76. Der Ventilschließkörper 74 hat eine Ringnut 78, in die ein elastischer Ring 80 eingreift, dessen Außenumfang von einer Schraubhülse 52 abdichtend gegen die rechtsseitige Stirnfläche des Gehäuses 66 gedrückt wird. Der Ventilschließkörper 74 ist mit dem aus dem Gehäuse 66 herausragenden Betätigungsorgan 60 einstückig ausgebildet, dessen Ende einen stirnseitig offenen Querschlitz 84 aufweist, in den die Abkröpfung 58 der Uförmigen Querstange 56 eingreift.

Im Boden des durchgehenden Querschlitzes 84 ist eine Justiereinrichtung 86 in Form einer koaxialen Schraube vorgesehen, die eine Feinjustierung der Soll-Hochlage der Hubplatte 18 gestattet. Der Ventilschließkörper 74 mit Betätigungsorgan 60, die Querstange 56 und die Schiebestücke 62 werden durch den elastischen Ring 80 in den in Fig. 4 dargestellten Positionen gehälten, in welcher das Absperrventil 46 offen ist. In dieser Stellung hat der Ring 80 eine ebene Form. Drücken nun die Schiebestücke 62 die Querstange 56 auf das Betätigungsorgan 60, so verschiebt sich dieses um einige Millimeter, bis die Gummischeibe 76 des Ventilschließkörpers 74 gegen den Ventilsitz 70 drückt. Der Ring 80 verformt sich dabei elastisch und nimmt eine konische Form mit Rückstellwirkung an. Wird nun die Hubplatte 18 stärker belastet oder wird das Handsteuerventil 44 in die Senkstellung verstellt, so bewegt sich der Ventilschließkörper 74 aufgrund der durch den elastischen Ring 80 bewirkten Vorspannung wieder in die Offenstellung (Fig.4).

Fig. 5 zeigt eine Abwandlung bei der das Absperrventil 46' in das Handsteuerventil 44 integriert ist. Der

Druckwasserversorgungsschlauch 48 mündet direkt im Handsteuerventil 44. Ein Verbindungsschlauch 50 entfällt. Die Querstange 56' besteht hier aus einem kurzen Stab, der in einem Schiebestück 88 befestigt ist, das in der im Schnitt C-förmigen Schiene 24 verschiebbar ist. Die Querstange 56' greift in den Querschlitz des Betätigungsorgans 60 ein. Das Schiebestück 88 trägt eine Längsstange 62', deren Ende ein Schraubgewinde 90 aufweist, mittels dessen es in einem weiteren Schiebestück 92 eingeschraubt ist, das ebenfalls in der Schiene 24 verschiebbar geführt ist. Die Anordnung 56', 88, 62', 92 stellt einen Abstandshalter dar, der dem Schiebestück 62 in der Funktion entspricht, dessen Länge jedoch stufenlos einstellbar ist. Zur Verstellung wird die Anordnung 56', 88, 62', 92 aus der Schiene herausgenommen.

6

Patentansprüche

1. Badewannenlift für Behinderte, mit einem Bodenrahmen (12), mindestens einem, an diesem angebrachten Führungsgestell (14, 16), einer von diesem abgestützten Hubplatte (18), einer zwischen dieser und dem Bodenrahmen (12) angeordneten, mit Druckwasser betätigbaren Hubeinrichtung (38; 40) und einem Handsteuerventil (44) zum Füllen bzw. Entleeren der Hubeinrichtung (38; 40), wobei das Führungsgestell (14;16) zwei in Querrichtung der Badewanne nebeneinander im Abstand angeordnete Scherenarmpaare (20, 22) aufweist und die Scherenarme jedes Armpaares (20, 22) in der Mitte miteinander schwenkbar verbunden sind und wobei jeweils der eine Scherenarm (20) eines Armpaares (20, 22) mit einem Ende in einem festen Schwenklager am Bodenrahmen (12) gelagert ist und an seinem anderen Ende ein in einer an der Hubplatte (18) befestigten Schiene (24) verschiebbares Schiebelager (26) aufweist und wobei jeweils der andere Scherenarm (22) eines Armpaares (20, 22) mit einem Ende in einem festen Schwenklager an der Hubplatte (18) gelagert ist und an seinem anderen Ende ein in einer am Bodenrahmen (12) befestigten Schiene (32) verschiebbares Schiebelager (30) aufweist, dadurch gekennzeichnet, daß in mindestens einer Schiene (24) der Hubplatte (18) in der Bewegungsbahn des Schiebelagers (26) ein Schiebestück (62) verschiebbar aufgenommen ist, daß eine Querstange (56) in die Bewegungsbahn des Schiebestückes (62) eingreift und von diesem mitbewegbar ist, daß das Schiebestück (62) nahe der, einer bestimmten Hochlage der Hubplatte (18) entsprechenden Endstellung des Schiebelagers (26) angeordnet und für eine Mitnahme durch das Schiebelager (26) während dessen letzten

Bewegungsabschnittes eingerichtet ist und daß

die Querstange (56) von dem Schiebelager (26) in

eine Endstellung bewegbar ist, in welcher sie auf

ein Betätigungsorgan (60) eines separaten in der

10

15

20

25

30

35

40

45

50

supply.

zum Handsteuerventil (44) führenden Druckwasserleitung eingeschalteten oder eines in das Handsteuerventil (44) integrierten Absperrventils (46) einwirkt, um den Druckwasserzulauf zu sperren.

- 2. Badewannenlift nach Anspruch 1, dadurch gekennzeichnet, daß die wirksame Länge des Schiebestückes (62) zwischen seiner mit dem Schiebelager (26) zusammenwirkenden Endfläche und der Querstange (56) einstellbar ist.
- 3. Badewannenlift nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Bewegungshub der Querstange (56) gleich demjenigen des Betätigungsorgans (60) ist.
- 4. Badewannenlift nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Querstange (56) ein Langloch (52) der Schiene (24) verschiebbar durchsetzt und bei Anlage an einem Ende des Langloches (52) einen mechanischen Anschlag für das Schiebestück (62) bildet.
- 5. Badewannenlift nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das äußere Ende des Betätigungsorgans (60) einen Querschlitz (84) aufweist, der von der Querstange (56) durchsetzt ist und daß das innere Ende des Betätigungsorgans (60) den Ventilschließkörper (74, 76) trägt.
- 6. Badewannenlift nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß ein Ventilschließkörper (74, 76) des separaten Absperrventils (46) eine Ringnut (78) aufweist, in die ein elastischer Ring (80) eingreift, dessen Außenumfang in einem Gehäuse (66) des Absperrventils (46) festgeklemmt ist und daß der elastische Ring (80) in der Offenstellung des Absperrventils (46) eine im wesentlichen ebene Form und in der Schließstellung eine angenähert konische Form mit Rückstellwirkung einnimmt.
- 7. Badewannenlift nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zwischen dem Betätigungsorgan (60) des Absperrventils (46) und der Querstange (56) eine in Verstellrichtung wirksame Justiereinrichtung (86) vorgesehen ist.
- 8. Badewannenlift nach Ansprüchen 5 und 7, dadurch gekennzeichnet, daß in der Bodenfläche des Querschlitzes (84) des Betätigungsorgans (60) eine koaxiale Schraube (86) verschraubbar angeordnet ist.
- 9. Badewannenlift nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Querstange (56) mit ihren beiden Enden in die Bewegungsbahnen von in beiden Schienen (24) der Hubplatte (18) angeordneten Schiebestücken (62) eingreift.
- 10. Badewannenlift nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Querstange (56) eine Abkröpfung (58) aufweist, die in ihrer Endstellung auf das Betätigungsorgan (60) einwirkt.

Claims

1. An elevator for disabled persons, comprising a a floor frame (12), at least one guiding linkage (14, 16) attached to the floor frame, a lifting plate (18) supported by said guiding linkage (14, 16), a lifting apparatus (38; 40), which is disposed between said lifting plate (18) and the floor frame (12) and adapted to be operated with water under pressure, and a manually operable control valve (44) for filling and draining the lifting apparatus (38; 40), wherein the guiding linkage (14; 16) comprises two juxtaposed, spaced apart pairs (20, 22) of tong levers, the tong levers of each pair (20, 22) are pivotally interconnected at their center and one tong lever (20) of one pair (20, 22) of tong levers is provided at one end with a fixed swivel bearing, which is connected to the floor frame (12) and at the other end with a slide bearing (26), which is slidable along a rail (24) fastened at the lifting plate (18) and wherein the other tong lever (22) of said one pair (20, 22) of tong levers is provided at one end with a fixed swivel bearing, which is connected to the lifting plate (18) and at the other end with a slide bearing (30), which is slidable along a rail (32) fastened at the floor frame (12), characterized in that a slide piece (62) is slidably mounted in at least one rail (24) of the lifting plate (18) in the moving path of the slide bearing (26), that a cross bar (56) engages into the moving path of the slide piece (62) and is movable in unison therewith, that the slide piece (62) is arranged adjacent to the end position of the slide bearing (26) corresponding to a predetermined elevated position of the lifting plate (18) and is provided to be moved in unison with the slide bearing (26) during the last moving portion thereof, and that the cross bar (56) is movable by the slide bearing (26) into an end position in which it operates an operating element (60) of a separate shut off valve (46) inserted into the pressure water conduit leading to the manually operable control valve (44) or operates an operating element (60) of a shutoff valve which is an integrated component of the manually operable control valve in order to shut off the pressure water

- 2. An elevator according to claim 1, characterized in that the effective length of the slide piece (62) between its end face engaging with the slide bearing (26) and the cross bar (56) is adjustable.
- 3. An elevator according to claim 1 or 2, 55 characterized in that the stroke of the cross bar (56) is as large as that of the operating element (60).
 - 4. An elevator according to one of the claims 1 to 3, characterized in that the cross bar (56) displaceably extends through a slot (52) of the rail (24) and forms a mechanical stop for the slide piece (62) when it contacts one end of the slot (52).
 - 5. An elevator according to one of the claims 1 to 4, characterized in that the outer end of the

65

10

15

20

25

30

35

40

45

50

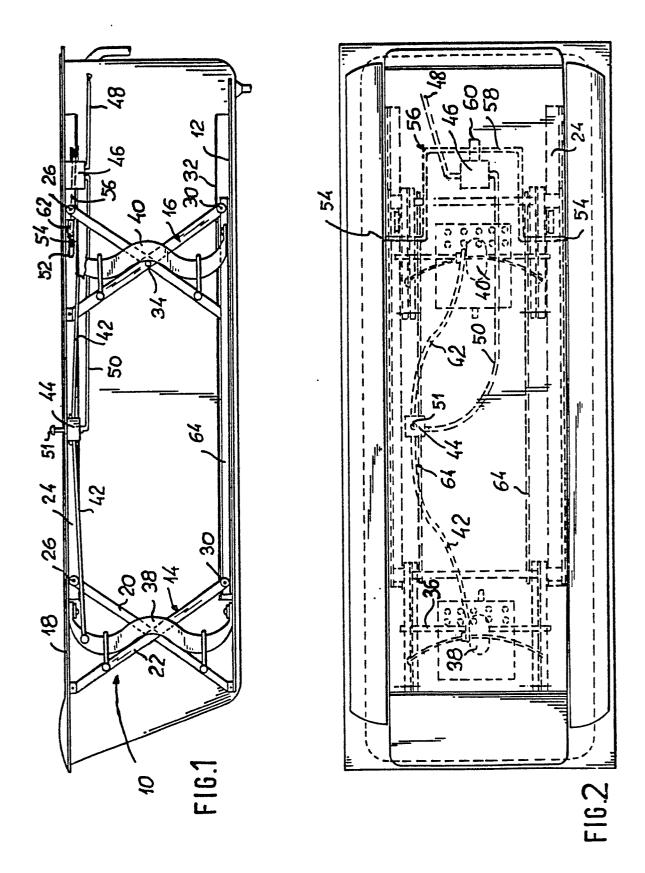
55

60

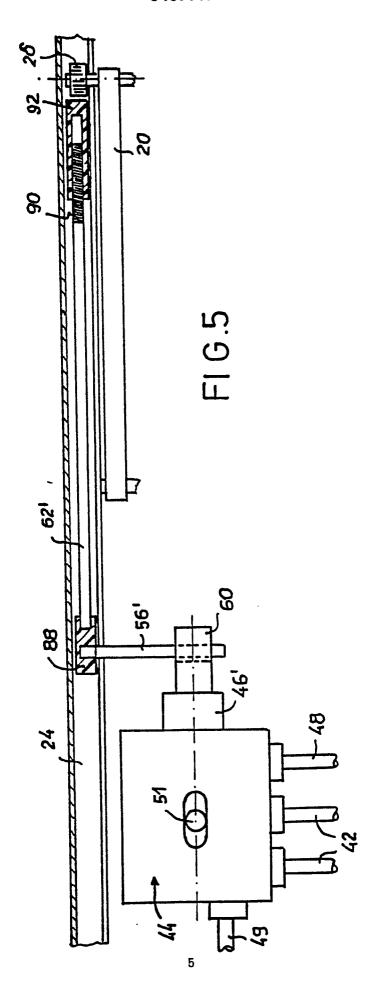
operating element (60) is provided with a transverse slot (84) passed by the cross bar (56) and that the inner end of the operating element (60) supports the valve closing body (74, 76).

- 6. An elevator according to one of the claims 1 to 5, characterized in that a valve closing body (74, 76) of the separate shutoff valve (46) is provided with an annular groove (78) into which engages a resilient ring (80), which at its outside periphery is clamped in a housing (66) of the shutoff valve (46), and that the resilient ring (80) is substantially planar when the shutoff valve (46) is in its open position and is substantially conical and exerts a restoring force when the shutoff valve is in its closed position.
- 7. An elevator according to one of the claims 1 to 6, characterized in that an adjusting device (86) is provided between the operating element (60) of the shutoff valve (46) and the cross bar (56) and is effective in the direction of movement thereof.
- 8. An elevator according to claims 5 and 7, characterized in that a coaxial screw (86) is screwably provided in the bottom surface of the transverse slot (84) of the operating element (60).
- 9. An elevator according to one of the claims 1 to 8, characterized in that the cross bar (56) with both its ends engages into the moving paths of slide pieces (62) arranged in both rails (24) of the lifting plate (18).
- 10. An elevator according to one of the claims 1 to 9, characterized in that the cross bar (56) is provided with an offset portion (58) which in its end position actuates the operating element (60).

Revendications


1. Elévateur de baignoire destiné à des handicapés et comprenant un châssis de fond (12), au moins une monture de guidage (14, 16) disposée sur ledit châssis, une plaque de levage (18) soutenue par ladite monture, un dispositif de levage se situant entre ladite plaque et la châssis de fond (12) et à mettra en action par de l'eau sous pression, ce dispositif étant désigné par le référence numérique (38, 40), et une vanne de commande manuelle (44) pour ramplir ou vider la dispositif de levage (38, 40), la monture de guidage (14, 18) présentant deux paires de bras de ciseaux (20, 22) disposées côte à côte à une certaine distance dans le sens transversal de la baignoire et les bras de ciseaux de chaque paire (20, 22) étant reliés au milieu afin de pivoter l'un sur l'autre; l'un des bras de ciseaux (20) d'une paire (20, 22) étant monté, par une extrémité, dans un palier orientable fixe du châssis de fond (12) et présentant, à son autre extrémité, un palier coulissant (26) déplaçable dans un rail (24) fixé sur la plaque da levage (18), l'autre bras de ciseau (22) d'une paire (20, 22) etant monté, par une extrémité, dans un palier orientable fixe de la plaque da levage (18) et présentant, à son autre extrémité, un palier coulissant (30) déplaçable

dans un rail (32) fixé sur la châssis de fond (12), caractérisé en ce qu'un coulisseau (62) est disposé, à l'état déplaçable, dans la voie da déplacement du palier coulissant (26), dans au moins un rail (24) de la plaque de levage (18); en ce qu'una tige transversale (56) s'engage dans la voie de déplacement du coulissaau (62) et est éloignable de celle-ci; en ca que la coulisseau (62) est disposé à proximité de la position finale du palier coulissant (26), position corraspondant à celle déterminée de la plaque de levage (18), et est réalisé pour être emmené par le palier coulissant (26) pendant la dernière section de déplacamant de celui-ci; et en ce que la tige transversale (56) est déplaçable par le palier coulissant (26) dans une position finale où elle agit sur l'organe de mise en action (60) d'une vanne d'arrêt séparée (46), incorporée au conduit d'eau sous pression menant à la vanne de commande manuelle (44), où d'une vanne d'arrêt (46') intégrée à ladite vanne de commande manuelle (44), en vue de bloquer l'arrivée d'eau sous pression.


- 2. Elévateur de baignoire selon la revendication 1, caractérisé en ce que la longueur efficace du coulissaau (62) entre sa surface finale coopérant avec le palier coulissant (26) et la tige transversale (56) est réglable.
- 3. Elévateur de baignoire selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la voie de déplacement de la tige transversale (56) est égale à celle de l'organe de mise en action (60).
- 4. Elévateur de baignoire selon l'une quelconque des revandications 1 à 3, caractérisé en ce que la tige transvarsale (56) traverse par déplacement un trou oblong (52) du rail (24) et forme une butée mécanique pour le coulisseau (62) en s'appliquant sur une extrémité du trou oblong (52).
- 8. Elévateur de baignoire selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'extrémité extérieure de l'organe de mise en action (60) comprend une fente transversale (84) traversée par une tige transversale (56) et en ce que l'extrémité intérieure de l'organe de mise en action (60) est pourvu du corps de fermeture de vanne (74, 76).
- 8. Elévateur de baignoire selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'un corps de fermeture de vanne (74, 76) de la vanne d'arrêt séparée (46) présente une rainure annulaire (78) où s'engage une bague élastique (80) dont la périphérie extérieure est bloquée dans un corps (66) de la vanne d'arrêt (46) et en ce que la bague élastique (80) adopte, dans la position d'ouverture de la vanne d'arrêt (46), une forme en substance plane et, dans la position de fermeture, une forme approximativemant conique avec action de rappel.
- 7. Elévateur de baignoire selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'un dispositif de réglage (86) actif dans le sens d'un déplacement est prévu entre l'organe

de mise en action (60) de la vanne d'arrêt (46) et la tige transversale (56).

- 8. Elévateur de baignoire selon l'une quelconque des revandications 5 et 7, caractérisé en ce qu'une vis coaxiale (88) est disposée par vissage dans la surface de fond de la fente transversale (84) de l'organe de mise en action (60).
- 9. Elévateur de baignoire selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la tige transversale (56) s'engage, par ses deux extrémités, dans les voies de déplacement des coulisseaux (62) disposés dans les deux rails (24) de la plaque de levage (18).
- 10. Elévateur de baignoire selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la tige transversale (56) comprend un coude (58) agissant, dans sa position finale, sur l'organe de mise en action (60).

