

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2014341928 B2

(54) Title
A universal donor system for gene targeting

(51) International Patent Classification(s)
C12N 5/00 (2006.01) **C12N 5/04** (2006.01)
A01H 1/00 (2006.01) **C12N 15/82** (2006.01)
C07H 21/04 (2006.01) **C12N 15/87** (2006.01)

(21) Application No: **2014341928** (22) Date of Filing: **2014.11.03**

(87) WIPO No: **WO15/066637**

(30) Priority Data

(31) Number (32) Date (33) Country
61/899,543 **2013.11.04** **US**

(43) Publication Date: **2015.05.07**
(44) Accepted Journal Date: **2017.11.30**

(71) Applicant(s)
Dow AgroSciences LLC

(72) Inventor(s)
Sastry-Dent, Lakshmi;Evans, Steven L.;Blue, Ryan C.;Cao, Zehui

(74) Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 43 101 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
ZHANG, Y., et al., 'Transcription activator-like effector nucleases enable effective plant genome engineering', Plant Physiology, 2013, vol. 161, pages 20-27
US 2010/0199389 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/066637 A1

(43) International Publication Date

7 May 2015 (07.05.2015)

WIPO | PCT

(51) International Patent Classification:

C12N 5/00 (2006.01) *C12N 15/82* (2006.01)
C12N 5/04 (2006.01) *C07H 21/04* (2006.01)
C12N 15/87 (2006.01) *A01H 1/00* (2006.01)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2014/063732

(22) International Filing Date:

3 November 2014 (03.11.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/899,543 4 November 2013 (04.11.2013) US

(71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, Indiana 46268 (US).

(72) Inventors: SASTRY-DENT, Lakshmi; 2239 Stone Manor Court, Avon, Indiana 46123 (US). EVANS, Steven L.; 4654 Rockcress Court, Zionsville, Indiana 46077 (US). BLUE, Ryan C.; 10080 Glenn Abbey Lane, Fishers, Indiana 46037 (US). CAO, Zehui; 13719 Stanford Drive, Westfield, Indiana 46074 (US).

(74) Agents: ADDISON, Bradford G. et al.; Barnes & Thornburg LLP, 11 South Meridian Street, Indianapolis, Indiana 46204 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: A UNIVERSAL DONOR SYSTEM FOR GENE TARGETING

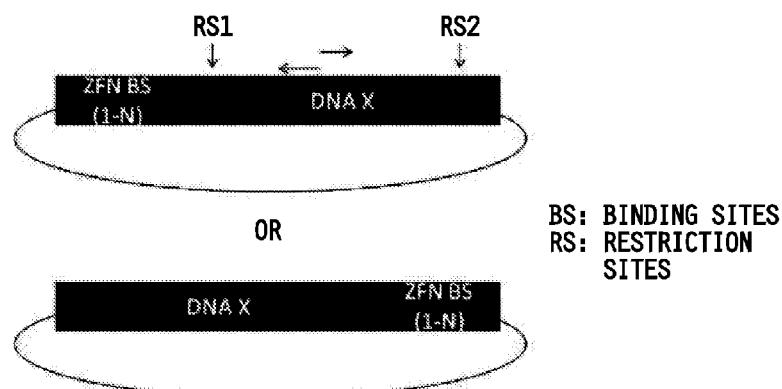


FIG. 11

(57) Abstract: A universal donor polynucleotide is described that can be inserted at targeted locations in plant genomes to facilitate rapid and high throughput integration of a donor molecule within a specific genomic location.

2014341928
22 Sep 2017

1001937559

A UNIVERSAL DONOR SYSTEM FOR GENE TARGETING

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit, under 35 U.S.C. §119(e), to U.S. Provisional Patent Application No. 61/899,543, filed on November 4, 2013, the contents of which are incorporated by reference in their entirety into the present application.

REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

[0002] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named "74435_ST25.txt", created on November 3, 2014, and having a size of 100 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0003] The disclosure relates to the field of plant precision transformation, gene targeting, targeted genomic integration and protein expression in plants. In an embodiment, the disclosure describes a universal donor polynucleotide molecule that can be inserted at targeted locations in plant genomes and assayed in a high throughput and efficient manner.

[0003A] Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment, or any form of suggestion, that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person skilled in the art.

[0003B] As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude other additives, components, integers or steps.

BACKGROUND OF THE INVENTION

[0004] The introduction of agronomically important traits into plants can be used to improve nutritional value quality, increase yield, provide pest or disease resistance, increase drought and stress tolerance, improve horticultural qualities (e.g., pigmentation and flowering), impart herbicide resistance, enable the production of industrially useful compounds and/or materials from the plant, and/or enabling the production of pharmaceuticals. Transgenic plants are

2014341928

22 Sep 2017

1001937559

typically generated by Agrobacterium-mediated transformation technology. Other transformation technologies such as PEG-mediated DNA uptake in protoplasts, microprojectile bombardment and silicon whisker-mediated transformation can also be used to produce transgenic plants. The introduction of cloned genes into plant cells and recovery of stable fertile transgenic plants can be used to make such modifications of a plant and has allowed the genetic engineering of plants for crop improvement. Using these methods, foreign DNA is randomly integrated into the nuclear or

plastid DNA of the eukaryotic plant cell, followed by isolation of cells containing the foreign DNA integrated into the cell's DNA, to produce stably transformed plant cells.

[0005] The plant transformation methods described above result in the integration of transgenes within random locations of the plant genome and in varying copy numbers. Frequently, the transgenes are integrated as repeats, either of the whole transgene or of parts thereof. Complex integration patterns may influence the expression level of the transgenes (e.g., by destruction of the transcribed RNA through posttranscriptional gene silencing mechanisms, or by inducing methylation of the introduced DNA), thereby downregulating transcription of the transgene. Furthermore, the expression level of the transgene can be influenced by the location of the integration (e.g., position effect) within the plant genome. The combination of these factors results in a wide variation in the level of expression of the transgenes or foreign DNA of interest among different transgenic plant cell and plant lines. Moreover, the integration of the foreign DNA of interest may have a disruptive effect on the region of the genome where the integration occurs and can influence or disturb the normal function of that target region, thereby leading to often undesirable side-effects.

[0006] The foregoing necessitate that, whenever the effect of introduction of a particular foreign DNA into a plant is investigated, a large number of transgenic plant lines are generated and analyzed in order to obtain significant results. Likewise, in the generation of transgenic crop plants, where a particular DNA of interest is introduced in plants to provide the transgenic plant with a desired phenotype, a large population of independently created transgenic plant lines is created to allow the selection of those plant lines with optimal expression of the transgenes, and with minimal or no side-effects on the overall phenotype of the transgenic plant. Particularly in this field, more directed transgenic approaches are desired, for example, in view of the burdensome regulatory requirements and high costs associated with the repeated filed trials required for the elimination of the unwanted transgenic events. Furthermore, it will be clear that the possibility of targeted DNA insertion would also be beneficial in the process of transgene stacking.

[0007] Several methods have been developed in an effort to control transgene insertion in plants. See, e.g., Kumar and Fladung (2001) Trends Plant Sci. 6:155-9. These methods rely on homologous recombination-based transgene integration. This strategy has been successfully applied in prokaryotes and lower eukaryotes. Paszkowski *et al.* (1988) EMBO J. 7:4021-6. However, for plants, until recently the predominant mechanism for transgene integration is based on illegitimate recombination which involves little homology between the recombining DNA strands. A major challenge in this area is therefore the detection of the rare homologous

recombination events, which are masked by the far more efficient integration of the introduced foreign DNA *via* illegitimate recombination.

[0008] Custom-designed zinc finger nucleases (ZFNs) are proteins designed to deliver a targeted site-specific double-strand break in DNA, with subsequent recombination of the cleaved ends. ZFNs combine the non-specific cleavage domain of a restriction endonuclease, such as for example *FokI*, with zinc finger DNA-binding proteins. See, e.g., Huang *et al.* (1996) J. Protein Chem. 15:481-9; Kim *et al.* (1997) Proc. Natl. Acad. Sci. USA 94:3616-20; Kim *et al.* (1996) Proc. Natl. Acad. Sci. USA 93:1156-60; Kim *et al.* (1994) Proc Natl. Acad. Sci. USA 91:883-7; Kim *et al.* (1997b) Proc. Natl. Acad. Sci. USA 94:12875-9; Kim *et al.* (1997c) Gene 203:43-9; Kim *et al.* (1998) Biol. Chem. 379:489-95; Nahon and Raveh (1998) Nucleic Acids Res. 26:1233-9; Smith *et al.* (1999) Nucleic Acids Res. 27:674-81. Individual zinc finger motifs can be designed to target and bind to a large range of DNA sites. Canonical Cys₂His₂ as well as non-canonical Cys₃His zinc finger proteins bind DNA by inserting an α -helix into the major groove of the double helix. Recognition of DNA by zinc fingers is modular: each finger contacts primarily three consecutive base pairs in the target, and a few key residues in the protein mediate recognition. It has been shown that *FokI* restriction endonuclease must dimerize *via* the nuclease domain in order to cleave DNA, inducing a double-strand break. Similarly, ZFNs also require dimerization of the nuclease domain in order to cut DNA. Mani *et al.* (2005) Biochem. Biophys. Res. Commun. 334:1191-7; Smith *et al.* (2000) Nucleic Acids Res. 28:3361-9. Dimerization of the ZFN is facilitated by two adjacent, oppositely oriented binding sites. *id.*

[0009] The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification.

BRIEF SUMMARY OF THE INVENTION

[0010] In a preferred embodiment, the disclosure relates to a polynucleotide donor cassette comprising a site specific nuclease binding domain, an analytical domain, and a plasmid domain. In a further embodiment, the polynucleotide donor cassette comprises a length of less than 3 Kbp. Further embodiments include a transgenic cell comprising the polynucleotide donor cassette. In some aspects, the transgenic cell is a transgenic plant cell. In another embodiment, the disclosure relates to a transgenic plant comprising the transgenic plant cell. Further aspects include the transgenic plant, wherein the plant is a monocotyledonous plant or a dicotyledonous plant. In other embodiments the monocotyledonous plant is selected from the group consisting of a maize

plant, a wheat plant, and a rice plant. In yet other embodiments the dicotyledonous plant is selected from the group consisting of a soybean plant, a cotton plant, and a canola plant. Still further the disclosure relates to a transgenic seed produced from the transgenic plant.

[0011] In yet another embodiment the subject disclosure relates to the polynucleotide donor cassette, wherein the polynucleotide donor cassette is selected from the group consisting of a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:132, a polynucleotide sequence with 90% sequence identity to SEQ ID NO:133, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:134, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:135, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:136, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:137, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:138, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:139, a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:140 and a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:141.

[0012] In further embodiments, the polynucleotide donor cassette is comprised of a site specific nuclease binding domain that is made up of one or more site specific nuclease binding sequences. In an aspect, the site specific nuclease binding domain comprising one or more site specific nuclease binding sequences is bound by a zinc finger binding protein, a meganuclease binding protein, a CRISPR binding protein, or a TALEN binding protein.

[0013] In other embodiments, the polynucleotide donor cassette comprises an analytical domain selected from the group consisting of a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO: 142 and a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:143. In some aspects the analytical domain comprises one or more restriction enzyme sequences. In other aspects the analytical domain comprises a guanine and cytosine base pair percentage of 40 to 60%. In further aspects, the analytical domain comprises a polynucleotide that does not contain a plurality of repetitive sequences, wherein the repetitive sequence is at least 9 Bp in length. In additional aspects, the analytical domain comprises a polynucleotide that does not contain a series of identical base pair sequences greater than 9 Bp in length. In an aspect, the analytical domain comprises a polynucleotide with a secondary structure of more than -19 kcal/mol free energy (ΔG). In various other aspects, the analytical domain comprises one or more primer binding sequences.

[0014] In an embodiment, the polynucleotide donor cassette comprises one or more homology arm sequences. In other aspects the one or more homology arm sequences are between

50 and 100 base pairs in length. In another embodiment, the analytical domain does not encode a peptide. In yet another embodiment, the analytical domain does encode a peptide. In an aspect, the analytical domain comprises a gene expression cassette comprising a transgene. In a further aspect, the gene expression cassette comprises a promoter. In yet another aspect, the transgene comprises a reporter gene. In an additional aspect, the reporter gene is selected from the group consisting of a *yfp* gene, a *gus* gene, a *rfp* gene, a *gfp* gene, a kanamycin resistance gene, an *aad-1* gene, an *aad-12* gene, a *pat* gene, and a glyphosate tolerant gene. In an additional embodiment, the plasmid domain comprises a pUC19 plasmid. In an aspect, the plasmid domain comprises a high-copy number origin of replication. In a further aspect, the high-copy number origin of replication comprises a *cole1* origin of replication. In an additional aspect, the plasmid domain comprises a selectable marker. In a further aspect, the selectable marker is selected from the group consisting of a kanamycin selectable marker, an ampicillin selectable marker, a spectinomycin selectable marker, a chloramphenicol selectable marker, and a rifampicin selectable marker.

[0015] In an embodiment the subject disclosure relates to a method for targeted integration of a polynucleotide donor cassette within the genome of a plant cell. In an aspect the , the method relates to expressing a site specific DNA binding nuclease, comprising at least one DNA-binding domain and at least one nuclease domain, wherein the at least one DNA-binding domain binds to a target site within the genome of the plant cell; contacting the plant cell with a polynucleotide donor cassette; cleaving the target site within the genome of the plant cell with the site specific DNA binding nuclease; and, integrating the polynucleotide donor cassette into the target site within the genome of the plant cell. In a further aspect, the at least one DNA-binding domain is selected from the group consisting of a zinc finger binding domain, a meganuclease binding domain, a TALEN binding domain, a meganuclease, and a CRISPR binding domain. In another aspect, the nuclease domain is from a Type IIS restriction endonuclease. In another aspect, the Type IIS restriction endonuclease is selected from the group consisting of FokI and StsI. In an additional aspect, the polynucleotide donor cassette expresses a polypeptide. In yet another aspect, the polynucleotide donor cassette comprises a non-coding nucleic acid sequence. In an aspect, the polynucleotide donor cassette comprises one or more zinc finger binding sequences. In another aspect, the polynucleotide donor cassette comprises one or more primer binding sequences. In an additional aspect, the integrating of the polynucleotide donor cassette occurs via a homology directed repair mechanism. In an additional aspect, the integrating of the polynucleotide donor cassette occurs via a non-homologous end joining directed repair mechanism. In one embodiment the plant cell selected for integration of the polynucleotide donor cassette is a monocotyledonous

or dicotyledonous plant cell. In one embodiment, the plant cell is a monocotyledonous plant cell selected from the group consisting of a maize plant cell, a wheat plant cell, and a rice plant cell. In one embodiment, the plant cell is a dicotyledonous plant cell selected from the group consisting of a soybean plant cell, a cotton plant cell, and a canola plant cell.

[0016] In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by study of the following descriptions.

BRIEF DESCRIPTION OF THE FIGURES

[0017] Figure 1 illustrates a plasmid map of pDAB111845. The numbered elements (i.e., 5, 7, 8, 9, 10, 11, 12, 15, 16, 25, and 26) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette.

[0018] Figure 2 illustrates a plasmid map of pDAB111846. The numbered elements (i.e., 1, 2, 5, 6, 11, 12, 15, 16, 21, 22, 29 and 30) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette.

[0019] Figure 3 illustrates a plasmid map of pDAB117415. The numbered elements (i.e., ZFN51 and ZFN52) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0020] Figure 4 illustrates a plasmid map of pDAB117416. The numbered elements (i.e., ZFN54 and ZFN53) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a

100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0021] Figure 5 illustrates a plasmid map of pDAB117417. The numbered element (i.e., ZFN55) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0022] Figure 6 illustrates a plasmid map of pDAB117419. The numbered elements (i.e., ZFN59 and ZFN60) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0023] Figure 7 illustrates a plasmid map of pDAB117434. The numbered elements (i.e., ZFN66, ZFN67, ZFN68 and ZFN69) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0024] Figure 8 illustrates a plasmid map of pDAB117418. The numbered elements (i.e., ZFN56, ZFN57, and ZFN58) correspond with zinc finger nuclease binding sequences of

about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0025] Figure 9 illustrates a plasmid map of pDAB117420. The numbered elements (i.e., ZFN61 and ZFN62) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly). Figure 10 illustrates a plasmid map of pDAB117421. The numbered elements (i.e., PPL17 Pair 3, PPL17 Pair 1, and PPL17 Pair2) correspond with zinc finger nuclease binding sequences of about 20 to 35 base pairs in length that are recognized and cleaved by corresponding zinc finger nuclease proteins. These zinc finger binding sequences and the annotated “UZI Sequence” (which is a 100-150 bp template region containing restriction sites and DNA sequences for primer design or coding sequences) comprise the universal donor cassette. Further included in this plasmid design is the “104113 Overlap” which are sequences that share homology to the plasmid vector for high throughput assembly of the universal donor cassettes within a plasmid vector (i.e., via Gibson assembly).

[0026] Figure 11 Representation of the universal donor polynucleotide sequence for integration via non-homologous end joining (NHEJ). Two proposed vectors are provided wherein a DNA of interest (DNA X) comprises one or more (i.e., "1-N") zinc finger binding sites (ZFN BS) at either end of the DNA of interest. Vertical arrows show unique restriction sites and horizontal arrows represent potential PCR primer sites.

[0027] Figure 12 Representation of the universal donor polynucleotide sequence for integration via homologous-directed repair (HDR). A DNA of interest (DNA X) comprising two regions of homologous sequences (HA) flanking the DNA of interest with zinc finger

nuclease binding sites (ZFN) bracketing the DNAX and HA sequences. Vertical arrows show unique restriction sites and horizontal arrows represent potential PCR primer sites.

[0028] Figure 13A-13C Illustrates the constructs used for targeting and validation of the universal donor polynucleotide system integration within the *Zea mays* optimal genomic loci targeting and validation. Fig. 13A) ZFN design space with location of the ZFN pairs as previously shown in pDAB111845 of Figure 5. The ZFN pairs are labeled numerically and correspond with specific ZFN binding sequences that are specifically recognized by ZFN proteins for binding and cleavage. Fig. 13B) Configuration of the ZFN protein expression construct. The ZFN expression construct contains a constitutive plant promoter (Zm Ubi1) which is used to drive expression of the ZFN protein. The ZFN protein contains the nuclear localization sequence (NLS), the zinc finger proteins (ZFP-L and ZFP-R, where L indicates left hand binding ZFN protein and R indicates right hand binding protein), Fok-1 endonuclease (Fok1) and the self-hydrolyzing 2A (2A). Fig. 13C) universal donor polynucleotide for NHEJ mediated targeting of *Zea mays* optimal genomic loci. Z1-Z6 represent ZFN binding sites specific for a *Zea mays* optimal genomic loci target. The number of ZFN sites can vary from 3-6. Vertical arrows show unique restriction sites and horizontal arrows represent potential PCR primer sites. The universal donor polynucleotide system is a short (110 bp) sequence that is common to donors used for integration within *Zea mays* optimal genomic loci.

[0029] Figure 14 illustrates a plasmid map of pDAB8393.

[0030] Figure 15 illustrates the ZFN cleavage activity at *Zea mays* selected genomic loci targets. Cleavage activity is represented as number of sequences with indels (insertions and deletions) at the ZFN cleavage site per 1 million high quality reads.

[0031] Figure 16 illustrates the validation of *Zea mays* selected genomic loci targets using NHEJ based Rapid Targeting Analysis (RTA) method.

[0032] Figure 17 illustrates plasmid constructs transformed into *Zea mays* via random integration that comprise the events used for flanking sequence analysis and transgene expression studies.

DETAILED DESCRIPTION

I. Overview

[0033] The present disclosure provides, in various aspects, polynucleotide donor cassettes comprising a zinc finger nuclease binding domain, an analytical domain, and a plasmid domain. In other aspects, the present disclosure provides methods that provide for the targeted integration of

polynucleotide donor cassettes within the genome of a plant cell. According to the disclosed methods, a site specific DNA binding nuclease, comprising at least one DNA-binding domain and at least one nuclease domain, is expressed such that at least one DNA-binding domain binds to a target site within the genome of the plant cell. In addition, the plant cell is contacted with a polynucleotide donor cassette. Subsequently, the target site within the genome of the plant cell is cleaved with the site specific DNA binding nuclease, and the polynucleotide donor cassette is integrated into the target site within the genome of the plant cell.

II. Terms

[0034] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure relates. In case of conflict, the present application including the definitions will control. Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. All publications, patents and other references mentioned herein are incorporated by reference in their entireties for all purposes as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference, unless only specific sections of patents or patent publications are indicated to be incorporated by reference.

[0035] In order to further clarify this disclosure, the following terms, abbreviations and definitions are provided.

[0036] As used herein, the terms “comprises”, “comprising”, “includes”, “including”, “has”, “having”, “contains”, or “containing”, or any other variation thereof, are intended to be non-exclusive or open-ended. For example, a composition, a mixture, a process, a method, an article, or an apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

[0037] The term “invention” or “present invention” as used herein is a non-limiting term and is not intended to refer to any single embodiment of the particular invention but encompasses all possible embodiments as disclosed in the application.

[0038] As used herein, the term “plant” includes a whole plant and any descendant, cell, tissue, or part of a plant. The term “plant parts” include any part(s) of a plant, including, for

example and without limitation: seed (including mature seed, immature embryo without testa, and immature seed); a plant cutting; a plant cell; a plant cell culture; a plant organ (*e.g.*, pollen, embryos, flowers, fruits, shoots, leaves, roots, stems, and related explants). A plant tissue or plant organ may be a seed, callus, or any other group of plant cells that is organized into a structural or functional unit. A plant cell or tissue culture may be capable of regenerating a plant having the physiological and morphological characteristics of the plant from which the cell or tissue was obtained, and of regenerating a plant having substantially the same genotype as the plant. In contrast, some plant cells are not capable of being regenerated to produce plants. Regenerable cells in a plant cell or tissue culture may be embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, roots, root tips, silk, flowers, kernels, ears, cobs, husks, or stalks.

[0039] Plant parts include harvestable parts and parts useful for propagation of progeny plants. Plant parts useful for propagation include, for example and without limitation: seed; fruit; a cutting; a seedling; a tuber; and a rootstock. A harvestable part of a plant may be any useful part of a plant, including, for example and without limitation: flower; pollen; seedling; tuber; leaf; stem; fruit; seed; and root.

[0040] A plant cell is the structural and physiological unit of the plant. Plant cells, as used herein, includes protoplasts and protoplasts with a partial cell wall. A plant cell may be in the form of an isolated single cell, or an aggregate of cells (*e.g.*, a friable callus and a cultured cell), and may be part of a higher organized unit (*e.g.*, a plant tissue, plant organ, and plant). Thus, a plant cell may be a protoplast, a gamete producing cell, or a cell or collection of cells that can regenerate into a whole plant. As such, a seed, which comprises multiple plant cells and is capable of regenerating into a whole plant, is considered a “plant part” in embodiments herein.

[0041] The term “protoplast”, as used herein, refers to a plant cell that had its cell wall completely or partially removed, with the lipid bilayer membrane thereof naked. Typically, a protoplast is an isolated plant cell without cell walls which has the potency for regeneration into cell culture or a whole plant.

[0042] As used herein, “endogenous sequence” defines the native form of a polynucleotide, gene or polypeptide in its natural location in the organism or in the genome of an organism.

[0043] The term “isolated” as used herein means having been removed from its natural environment.

[0044] The term “purified”, as used herein relates to the isolation of a molecule or compound in a form that is substantially free of contaminants normally associated with the

molecule or compound in a native or natural environment and means having been increased in purity as a result of being separated from other components of the original composition. The term "purified nucleic acid" is used herein to describe a nucleic acid sequence which has been separated from other compounds including, but not limited to polypeptides, lipids and carbohydrates.

[0045] As used herein, the terms "polynucleotide", "nucleic acid", and "nucleic acid molecule" are used interchangeably, and may encompass a singular nucleic acid; plural nucleic acids; a nucleic acid fragment, variant, or derivative thereof; and nucleic acid construct (*e.g.*, messenger RNA (mRNA) and plasmid DNA (pDNA)). A polynucleotide or nucleic acid may contain the nucleotide sequence of a full-length cDNA sequence, or a fragment thereof, including untranslated 5' and/or 3' sequences and coding sequence(s). A polynucleotide or nucleic acid may be comprised of any polyribonucleotide or polydeoxyribonucleotide, which may include unmodified ribonucleotides or deoxyribonucleotides or modified ribonucleotides or deoxyribonucleotides. For example, a polynucleotide or nucleic acid may be comprised of single- and double-stranded DNA; DNA that is a mixture of single- and double-stranded regions; single- and double-stranded RNA; and RNA that is mixture of single- and double-stranded regions. Hybrid molecules comprising DNA and RNA may be single-stranded, double-stranded, or a mixture of single- and double-stranded regions. The foregoing terms also include chemically, enzymatically, and metabolically modified forms of a polynucleotide or nucleic acid.

[0046] It is understood that a specific DNA refers also to the complement thereof, the sequence of which is determined according to the rules of deoxyribonucleotide base-pairing.

[0047] As used herein, the term "gene" refers to a nucleic acid that encodes a functional product (RNA or polypeptide/protein). A gene may include regulatory sequences preceding (5' non-coding sequences) and/or following (3' non-coding sequences) the sequence encoding the functional product.

[0048] As used herein, the term "coding sequence" refers to a nucleic acid sequence that encodes a specific amino acid sequence. A "regulatory sequence" refers to a nucleotide sequence located upstream (*e.g.*, 5' non-coding sequences), within, or downstream (*e.g.*, 3' non-coding sequences) of a coding sequence, which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences include, for example and without limitation: promoters; translation leader sequences; introns; polyadenylation recognition sequences; RNA processing sites; effector binding sites; and stem-loop structures.

[0049] As used herein the term "analytical domain" defines a nucleic acid sequence that contains functional elements that assist in the targeted insertion of nucleic acid sequences. For

example, an analytical domain may contain specifically designed restriction enzyme sites, zinc finger binding sites, engineered landing pads or engineered transgene integration platforms and may or may not comprise gene regulatory elements or an open reading frame. See, for example, U.S. Patent Publication No 20110191899, incorporated herein by reference in its entirety.

[0050] As defined herein a "site specific nuclease binding domain" is a nucleic acid sequence that comprises one or more site specific binding sequences. As used herein a site specific binding sequence is a nucleic acid sequence that binds to a protein in sequence-specific interaction.

[0051] As used herein, the term "polypeptide" includes a singular polypeptide, plural polypeptides, and fragments thereof. This term refers to a molecule comprised of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds). The term "polypeptide" refers to any chain or chains of two or more amino acids, and does not refer to a specific length or size of the product. Accordingly, peptides, dipeptides, tripeptides, oligopeptides, protein, amino acid chain, and any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of "polypeptide", and the foregoing terms are used interchangeably with "polypeptide" herein. A polypeptide may be isolated from a natural biological source or produced by recombinant technology, but a specific polypeptide is not necessarily translated from a specific nucleic acid. A polypeptide may be generated in any appropriate manner, including for example and without limitation, by chemical synthesis.

[0052] In contrast, the term "heterologous" refers to a polynucleotide, gene or polypeptide that is not normally found at its location in the reference (host) organism. For example, a heterologous nucleic acid may be a nucleic acid that is normally found in the reference organism at a different genomic location. By way of further example, a heterologous nucleic acid may be a nucleic acid that is not normally found in the reference organism. A host organism comprising a heterologous polynucleotide, gene or polypeptide may be produced by introducing the heterologous polynucleotide, gene or polypeptide into the host organism. In particular examples, a heterologous polynucleotide comprises a native coding sequence, or portion thereof, that is reintroduced into a source organism in a form that is different from the corresponding native polynucleotide. In particular examples, a heterologous gene comprises a native coding sequence, or portion thereof, that is reintroduced into a source organism in a form that is different from the corresponding native gene. For example, a heterologous gene may include a native coding sequence that is a portion of a chimeric gene including non-native regulatory regions that is reintroduced into the native host. In particular examples, a heterologous polypeptide is a native

polypeptide that is reintroduced into a source organism in a form that is different from the corresponding native polypeptide.

[0053] A heterologous gene or polypeptide may be a gene or polypeptide that comprises a functional polypeptide or nucleic acid sequence encoding a functional polypeptide that is fused to another gene or polypeptide to produce a chimeric or fusion polypeptide, or a gene encoding the same. Genes and proteins of particular embodiments include specifically exemplified full-length sequences and portions, segments, fragments (including contiguous fragments and internal and/or terminal deletions compared to the full-length molecules), variants, mutants, chimerics, and fusions of these sequences.

[0054] As used herein, the term "modification" can refer to a change in a polynucleotide disclosed herein that results in reduced, substantially eliminated or eliminated activity of a polypeptide encoded by the polynucleotide, as well as a change in a polypeptide disclosed herein that results in reduced, substantially eliminated or eliminated activity of the polypeptide. Alternatively, the term "modification" can refer to a change in a polynucleotide disclosed herein that results in increased or enhanced activity of a polypeptide encoded by the polynucleotide, as well as a change in a polypeptide disclosed herein that results in increased or enhanced activity of the polypeptide. Such changes can be made by methods well known in the art, including, but not limited to, deleting, mutating (*e.g.*, spontaneous mutagenesis, random mutagenesis, mutagenesis caused by mutator genes, or transposon mutagenesis), substituting, inserting, down-regulating, altering the cellular location, altering the state of the polynucleotide or polypeptide (*e.g.*, methylation, phosphorylation or ubiquitination), removing a cofactor, introduction of an antisense RNA/DNA, introduction of an interfering RNA/DNA, chemical modification, covalent modification, irradiation with UV or X-rays, homologous recombination, mitotic recombination, promoter replacement methods, and/or combinations thereof. Guidance in determining which nucleotides or amino acid residues can be modified, can be found by comparing the sequence of the particular polynucleotide or polypeptide with that of homologous polynucleotides or polypeptides, and maximizing the number of modifications made in regions of high homology (conserved regions) or consensus sequences.

[0055] The term "derivative", as used herein, refers to a modification of a sequence set forth in the present disclosure. Illustrative of such modifications would be the substitution, insertion, and/or deletion of one or more bases relating to a nucleic acid sequence of a coding sequence disclosed herein that preserve, slightly alter, or increase the function of a coding sequence disclosed herein in crop species. Such derivatives can be readily determined by one

skilled in the art, for example, using computer modeling techniques for predicting and optimizing sequence structure. The term "derivative" thus also includes nucleic acid sequences having substantial sequence identity with the disclosed coding sequences herein such that they are able to have the disclosed functionalities for use in producing embodiments of the present disclosure.

[0056] The term "promoter" refers to a DNA sequence capable of controlling the expression of a nucleic acid coding sequence or functional RNA. In examples, the controlled coding sequence is located 3' to a promoter sequence. A promoter may be derived in its entirety from a native gene, a promoter may be comprised of different elements derived from different promoters found in nature, or a promoter may even comprise rationally designed DNA segments. It is understood by those skilled in the art that different promoters can direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Examples of all of the foregoing promoters are known and used in the art to control the expression of heterologous nucleic acids. Promoters that direct the expression of a gene in most cell types at most times are commonly referred to as "constitutive promoters." Furthermore, while those in the art have (in many cases unsuccessfully) attempted to delineate the exact boundaries of regulatory sequences, it has come to be understood that DNA fragments of different lengths may have identical promoter activity. The promoter activity of a particular nucleic acid may be assayed using techniques familiar to those in the art.

[0057] The term "operably linked" refers to an association of nucleic acid sequences on a single nucleic acid, wherein the function of one of the nucleic acid sequences is affected by another. For example, a promoter is operably linked with a coding sequence when the promoter is capable of effecting the expression of that coding sequence (*e.g.*, the coding sequence is under the transcriptional control of the promoter). A coding sequence may be operably linked to a regulatory sequence in a sense or antisense orientation.

[0058] The term "expression", as used herein, may refer to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from a DNA. Expression may also refer to translation of mRNA into a polypeptide. As used herein, the term "overexpression" refers to expression that is higher than endogenous expression of the same gene or a related gene. Thus, a heterologous gene is "overexpressed" if its expression is higher than that of a comparable endogenous gene.

[0059] As used herein, the term "transformation" or "transforming" refers to the transfer and integration of a nucleic acid or fragment thereof into a host organism, resulting in genetically stable inheritance. Host organisms containing a transforming nucleic acid are referred to as

"transgenic", "recombinant", or "transformed" organisms. Known methods of transformation include, for example: *Agrobacterium tumefaciens*- or *A. rhizogenes*-mediated transformation; calcium phosphate transformation; polybrene transformation; protoplast fusion; electroporation; ultrasonic methods (e.g., sonoporation); liposome transformation; microinjection; transformation with naked DNA; transformation with plasmid vectors; transformation with viral vectors; biolistic transformation (microparticle bombardment); silicon carbide WHISKERS-mediated transformation; aerosol beaming; and PEG-mediated transformation.

[0060] As used herein, the term "introduced" (in the context of introducing a nucleic acid into a cell) includes transformation of a cell, as well as crossing a plant comprising the nucleic acid with a second plant, such that the second plant contains the nucleic acid, as may be performed utilizing conventional plant breeding techniques. Such breeding techniques are known in the art. For a discussion of plant breeding techniques, see Poehlman (1995) *Breeding Field Crops*, 4th Edition, AVI Publication Co., Westport CT.

[0061] Backcrossing methods may be used to introduce a nucleic acid into a plant. This technique has been used for decades to introduce traits into plants. An example of a description of backcrossing (and other plant breeding methodologies) can be found in, for example, Poelman (1995), *supra*; and Jensen (1988) *Plant Breeding Methodology*, Wiley, New York, NY. In an exemplary backcross protocol, an original plant of interest (the "recurrent parent") is crossed to a second plant (the "non-recurrent parent") that carries the nucleic acid to be introduced. The resulting progeny from this cross are then crossed again to the recurrent parent, and the process is repeated until a converted plant is obtained, wherein essentially all of the desired morphological and physiological characteristics of the recurrent parent are recovered in the converted plant, in addition to the nucleic acid from the non-recurrent parent.

[0062] "Binding" refers to a sequence-specific, non-covalent interaction between macromolecules (e.g., between a protein and a nucleic acid). Not all components of a binding interaction need be sequence-specific (e.g., contacts with phosphate residues in a DNA backbone), as long as the interaction as a whole is sequence-specific. Such interactions are generally characterized by a dissociation constant (K_d) of 10^{-6} M^{-1} or lower. "Affinity" refers to the strength of binding: increased binding affinity being correlated with a lower K_d .

[0063] A "binding protein" is a protein that is able to bind non-covalently to another molecule. A binding protein can bind to, for example, a DNA molecule (a DNA-binding protein), an RNA molecule (an RNA-binding protein) and/or a protein molecule (a protein-binding protein). In the case of a protein-binding protein, it can bind to itself (to form homodimers, homotrimers,

etc.) and/or it can bind to one or more molecules of a different protein or proteins. A binding protein can have more than one type of binding activity. For example, zinc finger proteins have DNA-binding, RNA-binding and protein-binding activity.

[0064] "Recombination" refers to a process of exchange of genetic information between two polynucleotides, including but not limited to, donor capture by non-homologous end joining (NHEJ) and homologous recombination. For the purposes of this disclosure, "homologous recombination (HR)" refers to the specialized form of such exchange that takes place, for example, during repair of double-strand breaks in cells via homology-directed repair mechanisms. This process requires nucleotide sequence homology, uses a "donor" molecule to template repair of a "target" molecule (*i.e.*, the one that experienced the double-strand break), and is variously known as "non-crossover gene conversion" or "short tract gene conversion," because it leads to the transfer of genetic information from the donor to the target. Without wishing to be bound by any particular theory, such transfer can involve mismatch correction of heteroduplex DNA that forms between the broken target and the donor, and/or "synthesis-dependent strand annealing," in which the donor is used to resynthesize genetic information that will become part of the target, and/or related processes. Such specialized HR often results in an alteration of the sequence of the target molecule such that part or all of the sequence of the donor polynucleotide is incorporated into the target polynucleotide. For HR-directed integration, the donor molecule contains at least one region of homology to the genome ("homology arms") of least 50-100 base pairs in length. *See, e.g.*, U.S. Patent Publication No. 20110281361.

[0065] In the methods of the disclosure, one or more targeted nucleases as described herein create a double-stranded break in the target sequence (*e.g.*, cellular chromatin) at a predetermined site, and a "donor" polynucleotide, having homology to the nucleotide sequence in the region of the break, can be introduced into the cell. The presence of the double-stranded break has been shown to facilitate integration of the donor sequence. The donor sequence may be physically integrated or, alternatively, the donor polynucleotide is used as a template for repair of the break via homologous recombination, resulting in the introduction of all or part of the nucleotide sequence as in the donor into the cellular chromatin. Thus, a first sequence in cellular chromatin can be altered and, in certain embodiments, can be converted into a sequence present in a donor polynucleotide. Thus, the use of the terms "replace" or "replacement" can be understood to represent replacement of one nucleotide sequence by another, (*i.e.*, replacement of a sequence in the informational sense), and does not necessarily require physical or chemical replacement of one polynucleotide by another.

[0066] "Cleavage" refers to the breakage of the covalent backbone of a DNA molecule. Cleavage can be initiated by a variety of methods including, but not limited to, enzymatic or chemical hydrolysis of a phosphodiester bond. Both single-stranded cleavage and double-stranded cleavage are possible, and double-stranded cleavage can occur as a result of two distinct single-stranded cleavage events. DNA cleavage can result in the production of either blunt ends or staggered ends. In certain embodiments, fusion polypeptides are used for targeted double-stranded DNA cleavage.

[0067] The terms "plasmid" and "vector", as used herein, refer to an extra chromosomal element that may carry one or more gene(s) that are not part of the central metabolism of the cell. Plasmids and vectors typically are circular double-stranded DNA molecules. However, plasmids and vectors may be linear or circular nucleic acids, of a single- or double-stranded DNA or RNA, and may carry DNA derived from essentially any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction that is capable of introducing a promoter fragment and a coding DNA sequence along with any appropriate 3' untranslated sequence into a cell. In examples, plasmids and vectors may comprise autonomously replicating sequences for propagating in bacterial hosts.

[0068] Polypeptide and "protein" are used interchangeably herein and include a molecular chain of two or more amino acids linked through peptide bonds. The terms do not refer to a specific length of the product. Thus, "peptides", and "oligopeptides", are included within the definition of polypeptide. The terms include post-translational modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. In addition, protein fragments, analogs, mutated or variant proteins, fusion proteins and the like are included within the meaning of polypeptide. The terms also include molecules in which one or more amino acid analogs or non-canonical or unnatural amino acids are included as can be synthesized, or expressed recombinantly using known protein engineering techniques. In addition, inventive fusion proteins can be derivatized as described herein by well-known organic chemistry techniques.

[0069] The term "fusion protein" indicates that the protein includes polypeptide components derived from more than one parental protein or polypeptide. Typically, a fusion protein is expressed from a fusion gene in which a nucleotide sequence encoding a polypeptide sequence from one protein is appended in frame with, and optionally separated by a linker from, a nucleotide sequence encoding a polypeptide sequence from a different protein. The fusion gene can then be expressed by a recombinant host cell as a single protein.

III. Embodiments of the Present Invention

[0070] In one embodiment of the present disclosure, a polynucleotide donor cassette comprising a zinc finger nuclease binding domain, an analytical domain, and a plasmid domain is provided.

[0071] In some embodiment the polynucleotide donor cassette of claim 1, the polynucleotide donor cassette comprises a length of less than 3 Kbp. Exemplary, lengths of polynucleotide donor cassettes may be about 3Kbp, 2.9Kbp, 2.8Kbp, 2.7Kbp, 2.6Kbp, 2.5Kbp, 2.4 Kbp, 2.3 Kbp, 2.2 Kbp, 2.1 Kbp, 2.0 Kbp, 1.9 Kbp, 1.8 Kbp, 1.7 Kbp, 1.6 Kbp, 1.5 Kbp, 1.4 Kbp, 1.3 Kbp, 1.2 Kbp, 1.1 Kbp, 1.0 Kbp, 0.9 Kbp, 0.8 Kbp, 0.7 Kbp, 0.6 Kbp, 0.5 Kbp, 0.4 Kbp, 0.3 Kbp, 0.2 Kbp, or 0.1 Kbp. The term “base pair” (also described as “bp”) refers to a pair of nucleotide bases (nucleotides) each in a separate single stranded nucleic acid in which each base of the pair is non- covalently bonded to the other (e.g., via hydrogen bonds). For instance, a Watson-Crick base pair usually contains one purine and one pyrimidine. Guanosine can pair with cytosine (G-C), adenine can pair with thymine (A-T), and uracil can pair with adenine (U-A). The two bases in a base pair are said to be complementary to each other. Base pairs may be referenced as kilo base pairs (Kbp), mega base pairs (Mbp) of giga base pairs (Gbp), wherein “kilo” denotes an increment of one thousand, and “mega” denotes an increment of one million, and “giga” denotes an increment of one billion.

[0072] In other embodiments a cell is transformed with the polynucleotide donor cassette comprising a site specific nuclease binding domain, an analytical domain, and a plasmid domain and the polynucleotide donor cassette is integrated into the host cell's DNA. The term “cell” as referred to herein encompasses a living organism capable of self replication, and may be a eukaryotic or prokaryotic cell. In some embodiments the transformed cell is a plant cell. In some embodiments, the plant cell can be but is not limited to any higher plant, including both dicotyledonous and monocotyledonous plants, and consumable plants, including crop plants and plants used for their oils. Thus, any plant species or plant cell can be selected for transformation as described further below.

[0073] In some embodiments, a plant cell transformed in accordance with the present disclosure includes, but is not limited to, any higher plants, including both dicotyledonous and monocotyledonous plants, and particularly consumable plants, including crop plants. Such plants can include, but are not limited to, for example: alfalfa, soybeans, cotton, rapeseed (also described as canola), linseed, corn, rice, brachiaria, wheat, safflowers, sorghum, sugarbeet, sunflowers,

tobacco and turf grasses. Thus, any plant species or plant cell can be selected. In some embodiments, plant cells used herein, and plants grown or derived therefrom, include, but are not limited to, cells obtainable from rapeseed (*Brassica napus*); indian mustard (*Brassica juncea*); Ethiopian mustard (*Brassica carinata*); turnip (*Brassica rapa*); cabbage (*Brassica oleracea*); soybean (*Glycine max*); linseed/flax (*Linum usitatissimum*); maize (also described as corn) (*Zea mays*); safflower (*Carthamus tinctorius*); sunflower (*Helianthus annuus*); tobacco (*Nicotiana tabacum*); *Arabidopsis thaliana*; Brazil nut (*Betholettia excelsa*); castor bean (*Ricinus communis*); coconut (*Cocos nucifera*); coriander (*Coriandrum sativum*); cotton (*Gossypium spp.*); groundnut (*Arachis hypogaea*); jojoba (*Simmondsia chinensis*); oil palm (*Elaeis guineensis*); olive (*Olea europaea*); rice (*Oryza sativa*); squash (*Cucurbita maxima*); barley (*Hordeum vulgare*); sugarcane (*Saccharum officinarum*); rice (*Oryza sativa*); wheat (*Triticum spp.* including *Triticum durum* and *Triticum aestivum*); and duckweed (*Lemnaceae sp.*). In some embodiments, the genetic background within a plant species may vary.

[0074] With regard to the production of genetically modified plants, methods for the genetic engineering of plants are well known in the art. For instance, numerous methods for plant transformation have been developed, including biological and physical transformation protocols for dicotyledenous plants as well as monocotyledenous plants (e.g., Goto-Fumiyuki *et al.*, *Nature Biotech* 17:282-286 (1999); Miki *et al.*, *Methods in Plant Molecular Biology and Biotechnology*, Glick, B. R. and Thompson, J. E. Eds., CRC Press, Inc., Boca Raton, pp. 67-88 (1993)). In addition, vectors and *in vitro* culture methods for plant cell or tissue transformation and regeneration of plants are available, for example, in Gruber *et al.*, *Methods in Plant Molecular Biology and Biotechnology*, Glick, B. R. and Thompson, J. E. Eds., CRC Press, Inc., Boca Raton, pp. 89-119 (1993).

[0075] A large number of techniques are available for inserting DNA into a plant host cell. Those techniques include transformation with disarmed T-DNA using *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* as the transformation agent, calcium phosphate transfection, polybrene transformation, protoplast fusion, electroporation, ultrasonic methods (e.g., sonoporation), liposome transformation, microinjection, naked DNA, plasmid vectors, viral vectors, biolistics (microparticle bombardment), silicon carbide WHISKERS mediated transformation, aerosol beaming, or PEG as well as other possible methods.

[0076] For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using biolistic

methods, such as DNA particle bombardment (see, e.g., Klein et al. (1987) *Nature* 327:70-73). Additional methods for plant cell transformation include microinjection via silicon carbide WHISKERS mediated DNA uptake (Kleppl et al. (1990) *Plant Cell Reporter* 9:415-418). Alternatively, the DNA construct can be introduced into the plant cell via nanoparticle transformation (see, e.g., US Patent Application No. 12/245,685, which is incorporated herein by reference in its entirety).

[0077] Another known method of plant transformation is microprojectile-mediated transformation wherein DNA is carried on the surface of microprojectiles. In this method, the vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds sufficient to penetrate plant cell walls and membranes. Sanford et al., *Part. Sci. Technol.* 5:27 (1987), Sanford, J. C., *Trends Biotech.* 6:299 (1988), Sanford, J. C., *Physiol. Plant* 79:206 (1990), Klein et al., *Biotechnology* 10:268 (1992).

[0078] Alternatively, gene transfer and transformation methods include, but are not limited to, protoplast transformation through calcium chloride precipitation, polyethylene glycol (PEG)- or electroporation-mediated uptake of naked DNA (see Paszkowski et al. (1984) *EMBO J* 3:2717-2722, Potrykus et al. (1985) *Molec. Gen. Genet.* 199:169-177; Fromm et al. (1985) *Proc. Nat. Acad. Sci. USA* 82:5824-5828; and Shimamoto (1989) *Nature* 338:274-276) and electroporation of plant tissues (D'Halluin et al. (1992) *Plant Cell* 4:1495-1505).

[0079] A widely utilized method for introducing an expression vector into plants is based on the natural transformation system of *Agrobacterium*. Horsch et al., *Science* 227:1229 (1985). *A. tumefaciens* and *A. rhizogenes* are plant pathogenic soil bacteria known to be useful to genetically transform plant cells. The Ti and Ri plasmids of *A. tumefaciens* and *A. rhizogenes*, respectively, carry genes responsible for genetic transformation of the plant. Kado, C. I., *Crit. Rev. Plant. Sci.* 10:1 (1991). Descriptions of *Agrobacterium* vector systems and methods for *Agrobacterium*-mediated gene transfer are also available, for example, Gruber et al., *supra*, Miki et al., *supra*, Moloney et al., *Plant Cell Reports* 8:238 (1989), and U.S. Patent Nos. 4,940,838 and 5,464,763.

[0080] If *Agrobacterium* is used for the transformation, the DNA to be inserted should be cloned into special plasmids, namely either into an intermediate vector or into a binary vector. Intermediate vectors cannot replicate themselves in *Agrobacterium*. The intermediate vector can be transferred into *Agrobacterium tumefaciens* by use of a helper plasmid (conjugation). The Japan Tobacco Superbinary system is an example of such a system (reviewed by Komari et al., (2006) In: *Methods in Molecular Biology* (K. Wang, ed.) No. 343: *Agrobacterium Protocols* (2nd Edition,

Vol. 1) Humana Press Inc., Totowa, NJ, pp.15-41; and Komori et al., (2007) *Plant Physiol.* 145:1155-1160). Binary vectors can replicate themselves both in *E. coli* and in *Agrobacterium*. They comprise a selection marker gene and a linker or polylinker which are framed by the right and left T-DNA border regions. They can be transformed directly into *Agrobacterium* (Holsters, 1978). The *Agrobacterium* used as host cell is to comprise a plasmid carrying a vir region. The Ti or Ri plasmid also comprises the vir region necessary for the transfer of the T-DNA. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be contained.

[0081] The virulence functions of the *Agrobacterium tumefaciens* host will direct the insertion of a T-strand containing the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria using a binary T DNA vector (Bevan (1984) *Nuc. Acid Res.* 12:8711-8721) or the co-cultivation procedure (Horsch et al. (1985) *Science* 227:1229-1231). Generally, the *Agrobacterium* transformation system is used to engineer dicotyledonous plants (Bevan et al. (1982) *Ann. Rev. Genet* 16:357-384; Rogers et al. (1986) *Methods Enzymol.* 118:627-641). The *Agrobacterium* transformation system may also be used to transform, as well as transfer, DNA to monocotyledonous plants and plant cells. See U.S. Patent No. 5, 591,616; Hernalsteen et al. (1984) *EMBO J* 3:3039-3041; Hooykass-Van Slogteren et al. (1984) *Nature* 311:763-764; Grimsley et al. (1987) *Nature* 325:1677-179; Boulton et al. (1989) *Plant Mol. Biol.* 12:31-40; and Gould et al. (1991) *Plant Physiol.* 95:426-434. Following the introduction of the genetic construct into particular plant cells, plant cells can be grown and upon emergence of differentiating tissue such as shoots and roots, mature plants can be generated. In some embodiments, a plurality of plants can be generated. Methodologies for regenerating plants are known to those of ordinary skill in the art and can be found, for example, in: *Plant Cell and Tissue Culture*, 1994, Vasil and Thorpe Eds. Kluwer Academic Publishers and in: *Plant Cell Culture Protocols (Methods in Molecular Biology* 111, 1999 Hall Eds Humana Press). The genetically modified plant described herein can be cultured in a fermentation medium or grown in a suitable medium such as soil. In some embodiments, a suitable growth medium for higher plants can include any growth medium for plants, including, but not limited to, soil, sand, any other particulate media that support root growth (e.g., vermiculite, perlite, etc.) or hydroponic culture, as well as suitable light, water and nutritional supplements which optimize the growth of the higher plant.

[0082] Transformed plant cells which are produced by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype

and thus the desired phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans, et al., "Protoplasts Isolation and Culture" in *Handbook of Plant Cell Culture*, pp. 124-176, Macmillian Publishing Company, New York, 1983; and Binding, *Regeneration of Plants, Plant Protoplasts*, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, pollens, embryos or parts thereof. Such regeneration techniques are described generally in Klee et al. (1987) *Ann. Rev. of Plant Phys.* 38:467-486.

[0083] In other embodiments, the plant cells which are transformed are not capable of regeneration to produce a plant. Such cells are said to be transiently transformed. Transiently transformed cells may be produced to assay the expression and/or functionality of a specific transgene. Transient transformation techniques are known in the art, and comprise minor modifications to the transformation techniques described above. Those with skill in the art may elect to utilize transient transformation to quickly assay the expression and/or functionality of a specific transgenes, as transient transformation are completed quickly and do not require as many resources (e.g., culturing of plants for development of whole plants, self-fertilization or crossing of plants for the fixation of a transgene within the genome, etc.) as stable transformation techniques.

[0084] In an embodiment the universal donor polynucleotide can be introduced into essentially any plant. A wide variety of plants and plant cell systems may be engineered for site specific integration of the universal donor polynucleotide of the present disclosure and the various transformation methods mentioned above. In an embodiment, target plants and plant cells for engineering include, but are not limited to, those monocotyledonous and dicotyledonous plants, such as crops including grain crops (e.g., wheat, maize, rice, millet, barley), fruit crops (e.g., tomato, apple, pear, strawberry, orange), forage crops (e.g., alfalfa), root vegetable crops (e.g., carrot, potato, sugar beets, yam), leafy vegetable crops (e.g., lettuce, spinach); flowering plants (e.g., petunia, rose, chrysanthemum), conifers and pine trees (e.g., pine fir, spruce); plants used in phytoremediation (e.g., heavy metal accumulating plants); oil crops (e.g., sunflower, rape seed) and plants used for experimental purposes (e.g., *Arabidopsis*). Thus, the disclosed methods and compositions have use over a broad range of plants, including, but not limited to, species from the genera *Asparagus*, *Avena*, *Brassica*, *Citrus*, *Citrullus*, *Capsicum*, *Cucurbita*, *Daucus*, *Erigeron*, *Glycine*, *Gossypium*, *Hordeum*, *Lactuca*, *Lolium*, *Lycopersicon*, *Malus*, *Manihot*, *Nicotiana*,

Orychophragmus, Oryza, Persea, Phaseolus, Pisum, Pyrus, Prunus, Raphanus, Secale, Solanum, Sorghum, Triticum, Vitis, Vigna, and Zea mays.

[0085] In other embodiments the polynucleotide donor cassette comprises a specific polynucleotide sequence. Examples of specific polynucleotide sequences include, but are not limited to; SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140 and SEQ ID NO:141. In various embodiments, sequences with at least 90% sequence identity to the specific polynucleotide sequences SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140 and SEQ ID NO:141 are disclosed herein. In other embodiments, sequences with at least 95% sequence identity to the specific polynucleotide sequences SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140 and SEQ ID NO:141 are disclosed herein. In other embodiments, sequences with at least 97% sequence identity to the specific polynucleotide sequences SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140 and SEQ ID NO:141 are disclosed herein. In yet other embodiments, sequences with at least 99% sequence identity to the specific polynucleotide sequences SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140 and SEQ ID NO:141 are disclosed herein. In one embodiment the polynucleotide donor cassette comprises a sequence having at least 90, 93, 95, 97 or 99% sequence identity with a sequence selected from the group consisting of SEQ ID NO: 142 and 143.

[0086] The term "percent identity" (or "% identity"), as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those disclosed in: 1.) Computational Molecular Biology (Lesk, A. M., Ed.) Oxford University: NY (1988); 2.) Biocomputing: Informatics and Genome Projects (Smith, D. W., Ed.) Academic: NY (1993); 3.) Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., Eds.) Humania: NJ (1994); 4.) Sequence Analysis in Molecular Biology (von Heijne, G., Ed.) Academic (1987); and 5.) Sequence Analysis Primer (Gribskov, M. and Devereux, J., Eds.) Stockton: NY (1991).

[0087] Techniques for determining nucleic acid and amino acid sequence identity are known in the art. Typically, such techniques include determining the nucleotide sequence of the mRNA for a gene and/or determining the amino acid sequence encoded thereby, and comparing these sequences to a second nucleotide or amino acid sequence. Genomic sequences can also be determined and compared in this fashion. In general, identity refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Two or more sequences (polynucleotide or amino acid) can be compared by determining their percent identity. The percent identity of two sequences, whether nucleic acid or amino acid sequences, is the number of exact matches between two aligned sequences divided by the length of the shorter sequences and multiplied by 100. See Russell, R., and Barton, G., "Structural Features can be Unconserved in Proteins with Similar Folds," *J. Mol. Biol.* 244, 332-350 (1994), at p. 337, which is incorporated herein by reference in its entirety.

[0088] In addition, methods to determine identity and similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations can be performed, for example, using the AlignX program of the Vector NTI® suite (Invitrogen, Carlsbad, CA) or MegAlign™ program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences is performed using the "Clustal method of alignment" which encompasses several varieties of the algorithm including the "Clustal V method of alignment" corresponding to the alignment method labeled Clustal V (disclosed by Higgins and Sharp, *CABIOS.* 5:151-153 (1989); Higgins, D.G. *et al.*, *Comput. Appl. Biosci.*, 8:189-191 (1992)) and found in the MegAlign™ program of the LASERGENE bioinformatics computing suite (DNASTAR Inc.). For multiple alignments, the default values correspond to GAP PENALTY=10 and GAP LENGTH PENALTY=10. Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal method are KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. After alignment of the sequences using the Clustal V program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program. Additionally the "Clustal W method of alignment" is available and corresponds to the alignment method labeled Clustal W (described by Higgins and Sharp, *CABIOS.* 5:151-153 (1989); Higgins, D.G. *et al.*, *Comput. Appl. Biosci.* 8:189-191(1992)) and found in the MegAlign™ v6.1 program of the LASERGENE bioinformatics computing suite (DNASTAR Inc.). Default parameters for multiple alignment (GAP PENALTY=10, GAP LENGTH PENALTY=0.2, Delay

Divergen Seqs(%)=30, DNA Transition Weight=0.5, Protein Weight Matrix=Gonnet Series, DNA Weight Matrix=IUB). After alignment of the sequences using the Clustal W program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program.

[0089] The term "sequence analysis software" refers to any computer algorithm or software program that is useful for the analysis of nucleotide or amino acid sequences. "Sequence analysis software" may be commercially available or independently developed. Typical sequence analysis software will include, but is not limited to: 1.) the GCG suite of programs (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI); 2.) BLASTP, BLASTN, BLASTX (Altschul *et al.*, *J. Mol. Biol.*, 215:403-410 (1990)); 3.) DNASTAR (DNASTAR, Inc. Madison, WI); 4.) Sequencher (Gene Codes Corporation, Ann Arbor, MI); and 5.) the FASTA program incorporating the Smith-Waterman algorithm (W. R. Pearson, *Comput. Methods Genome Res.*, [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Plenum: New York, NY). Within the context of this application it will be understood that where sequence analysis software is used for analysis, that the results of the analysis will be based on the "default values" of the program referenced, unless otherwise specified. As used herein "default values" will mean any set of values or parameters that originally load with the software when first initialized.

[0090] When referring to hybridization techniques, all or part of a known nucleotide sequence can be used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, plasmid DNA fragments, cDNA fragments, RNA fragments, PCR amplified DNA fragments, oligonucleotides, or other polynucleotides, and may be labeled with a detectable group such as ³²P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the DNA sequences of embodiments of the disclosure. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed (Sambrook *et al.*, 1989).

[0091] The nucleic acid probes and primers of embodiments of the present disclosure hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample. Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another

if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure. A nucleic acid molecule is said to be the “complement” of another nucleic acid molecule if the two nucleic acid molecules exhibit complete complementarity. As used herein, molecules are said to exhibit “complete complementarity” when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Molecules that exhibit complete complementarity will generally hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional “high-stringency” conditions. Conventional high-stringency conditions are described by Sambrook et al., 1989.

[0092] Two molecules are said to exhibit “minimal complementarity” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional “low-stringency” conditions. Conventional low-stringency conditions are described by Sambrook et al., 1989. In order for a nucleic acid molecule to serve as a primer or probe, it need only exhibit the minimal complementarity of sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.

[0093] Factors that affect the stringency of hybridization are well-known to those of skill in the art and include, but are not limited to, temperature, pH, ionic strength, and concentration of organic solvents such as, for example, formamide and dimethylsulfoxide. As is known to those of skill in the art, hybridization stringency is increased by higher temperatures, lower ionic strength and lower solvent concentrations.

[0094] The term “stringent condition” or “stringency conditions” is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (*i.e.*, to a particular nucleic-acid sequence of interest) by the specific hybridization procedure discussed in Sambrook et al., 1989, at 9.52-9.55. *See also*, Sambrook et al., 1989 at 9.47-9.52 and 9.56-9.58.

[0095] Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na⁺ ion, typically about 0.01 to 1.0 M Na⁺ ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1.0 M NaCl, 0.1% SDS (sodium dodecyl sulfate) at 37°C, and a wash in 1X to 2X SSC (20X SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 0.1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include

hybridization in 50% formamide, 1.0 M NaCl, 0.1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C.

[0096] Specificity is typically a function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation $T_m = 81.5^\circ\text{C} + 16.6 (\log M) + 0.41 (\% \text{GC}) - 0.61 (\% \text{form.}) - 500/L$, where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form. is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs (Meinkoth and Wahl, 1984). The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1°C for each 1% of mismatching; thus, T_m , hybridization, and/or wash conditions can be adjusted for sequences of the desired identity to hybridize. For example, if sequences with 90% identity are sought, the T_m can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11 to 20°C lower than the thermal melting point (T_m). Using the equation, hybridization and wash compositions, and desired T_m , those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45°C (aqueous solution) or 32°C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found (1997) Ausubel *et al.*, Short Protocols in Molecular Biology, pages 2-40, Third Edit. (1997) and Sambrook *et al.* (1989).

[0097] In an embodiment, the polynucleotide donor cassette comprises one or more zinc finger nuclease binding domain. As such, an embodiment of the polynucleotide donor cassette comprises 1 zinc finger nuclease binding domain, 2 zinc finger nuclease binding domains, 3 zinc finger nuclease binding domains, 4 zinc finger nuclease binding domains, 5 zinc finger nuclease binding domains, 6 zinc finger nuclease binding domains, 7 zinc finger nuclease binding domains, 8 zinc finger nuclease binding domains, 9 zinc finger nuclease binding domains, 10 zinc finger nuclease binding domains, or more zinc finger binding domains.

[0098] Selection of target sites; ZFPs and methods for design and construction of fusion proteins (and polynucleotides encoding same) are known to those of skill in the art and described in detail in U.S. Patent Nos. 6,140,081; 5,789,538; 6,453,242; 6,534,261; 5,925,523; 6,007,988; 6,013,453; 6,200,759; WO 95/19431; WO 96/06166; WO 98/53057; WO 98/54311; WO 00/27878; WO 01/60970 WO 01/88197; WO 02/099084; WO 98/53058; WO 98/53059; WO 98/53060; WO 02/016536 and WO 03/016496.

[0099] In subsequent embodiments, the zinc finger nuclease binding domain comprising one or more zinc finger binding sequences is bound by a zinc finger binding protein, a meganuclease binding protein, a CRISPR, or a TALEN binding protein.

[00100] In certain embodiments, the composition and methods described herein employ a meganuclease (homing endonuclease) binding protein or meganuclease DNA-binding domain for binding to the donor molecule and/or binding to the region of interest in the genome of the cell. Naturally-occurring meganucleases recognize 15-40 base-pair cleavage sites and are commonly grouped into four families: the LAGLIDADG family, the GIY-YIG family, the His-Cyst box family and the HNH family. Exemplary homing endonucleases include I-SceI, I-CeuI, PI-PspI, PI-Sce, I-SceIV, I-CsmI, I-PanI, I-SceII, I-PpoI, I-SceIII, I-CreI, I-TevI, I-TevII and I-TevIII. Their recognition sequences are known. See also U.S. Patent No. 5,420,032; U.S. Patent No. 6,833,252; Belfort et al. (1997) Nucleic Acids Res. 25:3379–3388; Dujon et al. (1989) Gene 82:115–118; Perler et al. (1994) Nucleic Acids Res. 22, 1125–1127; Jasen (1996) Trends Genet. 12:224–228; Gimble et al. (1996) J. Mol. Biol. 263:163–180; Argast et al. (1998) J. Mol. Biol. 280:345–353 and the New England Biolabs catalogue.

[0100] In certain embodiments, the methods and compositions described herein make use of a nuclease that comprises an engineered (non-naturally occurring) homing endonuclease (meganuclease). The recognition sequences of homing endonucleases and meganucleases such as I-SceI, I-CeuI, PI-PspI, PI-Sce, I-SceIV, I-CsmI, I-PanI, I-SceII, I-PpoI, I-SceIII, I-CreI, I-TevI, I-TevII and I-TevIII are known. See also U.S. Patent No. 5,420,032; U.S. Patent No. 6,833,252; Belfort et al. (1997) Nucleic Acids Res. 25:3379–3388; Dujon et al. (1989) Gene 82:115–118; Perler et al. (1994) Nucleic Acids Res. 22, 1125–1127; Jasen (1996) Trends Genet. 12:224–228; Gimble et al. (1996) J. Mol. Biol. 263:163–180; Argast et al. (1998) J. Mol. Biol. 280:345–353 and the New England Biolabs catalogue. In addition, the DNA-binding specificity of homing endonucleases and meganucleases can be engineered to bind non-natural target sites. See, for example, Chevalier et al. (2002) Molec. Cell 10:895-905; Epinat et al. (2003) Nucleic Acids Res. 31:2952-2962; Ashworth et al. (2006) Nature 441:656-659;

Paques et al. (2007) Current Gene Therapy 7:49-66; U.S. Patent Publication No. 20070117128. The DNA-binding domains of the homing endonucleases and meganucleases may be altered in the context of the nuclease as a whole (i.e., such that the nuclease includes the cognate cleavage domain) or may be fused to a heterologous cleavage domain.

[0101] In other embodiments, the DNA-binding domain of one or more of the nucleases used in the methods and compositions described herein comprises a naturally occurring or engineered (non-naturally occurring) TAL effector DNA binding domain. *See, e.g.*, U.S. Patent Publication No. 20110301073, incorporated by reference in its entirety herein. The plant pathogenic bacteria of the genus *Xanthomonas* are known to cause many diseases in important crop plants. Pathogenicity of *Xanthomonas* depends on a conserved type III secretion (T3S) system which injects more than 25 different effector proteins into the plant cell. Among these injected proteins are transcription activator-like (TAL) effectors which mimic plant transcriptional activators and manipulate the plant transcriptome (see Kay et al (2007) *Science* 318:648-651). These proteins contain a DNA binding domain and a transcriptional activation domain. One of the most well characterized TAL-effectors is AvrBs3 from *Xanthomonas campestris* pv. *Vesicatoria* (see Bonas et al (1989) *Mol Gen Genet* 218: 127-136 and WO2010079430). TAL-effectors contain a centralized domain of tandem repeats, each repeat containing approximately 34 amino acids, which are key to the DNA binding specificity of these proteins. In addition, they contain a nuclear localization sequence and an acidic transcriptional activation domain (for a review see Schornack S, et al (2006) *J Plant Physiol* 163(3): 256-272). In addition, in the phytopathogenic bacteria *Ralstonia solanacearum* two genes, designated *brg11* and *hpx17* have been found that are homologous to the AvrBs3 family of *Xanthomonas* in the *R. solanacearum* biovar 1 strain GMI1000 and in the biovar 4 strain RS1000 (See Heuer et al (2007) *Appl and Envir Micro* 73(13): 4379-4384). These genes are 98.9% identical in nucleotide sequence to each other but differ by a deletion of 1,575 bp in the repeat domain of *hpx17*. However, both gene products have less than 40% sequence identity with AvrBs3 family proteins of *Xanthomonas*. *See, e.g.*, U.S. Patent Publication Nos. 20110239315, 20110145940 and 20110301073, incorporated by reference in its entirety herein.

[0102] Specificity of these TAL effectors depends on the sequences found in the tandem repeats. The repeated sequence comprises approximately 102 bp and the repeats are typically 91-100% homologous with each other (Bonas et al, *ibid*). Polymorphism of the repeats is usually located at positions 12 and 13 and there appears to be a one-to-one correspondence between the identity of the hypervariable di-residues at positions 12 and 13 with the identity of

the contiguous nucleotides in the TAL-effector's target sequence (see Moscou and Bogdanove, (2009) *Science* 326:1501 and Boch et al (2009) *Science* 326:1509-1512). Experimentally, the natural code for DNA recognition of these TAL-effectors has been determined such that an HD sequence at positions 12 and 13 leads to a binding to cytosine (C), NG binds to T, NI to A, C, G or T, NN binds to A or G, and ING binds to T. These DNA binding repeats have been assembled into proteins with new combinations and numbers of repeats, to make artificial transcription factors that are able to interact with new sequences and activate the expression of a non-endogenous reporter gene in plant cells (Boch et al, *ibid*). Engineered TAL proteins have been linked to a FokI cleavage half domain to yield a TAL effector domain nuclease fusion (TALEN) exhibiting activity in a yeast reporter assay (plasmid based target). *See, e.g.,* U.S. Patent Publication No. 20110301073; Christian et al ((2010)< *Genetics* *epub* 10.1534/genetics.110.120717).

[0103] In other embodiments, the nuclease is a system comprising the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR Associated) nuclease system. The CRISPR/Cas is a recently engineered nuclease system based on a bacterial system that can be used for genome engineering. It is based on part of the adaptive immune response of many bacteria and archaea. When a virus or plasmid invades a bacterium, segments of the invader's DNA are converted into CRISPR RNAs (crRNA) by the 'immune' response. This crRNA then associates, through a region of partial complementarity, with another type of RNA called tracrRNA to guide the Cas9 nuclease to a region homologous to the crRNA in the target DNA next to a protospacer adjacent motif (PAM) NGG. Cas9 cleaves the DNA to generate blunt ends at the DSB at sites specified by a 20-nucleotide guide sequence contained within the crRNA transcript. Cas9 requires both the crRNA and the tracrRNA for site specific DNA recognition and cleavage. This system has now been engineered such that the crRNA and tracrRNA can be combined into one molecule (the "single guide RNA"), and the crRNA equivalent portion of the single guide RNA can be engineered to guide the Cas9 nuclease to target any desired sequence adjacent to a PAM (see Jinek *et al* (2012) *Science* 337, p. 816-821, Jinek *et al*, (2013), *eLife* 2:e00471, and David Segal, (2013) *eLife* 2:e00563). Thus, the CRISPR/Cas system can be engineered to create a DSB at a desired target in a genome, and repair of the DSB can be influenced by the use of repair inhibitors to cause an increase in error prone repair.

[0104] In certain embodiments, the DNA binding domain of one or more of the nucleases used for *in vivo* cleavage and/or targeted cleavage of the genome of a cell comprises a zinc finger protein. Preferably, the zinc finger protein is non-naturally occurring in that it is engineered to

bind to a target site of choice. See, for example, See, for example, Beerli et al. (2002) *Nature Biotechnol.* 20:135-141; Pabo et al. (2001) *Ann. Rev. Biochem.* 70:313-340; Isalan et al. (2001) *Nature Biotechnol.* 19:656-660; Segal et al. (2001) *Curr. Opin. Biotechnol.* 12:632-637; Choo et al. (2000) *Curr. Opin. Struct. Biol.* 10:411-416; U.S. Patent Nos. 6,453,242; 6,534,261; 6,599,692; 6,503,717; 6,689,558; 7,030,215; 6,794,136; 7,067,317; 7,262,054; 7,070,934; 7,361,635; 7,253,273; and U.S. Patent Publication Nos. 2005/0064474; 2007/0218528; 2005/0267061, all incorporated herein by reference in their entireties.

[0105] An engineered zinc finger binding domain can have a novel binding specificity, compared to a naturally-occurring zinc finger protein. Engineering methods include, but are not limited to, rational design and various types of selection. Rational design includes, for example, using databases comprising triplet (or quadruplet) nucleotide sequences and individual zinc finger amino acid sequences, in which each triplet or quadruplet nucleotide sequence is associated with one or more amino acid sequences of zinc fingers which bind the particular triplet or quadruplet sequence. See, for example, co-owned U.S. Patents 6,453,242 and 6,534,261, incorporated by reference herein in their entireties.

[0106] Exemplary selection methods, including phage display and two-hybrid systems, are disclosed in US Patents 5,789,538; 5,925,523; 6,007,988; 6,013,453; 6,410,248; 6,140,466; 6,200,759; and 6,242,568; as well as WO 98/37186; WO 98/53057; WO 00/27878; WO 01/88197 and GB 2,338,237. In addition, enhancement of binding specificity for zinc finger binding domains has been described, for example, in co-owned WO 02/077227.

[0107] In addition, as disclosed in these and other references, zinc finger domains and/or multi-fingered zinc finger proteins may be linked together using any suitable linker sequences, including for example, linkers of five or more amino acids in length. See, also, U.S. Patent Nos. 6,479,626; 6,903,185; and 7,153,949 for exemplary linker sequences 6 or more amino acids in length. The proteins described herein may include any combination of suitable linkers between the individual zinc fingers of the protein.

[0108] Described herein are compositions, particularly nucleases, that are useful for *in vivo* cleavage of a donor molecule carrying a transgene and nucleases for cleavage of the genome of a cell such that the transgene is integrated into the genome in a targeted manner. In certain embodiments, one or more of the nucleases are naturally occurring. In other embodiments, one or more of the nucleases are non-naturally occurring, i.e., engineered in the DNA-binding domain and/or cleavage domain. For example, the DNA-binding domain of a naturally-occurring nuclease may be altered to bind to a selected target site (e.g., a meganuclease that has been engineered to

bind to site different than the cognate binding site). In other embodiments, the nuclease comprises heterologous DNA-binding and cleavage domains (e.g., zinc finger nucleases; TAL-effector domain DNA binding proteins; meganuclease DNA-binding domains with heterologous cleavage domains).

[0109] Any suitable cleavage domain can be operatively linked to a DNA-binding domain to form a nuclease. For example, ZFP DNA-binding domains have been fused to nuclease domains to create ZFNs – a functional entity that is able to recognize its intended nucleic acid target through its engineered (ZFP) DNA binding domain and cause the DNA to be cut near the ZFP binding site via the nuclease activity. See, e.g., Kim et al. (1996) Proc Natl Acad Sci USA 93(3):1156-1160. More recently, ZFNs have been used for genome modification in a variety of organisms. See, for example, United States Patent Publications 20030232410; 20050208489; 20050026157; 20050064474; 20060188987; 20060063231; and International Publication WO 07/014275. Likewise, TALE DNA-binding domains have been fused to nuclease domains to create TALENs. *See, e.g.,* U.S. Publication No. 20110301073.

[0110] As noted above, the cleavage domain may be heterologous to the DNA-binding domain, for example a zinc finger DNA-binding domain and a cleavage domain from a nuclease or a TALEN DNA-binding domain and a cleavage domain, or meganuclease DNA-binding domain and cleavage domain from a different nuclease. Heterologous cleavage domains can be obtained from a particular endonuclease or exonuclease. Exemplary endonucleases from which a cleavage domain can be derived include, but are not limited to, certain restriction endonucleases and homing endonucleases. See, for example, 2002-2003 Catalogue, New England Biolabs, Beverly, MA; and Belfort et al. (1997) Nucleic Acids Res. 25:3379-3388. Additional enzymes which cleave DNA are known (e.g., S1 Nuclease; mung bean nuclease; pancreatic DNase I; micrococcal nuclease; yeast HO endonuclease; *see also* Linn et al. (eds.) Nucleases, Cold Spring Harbor Laboratory Press, 1993). One or more of these enzymes (or functional fragments thereof) can be used as a source of cleavage domains and cleavage half-domains.

[0111] Similarly, a cleavage half-domain can be derived from any nuclease or portion thereof, as set forth above, that requires dimerization for cleavage activity. In general, two fusion proteins are required for cleavage if the fusion proteins comprise cleavage half-domains. Alternatively, a single protein comprising two cleavage half-domains can be used. The two cleavage half-domains can be derived from the same endonuclease (or functional fragments thereof), or each cleavage half-domain can be derived from a different endonuclease (or

functional fragments thereof). In addition, the target sites for the two fusion proteins are preferably disposed, with respect to each other, such that binding of the two fusion proteins to their respective target sites places the cleavage half-domains in a spatial orientation to each other that allows the cleavage half-domains to form a functional cleavage domain, e.g., by dimerizing. Thus, in certain embodiments, the near edges of the target sites are separated by 5-8 nucleotides or by 15-18 nucleotides. However any integral number of nucleotides or nucleotide pairs can intervene between two target sites (e.g., from 2 to 50 nucleotide pairs or more). In general, the site of cleavage lies between the target sites.

[0112] Restriction endonucleases (restriction enzymes) are present in many species and are capable of sequence-specific binding to DNA (at a recognition site), and cleaving DNA at or near the site of binding. Certain restriction enzymes (e.g., Type IIS) cleave DNA at sites removed from the recognition site and have separable binding and cleavage domains. For example, the Type IIS enzyme Fok I catalyzes double-stranded cleavage of DNA, at 9 nucleotides from its recognition site on one strand and 13 nucleotides from its recognition site on the other. See, for example, US Patents 5,356,802; 5,436,150 and 5,487,994; as well as Li et al. (1992) Proc. Natl. Acad. Sci. USA 89:4275-4279; Li et al. (1993) Proc. Natl. Acad. Sci. USA 90:2764-2768; Kim et al. (1994a) Proc. Natl. Acad. Sci. USA 91:883-887; Kim et al. (1994b) J. Biol. Chem. 269:31,978-31,982. Thus, in one embodiment, fusion proteins comprise the cleavage domain (or cleavage half-domain) from at least one Type IIS restriction enzyme and one or more zinc finger binding domains, which may or may not be engineered.

[0113] An exemplary Type IIS restriction enzyme, whose cleavage domain is separable from the binding domain, is Fok I. This particular enzyme is active as a dimer. Bitinaite et al. (1998) Proc. Natl. Acad. Sci. USA 95: 10,570-10,575. Accordingly, for the purposes of the present disclosure, the portion of the Fok I enzyme used in the disclosed fusion proteins is considered a cleavage half-domain. Thus, for targeted double-stranded cleavage and/or targeted replacement of DNA sequences using zinc finger-Fok I fusions, two fusion proteins, each comprising a FokI cleavage half-domain, can be used to reconstitute a catalytically active cleavage domain. Alternatively, a single polypeptide molecule containing a zinc finger binding domain and two Fok I cleavage half-domains can also be used. Parameters for targeted cleavage and targeted sequence alteration using zinc finger-Fok I fusions are provided elsewhere in this disclosure.

[0114] A cleavage domain or cleavage half-domain can be any portion of a protein that retains cleavage activity, or that retains the ability to multimerize (e.g., dimerize) to form a functional cleavage domain.

[0115] Exemplary Type IIS restriction enzymes are described in International Publication WO 07/014275, incorporated herein in its entirety. Additional restriction enzymes also contain separable binding and cleavage domains, and these are contemplated by the present disclosure. See, for example, Roberts et al. (2003) Nucleic Acids Res. 31:418-420.

[0116] In certain embodiments, the cleavage domain comprises one or more engineered cleavage half-domain (also referred to as dimerization domain mutants) that minimize or prevent homodimerization, as described, for example, in U.S. Patent Publication Nos. 20050064474; 20060188987; 20070305346 and 20080131962, the disclosures of all of which are incorporated by reference in their entireties herein. Amino acid residues at positions 446, 447, 479, 483, 484, 486, 487, 490, 491, 496, 498, 499, 500, 531, 534, 537, and 538 of Fok I are all targets for influencing dimerization of the Fok I cleavage half-domains.

[0117] Exemplary engineered cleavage half-domains of Fok I that form obligate heterodimers include a pair in which a first cleavage half-domain includes mutations at amino acid residues at positions 490 and 538 of Fok I and a second cleavage half-domain includes mutations at amino acid residues 486 and 499.

[0118] Thus, in one embodiment, a mutation at 490 replaces Glu (E) with Lys (K); the mutation at 538 replaces Iso (I) with Lys (K); the mutation at 486 replaced Gln (Q) with Glu (E); and the mutation at position 499 replaces Iso (I) with Lys (K). Specifically, the engineered cleavage half-domains described herein were prepared by mutating positions 490 (E→K) and 538 (I→K) in one cleavage half-domain to produce an engineered cleavage half-domain designated “E490K:I538K” and by mutating positions 486 (Q→E) and 499 (I→L) in another cleavage half-domain to produce an engineered cleavage half-domain designated “Q486E:I499L”. The engineered cleavage half-domains described herein are obligate heterodimer mutants in which aberrant cleavage is minimized or abolished. See, e.g., U.S. Patent Publication No. 2008/0131962, the disclosure of which is incorporated by reference in its entirety for all purposes. In certain embodiments, the engineered cleavage half-domain comprises mutations at positions 486, 499 and 496 (numbered relative to wild-type FokI), for instance mutations that replace the wild type Gln (Q) residue at position 486 with a Glu (E) residue, the wild type Iso (I) residue at position 499 with a Leu (L) residue and the wild-type Asn (N) residue at position 496 with an Asp (D) or Glu (E) residue (also referred to as a “ELD”

and “ELE” domains, respectively). In other embodiments, the engineered cleavage half-domain comprises mutations at positions 490, 538 and 537 (numbered relative to wild-type FokI), for instance mutations that replace the wild type Glu (E) residue at position 490 with a Lys (K) residue, the wild type Iso (I) residue at position 538 with a Lys (K) residue, and the wild-type His (H) residue at position 537 with a Lys (K) residue or a Arg (R) residue (also referred to as “KKK” and “KKR” domains, respectively). In other embodiments, the engineered cleavage half-domain comprises mutations at positions 490 and 537 (numbered relative to wild-type FokI), for instance mutations that replace the wild type Glu (E) residue at position 490 with a Lys (K) residue and the wild-type His (H) residue at position 537 with a Lys (K) residue or a Arg (R) residue (also referred to as “KIK” and “KIR” domains, respectively). (See US Patent Publication No. 20110201055). In other embodiments, the engineered cleavage half domain comprises the “Sharkey” and/or “Sharkey’ ” mutations (see Guo *et al*, (2010) *J. Mol. Biol.* 400(1):96-107).

[0119] Engineered cleavage half-domains described herein can be prepared using any suitable method, for example, by site-directed mutagenesis of wild-type cleavage half-domains (Fok I) as described in U.S. Patent Publication Nos. 20050064474; 20080131962; and 20110201055.

[0120] Alternatively, nucleases may be assembled in vivo at the nucleic acid target site using so-called “split-enzyme” technology (see e.g. U.S. Patent Publication No. 20090068164). Components of such split enzymes may be expressed either on separate expression constructs, or can be linked in one open reading frame where the individual components are separated, for example, by a self-cleaving 2A peptide or IRES sequence. Components may be individual zinc finger binding domains or domains of a meganuclease nucleic acid binding domain.

[0121] Nucleases can be screened for activity prior to use, for example in a yeast-based chromosomal system as described in WO 2009/042163 and 20090068164. Nuclease expression constructs can be readily designed using methods known in the art. See, e.g., United States Patent Publications 20030232410; 20050208489; 20050026157; 20050064474; 20060188987; 20060063231; and International Publication WO 07/014275. Expression of the nuclease may be under the control of a constitutive promoter or an inducible promoter, for example the galactokinase promoter which is activated (de-repressed) in the presence of raffinose and/or galactose and repressed in presence of glucose.

[0122] In an embodiment the polynucleotide donor cassette comprises an analytical domain. In other embodiments the analytical domain comprises a specific polynucleotide

sequence. Examples of specific polynucleotide sequences include, but are not limited to SEQ ID NO:142 and SEQ ID NO:143. In various embodiments, sequences with at least 90% sequence identity to the specific polynucleotide sequences of SEQ ID NO:142 and SEQ ID NO:143 are disclosed herein. In other embodiments, sequences with at least 95% sequence identity to the specific polynucleotide sequences of SEQ ID NO:142 and SEQ ID NO:143 are disclosed herein. In other embodiments, sequences with at least 97% sequence identity to the specific polynucleotide sequences of SEQ ID NO:142 and SEQ ID NO:143 are disclosed herein. In yet other embodiments, sequences with at least 99% sequence identity to the specific polynucleotide sequences of SEQ ID NO:142 and SEQ ID NO:143 are disclosed herein.

[0123] In an embodiment the analytical domain comprises a guanine and cytosine ratio of 40 to 60%. In other embodiments the analytical domain comprises a guanine and cytosine ratio of 42.25 to 57.5%. In other embodiments the analytical domain comprises a guanine and cytosine ratio of 45 to 55%. In another embodiment the analytical domain comprises a guanine and cytosine ratio of 47.75 to 52.25%. The ratio of guanine and cytosine content over a region comprising a polynucleotide sequence can be calculated by counting the number of guanine and cytosine residues in the polynucleotide sequence and dividing this number by the total number of base pairs in the stretch of the polynucleotide sequence and then multiplying the result by 100 to determine the percentage of guanine and cytosine for the polynucleotide sequence. Primers that comprise a ratio of guanine to cytosine of 40-60% result in more stable binding with template DNA during PCR amplifications. However, DNA molecules with a ratio of guanine to cytosine of greater than 60% are difficult to amplify via PCR, as such sequences may form stem loop, dimer, and other secondary structures.

[0124] Melting temperature (Tm) is defined as the temperature at which half of the DNA strands are in the double-helical state and half are in the random coil states. The melting temperature can depend on variables including the length of the molecule, the specific nucleotide sequence composition of that molecule and the molarity of the salt and the nucleic acid in the solution. Duplex stability and melting temperature are important in nucleic acid amplification where thermocycling may be involved. During such thermocycling steps, the temperature is raised high enough above the melting temperature so that duplexes of the target nucleic acid and its complement are dissociated. In subsequent steps of reannealing the temperature is brought to below the melting temperature such that duplexes of the target nucleic acid and primer(s) and/or probe(s) are able to form, while still remaining high enough to avoid non-specific hybridization. Melting temperature and how to measure it is thoroughly described

in the art. See for example, Nucleic Acids Research (1990) 18, 6409-6412 and Bioinformatics, V. 12(12), pp. 1226-1227. Theoretical or empirical models that relate duplex stability to nucleotide sequence can be used to predict melting temperatures for nucleic acids. For example, Proc. Natl. Acad. Sci: U.S.A. 1986, 83:3746-3750, Biochemistry 1996, 35:3555-3562; and Proc. Natl. Acad Sci. U.S.A. 1998, 95:1460-1465 describe a model for predicting melting temperature that is widely used in the art and is known as the "nearest neighbour model". This model takes account of both the length of the oligonucleotide and the sequence of the bases within it.

[0125] The predicted melting temperature refers to the theoretically calculated melting temperature of an oligonucleotide that has not been conjugated with any moieties. It is usually an estimate of the actual melting temperature of an oligonucleotide and is based on the sequence of the oligonucleotide typically without considering the effect of any labels and any associated linkers and the like. Given the exact sequence of an oligonucleotide, the melting temperature of the oligonucleotide can be predicted as discussed above. The predicted melting temperature according to the present invention is calculated, in one embodiment, using the nearest neighbour model. In a further embodiment, the predicted melting temperature according to the present invention is calculated using the nearest neighbour thermodynamic theory using SantaLucia values (SantaLucia, J., Jr. (1998) Proc. Natl. Acad. Sci. U.S.A. (1998) 95, 1460-1465). The SantaLucia values are contained in various computer programs that can be used to predict melting temperatures. In one embodiment, the "Beacon Designer" software package is used. In one embodiment, the SantaLucia values are used with the following reaction conditions; nucleic acid concentration of 0.25 nM; monovalent ion concentration of 50 mM; free magnesium ion concentration of 5mM; total Na^+ equivalent of 332.84mM; and temperature for free energy calculations of 25 °C. Regardless of the choice of the particular software programs or methodologies used, the same software program or methodology is desirably used, suitably, with its default settings, to ascertain the predicted melting temperatures of the primer(s) and the probe(s) used in the present invention.

[0126] The terms "minimum free energy" (MFE), "free energy," and "Gibbs free energy" are used herein interchangeably. The Gibbs free energy is a thermodynamic quantity that is the difference between the enthalpy and the product of the absolute temperature and the entropy of a system. Gibbs free energy is the capacity of a system to do non-mechanical work and ΔG measures the non-mechanical work done on it. (Perrot, Pierre. *A to Z of Thermodynamics*. Oxford University Press (1998)). The Gibbs free energy is defined as

$G=H-TS$, where H is the enthalpy, T is temperature and S is the entropy ($H=U+pV$, where p is the pressure and V is the volume).

[0127] It is generally considered that all systems strive to achieve a minimum free energy. Thus, when the change in Gibbs free energy, ΔG , is negative then a reaction is favored and energy is released. The amount of energy released is equal to the maximum amount of work that can be performed as a result of that particular chemical reaction. When conditions result in a change in Gibbs free energy, ΔG , that is positive then energy must be added to the system to make the reaction proceed. In isothermal, isobaric systems, Gibbs free energy is a representative measure of the competing effects of enthalpy and entropy that are involved in a thermodynamic process. Thus, Gibb free energy can be consider to be a dynamic quantity.

[0128] It is noted that the measurement of free energy can be biased by nucleotide sequence length. Longer nucleotide sequences have a greater range of free energies than short nucleotide sequences. Thus, nucleotide sequences of variable length can be compared by normalizing the free energy calculation (kcal/mol) by dividing the free energy by the sequence length (i.e., the mean free energy= $\Delta G/\text{length of nucleotide sequence (kcal/mol/base pair)}$).

[0129] Accordingly, as used herein, minimum free energy (i.e., free energy, Gibbs free energy) identifies the value for the structure found by thermodynamic optimization (i.e., an implementation of the Zuker algorithm (M. Zuker and P. Stiegler, *Nucleic Acids Research* 9:133-148 (1981)) that has the lowest free energy value (i.e., Gibb's free energy; ΔG (kcal/mol); $\Delta G/\text{length of nucleotide sequence (kcal/mol/base pair)}$). The Gibb's free energy of a sequence can be calculated using, for example, the RNAfoldTM or PRIMER EXPRESSTM (Version 1.0, Applied Biosystems, Foster City, CA) or mFOLDTM software (now UNIFoldTM) (IDT, San Jose, CA) program as known by those of skill in the art. (See, e.g., Id., Hofacker et al. *Monatshefte f. Chemie* 125: 167-188 (1994); McCaskill J S. *Biopolymers* 29 (6-7):1105-19. (1990); and Hofacker et al. *Bioinformatics* 22 (10):1172-6 (2006)).

[0130] In an embodiment the analytical domain comprises a polynucleotide that does not contain a plurality of repetitive sequences, wherein the repetitive sequence is at least 9 Bp in length. In some embodiments a plurality or repetitive sequences comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more polynucleotide fragments of at least 9 Bp in length. In an embodiment a first polynucleotide sequence constitutes a repetitive sequence when a second polynucleotide sequence comprising the same sequence is located directly downstream of the first polynucleotide sequence (e.g. a first polynucleotide sequence comprises 5'-gaaaaataacaa-3', this polynucleotide sequence constitutes a repetitive sequence when a second polynucleotide

sequence (underlined) comprising the same sequence is located directly downstream of the first polynucleotide sequence 5'-gaaaaataacaagaaaaataacaa-3'). In an embodiment, the analytical domain comprises a polynucleotide that does not contain a plurality of such repetitive sequences.

[0131] In an embodiment an analytical domain comprises a polynucleotide that does not contain a series of identical base pair sequences greater than 9 Bp in length. Identical base pairs are any number of base pairs, greater than 9 Bp, of the same purine (adenine or guanine) or pyrimidine (cytosine or thymine) base pair that come one after another in spatial or temporal succession. Accordingly, a stretch of nucleotides such as; 5'-AAAAAAA-3', 5'-GGGGGGGG-3', 5'-CCCCCCCC-3', or 5'-TTTTTTTT-3' would comprise a series of nine identical base pairs. In an embodiment, a series of identical base pair sequences may be greater than 9 Bp, 10 Bp, 11 Bp, 12 Bp, 13 Bp, 14 Bp, 15 Bp or more Bp in length.

[0132] In other embodiments the analytical domain of the polynucleotide donor cassette comprises one or more restriction enzyme sequences. A restriction enzyme is an enzyme capable of cleaving DNA into fragments. Cleavage of large molecular weight genomic DNA by a restriction enzyme into fragments of lower molecular weight fragments allows for more efficient isolation and manipulation of the DNA fragments for subsequent analysis.

[0133] Restriction enzyme digestions, also referenced as restriction endonuclease digestions, are performed when a nuclease enzyme is used to cleave the polynucleotide sequences. There are numerous restriction enzymes available to those skilled in the art. As described at www.neb.com/nebcomm/tech_reference/restriction_enzymes/overview.asp, four classifications are used to characterize restriction enzymes. These classifications are made on the basis of subunit composition, cleavage position, sequence specificity and cofactor requirements.

[0134] Type I enzymes randomly cut DNA at locations which are a distance from the recognition/binding sequence (> 1,000 bp away). The recognition sites which are bound by a Type I enzyme are asymmetrical. As a result these enzymes are not used for gene cloning because these enzymes do not produce discrete restriction fragments or distinct gel-banding patterns. Type I enzymes are multifunctional and the different subunits which comprise a Type I restriction enzyme are responsible for different activities (i.e. subunit HsdR encodes restriction, subunit HsdM encodes methylation of DNA, and subunit HsdS encodes specificity of the recognition sequence).

[0135] Type II enzymes digest DNA at positions located within close proximity of the recognition sequences. These enzymes function as a dimer, wherein a subunit binds to the sense strand and a second copy of the subunit binds to the antisense strand at a palindromic sequence which is typically between 4–8 nucleotides in length. The Type II dimer that binds to the DNA can be either a homodimer which bind to symmetric DNA sequences, or a heterodimer which binds to asymmetric DNA sequences. The enzymes can recognize either continuous sequences or discontinuous sequences. Type II enzymes are commercially available and commonly used for DNA analysis and gene cloning. Widespread usage of these enzymes is a result of distinct restriction fragments which are produced and can be resolved on an agarose gel.

[0136] Type II enzymes are a collection of unrelated proteins which are highly divergent in amino acid sequence similarity. Type II enzymes have been divided into subcategories which are labeled using a letter suffix. Type IIB restriction enzymes are multimers that contain more than one subunit. These enzymes cut both sides of the recognition sequence, thereby resulting in removal of the recognition sequence. Type IIE and Type IIF restriction enzymes cleave DNA following interaction with two copies of their recognition sequence. Type IIG restriction enzymes are comprised of a single subunit. The N-terminal portion of the enzyme possesses a DNA cleavage domain and DNA modification domain. The C-terminal portion of the enzyme possesses a DNA sequence binding domain. These enzymes cleave outside of their recognition sequence. Type IIM restriction enzymes recognize and cut methylated DNA. Type IIS restriction enzymes function as a dimer and cleave DNA at a location which is outside of the non-palindromic asymmetric recognition sites. These enzymes are comprised of two distinct domains, one for DNA binding and the other for DNA cleavage.

[0137] Type III enzymes are combination restriction-and-modification enzymes. These enzymes recognize two separate non-palindromic sequences and cleave outside of their recognition sequences. Type III enzymes require two recognition sequences in opposite orientations within the same DNA molecule to accomplish cleavage.

[0138] Type IV enzymes recognize methylated DNA. Examples include the McrBC and Mrr systems of *E. coli*.

[0139] In an embodiment, the analytical domain of the polynucleotide donor cassette comprises one or more primer binding sequences. The term “primer binding sequence” refers to a region of the analytical domain or any other polynucleotide sequence, typically a sequence flanking a target region and/or an amplicon that can serve directly, or by virtue of its complement, as the template upon which a primer can anneal for any suitable primer extension

reaction or amplification reaction known in the art, for example but not limited to, PCR. It will be appreciated by those of skill in the art that when two primer-binding sites are present on a single polynucleotide, the orientation of the two primer-binding sites is generally different. For example, one primer of a primer pair is complementary to and can hybridize with the first primer-binding site, while the corresponding primer of the primer pair is designed to hybridize with the complement of the second primer-binding site. Stated another way, in some embodiments the first primer-binding site can be in a sense orientation, and the second primer-binding site can be in an antisense orientation. A primer-binding site of an amplicon may, but need not comprise the same sequence as or at least some of the sequence of the target flanking sequence or its complement.

[0140] A primer can be designed to bind to an analytical domain comprising secondary structure that is calculated with a free energy (ΔG) of -1 to -18 kcal/mole. In an embodiment, a primer can be designed with a melting temperature (T_m) of at least 10°C greater than the region of an analytical domain comprising secondary structure with a free energy (ΔG) of -1 to -18 kcal/mole as calculated using Markham, N. R. & Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization. In Keith, J. M., editor, *Bioinformatics, Volume II. Structure, Function and Applications*, number 453 in *Methods in Molecular Biology*, chapter 1, pages 3–31. Humana Press, Totowa, NJ. ISBN 978-1-60327-428-9.

[0141] In an embodiment the analytical domain of the polynucleotide donor cassette of comprises one or more homology arm sequences. Subsequent embodiments of the one or more homology arm sequences are comprised of lengths of 50 to 100 base pairs. Homology arms comprised of random stretches of nucleotides can be readily designed and synthesized for various applications. The universal polynucleotide donor sequences may comprise one or more homology arms that are employed for homologous integration of a polynucleotide within the host genome. In some embodiments, the homology arm is targeted by introducing a double strand break within or next to the homology arm and integrating a second polynucleotide that may comprise a gene expression cassette comprising a transgene within the homology arm region. Typically, the integration of the second polynucleotide occurs via homologous recombination directed repair.

[0142] In one embodiment the homology arm region shares at least 80, 90, 93, 95, 99 or 100% sequence identity with an optimal genomic loci. In one embodiment the homology arm region shares at least 80, 90, 93, 95, 99, or 100% sequence identity with an optimal genomic loci of a plant cell. In one embodiment the optimal genomic loci is a nongenic

monocot or dicot sequence that is hypomethylated, expressable, exemplifies evidence of recombination and is located in proximal location to a genic region in the genome of a plant.

[0143] In one embodiment the optimal genomic loci is a hypomethylated nongenic sequence having the following properties or characteristics:

- a) the level of methylation of said nongenic sequence is 1% or less;
- b) the nongenic sequence shares less than 40% sequence identity with any other sequence contained in the genome;
- c) the nongenic sequence shares less than 40% sequence identity with any other sequence contained in the genome;
- d) the nongenic sequence is located within a 40 Kb region of a known or predicted expressive coding sequence; and,
- e) the nongenic sequence exhibits a recombination frequency within the genome of greater than 0.00041 cM/Mb.

[0144] In one embodiment the optimal genomic loci is a hypomethylated nongenic sequence having 1, 2, 3, 4 or 5 of the following properties or characteristics:

- a) has a known or predicted gene coding sequence within 40 Kb of said nongenic sequence;
- b) has a sequence comprising a 2Kb upstream and/or 1 Kb downstream of a known gene within 40 Kb of one end of said nongenic sequence;
- c) does not contain greater than 1% DNA methylation within the nongenic sequence;
- d) does not contain a 1 Kb sequence having greater than 40% sequence identity to any other sequence within the genome; and
- e) exemplifies evidence of recombination at a recombination frequency of greater than 0.00041 cM/Mb.

[0145] In accordance with one embodiment the selected nongenic sequence comprises 2, 3, 4, 5, 6, 7 or 8 of the following characteristics:

- a) the nongenic sequence does not contain a methylated polynucleotide;
- b) the nongenic sequence exhibits a 0.00041 to 62.42 cM/Mb rate of recombination within the genome;
- c) the nongenic sequence exhibits a 0 to 0.962 level of nucleosome occupancy of the genome;

- d) the nongenic sequence shares less than 40% sequence identity with any other 1 Kb sequence contained in the genome;
- e) the nongenic sequence has a relative location value from 0.00373 to 0.99908, representing the ratio of genomic distance from a chromosomal centromere;
- f) the nongenic sequence has a guanine/cytosine percent content range of 25.17 to 68.3%;
- g) the nongenic sequence is located proximally to a genic sequence; and,
- h) a 1 Mb region of genomic sequence comprising said nongenic sequence, comprises one or more nongenic sequences.

[0146] In an embodiment the analytical domain of the polynucleotide donor cassette comprises a sequence that does not encode a peptide.

[0147] In an embodiment the analytical domain of the polynucleotide donor cassette comprises a sequence that does encode a peptide. To express a peptide, nucleotide sequences encoding the peptide sequence are typically subcloned into an expression vector that contains a promoter to direct transcription. Suitable bacterial and eukaryotic promoters are well known in the art and described, *e.g.*, in Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual* (2nd ed. 1989; 3rd ed., 2001); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel *et al.*, *supra*.). Bacterial expression systems for expressing a peptide are available in, *e.g.*, *E. coli*, *Bacillus sp.*, and *Salmonella* (Palva *et al.*, *Gene* 22:229-235 (1983)). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known by those of skill in the art and are also commercially available.

[0148] In an embodiment the polynucleotide donor cassette comprises a gene expression cassette comprising a transgene. The gene expression cassette typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic. A typical gene expression cassette thus contains a promoter operably linked, *e.g.*, to a nucleic acid sequence encoding the protein, and signals required, *e.g.*, for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, *e.g.*, enhancers and heterologous splicing signals.

[0149] In an embodiment the gene expression cassette will also include at the 3' terminus of the heterologous nucleotide sequence of interest, a transcriptional and translational termination region functional in plants. The termination region can be native with the promoter

nucleotide sequence of embodiments of the present disclosure, can be native with the DNA sequence of interest, or can be derived from another source. Convenient termination regions are available from the Ti-plasmid of *A. tumefaciens*, such as the octopine synthase and nopaline synthase (nos) termination regions (Depicker et al., Mol. and Appl. Genet. 1:561-573 (1982) and Shaw et al. (1984) Nucleic Acids Research vol. 12, No. 20 pp7831-7846(nos)); see also Guerineau et al. Mol. Gen. Genet. 262:141-144 (1991); Proudfoot, Cell 64:671-674 (1991); Sanfacon et al. Genes Dev. 5:141-149 (1991); Mogen et al. Plant Cell 2:1261-1272 (1990); Munroe et al. Gene 91:151-158 (1990); Ballas et al. Nucleic Acids Res. 17:7891-7903 (1989); Joshi et al. Nucleic Acid Res. 15:9627-9639 (1987).

[0150] In other embodiments, the gene expression cassettes can additionally contain 5' leader sequences. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include by way of example, picornavirus leaders, EMCV leader (Encephalomyocarditis 5' noncoding region), Elroy-Stein et al. Proc. Nat. Acad. Sci. USA 86:6126-6130 (1989); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) Carrington and Freed Journal of Virology, 64:1590-1597 (1990), MDMV leader (Maize Dwarf Mosaic Virus), Allison et al., Virology 154:9-20 (1986); human immunoglobulin heavy-chain binding protein (BiP), Macejak et al. Nature 353:90-94 (1991); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), Jobling et al. Nature 325:622-625 (1987); Tobacco mosaic virus leader (TMV), Gallie et al. (1989) Molecular Biology of RNA, pages 237-256; and maize chlorotic mottle virus leader (MCMV) Lommel et al. Virology 81:382-385 (1991). See also Della-Cioppa et al. Plant Physiology 84:965-968 (1987). The construct can also contain sequences that enhance translation and/or mRNA stability such as introns. An example of one such intron is the first intron of gene II of the histone H3.III variant of *Arabidopsis thaliana*. Chaubet et al. Journal of Molecular Biology, 225:569-574 (1992).

[0151] In an embodiment the gene expression cassette of the polynucleotide donor sequence comprises a promoter. The promoter used to direct expression of a peptide encoding nucleic acid depends on the particular application. For example, a strong constitutive promoter suited to the host cell is typically used for expression and purification of proteins. Non-limiting examples of preferred plant promoters include promoter sequences derived from *A. thaliana* ubiquitin-10 (ubi-10) (Callis, et al., 1990, *J. Biol. Chem.*, 265:12486-12493); *A. tumefaciens* mannopine synthase (Δmas) (Petolino et al., U.S. Patent No. 6,730,824); and/or Cassava Vein Mosaic Virus (CsVMV) (Verdaguer et al., 1996, *Plant Molecular Biology* 31:1129-1139).

[0152] In methods disclosed herein, a number of promoters that direct expression of a gene in a plant can be employed. Such promoters can be selected from constitutive, chemically-regulated, inducible, tissue-specific, and seed-preferred promoters.

[0153] Constitutive promoters include, for example, the core Cauliflower Mosaic Virus 35S promoter (Odell et al. (1985) *Nature* 313:810-812); Rice Actin promoter (McElroy et al. (1990) *Plant Cell* 2:163-171); Maize Ubiquitin promoter (U.S. Patent Number 5,510,474; Christensen et al. (1989) *Plant Mol. Biol.* 12:619-632 and Christensen et al. (1992) *Plant Mol. Biol.* 18:675-689); pEMU promoter (Last et al. (1991) *Theor. Appl. Genet.* 81:581-588); ALS promoter (U.S. Patent Number 5,659,026); Maize Histone promoter (Chabouté et al. *Plant Molecular Biology*, 8:179-191 (1987)); and the like.

[0154] The range of available plant compatible promoters includes tissue specific and inducible promoters. An inducible regulatory element is one that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. In the absence of an inducer the DNA sequences or genes will not be transcribed. Typically the protein factor that binds specifically to an inducible regulatory element to activate transcription is present in an inactive form which is then directly or indirectly converted to the active form by the inducer. The inducer can be a chemical agent such as a protein, metabolite, growth regulator, herbicide or phenolic compound or a physiological stress imposed directly by heat, cold, salt, or toxic elements or indirectly through the action of a pathogen or disease agent such as a virus. Typically the protein factor that binds specifically to an inducible regulatory element to activate transcription is present in an inactive form which is then directly or indirectly converted to the active form by the inducer. The inducer can be a chemical agent such as a protein, metabolite, growth regulator, herbicide or phenolic compound or a physiological stress imposed directly by heat, cold, salt, or toxic elements or indirectly through the action of a pathogen or disease agent such as a virus. A plant cell containing an inducible regulatory element may be exposed to an inducer by externally applying the inducer to the cell or plant such as by spraying, watering, heating or similar methods.

[0155] Any inducible promoter can be used in embodiments of the instant disclosure. See Ward et al. *Plant Mol. Biol.* 22: 361-366 (1993). Exemplary inducible promoters include ecdysone receptor promoters (U.S. Patent Number 6,504,082); promoters from the ACE1 system which respond to copper (Mett et al. *PNAS* 90: 4567-4571 (1993)); In2-1 and In2-2 gene from maize which respond to benzenesulfonamide herbicide safeners (US Patent Number 5,364,780; Hershey et al., *Mol. Gen. Genetics* 227: 229-237 (1991) and Gatz et al., *Mol. Gen.*

Genetics 243: 32-38 (1994)); Tet repressor from Tn10 (Gatz et al., Mol. Gen. Genet. 227: 229-237 (1991); or promoters from a steroid hormone gene, the transcriptional activity of which is induced by a glucocorticosteroid hormone, Schena et al., Proc. Natl. Acad. Sci. U.S.A. 88: 10421 (1991) and McNellis et al., (1998) Plant J. 14(2):247-257; the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides (see U.S. Patent No. 5,965,387 and International Patent Application, Publication No. WO 93/001294); and the tobacco PR-1a promoter, which is activated by salicylic acid (see Ono S, Kusama M, Ogura R, Hiratsuka K., "Evaluation of the Use of the Tobacco PR-1a Promoter to Monitor Defense Gene Expression by the Luciferase Bioluminescence Reporter System," Biosci Biotechnol Biochem. 2011 Sep 23;75(9):1796-800). Other chemical-regulated promoters of interest include tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al., (1991) Mol. Gen. Genet. 227:229-237, and U.S. Patent Numbers 5,814,618 and 5,789,156).

[0156] Other regulatable promoters of interest include a cold responsive regulatory element or a heat shock regulatory element, the transcription of which can be effected in response to exposure to cold or heat, respectively (Takahashi et al., Plant Physiol. 99:383-390, 1992); the promoter of the alcohol dehydrogenase gene (Gerlach et al., PNAS USA 79:2981-2985 (1982); Walker et al., PNAS 84(19):6624-6628 (1987)), inducible by anaerobic conditions; and the light-inducible promoter derived from the pea *rbcS* gene or pea *psaDb* gene (Yamamoto et al. (1997) Plant J. 12(2):255-265); a light-inducible regulatory element (Feinbaum et al., Mol. Gen. Genet. 226:449, 1991; Lam and Chua, Science 248:471, 1990; Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590; Orozco et al. (1993) Plant Mol. Bio. 23(6):1129-1138), a plant hormone inducible regulatory element (Yamaguchi-Shinozaki et al., Plant Mol. Biol. 15:905, 1990; Kares et al., Plant Mol. Biol. 15:225, 1990), and the like. An inducible regulatory element also can be the promoter of the maize *In2-1* or *In2-2* gene, which responds to benzenesulfonamide herbicide safeners (Hershey et al., Mol. Gen. Gene. 227:229-237, 1991; Gatz et al., Mol. Gen. Genet. 243:32-38, 1994), and the Tet repressor of transposon Tn10 (Gatz et al., Mol. Gen. Genet. 227:229-237, 1991). Stress inducible promoters include salt/water stress-inducible promoters such as P5CS (Zang et al. (1997) Plant Sciences 129:81-89); cold-inducible promoters, such as, *cor15a* (Hajela et al. (1990) Plant Physiol. 93:1246-1252), *cor15b* (Wilhelm et al. (1993) Plant Mol Biol 23:1073-1077), *wsc120* (Ouellet et al. (1998) FEBS Lett. 423:324-328), *ci7* (Kirch et al. (1997) Plant Mol Biol. 33:897-909), *ci21A* (Schneider et al. (1997) Plant Physiol. 113:335-45); drought-inducible promoters,

such as Trg-31 (Chaudhary et al (1996) *Plant Mol. Biol.* 30:1247-57), rd29 (Kasuga et al. (1999) *Nature Biotechnology* 18:287-291); osmotic inducible promoters, such as Rab17 (Vilardell et al. (1991) *Plant Mol. Biol.* 17:985-93) and osmotin (Raghothama et al. (1993) *Plant Mol Biol* 23:1117-28); and heat inducible promoters, such as heat shock proteins (Barros et al. (1992) *Plant Mol.* 19:665-75; Marrs et al. (1993) *Dev. Genet.* 14:27-41), smHSP (Waters et al. (1996) *J. Experimental Botany* 47:325-338), and the heat-shock inducible element from the parsley ubiquitin promoter (WO 03/102198). Other stress-inducible promoters include rip2 (U.S. Patent Number 5,332,808 and U.S. Publication No. 2003/0217393) and rd29a (Yamaguchi-Shinozaki et al. (1993) *Mol. Gen. Genetics* 236:331-340). Certain promoters are inducible by wounding, including the *Agrobacterium* pMAS promoter (Guevara-Garcia et al. (1993) *Plant J.* 4(3):495-505) and the *Agrobacterium* ORF13 promoter (Hansen et al., (1997) *Mol. Gen. Genet.* 254(3):337-343).

[0157] Tissue-preferred promoters can be utilized to target enhanced transcription and/or expression within a particular plant tissue. When referring to preferential expression, what is meant is expression at a higher level in the particular plant tissue than in other plant tissue. Examples of these types of promoters include seed preferred expression such as that provided by the phaseolin promoter (Bustos et al. 1989. *The Plant Cell* Vol. 1, 839-853), and the maize globulin-1 gene, Belanger, et al. 1991 *Genetics* 129:863-972. For dicots, seed-preferred promoters include, but are not limited to, bean β -phaseolin, napin, β -conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-preferred promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, γ -zein, waxy, shrunken 1, shrunken 2, globulin 1, etc. Seed-preferred promoters also include those promoters that direct gene expression predominantly to specific tissues within the seed such as, for example, the endosperm-preferred promoter of γ -zein, the cryptic promoter from tobacco (Fobert et al. 1994. T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. *Plant J.* 4: 567-577), the P-gene promoter from corn (Chopra et al. 1996. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. *Plant Cell* 7:1149-1158, Erratum in *Plant Cell*.1997, 1:109), the globulin-1 promoter from corn (Belenger and Kriz.1991. Molecular basis for Allelic Polymorphism of the maize Globulin-1 gene. *Genetics* 129: 863-972), and promoters that direct expression to the seed coat or hull of corn kernels, for example the pericarp-specific glutamine synthetase promoter (Muhitch et al.,2002. Isolation of a Promoter Sequence From the Glutamine Synthetase₁₋₂ Gene Capable of Conferring Tissue-Specific Gene Expression in Transgenic Maize. *Plant Science* 163:865-872).

[0158] A gene expression cassette may contain a 5' leader sequence. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include by way of example, picornavirus leaders, EMCV leader (Encephalomyocarditis 5' noncoding region), Elroy-Stein et al. Proc. Nat. Acad. Sci. USA 86:6126-6130 (1989); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) Carrington and Freed Journal of Virology, 64:1590-1597 (1990), MDMV leader (Maize Dwarf Mosaic Virus), Allison et al., Virology 154:9-20 (1986); human immunoglobulin heavy-chain binding protein (BiP), Macejak et al. Nature 353:90-94 (1991); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), Jobling et al. Nature 325:622-625 (1987); Tobacco mosaic virus leader (TMV), Gallie et al. (1989) Molecular Biology of RNA, pages 237-256; and maize chlorotic mottle virus leader (MCMV) Lommel et al. Virology 81:382-385 (1991). See also Della-Cioppa et al. Plant Physiology 84:965-968 (1987).

[0001] The construct may also contain sequences that enhance translation and/or mRNA stability such as introns. An example of one such intron is the first intron of gene II of the histone H3.III variant of *Arabidopsis thaliana*. Chaubet et al. Journal of Molecular Biology, 225:569-574 (1992).

[0002] In those instances where it is desirable to have the expressed product of the heterologous nucleotide sequence directed to a particular organelle, particularly the plastid, amyloplast, or to the endoplasmic reticulum, or secreted at the cell's surface or extracellularly, the expression cassette may further comprise a coding sequence for a transit peptide. Such transit peptides are well known in the art and include, but are not limited to, the transit peptide for the acyl carrier protein, the small subunit of RUBISCO, plant EPSP synthase and *Helianthus annuus* (see Lebrun et al. US Patent 5,510,417), *Zea mays* Brittle-1 chloroplast transit peptide (Nelson et al. Plant Physiol 117(4):1235-1252 (1998); Sullivan et al. Plant Cell 3(12):1337-48; Sullivan et al., Planta (1995) 196(3):477-84; Sullivan et al., J. Biol. Chem. (1992) 267(26):18999-9004) and the like. In addition, chimeric chloroplast transit peptides are known in the art, such as the Optimized Transit Peptide (see, U.S. Patent Number 5,510,471). Additional chloroplast transit peptides have been described previously in U.S. Patent Nos. 5,717,084; 5,728,925. One skilled in the art will readily appreciate the many options available in expressing a product to a particular organelle. For example, the barley alpha amylase sequence is often used to direct expression to the endoplasmic reticulum. Rogers, J. Biol. Chem. 260:3731-3738 (1985).

[0159] In an embodiment the polynucleotide donor cassette comprises a transgene. Some embodiments herein provide a transgene encoding a polypeptide comprising a gene expression cassette. Such a transgene may be useful in any of a wide variety of applications to produce transgenic plants. Particular examples of a transgene comprising a gene expression cassette are provided for illustrative purposes herein and include a gene expression comprising a trait gene, an RNAi gene, or a reporter/selectable marker gene.

[0160] In engineering a gene for expression in plants, the codon bias of the prospective host plant(s) may be determined, for example, through use of publicly available DNA sequence databases to find information about the codon distribution of plant genomes or the protein coding regions of various plant genes. Once an optimized (e.g., a plant-optimized) DNA sequence has been designed on paper, or *in silico*, actual DNA molecules may be synthesized in the laboratory to correspond in sequence precisely to the designed sequence. Such synthetic nucleic acid molecule molecules can be cloned and otherwise manipulated exactly as if they were derived from natural or native sources.

[0161] In an embodiment, a transgene to be expressed is disclosed in the subject application. The gene expression cassette may comprise a reporter/selectable marker gene, a trait gene, or an RNAi gene. Examples of a selectable marker gene, a trait gene, and an RNAi gene are further provided below. The methods disclosed in the present application are advantageous in that they provide a method for selecting germline transformants that is not dependent on the specific function of the protein product, or other function, of the transgene.

[0162] Transgenes or Coding Sequence that Confer Resistance to Pests or Disease

(A) Plant Disease Resistance Genes. Plant defenses are often activated by specific interaction between the product of a disease resistance gene (R) in the plant and the product of a corresponding avirulence (Avr) gene in the pathogen. A plant variety can be transformed with cloned resistance gene to engineer plants that are resistant to specific pathogen strains. Examples of such genes include, the tomato Cf-9 gene for resistance to *Cladosporium fulvum* (Jones et al., 1994 Science 266:789), tomato *Pto* gene, which encodes a protein kinase, for resistance to *Pseudomonas syringae* pv. tomato (Martin et al., 1993 Science 262:1432), and *Arabidopsis* RSSP2 gene for resistance to *Pseudomonas syringae* (Mindrinos et al., 1994 Cell 78:1089).

(B) A *Bacillus thuringiensis* protein, a derivative thereof or a synthetic polypeptide modeled thereon, such as, a nucleotide sequence of a *Bt* δ-endotoxin gene (Geiser et al., 1986 Gene 48:109), and a vegetative insecticidal (VIP) gene (see, e.g., Estruch et al. (1996) Proc.

Natl. Acad. Sci. 93:5389-94). Moreover, DNA molecules encoding δ -endotoxin genes can be purchased from American Type Culture Collection (Rockville, Md.), under ATCC accession numbers 40098, 67136, 31995 and 31998.

(C) A lectin, such as, nucleotide sequences of several *Clivia miniata* mannose-binding lectin genes (Van Damme et al., 1994 Plant Molec. Biol. 24:825).

(D) A vitamin binding protein, such as avidin and avidin homologs which are useful as larvicides against insect pests. See U.S. Pat. No. 5,659,026.

(E) An enzyme inhibitor, e.g., a protease inhibitor or an amylase inhibitor. Examples of such genes include a rice cysteine proteinase inhibitor (Abe et al., 1987 J. Biol. Chem. 262:16793), a tobacco proteinase inhibitor I (Huub et al., 1993 Plant Molec. Biol. 21:985), and an α -amylase inhibitor (Sumitani et al., 1993 Biosci. Biotech. Biochem. 57:1243).

(F) An insect-specific hormone or pheromone such as an ecdysteroid and juvenile hormone a variant thereof, a mimetic based thereon, or an antagonist or agonist thereof, such as baculovirus expression of cloned juvenile hormone esterase, an inactivator of juvenile hormone (Hammock et al., 1990 Nature 344:458).

(G) An insect-specific peptide or neuropeptide which, upon expression, disrupts the physiology of the affected pest (J. Biol. Chem. 269:9). Examples of such genes include an insect diuretic hormone receptor (Regan, 1994), an allostatin identified in *Diploptera punctata* (Pratt, 1989), and insect-specific, paralytic neurotoxins (U.S. Pat. No. 5,266,361).

(H) An insect-specific venom produced in nature by a snake, a wasp, etc., such as a scorpion insectotoxic peptide (Pang, 1992 Gene 116:165).

(I) An enzyme responsible for a hyperaccumulation of monoterpene, a sesquiterpene, a steroid, hydroxamic acid, a phenylpropanoid derivative or another non-protein molecule with insecticidal activity.

(J) An enzyme involved in the modification, including the post-translational modification, of a biologically active molecule; for example, glycolytic enzyme, a proteolytic enzyme, a lipolytic enzyme, a nuclease, a cyclase, a transaminase, an esterase, a hydrolase, a phosphatase, a kinase, a phosphorylase, a polymerase, an elastase, a chitinase and a glucanase, whether natural or synthetic. Examples of such genes include, a callas gene (PCT published application WO93/02197), chitinase-encoding sequences (which can be obtained, for example, from the ATCC under accession numbers 3999637 and 67152), tobacco hookworm chitinase (Kramer et al., 1993 Insect Molec. Biol. 23:691), and parsley ubi4-2 polyubiquitin gene (Kawalleck et al., 1993 Plant Molec. Biol. 21:673).

(K) A molecule that stimulates signal transduction. Examples of such molecules include nucleotide sequences for mung bean calmodulin cDNA clones (Botella et al., 1994 Plant Molec. Biol. 24:757) and a nucleotide sequence of a maize calmodulin cDNA clone (Griess et al., 1994 Plant Physiol. 104:1467).

(L) A hydrophobic moment peptide. See U.S. Pat. Nos. 5,659,026 and 5,607,914; the latter teaches synthetic antimicrobial peptides that confer disease resistance.

(M) A membrane permease, a channel former or a channel blocker, such as a cecropin- β lytic peptide analog (Jaynes et al., 1993 Plant Sci. 89:43) which renders transgenic tobacco plants resistant to *Pseudomonas solanacearum*.

(N) A viral-invasive protein or a complex toxin derived therefrom. For example, the accumulation of viral coat proteins in transformed plant cells imparts resistance to viral infection and/or disease development effected by the virus from which the coat protein gene is derived, as well as by related viruses. Coat protein-mediated resistance has been conferred upon transformed plants against alfalfa mosaic virus, cucumber mosaic virus, tobacco streak virus, potato virus X, potato virus Y, tobacco etch virus, tobacco rattle virus and tobacco mosaic virus. See, for example, Beachy et al. (1990) Ann. Rev. Phytopathol. 28:451.

(O) An insect-specific antibody or an immunotoxin derived therefrom. Thus, an antibody targeted to a critical metabolic function in the insect gut would inactivate an affected enzyme, killing the insect. For example, Taylor et al. (1994) Abstract #497, Seventh Int'l. Symposium on Molecular Plant-Microbe Interactions shows enzymatic inactivation in transgenic tobacco via production of single-chain antibody fragments.

(P) A virus-specific antibody. See, for example, Tavladoraki et al. (1993) Nature 266:469, which shows that transgenic plants expressing recombinant antibody genes are protected from virus attack.

(Q) A developmental-arrestive protein produced in nature by a pathogen or a parasite. Thus, fungal endo α -1,4-D polygalacturonases facilitate fungal colonization and plant nutrient release by solubilizing plant cell wall homo- α -1,4-D-galacturonase (Lamb et al., 1992) Bio/Technology 10:1436. The cloning and characterization of a gene which encodes a bean endopolygalacturonase-inhibiting protein is described by Toubart et al. (1992 Plant J. 2:367).

(R) A developmental-arrestive protein produced in nature by a plant, such as the barley ribosome-inactivating gene that provides an increased resistance to fungal disease (Longemann et al., 1992) Bio/Technology 10:3305.

(S) RNA interference, in which an RNA molecule is used to inhibit expression of a target gene. An RNA molecule in one example is partially or fully double stranded, which triggers a silencing response, resulting in cleavage of dsRNA into small interfering RNAs, which are then incorporated into a targeting complex that destroys homologous mRNAs. See, e.g., Fire et al., US Patent 6,506,559; Graham et al. 6,573,099.

[0163] Genes That Confer Resistance to a Herbicide

(A) Genes encoding resistance or tolerance to a herbicide that inhibits the growing point or meristem, such as an imidazalinone, sulfonanilide or sulfonylurea herbicide. Exemplary genes in this category code for a mutant ALS enzyme (Lee et al., 1988 EMBOJ. 7:1241), which is also known as AHAS enzyme (Miki et al., 1990 Theor. Appl. Genet. 80:449).

(B) One or more additional genes encoding resistance or tolerance to glyphosate imparted by mutant EPSP synthase and *aroA* genes, or through metabolic inactivation by genes such as GAT (glyphosate acetyltransferase) or GOX (glyphosate oxidase) and other phosphono compounds such as glufosinate (*pat* and *bar* genes; DSM-2), and aryloxyphenoxypropionic acids and cyclohexanediones (ACCase inhibitor encoding genes). See, for example, U.S. Pat. No. 4,940,835, which discloses the nucleotide sequence of a form of EPSP which can confer glyphosate resistance. A DNA molecule encoding a mutant *aroA* gene can be obtained under ATCC Accession Number 39256, and the nucleotide sequence of the mutant gene is disclosed in U.S. Pat. No. 4,769,061. European patent application No. 0 333 033 and U.S. Pat. No. 4,975,374 disclose nucleotide sequences of glutamine synthetase genes which confer resistance to herbicides such as L-phosphinothricin. The nucleotide sequence of a phosphinothricinacetyltransferase gene is provided in European application No. 0 242 246. De Greef et al. (1989) Bio/Technology 7:61 describes the production of transgenic plants that express chimeric *bar* genes coding for phosphinothricin acetyl transferase activity. Exemplary of genes conferring resistance to aryloxyphenoxypropionic acids and cyclohexanediones, such as sethoxydim and haloxyfop, are the Accl-S1, Accl-S2 and Accl-S3 genes described by Marshall et al. (1992) Theor. Appl. Genet. 83:435.

(C) Genes encoding resistance or tolerance to a herbicide that inhibits photosynthesis, such as a triazine (*psbA* and *gs+* genes) and a benzonitrile (nitrilase gene). Przibilla et al. (1991) Plant Cell 3:169 describe the use of plasmids encoding mutant *psbA* genes to transform *Chlamydomonas*. Nucleotide sequences for nitrilase genes are disclosed in U.S. Pat. No. 4,810,648, and DNA molecules containing these genes are available under ATCC accession

numbers 53435, 67441 and 67442. Cloning and expression of DNA coding for a glutathione S-transferase is described by Hayes et al. (1992) *Biochem. J.* 285:173.

(D) Genes encoding resistance or tolerance to a herbicide that bind to hydroxyphenylpyruvate dioxygenases (HPPD), enzymes which catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. This includes herbicides such as isoxazoles (EP418175, EP470856, EP487352, EP527036, EP560482, EP682659, U.S. Pat. No. 5,424,276), in particular isoxaflutole, which is a selective herbicide for maize, diketonitriles (EP496630, EP496631), in particular 2-cyano-3-cyclopropyl-1-(2-SO₂CH₃-4-CF₃ phenyl)propane-1,3-dione and 2-cyano-3-cyclopropyl-1-(2-SO₂CH₃-4-2,3Cl₂phenyl)propane-1,3-dione, triketones (EP625505, EP625508, U.S. Pat. No. 5,506,195), in particular sulcotrione, and pyrazolinates. A gene that produces an overabundance of HPPD in plants can provide tolerance or resistance to such herbicides, including, for example, genes described in U.S. Patent Nos. 6,268,549 and 6,245,968 and U.S. Patent Application, Publication No. 20030066102.

(E) Genes encoding resistance or tolerance to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D) and which may also confer resistance or tolerance to aryloxyphenoxypropionate (AOPP) herbicides. Examples of such genes include the α -ketoglutarate-dependent dioxygenase enzyme (*aad-1*) gene, described in U.S. Patent No. 7,838,733.

(F) Genes encoding resistance or tolerance to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D) and which may also confer resistance or tolerance to pyridyloxy auxin herbicides, such as fluroxypyr or triclopyr. Examples of such genes include the α -ketoglutarate-dependent dioxygenase enzyme gene (*aad-12*), described in WO 2007/053482 A2.

(G) Genes encoding resistance or tolerance to dicamba (see, e.g., U.S. Patent Publication No. 20030135879).

(H) Genes providing resistance or tolerance to herbicides that inhibit protoporphyrinogen oxidase (PPO) (see U.S. Pat. No. 5,767,373).

(I) Genes providing resistance or tolerance to triazine herbicides (such as atrazine) and urea derivatives (such as diuron) herbicides which bind to core proteins of photosystem II reaction centers (PS II) (See Brussian et al., (1989) *EMBO J.* 1989, 8(4): 1237-1245.

[0164] Genes That Confer or Contribute to a Value-Added Trait

(A) Modified fatty acid metabolism, for example, by transforming maize or *Brassica* with an antisense gene or stearoyl-ACP desaturase to increase stearic acid content of the plant (Knultzon et al., 1992) Proc. Nat. Acad. Sci. USA 89:2624.

(B) Decreased phytate content

(1) Introduction of a phytase-encoding gene, such as the *Aspergillus niger* phytase gene (Van Hartingsveldt et al., 1993 Gene 127:87), enhances breakdown of phytate, adding more free phosphate to the transformed plant.

(2) A gene could be introduced that reduces phytate content. In maize, this, for example, could be accomplished by cloning and then reintroducing DNA associated with the single allele which is responsible for maize mutants characterized by low levels of phytic acid (Raboy et al., 1990 Maydica 35:383).

(C) Modified carbohydrate composition effected, for example, by transforming plants with a gene coding for an enzyme that alters the branching pattern of starch. Examples of such enzymes include, *Streptococcus mucus* fructosyltransferase gene (Shiroza et al., 1988) J. Bacteriol. 170:810, *Bacillus subtilis* levansucrase gene (Steinmetz et al., 1985 Mol. Gen. Genel. 200:220), *Bacillus licheniformis* α -amylase (Pen et al., 1992 Bio/Technology 10:292), tomato invertase genes (Elliot et al., 1993), barley amylase gene (Sogaard et al., 1993 J. Biol. Chem. 268:22480), and maize endosperm starch branching enzyme II (Fisher et al., 1993 Plant Physiol. 102:10450).

[0165] In a subsequent embodiment, the transgene comprises a reporter gene. In various embodiments the reporter gene is selected from the group consisting of a *yfp* gene, a *gus* gene, a *rfp* gene, a *gfp* gene, a kanamycin resistance gene, an *aad-1* gene, an *aad-12* gene, a *pat* gene, and a glyphosate tolerant gene. Reporter or marker genes for selection of transformed cells or tissues or plant parts or plants may be included in the transformation vectors. Examples of selectable markers include those that confer resistance to anti-metabolites such as herbicides or antibiotics, for example, dihydrofolate reductase, which confers resistance to methotrexate (Reiss, Plant Physiol. (Life Sci. Adv.) 13:143-149, 1994; see also Herrera Estrella et al., Nature 303:209-213, 1983; Meijer et al., Plant Mol. Biol. 16:807-820, 1991); neomycin phosphotransferase, which confers resistance to the aminoglycosides neomycin, kanamycin and paromycin (Herrera-Estrella, EMBO J. 2:987-995, 1983 and Fraley et al. Proc. Natl. Acad. Sci USA 80:4803 (1983)); hygromycin phosphotransferase, which confers resistance to hygromycin (Marsh, Gene 32:481-485, 1984; see also Waldron et al., Plant Mol. Biol. 5:103-108, 1985; Zhijian et al., Plant Science 108:219-227, 1995); *trpB*, which allows cells to utilize

indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman, Proc. Natl. Acad. Sci., USA 85:8047, 1988); mannose-6-phosphate isomerase which allows cells to utilize mannose (WO 94/20627); ornithine decarboxylase, which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine (DFMO; McConlogue, 1987, In: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.); and deaminase from *Aspergillus terreus*, which confers resistance to Blasticidin S (Tamura, Biosci. Biotechnol. Biochem. 59:2336-2338, 1995).

[0166] Additional selectable markers include, for example, a mutant acetolactate synthase, which confers imidazolinone or sulfonylurea resistance (Lee et al., EMBO J. 7:1241-1248, 1988), a mutant psbA, which confers resistance to atrazine (Smeda et al., Plant Physiol. 103:911-917, 1993), or a mutant protoporphyrinogen oxidase (see U.S. Pat. No. 5, 767, 373), or other markers conferring resistance to an herbicide such as glufosinate. Examples of suitable selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol (Herrera Estrella et al., EMBO J. 2:987-992, 1983); streptomycin (Jones et al., Mol. Gen. Genet. 210:86-91, 1987); spectinomycin (Bretagne-Sagnard et al., Transgenic Res. 5:131-137, 1996); bleomycin (Hille et al., Plant Mol. Biol. 7:171-176, 1990); sulfonamide (Guerineau et al., Plant Mol. Biol. 15:127-136, 1990); bromoxynil (Stalker et al., Science 242:419-423, 1988); glyphosate (Shaw et al., Science 233:478-481, 1986); phosphinothrinicin (DeBlock et al., EMBO J. 6:2513-2518, 1987), and the like.

[0167] One option for use of a selective gene is a glufosinate-resistance encoding DNA and in one embodiment can be the phosphinothrinicin acetyl transferase (*pat*), maize optimized *pat* gene or *bar* gene under the control of the Cassava Vein Mosaic Virus promoter. These genes confer resistance to bialaphos. See, (see, Wohlleben et al., (1988) *Gene* 70: 25-37); Gordon-Kamm et al., Plant Cell 2:603; 1990; Uchimiya et al., BioTechnology 11:835, 1993; White et al., Nucl. Acids Res. 18:1062, 1990; Spencer et al., Theor. Appl. Genet. 79:625-631, 1990; and Anzai et al., Mol. Gen. Gen. 219:492, 1989). A version of the *pat* gene is the maize optimized *pat* gene, described in U.S. Patent No. 6,096,947.

[0168] In addition, markers that facilitate identification of a plant cell containing the polynucleotide encoding the marker may be employed. Scorable or screenable markers are useful, where presence of the sequence produces a measurable product and can produce the product without destruction of the plant cell. Examples include a β -glucuronidase, or *uidA* gene (GUS), which encodes an enzyme for which various chromogenic substrates are known (for example, US Patents 5,268,463 and 5,599,670); chloramphenicol acetyl transferase (Jefferson et

al. The EMBO Journal vol. 6 No. 13 pp. 3901-3907); and alkaline phosphatase. In a preferred embodiment, the marker used is beta-carotene or provitamin A (Ye et al, Science 287:303-305 (2000)). The gene has been used to enhance the nutrition of rice, but in this instance it is employed instead as a screenable marker, and the presence of the gene linked to a gene of interest is detected by the golden color provided. Unlike the situation where the gene is used for its nutritional contribution to the plant, a smaller amount of the protein suffices for marking purposes. Other screenable markers include the anthocyanin/flavonoid genes in general (See discussion at Taylor and Briggs, The Plant Cell (1990)2:115-127) including, for example, a R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., in Chromosome Structure and Function, Kluwer Academic Publishers, Appels and Gustafson eds., pp. 263-282 (1988)); the genes which control biosynthesis of flavonoid pigments, such as the maize C1 gene (Kao et al., Plant Cell (1996) 8: 1171-1179; Scheffler et al. Mol. Gen. Genet. (1994) 242:40-48) and maize C2 (Wienand et al., Mol. Gen. Genet. (1986) 203:202-207); the B gene (Chandler et al., Plant Cell (1989) 1:1175-1183), the p1 gene (Grotewold et al, Proc. Natl. Acad. Sci USA (1991) 88:4587-4591; Grotewold et al., Cell (1994) 76:543-553; Sidorenko et al., Plant Mol. Biol. (1999)39:11-19); the bronze locus genes (Ralston et al., Genetics (1988) 119:185-197; Nash et al., Plant Cell (1990) 2(11): 1039-1049), among others.

[0169] Further examples of suitable markers include the cyan fluorescent protein (CYP) gene (Bolte et al. (2004) J. Cell Science 117: 943-54 and Kato et al. (2002) Plant Physiol 129: 913-42), the yellow fluorescent protein gene (PHIYFP™ from Evrogen; see Bolte et al. (2004) J. Cell Science 117: 943-54); a lux gene, which encodes a luciferase, the presence of which may be detected using, for example, X-ray film, scintillation counting, fluorescent spectrophotometry, low-light video cameras, photon counting cameras or multiwell luminometry (Teeri et al. (1989) EMBO J. 8:343); a green fluorescent protein (GFP) gene (Sheen et al., Plant J. (1995) 8(5):777-84); and DsRed2 where plant cells transformed with the marker gene are red in color, and thus visually selectable (Dietrich et al. (2002) Biotechniques 2(2):286-293). Additional examples include a β -lactamase gene (Sutcliffe, Proc. Nat'l. Acad. Sci. U.S.A. (1978) 75:3737), which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a xylE gene (Zukowsky et al., Proc. Nat'l. Acad. Sci. U.S.A. (1983) 80:1101), which encodes a catechol dioxygenase that can convert chromogenic catechols; an α -amylase gene (Ikuta et al., Biotech. (1990) 8:241); and a tyrosinase gene (Katz et al., J. Gen. Microbiol. (1983) 129:2703), which encodes an

enzyme capable of oxidizing tyrosine to DOPA and dopaquinone, which in turn condenses to form the easily detectable compound melanin. Clearly, many such markers are available and known to one skilled in the art.

[0170] In a subsequent embodiment, the analytical domain of the polynucleotide donor comprises SEQ ID NO:142 or SEQ ID NO:143. Modifications and derivatives of SEQ ID NO:142 or SEQ ID NO:143 are considered in purview of the subject disclosure. Such modifications and derivatives of SEQ ID NO:142 or SEQ ID NO:143 can result in sequences that share specific levels of sequence identity. In various embodiments, sequences with 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 Bp modifications to SEQ ID NO:142 are disclosed herein. In other embodiments, sequences with 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 Bp modifications to SEQ ID NO:143 are disclosed herein.

[0171] In other embodiments the plasmid domain of the universal polynucleotide donor cassette comprises plasmid sequences. A plasmid or vector can be described or referred to as prokaryotic vectors, shuttle vectors, insect vectors, or eukaryotic vectors. Typically, plasmids are extra-chromosomal elements, often circular DNA, that are comprised of an origin of replication and a selectable marker gene. At times, it may be preferable to have a plasmid that is functional in *E. coli* (e.g., DNA sequence analysis, construction of inserts, obtaining quantities of nucleic acids). The particular plasmid used for the universal polynucleotide donor can be selected with regard to the intended use (e.g., expression in plants, animals, bacteria, fungus, and protozoa). Standard bacterial and animal expression plasmids are known in the art and are described in detail, for example, U.S. Patent Publication 20050064474A1 and International Patent Publications WO 05/084190, WO05/014791 and WO03/080809.

[0172] In other embodiments the plasmid domain of the polynucleotide donor cassette comprises pUC19 plasmid sequences. pUC19 is a small double stranded DNA circle. The plasmid contains high copy number origin of replication that is capable of bacterial replication and contains a multiple cloning site. *See* Yanisch-Perron, C., Vieira, J. and Messing, J. (1985). *Gene*. 33, 103-119. Other plasmids are known and commonly used in the art. For example, pUC18, pBR322, pBR325, pBR328, pACYC184, pAT153, pUC118, and pUC119 are plasmids commonly known in the art.

[0173] In other embodiments the plasmid domain of the polynucleotide donor cassette comprises a high-copy number origin of replication. Subsequent embodiments of high-copy number origins of replication include a ColE1 origin of replication. The term "origin of replication" or "ORI" as used herein is intended to encompass regions of nucleotides that are

necessary for replication of a plasmid. Some of examples of origins of replications: nucleotides 1766-3148 of pBR322; nucleotides 1667-2892 of ColE1; and nucleotides 580-1407 of pACC184. In an embodiment the plasmid domain of the polynucleotide donor cassette may comprise two or more different origins of replication.

[0174] In embodiments the plasmid domain comprises a selectable marker. Subsequent embodiments of plasmid domain selectable markers are selected from the group consisting of a kanamycin selectable marker, an ampicillin selectable marker, a spectinomycin selectable marker, a chloramphenicol selectable marker, and a rifampicin selectable marker. Suitable selectable markers are antibiotic resistance genes. Other selectable markers can include scorable marker genes for example beta-glucuronidase (GUS) (Kononov, et al., *Plant J.* 11, 945-957, 1997), can provide a means to detect the presence of backbone DNA, but do not provide a means to select against the cells that contain them and the assay is tissue destructive. Negative selectable marker genes that are conditional lethal can also be used in the backbone DNA. Representative examples of other conditional lethal gene products include: *E. coli* guanine phosphoribosyl transferase that converts thioxanthine into toxic thioxanthine monophosphate (Besnard et al., *Mol. Cell. Biol.* 7:4139-4141, 1987); alkaline phosphatase, which will convert inactive phosphorylated compounds such as mitomycin phosphate and doxorubicin-phosphate to toxic dephosphorylated compounds; fungal (e.g. *Fusarium oxysporum*) or bacterial cytosine deaminase (codA) that will convert 5-fluorocytosine to the toxic compound 5-fluorouracil (Mullen, *PNAS* 89:33, 1992); carboxypeptidase G2 which will cleave the glutamic acid from para-N-bis(2-chloroethyl) aminobenzoyl glutamic acid, thereby creating a toxic benzoic acid mustard; and Penicillin-V amidase, which will convert phenoxyacetabide derivatives of doxorubicin and melphalan to toxic compounds (see generally, Vrudhula et al., *J. of Med. Chem.* 36(7):919-923, 1993; Kern et al., *Canc. Immun. Immunother.* 31(4):202-206, 1990); and phosphonate monoester hydrolase, pehA (U.S. Pat. No. 5,254,801). However, exogenous substrates must be added in order to provide the toxic product that is lethal to the cell containing the backbone DNA. The present invention does not require adding additional substrates to the culture media or exogenously treating the plant culture cells with a substrate as needed for the conditional lethal gene product.

[0175] In another embodiment of the present disclosure, a method for targeted integration of the universal polynucleotide donor cassette within the genome of a plant cell is disclosed. In certain embodiments, a site specific DNA binding nuclease comprising at least one DNA-binding domain and at least one nuclease domain, wherein the at least one DNA-binding domain binds to a

target site within the genome of the plant cell is expressed. In other embodiments the plant cell is contacted with the universal polynucleotide donor cassette. In further embodiments the target site within the genome of the plant cell is cleaved with the site specific DNA binding nuclease. In yet another embodiment the universal polynucleotide donor cassette is integrated into the target site within the genome of the plant cell.

[0176] In an embodiment the targeted integration of the universal polynucleotide donor cassette within the genome of a plant cell via a homology directed repair mechanism is disclosed. In another embodiment the targeted integration of the universal polynucleotide donor cassette within the genome of a plant cell via a non-homologous end joining directed repair mechanism is disclosed.

[0177] The donor molecules disclosed herein are integrated into a genome of a cell via targeted, homology-independent methods. For such targeted integration, the genome is cleaved at a desired location (or locations) using a nuclease, for example, a fusion between a DNA-binding domain (*e.g.*, zinc finger binding domain or TAL effector domain is engineered to bind a target site at or near the predetermined cleavage site) and nuclease domain (*e.g.*, cleavage domain or cleavage half-domain). In certain embodiments, two fusion proteins, each comprising a DNA-binding domain and a cleavage half-domain, are expressed in a cell, and bind to target sites which are juxtaposed in such a way that a functional cleavage domain is reconstituted and DNA is cleaved in the vicinity of the target sites. In one embodiment, cleavage occurs between the target sites of the two DNA-binding domains. One or both of the DNA-binding domains can be engineered. *See, also*, U.S. Patent No. 7,888,121; U.S. Patent Publication 20050064474 and International Patent Publications WO05/084190, WO05/014791 and WO 03/080809.

[0178] The nucleases as described herein can be introduced as polypeptides and/or polynucleotides. For example, two polynucleotides, each comprising sequences encoding one of the aforementioned polypeptides, can be introduced into a cell, and when the polypeptides are expressed and each binds to its target sequence, cleavage occurs at or near the target sequence. Alternatively, a single polynucleotide comprising sequences encoding both fusion polypeptides is introduced into a cell. Polynucleotides can be DNA, RNA or any modified forms or analogues or DNA and/or RNA.

[0179] Following the introduction of a double-stranded break in the region of interest, the transgene is integrated into the region of interest in a targeted manner via non-homology dependent methods (*e.g.*, non-homologous end joining (NHEJ)) following linearization of a

double-stranded donor molecule as described herein. The double-stranded donor is preferably linearized *in vivo* with a nuclease, for example one or more of the same or different nucleases that are used to introduce the double-stranded break in the genome. Synchronized cleavage of the chromosome and the donor in the cell may limit donor DNA degradation (as compared to linearization of the donor molecule prior to introduction into the cell). The nuclease target sites used for linearization of the donor preferably do not disrupt the transgene(s) sequence(s).

[0180] The transgene may be integrated into the genome in the direction expected by simple ligation of the nuclease overhangs (designated “forward” or “AB” orientation) or in the alternate direction (designated “reverse” or “BA” orientation). In certain embodiments, the transgene is integrated following accurate ligation of the donor and chromosome overhangs. In other embodiments, integration of the transgene in either the BA or AB orientation results in deletion of several nucleotides.

IV. Assays for Detection of the Universal Donor Polynucleotide

[0181] Various assays can be employed to detect the universal donor polynucleotide described in certain embodiments of the disclosure. The following techniques are useful in a variety of situations, and in one embodiment, are useful in detecting the presence of a nucleic acid molecule and/or the polypeptide encoding a transgene in a plant cell. For example, the presence of the molecule can be determined in a variety of ways, including using a primer or probe of the sequence, ELISA assay to detect the encoded protein, a Western blot to detect the protein, or a Northern or Southern blot to detect RNA or DNA. Enzymatic assays for detecting the universal donor polynucleotide can be employed. Further, an antibody which can detect the presence of the universal donor polynucleotide protein can be generated using art recognized procedures. Additional techniques, such as *in situ* hybridization, enzyme staining, and immunostaining, also may be used to detect the presence or expression of the recombinant construct in specific plant organs and tissues. The transgene contained in the universal donor polynucleotide may be selectively expressed in some tissues of the plant or at some developmental stages, or the transgene contained in the universal donor polynucleotide may be expressed in substantially all plant tissues, substantially along its entire life cycle. However, any combinatorial expression mode is also applicable.

[0182] Southern analysis is a commonly used detection method, wherein DNA is cut with restriction endonucleases and fractionated on an agarose gel to separate the DNA by molecular weight and then transferring to nylon membranes. It is then hybridized with the probe

fragment which was radioactively labeled with ^{32}P (or other probe labels) and washed in an SDS solution.

[0183] Likewise, Northern analysis deploys a similar protocol, wherein RNA is cut with restriction endonucleases and fractionated on an agarose gel to separate the RNA by molecular weight and then transferring to nylon membranes. It is then hybridized with the probe fragment which was radioactively labeled with ^{32}P (or other probe labels) and washed in an SDS solution. Analysis of the RNA (e.g., mRNA) isolated from the tissues of interest can indicate relative expression levels. Typically, if the mRNA is present or the amount of mRNA has increased, it can be assumed that the corresponding transgene is being expressed. Northern analysis, or other mRNA analytical protocols, can be used to determine expression levels of an introduced transgene or native gene.

[0184] In the Western analysis, instead of isolating DNA/RNA, the protein of interest is extracted and placed on an acrylamide gel. The protein is then blotted onto a membrane and contacted with a labeling substance. *See e.g.*, Hood et al., “Commercial Production of Avidin from Transgenic Maize; Characterization of Transformants, Production, Processing, Extraction and Purification” *Molecular Breeding* 3:291-306 (1997); Towbin et al, (1979) “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications” *Proc Natl Acad Sci USA* 76(9): 4350-4354; Renart et al. “Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure” *Proc Natl Acad Sci USA* 76(7): 3116-3120.

[0185] The universal donor polynucleotide, or segments thereof, can be used as primers for PCR amplification. In performing PCR amplification, a certain degree of mismatch can be tolerated between primer and template. Therefore, mutations, deletions, and insertions (especially additions of nucleotides to the 5' end) of the exemplified primers fall within the scope of the subject disclosure. Mutations, insertions, and deletions can be produced in a given primer by methods known to an ordinarily skilled artisan.

[0186] Another example of method detection is the pyrosequencing technique as described by Winge (Innov. Pharma. Tech. 00:18-24, 2000). In this method an oligonucleotide is designed that overlaps the adjacent genomic DNA and insert DNA junction. The oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking genomic sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin. DNTPs are added individually and the incorporation results in a

light signal that is measured. A light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension. (This technique is used for initial sequencing, not for detection of a specific gene when it is known.)

[0187] Molecular Beacons have been described for use in sequence detection. Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking genomic and insert DNA junction. The unique structure of the FRET probe results in it containing a secondary structure that keeps the fluorescent and quenching moieties in close proximity. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Following successful PCR amplification, hybridization of the FRET probe(s) to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties. A fluorescent signal indicates the presence of the flanking genomic/transgene insert sequence due to successful amplification and hybridization.

[0188] Hydrolysis probe assay, otherwise known as TAQMAM[®] (Life Technologies, Foster City, Calif.), is a method of detecting and quantifying the presence of a DNA sequence. Briefly, a FRET oligonucleotide probe is designed with one oligo within the transgene and one in the flanking genomic sequence for event-specific detection. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety away from the quenching moiety on the FRET probe. A fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.

[0189] The ELISA or enzyme linked immunoassay has been known since 1971. In general, antigens solubilized in a buffer are coated on a plastic surface. When serum is added, antibodies can attach to the antigen on the solid phase. The presence or absence of these antibodies can be demonstrated when conjugated to an enzyme. Adding the appropriate substrate will detect the amount of bound conjugate which can be quantified. A common ELISA assay is one which uses biotinylated anti-(protein) polyclonal antibodies and an alkaline phosphatase conjugate. For example, an ELISA used for quantitative determination of laccase levels can be an antibody sandwich assay, which utilizes polyclonal rabbit antibodies obtained commercially. The antibody is conjugated to alkaline phosphatases for detection. In another

example, an ELISA assay to detect trypsin or trypsinogen uses biotinylated anti-trypsin or anti-trypsinogen polyclonal antibodies and a streptavidin-alkaline phosphatase conjugate.

[0190] Embodiments of the subject disclosure are further exemplified in the following Examples. It should be understood that these Examples are given by way of illustration only. From the above embodiments and the following Examples, one skilled in the art can ascertain the essential characteristics of this disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications of the embodiments of the disclosure to adapt it to various usages and conditions. Thus, various modifications of the embodiments of the disclosure, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. The following is provided by way of illustration and not intended to limit the scope of the invention.

EXAMPLES

Example 1: Design of Zinc Fingers to Bind Genomic Loci in *Zea mays*

[0191] Zinc finger proteins directed against identified DNA sequences of the targetable *Zea mays* genomic loci were designed as previously described. See, e.g., Urnov *et al.*, (2005) Nature 435:646-551. Exemplary target sequence and recognition helices are shown in Table 1 (recognition helix regions designs) and Table 2 (target sites). In Table 2, nucleotides in the target site that are contacted by the ZFP recognition helices are indicated in uppercase letters and non-contacted nucleotides are indicated in lowercase. Zinc Finger Nuclease (ZFN) target sites were designed for all of the 72 selected genomic loci in *Zea mays*. Numerous ZFP designs were developed and tested to identify the fingers which bound with the highest level of efficiency in a yeast proxy system with 72 different representative genomic loci target sites which were identified and selected in *Zea mays*. The specific ZFP recognition helices (Table 1) which bound with the highest level of efficiency to the zinc finger recognition sequences were used for targeting and integration of a donor sequence within the *Zea mays* genome.

[0192] Table 1. Zinc finger designs for the *Zea mays* selected genomic loci (N/A indicates “not applicable”).

pDAB Number	ZFP Number	F1	F2	F3	F4	F5	F6
111879	111879 ZFN5	SEQ ID NO:1 QSGDL TR	SEQ ID NO:2 RKDQL VA	SEQ ID NO:3 RSDDL R	SEQ ID NO:4 TSSNRK T	SEQ ID NO:5 RSDTLS E	SEQ ID NO:6 ARSTRT N
	111879 ZFN7	SEQ ID NO:7 RSDSLS V	SEQ ID NO:8 DRSNR KT	SEQ ID NO:9 QSSHLT R	SEQ ID NO:10 RSDALA R	SEQ ID NO:11 RSDDL R	SEQ ID NO:12 DPSALR K
111885	111885 ZFN1	SEQ ID NO:13 RSDNL SQ	SEQ ID NO:14 ASNDR KK	SEQ ID NO:15 ERGTLA R	SEQ ID NO:16 RSDHLS R	SEQ ID NO:17 ERGTLA R	SEQ ID NO:18 QSGHLS R
	111885 ZFN2	SEQ ID NO:19 RSANL AR	SEQ ID NO:20 DRSDL SR	SEQ ID NO:21 RSDTLS Q	SEQ ID NO:22 RSADLS R	SEQ ID NO:23 DRSNLS R	SEQ ID NO:24 NSRNLR N
117404	SIG115737_3 1v1	SEQ ID NO:25 RSDSLS V	SEQ ID NO:26 DRSHL AR	SEQ ID NO:27 DRSNLS R	SEQ ID NO:28 RRSDLK R	SEQ ID NO:29 RSDTLS E	SEQ ID NO:30 QNATRIN
	SIG115737_3 2v1	SEQ ID NO:31 QSGSL TR	SEQ ID NO:32 QSGDL TR	SEQ ID NO:33 RSDVLS E	SEQ ID NO:34 TRNGL KY	N/A	N/A
117408	SIG120523_1 1v1	SEQ ID NO:35 RSDNL SR	SEQ ID NO:36 DNSNR KT	SEQ ID NO:37 QNAHR KT	SEQ ID NO:38 QKATRI T	SEQ ID NO:39 DRSHLT R	SEQ ID NO:40 RSDDRK K
	SIG120523_1 2v1	SEQ ID NO:41 ASKTR TN	SEQ ID NO:42 QSGSL TR	SEQ ID NO:43 LRHHLT R	SEQ ID NO:44 QSAHL KA	N/A	N/A

117400	SIG115246_5	SEQ ID NO:45 QSGDL TR	SEQ ID NO:46 ASHNL RT	SEQ ID NO:47 DRSNLT R	SEQ ID NO:48 QSSDLS R	SEQ ID NO:49 DAGNR NK	N/A
	SIG115246_6	SEQ ID NO:50 DRSDL SR	SEQ ID NO:51 RSDNL TR	SEQ ID NO:52 DRSHLS R	SEQ ID NO:53 TSGNLT R	SEQ ID NO:54 QSSDLS R	N/A
117402	SIG115636_1 v1	SEQ ID NO:55 QSSDL SR	SEQ ID NO:56 HRSTR NR	SEQ ID NO:57 RSDDLT R	SEQ ID NO:58 DRSNLK A	SEQ ID NO:59 DRSHLT R	SEQ ID NO:60 QRSTLKS
	SIG115636_2 v1	SEQ ID NO:61 RSDAL SR	SEQ ID NO:62 RSDDL TR	SEQ ID NO:63 DRSHLT R	SEQ ID NO:64 TSSNRK T	SEQ ID NO:65 RSDTLS E	SEQ ID NO:66 DRSHLA R
117406	SIG120417_1 1v1	SEQ ID NO:67 DRSAR TR	SEQ ID NO:68 QSGHL SR	SEQ ID NO:69 QSGNL AR	SEQ ID NO:70 RSDVLS T	SEQ ID NO:71 RYAYL TS	SEQ ID NO:72 RRWTLV G
	SIG120417_1 2v1	SEQ ID NO:73 RSDNL SQ	SEQ ID NO:74 ASNDR KK	SEQ ID NO:75 QSGDLT R	SEQ ID NO:76 LKDTLR R	SEQ ID NO:77 QSGNL AR	N/A
117411	SIG120621_1 5v1	SEQ ID NO:78 QSGDL TR	SEQ ID NO:79 MQNY LSR	SEQ ID NO:80 RSDHLS E	SEQ ID NO:81 QNANR KT	SEQ ID NO:82 RSADLT R	N/A
	SIG120621_1 6v1	SEQ ID NO:83 RSDNL SE	SEQ ID NO:84 QSANR TK	SEQ ID NO:85 RSDALS R	SEQ ID NO:86 DRSALA R	SEQ ID NO:87 RSDHLS E	SEQ ID NO:88 DSQNRIK
117413	SIG12078_11 v1	SEQ ID NO:89 QSGDL TR	SEQ ID NO:90 DKGNL TK	SEQ ID NO:91 RSADLT R	SEQ ID NO:92 DRSHLA R	SEQ ID NO:93 RSDTLS E	SEQ ID NO:94 DRSNRK T
	SIG12078_12 v1	SEQ ID NO:95 DRSNL SR	SEQ ID NO:96 LRQDL KR	SEQ ID NO:97 RSDHLS E	SEQ ID NO:98 DRSALA R	SEQ ID NO:99 DRSALS R	SEQ ID NO:100 NRRGRW S
117429	SIG157315_1 v1	SEQ ID NO:101 RPTL RL	SEQ ID NO:102 HRSSL RR	SEQ ID NO:103 RSDSL R	SEQ ID NO:104 WLSSLS A	SEQ ID NO:105 QSGDLT R	SEQ ID NO:106 DRSHLA R
	SIG157315_2 v1	SEQ ID NO:107 DRSNL SR	SEQ ID NO:108 LKQHL NE	SEQ ID NO:109 LRHHLT R	SEQ ID NO:110 QSGNL HV	SEQ ID NO:111 TSGHLS R	N/A

[0193]

Table 2. Target site of *Zea mays* selected genomic loci.

Locus ID	Name	pDAB Number	ZFP Number and Binding Site (5'→3')	Target Site SEQ ID NO:	Optimal Genomic Loci SEQ ID NO:
optimal loci_204637	OGL1	pDAB111879	111879ZFN5:ctACTCCGT ATGCGAAGGCACg	112	210
			111879ZFN7: taTTCGCGGTGGGACAC TTGat	113	
optimal_loci_2 04726	OGL2	pDAB111885	111885ZFN1: ccGGAGCCGGGGCCTCC CAGgc	114	211
			111885ZFN2: atCGCGACGCGACGcGA CGAGac	115	
optimal_loci_1 56393	OGL 12	pDAB117404	SIG115737_31v1: TGCATGCGCAGTA	116	212
			SIG115737_32v1: ACACCGGCGCACGGCA CG	117	
optimal_loci_1 98387	OGL 15	pDAB117408	SIG120523_11v1: AGAGGTGTAACC	118	213
			SIG120523_12v1: TCGGGCACAAGAAACG AG	119	
optimal_loci_3 1710	OGL 08	pDAB117400	SIG115246_5: TACGCTGACAATGCA	120	214
			SIG115246_6: CCAGCTGATGGAGAGG AC	121	
optimal_loci_6 4542	OGL 11	pDAB117402	SIG115636_1v1: AGAGCAGGCGAG	122	215
			SIG115636_2v1: AGCAAAGTGAGTAGTT	123	
optimal_loci_1 97372	OGL1 4	pDAB117406	SIG120417_11v1: TGGATGGAAGGAATC	124	216
			SIG120417_12v1: GAAGCTACATCCCAG	125	
optimal_loci_2 32228	OGL 16	pDAB117411	SIG120621_15v1: TACGCGCAACGGAACG CA	126	217
			SIG120621_16v1: CACCGGTGTCGTGTA CAG	127	
optimal_loci_2 85621	OGL1 7	pDAB117413	SIG12078_11v1: CCCGGACGACGCCGAG	128	218

			SIG12078_12v1: GACATGGCACCGCGCAT CGAG	129	
optimal_loci_1 57315	OGL 13	pDAB117429	SIG157315_1v1: GCATGTGTGGTTTG	130	219
			SIG157315_2v1: GGTCAAGGTAGTGAC	131	

[0194] The *Zea mays* representative genomic loci zinc finger designs were incorporated into zinc finger expression vectors encoding a protein having at least one finger with a CCHC structure. See, U.S. Patent Publication No. 2008/0182332. In particular, the last finger in each protein had a CCHC backbone for the recognition helix. The non-canonical zinc finger-encoding sequences were fused to the nuclease domain of the type IIS restriction enzyme *FokI* (amino acids 384-579 of the sequence of Wah *et al.*, (1998) Proc. Natl. Acad. Sci. USA 95:10564-10569) via a four amino acid linker and an *opaque-2* nuclear localization signal derived from *Zea mays* to form zinc-finger nucleases (ZFNs). See, U.S. Patent No. 7,888,121. Zinc fingers for the various functional domains were selected for in vivo use. Of the numerous ZFNs that were designed, produced and tested to bind to the putative genomic target site, the ZFNs described in Table 2 above were identified as having *in vivo* activity and were characterized as being capable of efficiently binding and cleaving the unique *Zea mays* genomic polynucleotide target sites *in planta*.

[0195] ZFN Construct Assembly

[0196] Plasmid vectors containing ZFN gene expression constructs, which were identified as previously described, were designed and completed using skills and techniques commonly known in the art (see, for example, Ausubel or Maniatis). Each ZFN-encoding sequence was fused to a sequence encoding an *opaque-2* nuclear localization signal (Maddaloni *et al.*, (1989) Nuc. Acids Res. 17:7532), that was positioned upstream of the zinc finger nuclease. The non-canonical zinc finger-encoding sequences were fused to the nuclease domain of the type IIS restriction enzyme *FokI* (amino acids 384-579 of the sequence of Wah *et al.* (1998) Proc. Natl. Acad. Sci. USA 95:10564-10569). Expression of the fusion proteins was driven by the strong constitutive promoter from the *Zea mays* Ubiquitin gene, (which includes the 5' untranslated region (UTR) (Toki *et al.*, (1992) Plant Physiology 100;1503-07). The expression cassette also included the 3' UTR (comprising the transcriptional terminator and

polyadenylation site) from the *Zea mays* peroxidase 5 gene (Per5) gene (US Patent Publication No. 2004/0158887). The self-hydrolyzing 2A encoding the nucleotide sequence from *Thosea asigna* virus (Szymczak *et al.*, (2004) Nat Biotechnol. 22:760-760) was added between the two Zinc Finger Nuclease fusion proteins that were cloned into the construct.

[0197] The plasmid vectors were assembled using the IN-FUSION™ Advantage Technology (Clontech, Mountain View, CA). Restriction endonucleases were obtained from New England BioLabs (Ipswich, MA) and T4 DNA Ligase (Invitrogen, Carlsbad, CA) was used for DNA ligation. Plasmid preparations were performed using NUCLEOSPIN® Plasmid Kit (Macherey-Nagel Inc., Bethlehem, PA) or the Plasmid Midi Kit (Qiagen) following the instructions of the suppliers. DNA fragments were isolated using QIAQUICK GEL EXTRACTION KIT™ (Qiagen) after agarose tris-acetate gel electrophoresis. Colonies of all ligation reactions were initially screened by restriction digestion of miniprep DNA. Plasmid DNA of selected clones was sequenced by a commercial sequencing vendor (Eurofins MWG Operon, Huntsville, AL). Sequence data were assembled and analyzed using the SEQUENCHER™ software (Gene Codes Corp., Ann Arbor, MI).

[0198] Plasmids were constructed and confirmed via restriction enzyme digestion and via DNA sequencing.

[0199] Universal Donor Construct Assembly

[0200] To support rapid testing of a large number of target loci, a novel, flexible universal donor system sequence was designed and constructed. The universal donor polynucleotide sequence was compatible with high throughput vector construction methodologies and analysis. The universal donor system was composed of at least three modular domains: a non-variable ZFN binding domain, an analytical and user defined features domain, and a simple plasmid backbone for vector scale up. The non-variable universal donor polynucleotide sequence was common to all donors and permits design of a finite set of assays that can be used across all of the *Zea mays* target sites thus providing uniformity in targeting assessment and reducing analytical cycle times. The modular nature of these domains allowed for high throughput donor assembly. Additionally, the universal donor polynucleotide sequence has other unique features aimed at simplifying downstream analysis and enhancing the interpretation of results. It contained an asymmetric restriction site sequence that allowed the digestion of PCR products into diagnostically predicted sizes. Sequences comprising secondary

structures that were expected to be problematic in PCR amplification were removed. The universal donor polynucleotide sequence was small in size (less than 3.0 Kb). Finally, the universal donor polynucleotide sequence was built upon the high copy pUC19 backbone that allows a large amount of test DNA to be bulked in a timely fashion.

[0201] As an embodiment, an example plasmid comprising a universal polynucleotide donor cassette sequence is provided as SEQ ID NO:132 and Figure 1. In an additional embodiment, a polynucleotide donor cassette sequence is provided as: pDAB111846, SEQ ID NO:133, Figure 2; pDAB117415, SEQ ID NO:134, Figure 3; pDAB117416, SEQ ID NO:135, Figure 4; pDAB117417, SEQ ID NO:136, Figure 5; pDAB117419, SEQ ID NO:137, Figure 6; pDAB117434 SEQ ID NO:138, Figure 7; pDAB117418, SEQ ID NO:139, Figure 8; pDAB117420, SEQ ID NO:140, Figure 9; and, pDAB117421, SEQ ID NO:141, Figure 10. In another embodiment, additional sequences comprising the universal donor polynucleotide sequence with functionally expressing coding sequence or nonfunctional (promoterless) expressing coding sequences can be constructed. The various domains (a non-variable ZFN binding domain, an analytical and user defined features domain, and a simple plasmid backbone) that make up the universal donor system are annotated for the constructs, as described above, in Table 3.

[0202] Table 3. Annotation of universal donor system vectors to identify the non-variable ZFN binding domains, analytical and user defined features domain, and plasmid backbone.

Vector Name	ZFN binding domain	Analytical domain	Homology Arm Regions	Plasmid backbone
pDAB111845	2244-144 Bp	145-254 Bp	---	255-2243 Bp
pDAB111846	2243-143 Bp	144-253 Bp	---	254-2242 Bp
pDAB117415	1961-2069 Bp	2081-2190 Bp	1920-1954 Bp, 2191-2225 Bp	2226-1919 Bp
pDAB117416	51-155 Bp	171-280 Bp	1-35 Bp, 281-315 Bp	316-2234 Bp
pDAB117417	51-86 Bp	102-211 Bp	1-35 Bp, 212-246 Bp	247-2165 Bp
pDAB117419	51-119 Bp	201-310 Bp	1-35 Bp, 311-345 Bp	345-2264 Bp
pDAB117434	1970-2213 Bp	2229-2338 Bp	1920-1954 Bp, 2339-2373 Bp	1-1919 Bp

pDAB117418	51-162 Bp	178-287 Bp	1-35 Bp, 288-322 Bp	323-2241 Bp
pDAB117420	37-116 Bp	132-241 Bp	1-35 Bp, 242- 276 Bp	277-2195 Bp
pDAB117421	51-143 Bp	159-268 Bp	1-35 Bp, 269- 303 Bp	304-2222 Bp

[0203] In another embodiment, the universal donor polynucleotide sequence is a small 2-3 Kb modular donor system delivered as a plasmid. This is a minimal donor, comprising any number of ZFN binding sites, a short 100-150 bp template region referred to as “DNA X” or “UZI Sequence” or “analytical domain” (SEQ ID NO:142 and SEQ ID NO:143) that carries restriction sites and DNA sequences for primer design (primers are designed at a Tm of 10°C greater than any calculated secondary structures) or coding sequences, and a simple plasmid backbone (Figure 11). In an embodiment, the analytical domain is designed: to contain a guanine and cytosine base pair percentage of 40 to 60%; to not contain repetitive sequences of more than 9 Bp (e.g., 5'-gtatttcatgtatttcat-3'); to not contain a series of identical base pairs greater than 9 Bp; and, is free of secondary structure, where the secondary structure is less than -18 kcal/mol of free energy as calculated by Markham, N. R. & Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization. In Keith, J. M., editor, *Bioinformatics, Volume II. Structure, Function and Applications*, number 453 in *Methods in Molecular Biology*, chapter 1, pages 3–31. Humana Press, Totowa, NJ. ISBN 978-1-60327-428-9. See, Table 4. The entire plasmid is inserted through NHEJ following DNA double strand break at the appropriate ZFN binding site; the ZFN binding sites can be incorporated tandemly. This embodiment of a universal donor polynucleotide sequence is most suitable for rapid screening of target sites and ZFNs, and sequences that are difficult to amplify are minimized in the donor.

[0204] Table 4. Analysis of the analytical domain composition for ΔG free energy, number of 9 Bp runs of identical base pairs, number of repetitive sequences of more than 9 Bp, and guanine / cytosine percentage.

SEQ ID NO:	ΔG free energy	Number of 9 Bp runs of identical base pairs	Number of repetitive Sequences of more than 9 Bp	GC%

SEQ ID NO:142	-12.42 kcal/mol	None	None	50.9%
SEQ ID NO:143	-12.78 kcal/mol	None	None	47.5%

[0205] In a further embodiment the universal donor polynucleotide sequences is made up of at least four modules and carries partial ZFN binding sites, homology arms, DNA X with either the approximately 100 bp analytical piece or coding sequences. This embodiment of the universal donor polynucleotide sequence is suitable for interrogating NHEJ mediated gene insertion at a variety of polynucleotide target sites, with several ZFNs. (Figure 12).

[0206] The universal donor polynucleotide sequence can be used with all targeting molecules with defined DNA binding domains, with two modes of targeted donor insertion (NHEJ/HDR). As such, when the universal donor polynucleotide sequence is co-delivered with the appropriate ZFN expression construct, the donor vector and the maize genome are both cleaved in one specific location dictated by the binding of the particular ZFN. Once linearized, the donor can be incorporated into the genome by NHEJ or HDR. The different analytical considerations in the vector design can then be exploited to determine the Zinc Finger which maximizes the efficient delivery of targeted integration. (Figure 13).

Example 2: *Zea mays* Transformation Procedures

[0207] Before delivery to *Zea mays* c.v. Hi-II protoplasts, plasmid DNA for each ZFN construct was prepared from cultures of *E. coli* using the PURE YIELD PLASMID MAXIPREP SYSTEM® (Promega Corporation, Madison, WI) or PLASMID MAXI KIT® (Qiagen, Valencia, CA) following the instructions of the suppliers.

[0208] Protoplast Isolation

[0209] *Zea mays* c.v. Hi-II suspension cells were maintained at a 3.5 day maintenance schedule, 4 mL packed cell volume (PCV) of cells were collected and transferred to 50 mL sterile conical tubes (Fisher Scientific) containing 20 mL of enzyme solution (0.6% PECTOLYASE™, 6% CELLULASE™ (“Onozuka” R10; Yakult Pharmaceuticals, Japan), 4 mM MES (pH 5.7), 0.6 M mannitol, 15 mM MgCl₂). The cultures were capped and wrapped in PARAFILM™ and placed on a platform rocker (Thermo Scientific, Vari Mix platform Rocker) at speed setting 10 for incubation for 16-18 hours at room temperature until protoplasts were

released. Following incubation, the cells were microscopically evaluated for quality of digestion. The digested cells were filtered through 100 μ m cell strainer, rinsed with 10 mL W5 media [2mM MES (pH5.7), 205 mM NaCl, 167 mM CaCl₂, 6.7mM KCl], followed by filtering through 70 μ m and 40 μ m cell strainers. The 100 μ m and 40 μ m strainers were rinsed with 10 mL W5 media. The filtered protoplasts along with rinsed media were collected in 50 ml centrifuge tube and final volume was approximately 40 mL. Then, 8 mL of “Heavy Gradient solution” [500 mM sucrose, 1mM CaCl₂, 5mM MES (pH6.0)] was then slowly added to the bottom of the protoplast/enzyme solution, centrifuged in a centrifuge with a swing arm bucket rotor for 15 minutes at 300-350 x g. Following centrifugation, about 7-8 mL of the protoplast band was removed, washed with 25 mL of W5, and centrifuged for 15 minutes at 180-200 x g. The protoplasts were then resuspended in 10 mLs of MMG solution [4 mM MES (pH 5.7), 0.6 M mannitol, 15 mM MgCl₂]. Protoplasts were counted using a haemocytometer or flow cytometer and diluted to 1.67 million per ml using MMG.

[0210] Transformation of *Zea mays* c.v. Hi-II Suspension Culture Derived Protoplasts Using PEG

[0211] Approximately 0.5 million protoplasts (300 μ L in MMG solution) were transferred to 2 mL tubes, mixed with 40 μ L of DNA and incubated at room temperature for 5-10 minutes. Next, 300 μ L of freshly prepared PEG solution (36% PEG 4000, 0.3 M mannitol, 0.4M CaCl₂) was added, and the mixture was incubated at room temperature 15-20 minutes with periodic mixing by inversion. After incubation, 1 mL of W5 wash was added slowly, the cells mixed gently and protoplasts were pelleted by centrifugation at 180-200 x g for 15 minutes. The pellet was resuspended in 1 ml of WI media [4mM MES (pH 5.7), 0.6 M mannitol, 20 mM KCl] the tube wrapped with aluminum foil and incubated in room temperature overnight for about 16 hours.

[0212] Transformation of ZFN and Donor

[0213] For each of the selected genomic loci, the *Zea mays* protoplasts were transfected with a *yfp* gene expressing control, ZFN alone, donor alone and a mixture of ZFN and donor at 1:10 ratio (by weight). The total amount of DNA for transfection of 0.5 million protoplasts was 80 μ g. All treatments were conducted in replicates of either three or six. The *yfp* gene expressing control used was pDAB8393 (Figure 14) containing the *Zea mays* Ubiquitin 1 promoter – yellow fluorescent protein coding sequence – *Zea mays* Per5 3'UTR

and the Rice Actin1 promoter – *pat* coding sequence – *Zea mays* lipase 3'UTR gene expression cassettes. In a typical targeting experiment, 4 µg of ZFN alone or with 36 µg of donor were co-transfected, 40 µg of *yfp* reporter gene construct was added to each treatment. Inclusion of consistent amounts of *yfp* gene expressing plasmid as filler allows assessment of transfection quality across multiple loci and replicate treatments. In addition, the use of consistent amounts of *yfp* gene expressing plasmids allows for the quick trouble shooting of any technical issues in the rapid targeting analysis of the donor insertion.

Example 3: Cleavage of Genomic Loci in *Zea mays* via Zinc Finger Nuclease

[0214] ZFN transfected *Zea mays* c.v. Hi-II protoplasts were harvested 24 hours post-transfection, by centrifugation at 1600 rpm in 2 mL EPPENDORF™ tubes and the supernatant was removed. Genomic DNA was extracted from protoplast pellets using the QIAGEN PLANT DNA EXTRACTION KIT™ (Qiagen, Valencia, CA). The isolated DNA was resuspended in 50 µL of water and concentration was determined by NANODROP® (Invitrogen, Grand Island, NY). The integrity of the DNA was estimated by running samples on 0.8% agarose gel electrophoresis. All samples were normalized (20-25 ng/µL) for PCR amplification to generate amplicons for sequencing (Illumina, Inc., San Diego, CA). Bar-coded PCR primers for amplifying regions encompassing each test ZFN recognition sequence from treated and control samples were designed and purchased from IDT (Coralville, IA, HPLC purified). Optimum amplification conditions were identified by gradient PCR using 0.2 µM appropriate bar-coded primers, ACCUPRIME PFX SUPERMIX™ (Invitrogen, Carlsbad, CA) and 100 ng of template genomic DNA in a 23.5 µL reaction. Cycling parameters were initial denaturation at 95°C (5 min) followed by 35 cycles of denaturation (95°C, 15 sec), annealing (55-72°C, 30 sec), extension (68°C, 1 min) and a final extension (68°C, 7 min). Amplification products were analyzed on 3.5% TAE agarose gels and appropriate annealing temperature for each primer combination was determined and used to amplify amplicons from control and ZFN treated samples as described above. All amplicons were purified on 3.5% agarose gels, eluted in water and concentrations were determined by NANODROP™. For Next Generation Sequencing, approximately 100 ng of PCR amplicon from the ZFN treated and corresponding maize protoplast controls were pooled together and sequenced using Illumina Next Generation Sequencing (NGS).

[0215] The cleavage activity of appropriate ZFNs at each *Zea mays* selected genomic loci were assayed. Short amplicons encompassing the ZFN cleavage sites were amplified from the genomic DNA and subjected to Illumina NGS from ZFN treated and control protoplasts. The ZFN induced cleavage or DNA double strand break was resolved by the cellular NHEJ repair pathway by insertion or deletion of nucleotides (Indels) at the cleavage site and presence of Indels at the cleavage site is thus a measure of ZFN activity and was determined by NGS. Cleavage activity of the target specific ZFNs was estimated as the number of sequences with Indels per one million high quality sequences using NGS analysis software (Patent publication 2012-0173,153, data Analysis of DNA sequences) (Figure 15). Activities in the range of 5-100 fold over controls were observed for *Zea mays* selected genomic loci targets and were further confirmed by sequence alignments that showed a diverse footprint of Indels at each ZFN cleavage site. This data suggests that the *Zea mays* selected genomic loci are amenable to cleavage by ZFNs. Differential activity at each target is reflective of its chromatin state and amenability to cleavage as well as the efficiency of expression of each ZFN.

Example 4: Rapid Targeting Analysis of the Integration of a Polynucleotide Donor

[0216] Sequence within the Genomic Loci in *Zea mays* via Zinc Finger Nuclease

[0217] Validation of the targeting of the universal donor polynucleotide sequence within the *Zea mays* selected genomic loci targets via non-homologous end joining (NHEJ) mediated donor insertion, was performed using a semi-throughput protoplast based Rapid Targeting Analysis method. For each *Zea mays* selected genomic loci target, three to six ZFN designs were tested and targeting was assessed by measuring ZFN mediated cleavage by Next Generation Sequencing methods (Figure 15) and donor insertion by junctional In-Out PCR (Figure 16). *Zea mays* selected genomic loci that were positive in both assays were identified as a targetable locus.

[0218] ZFN Donor Insertion Rapid Targeting Analysis

[0219] To determine if a *Zea mays* selected genomic loci target can be targeted for donor insertion, a ZFN construct and universal donor polynucleotide construct were co-delivered to maize protoplasts which were incubated for 24 hours before the genomic DNA was extracted for analysis. If the expressed ZFN was able to cut the target binding site both at the *Zea mays* selected genomic loci target and in the donor, the linearized donor would then be inserted into the cleaved target site in the maize genome via the non-homologous end joining

(NHEJ) pathway. Confirmation of targeted integration at the *Zea mays* selected genomic loci target was completed based on an “In-Out” PCR strategy, where an “Out” primer recognizes sequence at the native genomic loci and an “In” primer binds to sequence within the donor DNA. The primers are designed in a way that only when the donor DNA is inserted at the *Zea mays* selected genomic loci target, would the PCR assay produce an amplification product of an expected size. The In-Out PCR assay is performed at both the 5'- and 3'-ends of the insertion junction. The primers used for the analysis of integrated polynucleotide donor sequences are provided in Table 5.

[0220] ZFN Donor insertion at Target Loci using nested “In-Out” PCR

[0221] All PCR amplifications were conducted using a TAKARA EX TAQ HSTM kit (Clonetech, Mountain View, CA). The first In-Out PCR was carried out in 20 μ L final reaction volume that contains 1X TAKARA EX TAQ HSTM buffer, 0.2 mM dNTPs, 0.2 μ M “Out” primer (Table 5), 0.05 μ M “In” primer (designed from the universal donor cassette described above), 0.75 unit of TAKARA EX TAQ HSTM polymerase, and 10 ng extracted maize protoplast DNA. The reaction was then carried out using a PCR program that consisted of 94 °C for 2 min, 20 cycles of 98 °C for 12 sec and 68 °C for 2 min, followed by 72 °C for 10 min and held at 4 °C. Final PCR products were run on an agarose gel along with 1KB PLUS DNA LADDERTM (Life Technologies, Grand Island, NY) for visualization.

[0222] The nested In-Out PCR was conducted in a 20 μ L final reaction volume that contained 1X TAKARA EX TAQ HSTM buffer, 0.2 mM dNTPs, 0.2 μ M “Out” primer (Table 5), 0.1 μ M “In” primer (designed from the universal donor cassette described above, Table 6), 0.75 unit of TAKARA EX TAQ HSTM polymerase, and 1 μ L of the first PCR product. The reaction was then carried out using a PCR program that consisted of 94 °C for 2 min, 31 cycles of 98 °C for 12 sec, 66 °C for 30 sec and 68 °C for 45 sec, followed by 72 °C for 10 min and held at 4 °C. Final PCR products were run on an agarose gel along with 1KB PLUS DNA LADDERTM (Life Technologies, Grand Island, NY) for visualization.

[0223] Table 5. List of all “Out” primers for nested In-Out PCR analysis of optimal genomic loci.

OGL1	First PCR	5'-end	APL02-5PriF1	SEQ ID NO:144 CGCCACAAATCTGAACCAGCA
			Spec-PriR1	SEQ ID NO:145 CCACGATCGACATTGATCTGGCTA
		3'-end	APL02-3PriR1	SEQ ID NO:146 GCGACATATCAGGCCAACAGG
			Uzi-PriF1	SEQ ID NO:147 GGGATATGTGTCCTACCGTATCAGG
	Nest PCR	5'-end	APL02-5nstPriF1	SEQ ID NO:148 CCAGCATACAGTTAGGGCCA
			Spec-nstPriR1	SEQ ID NO:149 GTTGCCTTGGTAGGTCCAGC
		3'-end	APL02-3nstPriR1	SEQ ID NO:150 CGAAAACTCAGCATGCCGAA
			Uzi-nstPriF1	SEQ ID NO:151 GAGCCATCAGTCCAACACTGC
OGL2	First PCR	5'-end	APL01-5PriF1	SEQ ID NO:152 ACAGGCGTACAGCAACACCA
		3'-end	APL01-3PriR1	SEQ ID NO:153 GACCCTATGGTGTGGATCCCA
	Nest PCR	5'-end	APL01-5nstPriF1	SEQ ID NO:154 CGGGAGCTAGGCAACAAATCG
		3'-end	APL01-3nstPriR1	SEQ ID NO:155 TCTGACTAACCGGTGGATGCTG
OGL8	First PCR	5'-end	OGL08-5nstPriF2	SEQ ID NO:156 CGGATCAGTTGATTGCTCACTTC
		3'-end	OGL08-3PriR	SEQ ID NO:157 GCCGAAAAGCAGCAACTGGAA
	Nest PCR	5'-end	OGL08-5nstPriF	SEQ ID NO:158 GATTGCTACGCAGACCGCCTA
		3'-end	OGL08-3nstPriR	SEQ ID NO:159 CACTATTCCCTCCGGCATGCAG
OGL11	First PCR	5'-end	OGL11-5PriF	SEQ ID NO:160 TGACCTATTGATCGGTCGGCTC
		3'-end	OGL11-3PriR2	SEQ ID NO:161 TGCCTTGAATCTCAGGGATGCA
	Nest PCR	5'-end	OGL11-5nstPriF	SEQ ID NO:162 GCCGAAGCTAACTAGCGGACA
		3'-end	OGL11-3nstPriR2	SEQ ID NO:163 CATGGAGTAGCAGCTGTGCTG

OGL12	First PCR	5'-end	OGL12-5PriF	SEQ ID NO:164 GAAAAGCAGTCACCGGCTCTG
		3'-end	OGL12-3PriR	SEQ ID NO:165 CCATGGACATGAATTGGCACG
	Nest PCR	5'-end	OGL12-5nstPriF	SEQ ID NO:166 CTTTGCACCAACGGAGCAGAC
		3'-end	OGL12-3nstPriR	SEQ ID NO:167 GCTAGCAAAACTTGAAGCTCGCTC
OGL13	First PCR	5'-end	OGL13-5PriF	SEQ ID NO:168 GAGGTCCCTTACGGGTACATCG
		3'-end	OGL13-3PriR	SEQ ID NO:169 ACCAGGTCTATCTGCGCAGAC
	Nest PCR	5'-end	OGL13-5nstPriF	SEQ ID NO:170 AATAGCGTGGTCGGGTCTAG
		3'-end	OGL13-3nstPriR	SEQ ID NO:171 ACGAACGATCCAAGGTGCAGT
OGL14	First PCR	5'-end	OGL14-5PriF	SEQ ID NO:172 TAGAGACGAGGACTCTGGGCT
		3'-end	OGL14-3PriR	SEQ ID NO:173 AAGTCCAACATGGCACAACC
	Nest PCR	5'-end	OGL14-5nstPriF	SEQ ID NO:174 CCTCGTTAAGGGTGCAGGTTG
		3'-end	OGL14-3nstPriR	SEQ ID NO:175 CCAAGTCAGCTCTAACGCCATCAAAC
OGL15	First PCR	5'-end	OGL15-5PriF	SEQ ID NO:176 AACCTAGACTTCTGCCTGGTG
		3'-end	OGL15-3PriR	SEQ ID NO:177 GCTCACTTACGAGCAGATCCCA
	Nest PCR	5'-end	OGL15-5nstPriF	SEQ ID NO:178 GGTGCACGCATGTTCTCATGT
		3'-end	OGL15-3nstPriR	SEQ ID NO:179 TGTTCACCGCAGCCATGCTTG
OGL16	First PCR	5'-end	OGL16-5PriF	SEQ ID NO:180 GTTGTATACGGCATCCATCCGCT
		3'-end	OGL16-3PriR	SEQ ID NO:181 GAATGAAACTGGTGGTCTGCTCC
	Nest PCR	5'-end	OGL16-5nstPriF	SEQ ID NO:182 CCGACGAGGTACAAGTAGCAGG
		3'-end	OGL16-3nstPriR	SEQ ID NO:183 CCCGTAGTCCAGATTCTGTGGT
OGL17	First PCR	5'-end	OGL17-5PriF	SEQ ID NO:184 GTCGTTGTTCGGAAGGGGAG
		3'-end	OGL17-3PriR	SEQ ID NO:185 CGTAGTTGTCCGGCATGTCCT
	Nest PCR	5'-end	OGL17-5nstPriF	SEQ ID NO:186 TGTATCCCTTCGGTGAGCACG
		3'-end	OGL17-3nstPriR	SEQ ID NO:187 TGAATCGACTCGCTGACAGGTG

[0224] Table 6. List of all “In” primers for nested In-Out PCR analysis of optimal genomic loci.

All Reactions	First PCR	5'-end	Spec-PriR1	SEQ ID NO:188 CCACGATCGACATTGATCTGGCTA
		3'-end	Uzi-PriF1	SEQ ID NO:189 GGGATATGTGTCCTACCGTATCAGG
	Nest PCR	5'-end	Spec-nstPriR1	SEQ ID NO:190 GTTGCCTTGGTAGGTCCAGC
		3'-end	Uzi-nstPriF1	SEQ ID NO:191 GAGCCATCAGTCCAACACTGC

[0225] Table 7. Primers for ZFN cleavage activity.

OGL 1	Control/ZFN 111879	SEQ ID NO:192 TGGCACTAATCTCACCGGCT
		SEQ ID NO:193 AGTCTTAGAAGTACGCTACCGT
OGL 2	Control/ZFN 111885	SEQ ID NO:194 TACTTGGCTTCGGCGGCGA
		SEQ ID NO:195 GGGTGACTTTACGCGTCTCG
OGL 11	Control/ZFN 117402	SEQ ID NO:196 GGTCACGACGCATGGCCTAA
		SEQ ID NO:197 AGGATGCATGGATCACCGTC
OGL 12	Control/ZFN 117404	SEQ ID NO:198 GCTCTGTTGTGCAGCCGTAC
		SEQ ID NO:199 CGTTGCAGATAACCACAGTGTAC
OGL 13	Control/ZFN 117429	SEQ ID NO:200 GCTAGTAGCTGTTACACGGCGTCT
		SEQ ID NO:201 AGGTCGAGACAACCAAGTAGAG
OGL 14	Control/ZFN 117406	SEQ ID NO:202 ACAGGACATCGAGCTTGCAT
		SEQ ID NO:203 CAGAAGAAAGGCATCAACTCATG
OGL 15	Control/ZFN 117408	SEQ ID NO:204 CTCTTTCACCTCTACTTTACTTCAG
		SEQ ID NO:205 ATTGAACCGTTGTCAAAGCCA
OGL 16	Control/ZFN 117411	SEQ ID NO:206 CACAGCGTCAGGGCGGTAAC
		SEQ ID NO:207 GGCACGCACCTGTCACTGAC

OGL 17	Control/ZFN 117413	SEQ ID NO:208
		GTACGCGCCCGGGAACTCCT
		SEQ ID NO:209
		CCTGCGGCCACGTGCATCT

[0226] Deployment of the In-Out PCR assay in a protoplast targeting system was particularly challenging as large amounts of the plasmid DNA was used for transfection, and the large amount of plasmid DNA remains in the protoplast targeting system and is subsequently extracted along with cellular genomic DNA. The residual plasmid DNA may dilute the relative concentration of the genomic DNA and reduce the overall sensitivity of detection and can also be a significant cause of non-specific, aberrant PCR reactions. The ZFN induced NHEJ-based donor insertion typically occurs in either a forward or a reverse orientation. In-Out PCR analysis of DNA for the forward orientation insertion often exhibited false positive bands, possibly due to shared regions of homology around the ZFN binding site in the target and donor that could result in priming and extension of unintegrated donor DNA during the amplification process. False positives were not seen in analyses that probed for reverse orientation insertion products and therefore all targeted donor integration analysis was carried out to interrogate reverse donor insertion in the Rapid Targeting Analysis. In order to further increase specificity and reduce background, a nested PCR strategy was also employed. The nested PCR strategy used a second PCR amplification reaction that amplified a shorter region within the first amplification product of the first PCR reaction. Use of asymmetric amounts of “In” and “Out” primers optimized the junctional PCR further for rapid targeting analysis at selected genomic loci.

[0227] The In-Out PCR analysis results were visualized on an agarose gel. For all *Zea mays* selected genomic loci, “ZFN + donor treatments” produced a near expected sized band at the 5’ and 3’ ends. Control ZFN or donor alone treatments were negative in the PCR suggesting that the method was specifically scoring for donor integration at the target site. All treatments were conducted in replicates of three to six and presence of the anticipated PCR product in multiple replicates (≥ 2 at both ends) was used to confirm targeting. Donor insertion through NHEJ often produces lower intensity side products that are generated due to processing of linearized ends at the target and/or donor ZFN sites. In addition, it was observed that different ZFNs resulted in different levels of efficiency for targeted integration, with some of the ZFNs producing consistently high levels of donor integration, some ZFNs producing less consistent levels of donor integration, and other ZFNs resulting in no integration. Overall, for

each of the *Zea mays* selected genomic loci targets that were tested, targeted integration was demonstrated within the *Zea mays* representative genomic loci targets by one or more ZFNs, which confirms that each of these loci were targetable. Furthermore, each of the *Zea mays* selected genomic loci targets is suitable for precision gene transformation. The validation of these *Zea mays* selected genomic loci targets was repeated multiple times with similar results every time, thus confirming the reproducibility of the validation process which includes plasmid design and construct, protoplast transformation, sample processing, and sample analysis.

[0228] Conclusion

[0229] The donor plasmid and one ZFN designed to specifically cleave a *Zea mays* selected genomic loci targets were transfected into *Zea mays* c.v. Hi-II protoplasts and cells were harvested 24 hours later. Analysis of the genomic DNA isolated from control, ZFN treated and ZFN with donor treated protoplasts by In-Out junctional PCR showed targeted insertion of the universal donor polynucleotide as a result of genomic DNA cleavage by the ZFNs (Table 8). These studies show that the universal donor polynucleotide system can be used to assess targeting at endogenous sites and for screening candidate ZFNs. Finally, the protoplast based Rapid Targeting Analysis and the novel universal donor polynucleotide sequence systems provide an improved system for screening genomic targets and ZFNs for precision genome engineering efforts in plants. The methods can be extended to assess site specific cleavage and donor insertion at genomic targets in any system of interest using any nuclease that introduces DNA double or single strand breaks.

[0230] Table 8. Results of the integration of a universal donor polynucleotide sequence within the *Zea mays* selected genomic loci targets.

Name	ID	Location	Cluster Assignment	ZFN (pDAB#)	Donor (pDAB#)	Targetable Locus (Y/N)
OGL0 1	optimal_loci_204637_G1	chr5:20029820 2..200301414	16	111879	111845	Y
OGL0 2	optimal_loci_204726_G1	chr5:20066573 0..200670667	03	111885	111846	Y
OGL0 8	optimal_loci_31710	chr1:19493939 6..194943360	23	117400	117415	Y
OGL1 1	optimal_loci_64542	chr2:72203716..72205045	14	117402	117416	Y

OGL1 2	optimal_loci_ 156393	chr4:15431388 4..154315253	10	117404	117417	Y
OGL1 5	preffered_loci _198387	chr5:16471237 8..164713567	25	117408	117419	Y
OGL1 3	optimal_loci_ 157315	chr4:15871070 9..158711983	30	117429	117434	Y
OGL1 4	optimal_loci_ 197372	chr5:15868060 1..158681681	26	117406	117418	Y
OGL1 6	optimal_loci_ 232228	chr6:14471956 7..144723469	28	117411	117420	Y
OGL1 7	optimal_loci_ 285621	chr8:11832135 7..118322528	06	117413	117421	Y

[0231] While aspects of this invention have been described in certain embodiments, they can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of embodiments of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which these embodiments pertain and which fall within the limits of the appended claims.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A polynucleotide donor cassette comprising a site specific nuclease binding domain, an analytical domain, and a plasmid domain, wherein

 said site specific nuclease binding domain comprises a site specific nuclease binding sequence that binds to a zinc finger binding protein, a meganuclease binding protein, a CRISPR binding protein, or a TALEN binding protein; and

 said analytical domain comprises a sequence selected from the group consisting of a polynucleotide sequence as set forth in SEQ ID NO: 142 and a polynucleotide sequence as set forth in SEQ ID NO:143 .

2. A transgenic cell comprising the polynucleotide donor cassette of claim 1.

3. The transgenic cell of claim 2, wherein the cell is a transgenic plant cell.

4. A transgenic plant comprising the transgenic plant cell of claim 3, wherein the transgenic plant fulfills at least one of the following:

 i) the plant is a monocotyledonous plant; or

 ii) the plant is a dicotyledonous plant.

5. The transgenic plant of claim 4, wherein the monocotyledonous plant is selected from the group consisting of a maize plant, a wheat plant, and a rice plant, or wherein the dicotyledonous plant is selected from the group consisting of a soybean plant, a cotton plant, and a canola plant.

6. A transgenic seed from the transgenic plant of claim 4 or 5.

7. The polynucleotide donor cassette of claim 1, wherein the polynucleotide donor cassette comprises a sequence selected from the group consisting of:

 - a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:134;

 - a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:135;

 - a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:136;

2014341928 22 Sep 2017

1001937559

- a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:137;
- a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:138;
- a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:139;
- a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:140; and
- a polynucleotide sequence with at least 90% sequence identity to SEQ ID NO:141.

8. The donor cassette of claim 7, wherein the analytical domain comprises a polynucleotide that does not contain a series of identical base pair sequences greater than 9 base pairs in length.

9. The polynucleotide donor cassette of claim 1, wherein polynucleotide donor cassette comprises one or more homology arm sequences.

10. The donor cassette of claim 9, wherein the one or more homology arm sequences share at least 80% sequence identity with an optimal genomic loci selected from the group consisting of optimal loci_204637 (SEQ ID NO:210), optimal_loci_204726 (SEQ ID NO:211), optimal_loci_156393 (SEQ ID NO:212), optimal_loci_198387 (SEQ ID NO:213), optimal_loci_31710 (SEQ ID NO:214), optimal_loci_64542 (SEQ ID NO:215), optimal_loci_197372 (SEQ ID NO:216), optimal_loci_232228 (SEQ ID NO:217), optimal_loci_285621 (SEQ ID NO:218) and optimal_loci_157315 (SEQ ID NO:219).

11. A method for targeted integration of a polynucleotide donor cassette within the genome of a plant cell, the method comprising:

- a. expressing a site specific DNA binding nuclease, comprising at least one DNA-binding domain and at least one nuclease domain, wherein the at least one DNA-binding domain binds to a target site within the genome of the plant cell;
- b. contacting the plant cell with a polynucleotide donor cassette of any one of claims 1 to 10;
- c. cleaving the target site within the genome of the plant cell with the site specific DNA binding nuclease; and,

d. integrating the polynucleotide donor cassette of any one of claims 1 to 10 into the target site within the genome of the plant cell.

12. The method of claim 11, wherein the method includes at least one of the following:

- i) the at least one DNA-binding domain is selected from the group consisting of a zinc finger binding domain, a meganuclease binding domain, a TALEN binding domain, a meganuclease, and a CRISPR binding domain,
- ii) the nuclease domain is from a Type IIS restriction endonuclease,
- iii) the polynucleotide donor cassette expresses a polypeptide,
- iv) the polynucleotide donor cassette comprises a non-coding nucleic acid sequence,
- v) the polynucleotide donor cassette comprises one or more zinc finger binding sequences,
- vi) the polynucleotide donor cassette comprises one or more primer binding sequences,
- vii) the integrating comprises a homology directed repair mechanism,
- viii) the integrating comprises a non-homologous end joining directed repair mechanism,
- ix) the plant cell is a monocotyledonous plant cell,
- x) the plant cell is a dicotyledonous plant,
- xi) the target site comprises an optimal genomic loci.

13. The method of claim 12, wherein,

- i) the nuclease domain of claim 12(ii) is selected from the group consisting of FokI and SrsI;
- ii) the monocotyledonous plant cell of claim 12(ix) is selected from the group consisting of a maize plant cell, a wheat plant cell, and a rice plant cell;
- iii) the dicotyledonous plant cell of claim 12(x) is selected from the group consisting of a soybean plant cell, a cotton plant cell, and a canola plant cell;

iv) the optimal genomic loci is a hypomethylated nongenic sequence comprising the following characteristics:

- a. the level of methylation of said nongenic sequence is 1% or less;
- b. said nongenic sequence shares less than 40% sequence identity with any other sequence contained in the genome;
- c. said nongenic sequence is located within a 40 Kb region of a known or predicted expressive coding sequence; and,
- d. said nongenic sequence exhibits a recombination frequency within the genome of greater than 0.00041 cM/Mb.

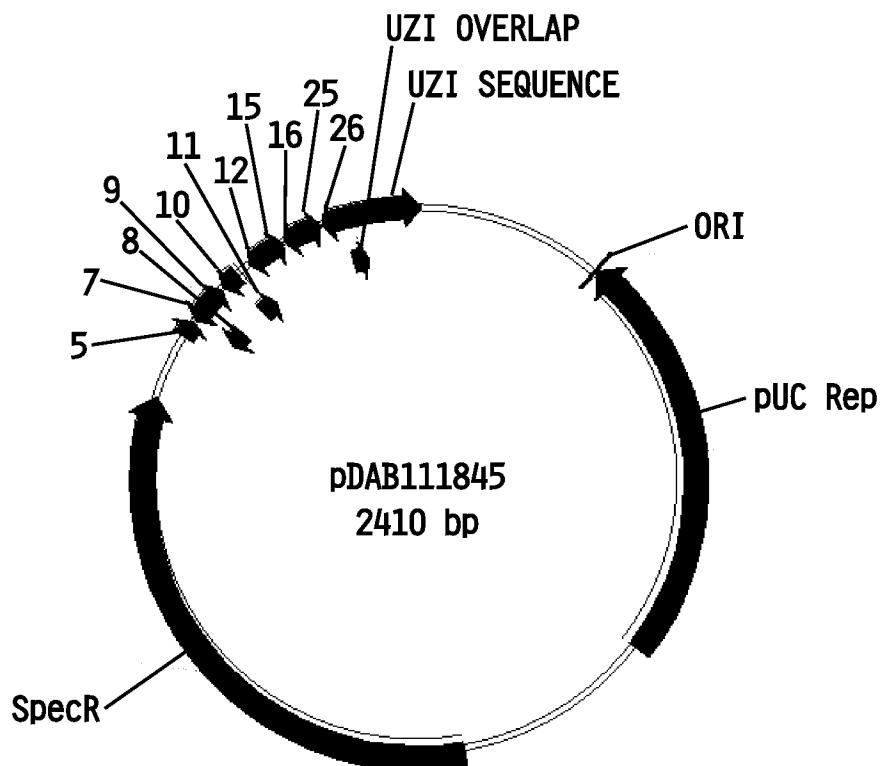


FIG. 1

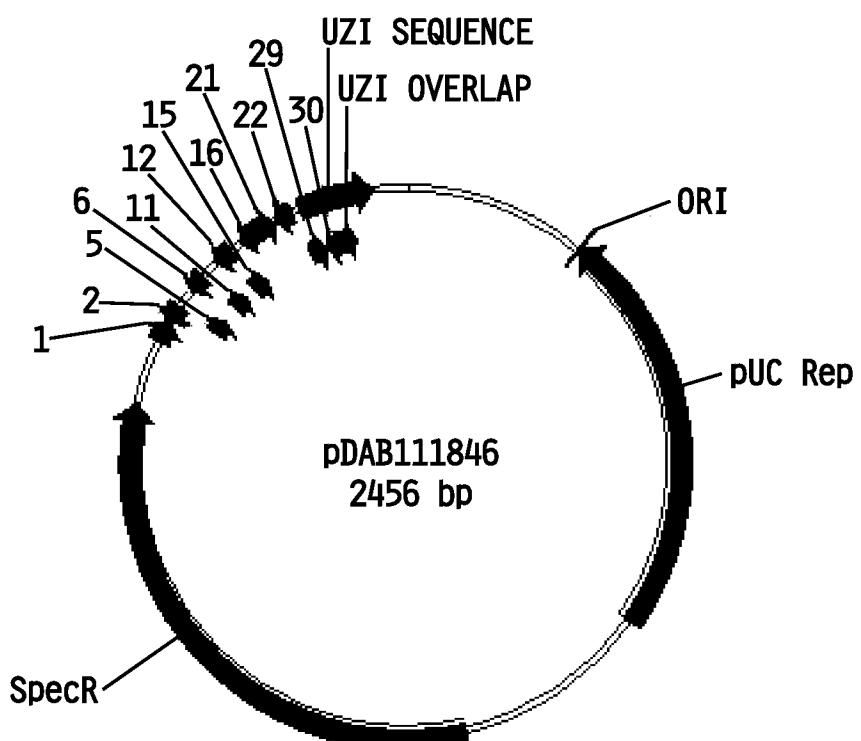


FIG. 2

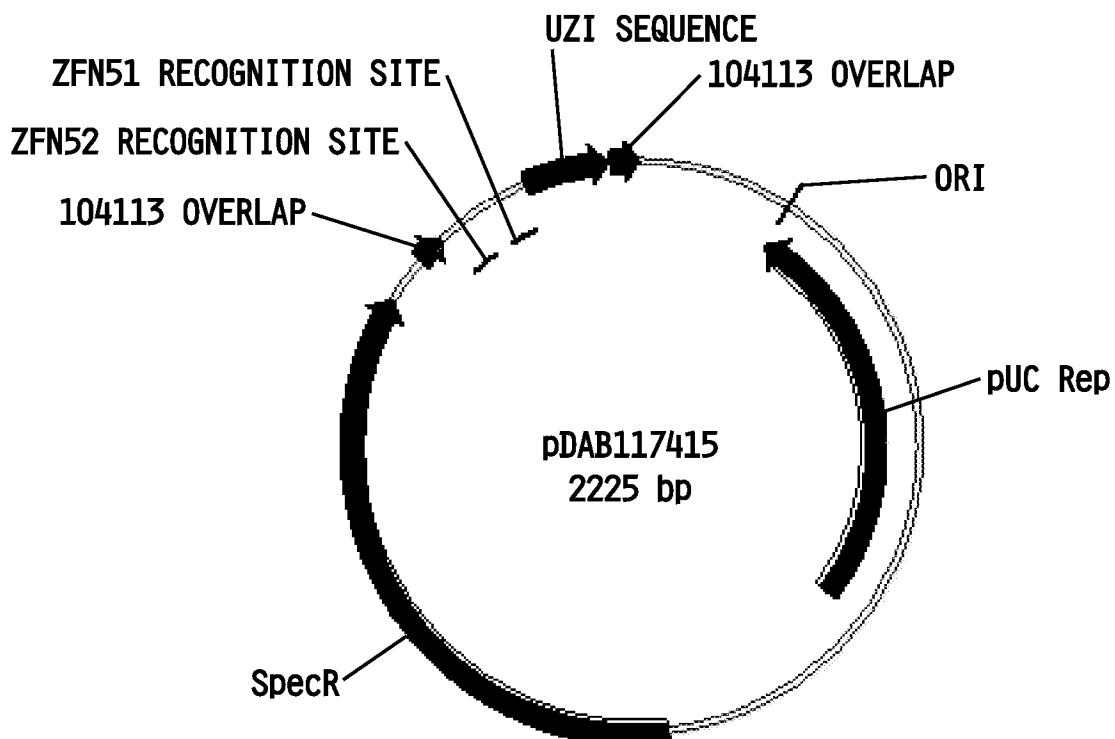


FIG. 3

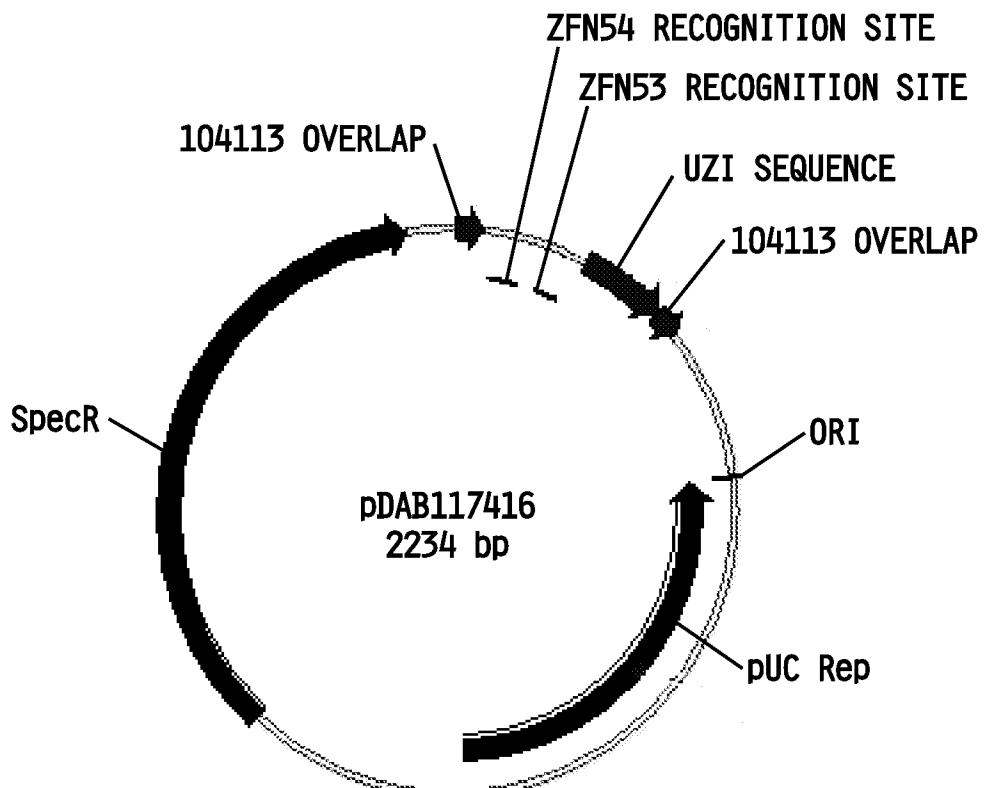


FIG. 4

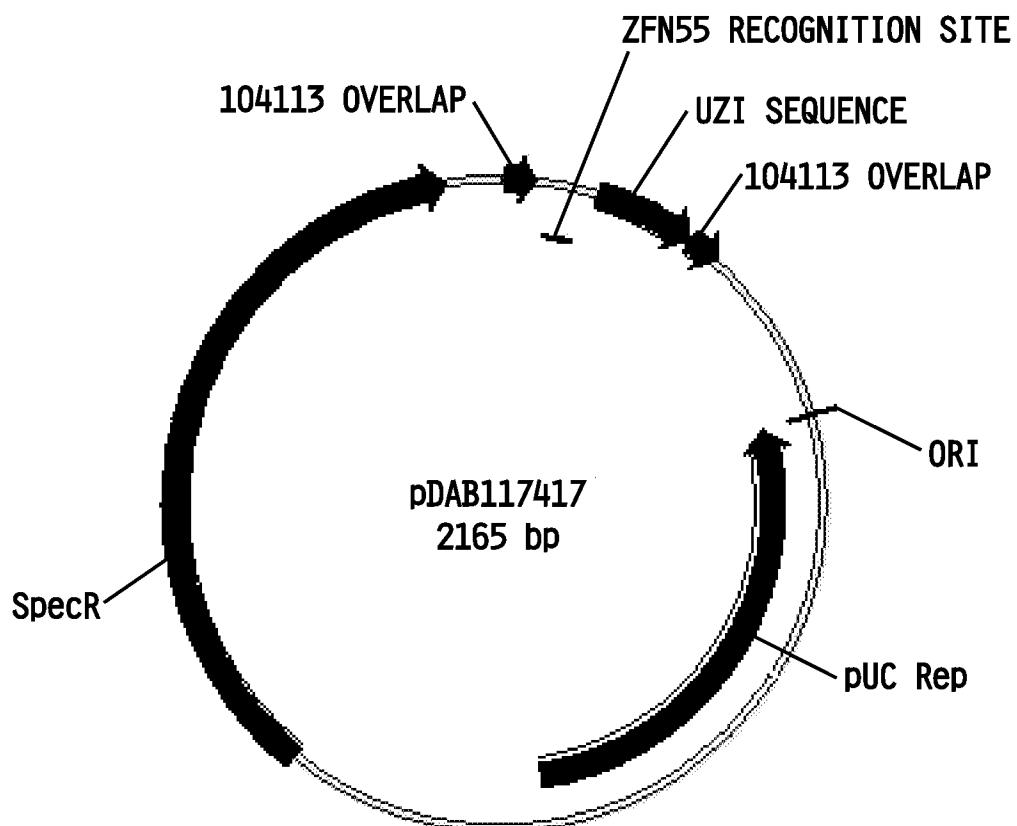


FIG. 5

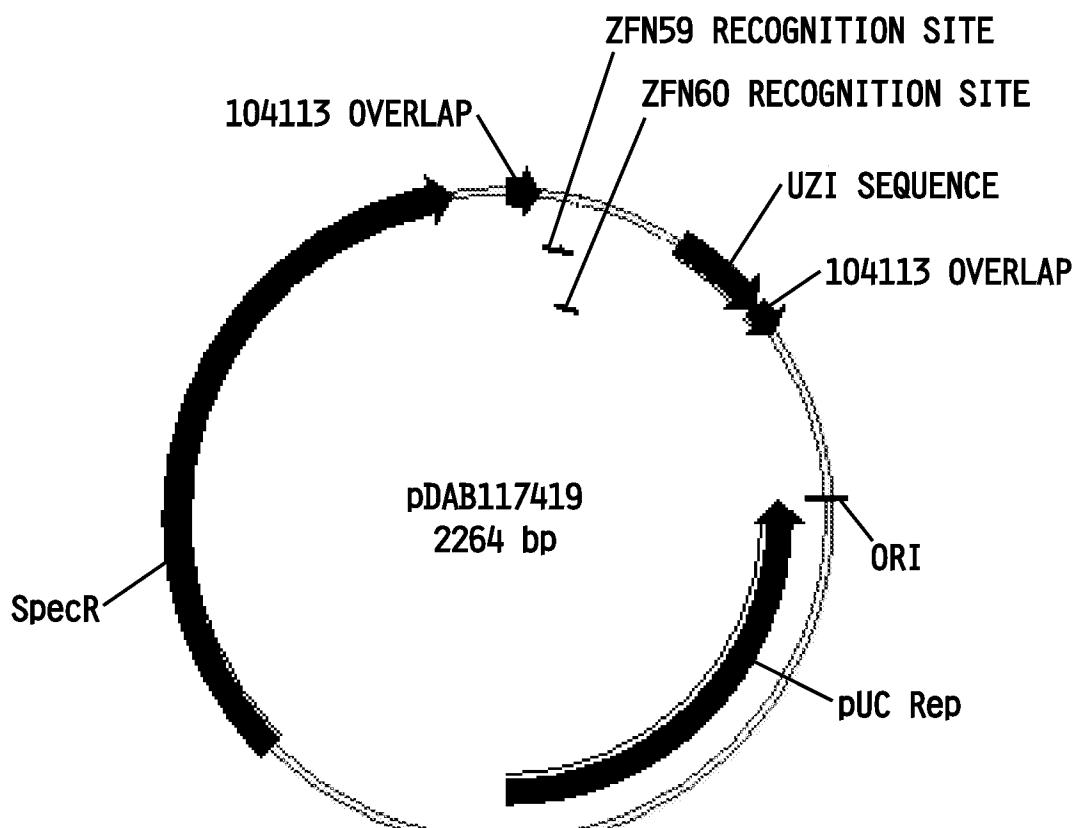


FIG. 6

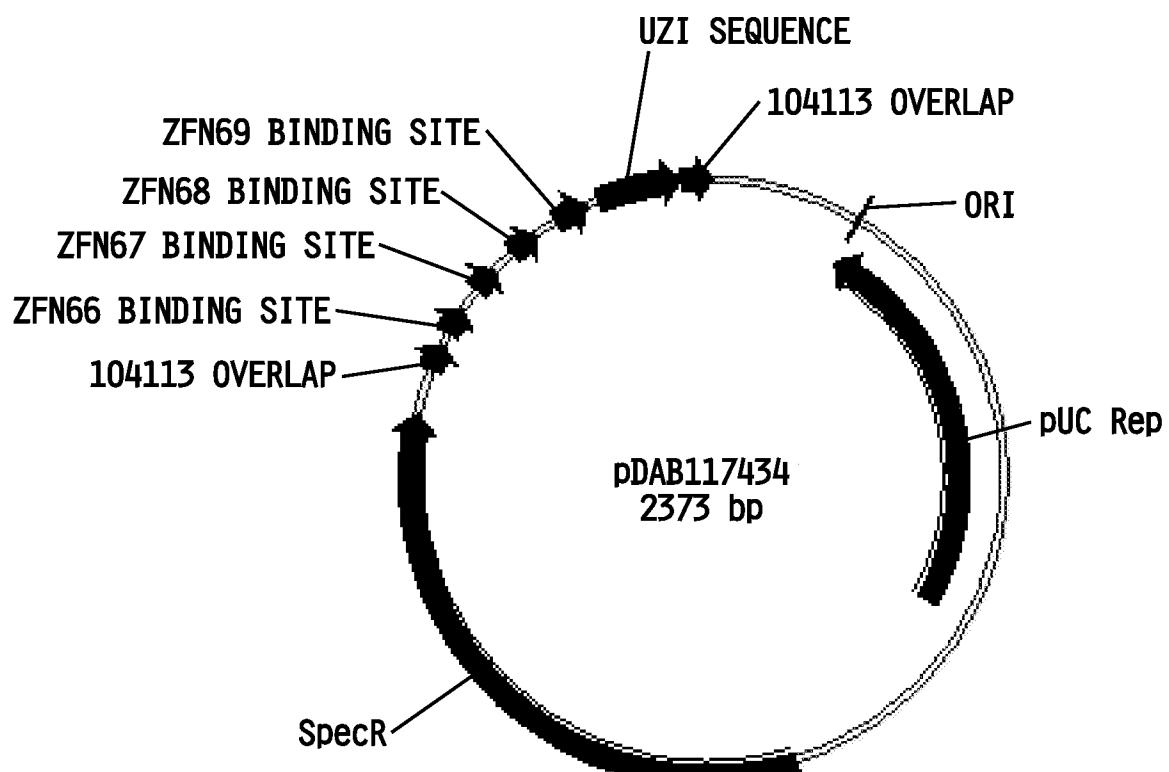


FIG. 7

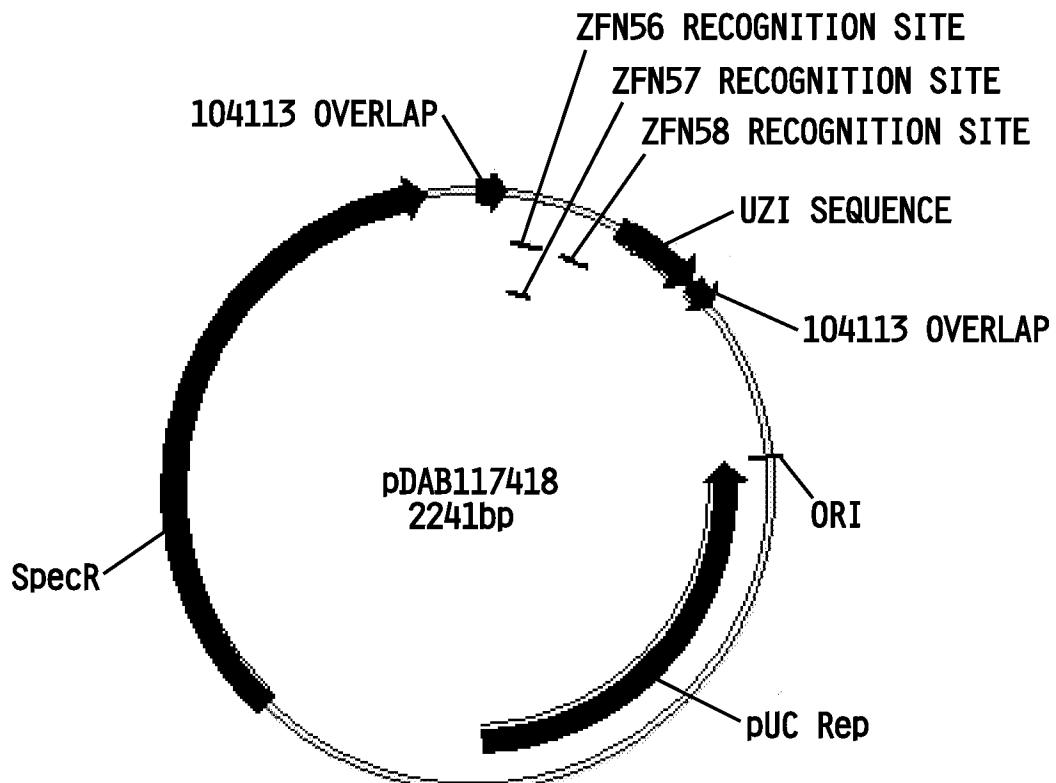


FIG. 8

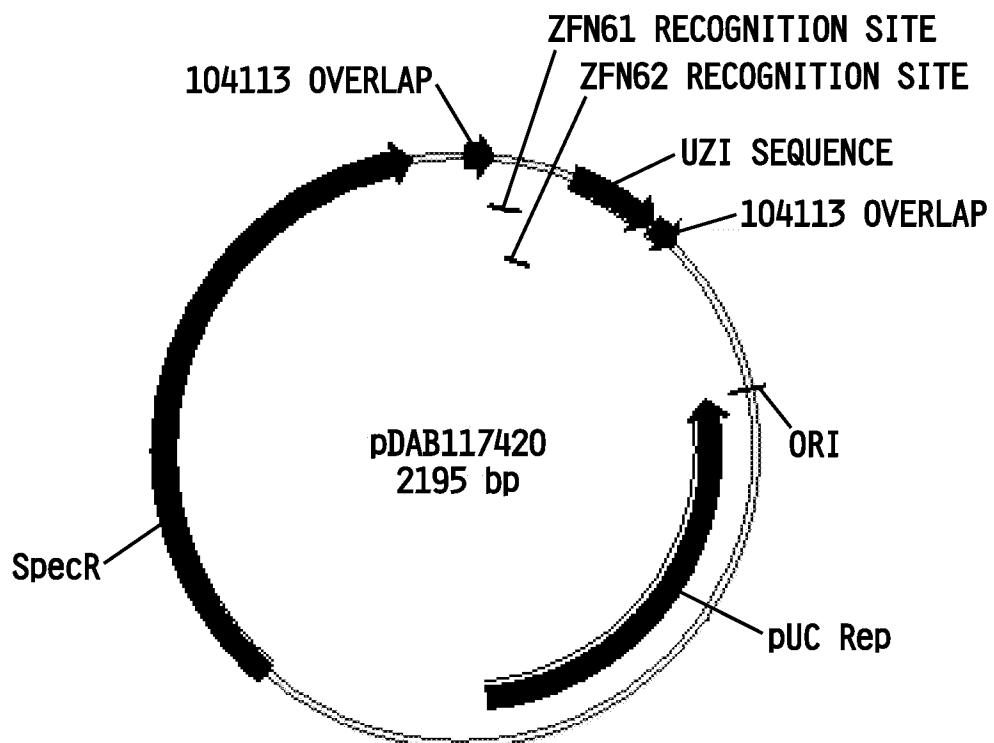


FIG. 9

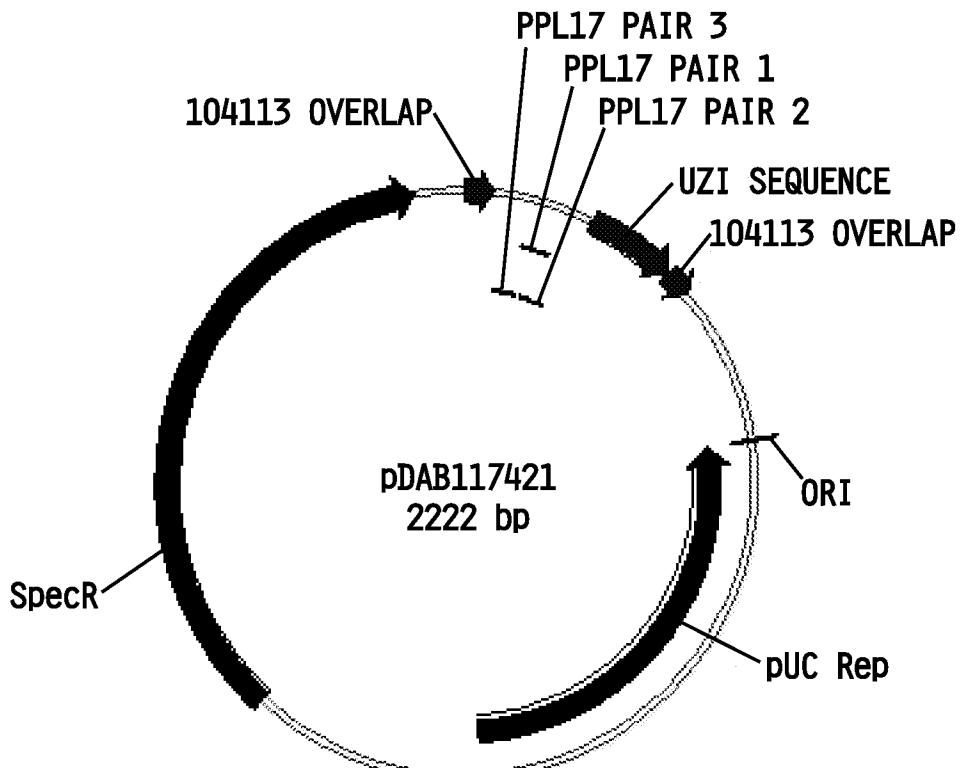


FIG. 10

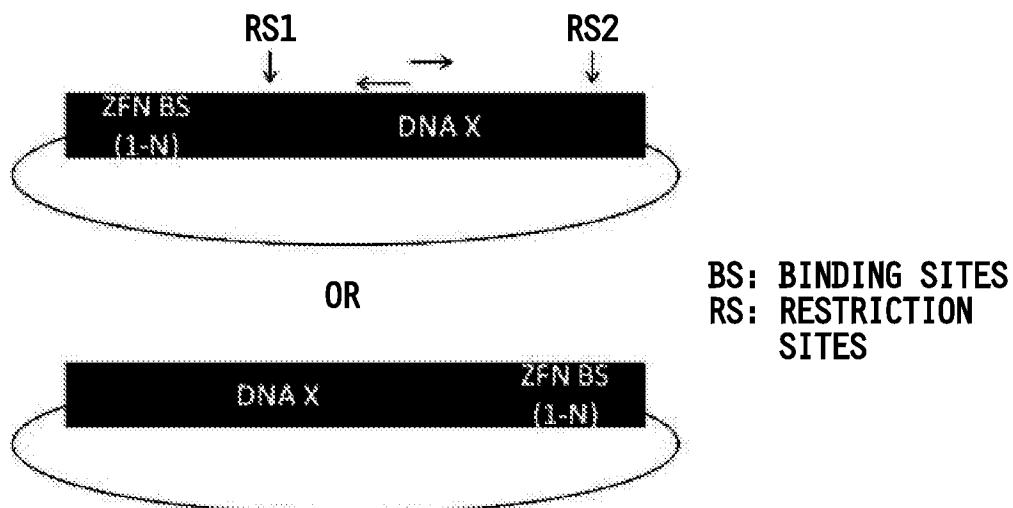


FIG. 11

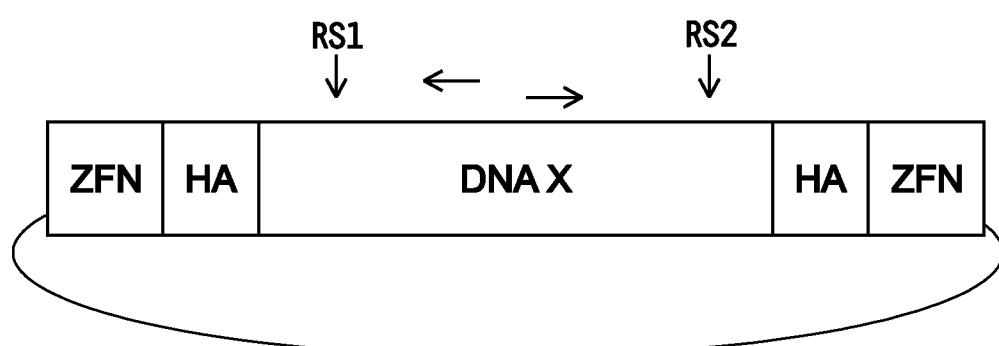


FIG. 12

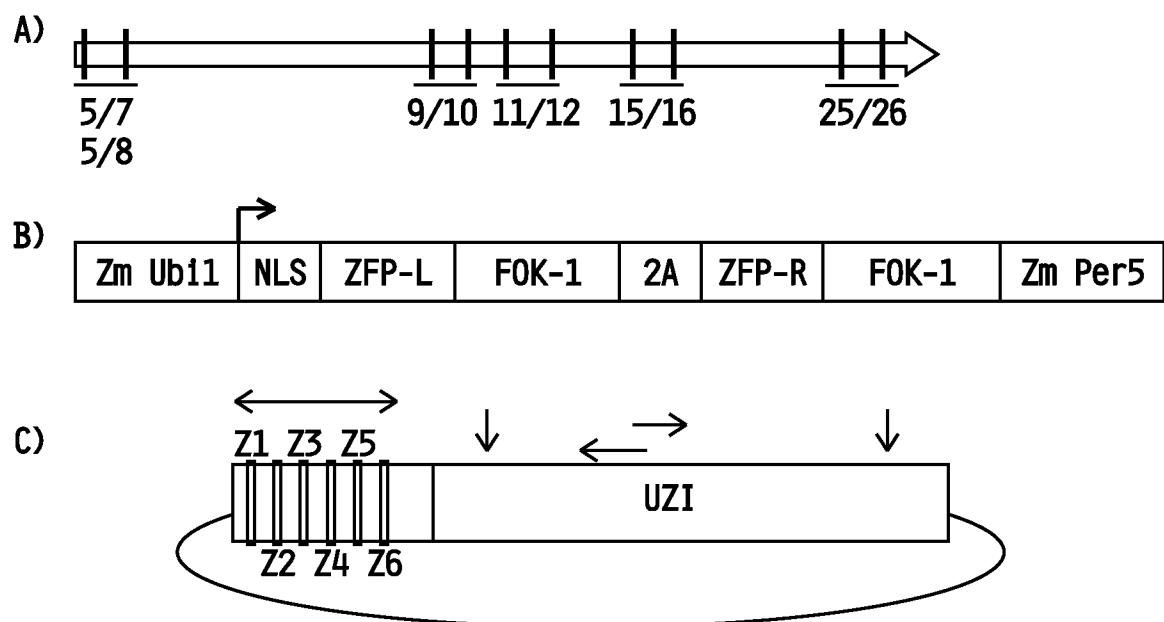


FIG. 13

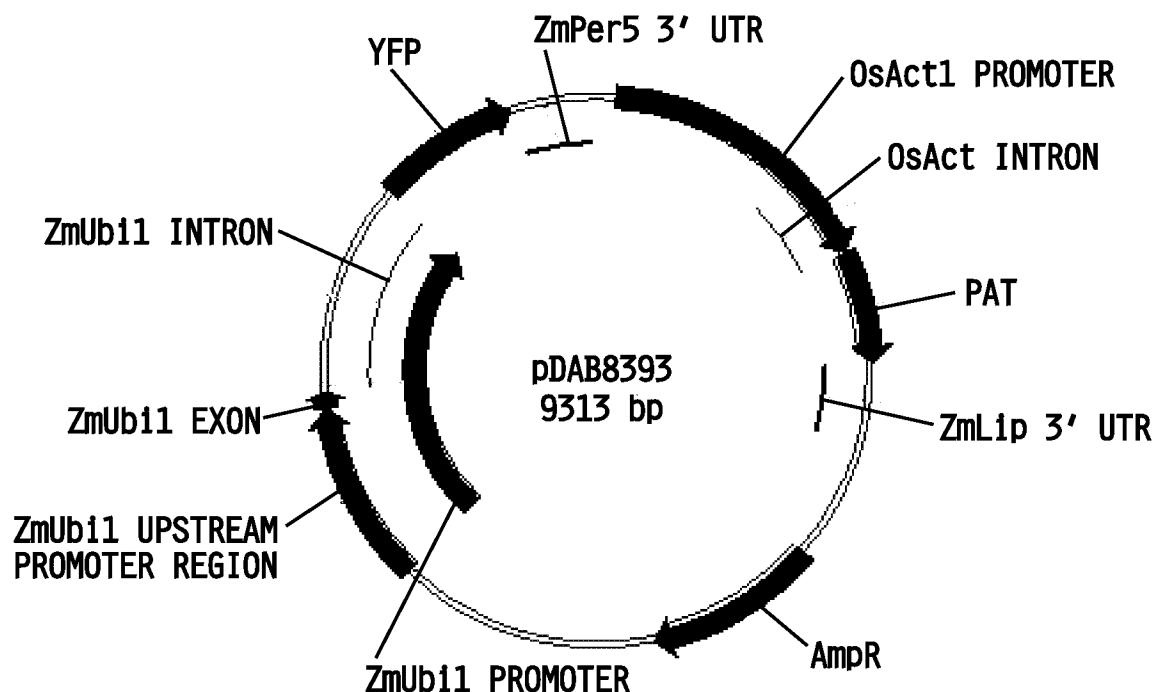


FIG. 14

ZFN CLEAVAGE ACTIVITY AT OPTIMAL GENOMIC LOCI

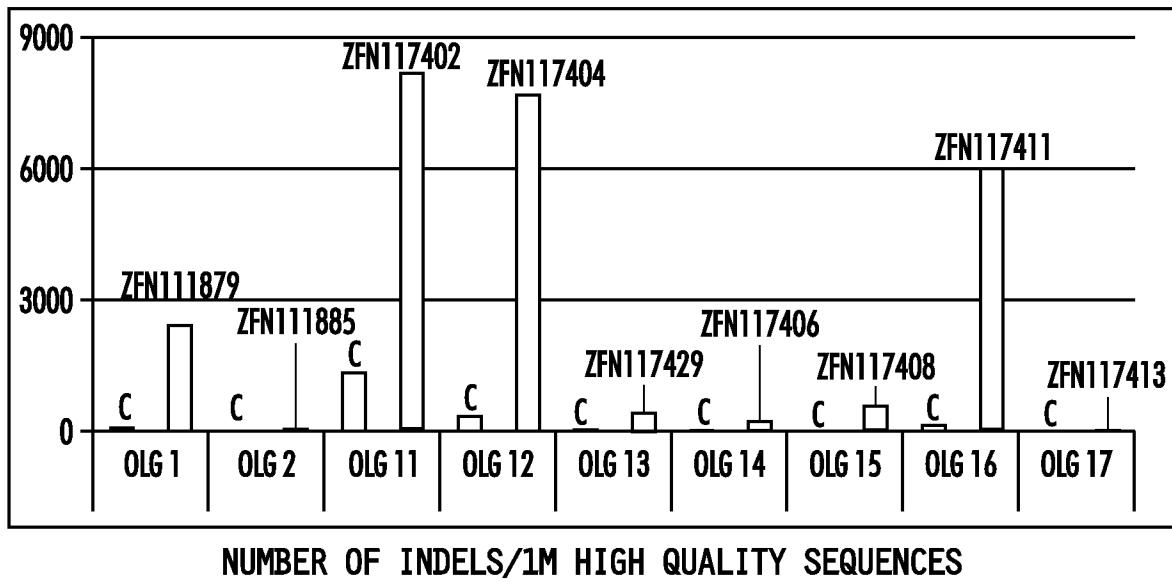
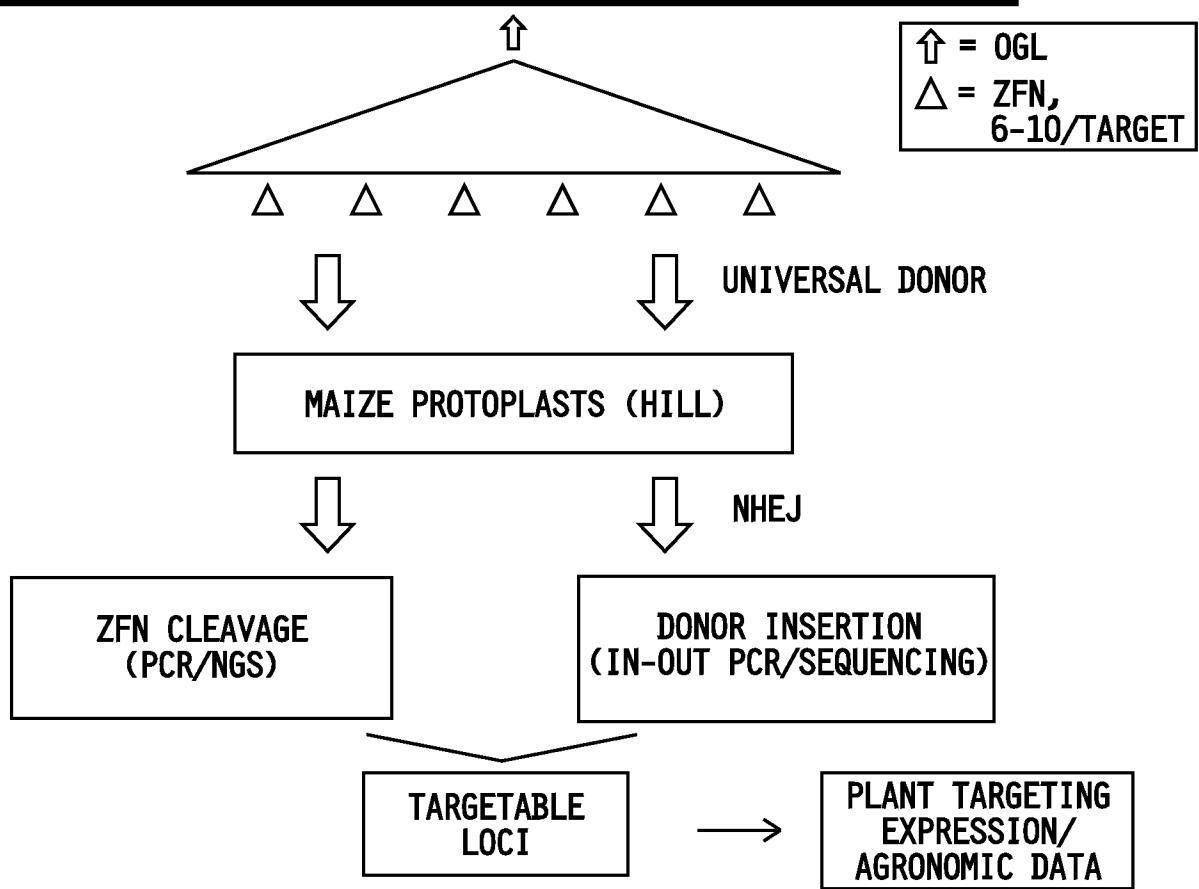



FIG. 15A

ID	Name	Treatment	# Indels/1M HQ reads
optimal loci_ 204637	OGL1	C	115.1827783
		ZFN 111879	2458.971273
optimal_loci_204726	OGL2	C	10.86457474
		ZFN 111885	102.9851891
optimal_loci_31710	OGL 11	C	1359.364352
		ZFN 117402	8209.320688
optimal_loci_156393	OGL 12	C	368.6331485
		ZFN 117404	7748.53473
optimal_loci_157315	OGL 13	C	79.11178495
		ZFN 117429	453.3253803
optimal_loci_197372	OGL 14	C	48.99318995
		ZFN 117406	277.1403482
optimal_loci_198387	OGL 15	C	45.49262935
		ZFN 117408	622.2166624
optimal_loci_232228	OGL 16	C	163.1649867
		ZFN 117411	5980.912998
optimal_loci_285621	OGL 17	C	0
		ZFN 117413	4.815941547

FIG. 15B

RTA METHOD
VALIDATION = CLEAVAGE AND TARGETING OF OGL

FIG. 16

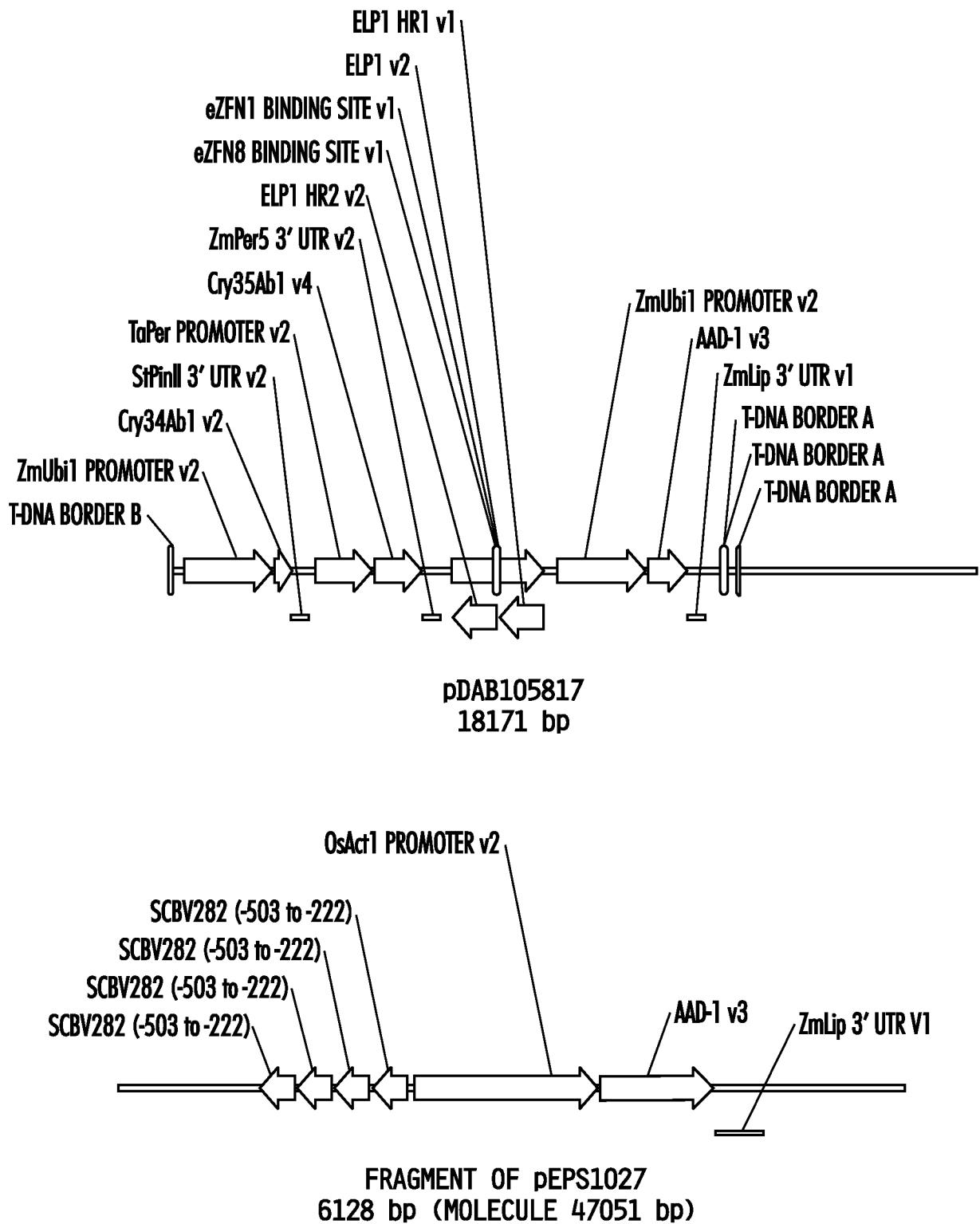


FIG. 17

74435_ST25
SEQUENCE LISTING

<110> Dow AgroSciences LLC
Sastry-Dent, Lakshmi
Evans, Steve
Blue, Ryan
Cao, Zehui

<120> A UNIVERSAL DONOR SYSTEM FOR GENE TARGETING

<130> 14764-232301

<160> 219

<170> Patent in version 3.5

<210> 1

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 1

Gl n Ser Gl y Asp Leu Thr Arg
1 5

<210> 2

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 2

Arg Lys Asp Gl n Leu Val Al a
1 5

<210> 3

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 3

Arg Ser Asp Asp Leu Thr Arg
1 5

<210> 4

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 4

Thr Ser Ser Asn Arg Lys Thr
1 5

<210> 5
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 5

Arg Ser Asp Thr Leu Ser Glu
1 5

<210> 6
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 6

Ala Arg Ser Thr Arg Thr Asn
1 5

<210> 7
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 7

Arg Ser Asp Ser Leu Ser Val
1 5

<210> 8
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 8

Asp Arg Ser Asn Arg Lys Thr
1 5

<210> 9
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 9

Gln Ser Ser His Leu Thr Arg
1 5

<210> 10

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 10

Arg Ser Asp Ala Leu Ala Arg
1 5

<210> 11

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 11

Arg Ser Asp Asp Leu Thr Arg
1 5

<210> 12

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 12

Asp Pro Ser Ala Leu Arg Lys
1 5

<210> 13

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 13

Arg Ser Asp Asn Leu Ser Gln
1 5

<210> 14

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

74435_ST25

<223> Zinc Finger Protein Recognition Helices

<400> 14

Ala Ser Asn Asp Arg Lys Lys
1 5

<210> 15

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 15

Glu Arg Gly Thr Leu Ala Arg
1 5

<210> 16

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 16

Arg Ser Asp His Leu Ser Arg
1 5

<210> 17

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 17

Glu Arg Gly Thr Leu Ala Arg
1 5

<210> 18

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 18

Gln Ser Gly His Leu Ser Arg
1 5

<210> 19

<211> 7

<212> PRT

<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 19

Arg Ser Ala Asn Leu Ala Arg
1 5

<210> 20
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 20

Asp Arg Ser Asp Leu Ser Arg
1 5

<210> 21
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 21

Arg Ser Asp Thr Leu Ser Gln
1 5

<210> 22
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 22

Arg Ser Ala Asp Leu Ser Arg
1 5

<210> 23
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 23

Asp Arg Ser Asn Leu Ser Arg
1 5

<210> 24
<211> 7

74435_ST25

<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 24

Asn Ser Arg Asn Leu Arg Asn
1 5

<210> 25
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 25

Arg Ser Asp Ser Leu Ser Val
1 5

<210> 26
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 26

Asp Arg Ser His Leu Ala Arg
1 5

<210> 27
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 27

Asp Arg Ser Asn Leu Ser Arg
1 5

<210> 28
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 28

Arg Arg Ser Asp Leu Lys Arg
1 5

74435_ST25

<210> 29

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 29

Arg Ser Asp Thr Leu Ser Glu
1 5

<210> 30

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 30

Gln Asn Ala Thr Arg Ile Asn
1 5

<210> 31

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 31

Gln Ser Gly Ser Leu Thr Arg
1 5

<210> 32

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 32

Gln Ser Gly Asp Leu Thr Arg
1 5

<210> 33

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 33

Arg Ser Asp Val Leu Ser Glu
1 5

<210> 34
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 34

Thr Arg Asn Glu Leu Lys Tyr
1 5

<210> 35
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 35

Arg Ser Asp Asn Leu Ser Arg
1 5

<210> 36
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 36

Asp Asn Ser Asn Arg Lys Thr
1 5

<210> 37
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 37

Gln Asn Ala His Arg Lys Thr
1 5

<210> 38
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 38

Gln Lys Ala Thr Arg Ile Thr
1 5

<210> 39
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 39

Asp Arg Ser His Leu Thr Arg
1 5

<210> 40
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 40

Arg Ser Asp Asp Arg Lys Lys
1 5

<210> 41
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 41

Ala Ser Lys Thr Arg Thr Asn
1 5

<210> 42
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 42

Gln Ser Gly Ser Leu Thr Arg
1 5

<210> 43
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 43

Leu Arg His His Leu Thr Arg
1 5

<210> 44

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 44

Gln Ser Ala His Leu Lys Ala
1 5

<210> 45

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 45

Gln Ser Gly Asp Leu Thr Arg
1 5

<210> 46

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 46

Ala Ser His Asn Leu Arg Thr
1 5

<210> 47

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 47

Asp Arg Ser Asn Leu Thr Arg
1 5

<210> 48

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

74435_ST25

<223> Zinc Finger Protein Recognition Helices

<400> 48

Gl n Ser Ser Asp Leu Ser Arg
1 5

<210> 49

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 49

Asp Ala Gly Asn Arg Asn Lys
1 5

<210> 50

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 50

Asp Arg Ser Asp Leu Ser Arg
1 5

<210> 51

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 51

Arg Ser Asp Asn Leu Thr Arg
1 5

<210> 52

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 52

Asp Arg Ser His Leu Ser Arg
1 5

<210> 53

<211> 7

<212> PRT

<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 53

Thr Ser Gly Asn Leu Thr Arg
1 5

<210> 54
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 54

Gln Ser Ser Asp Leu Ser Arg
1 5

<210> 55
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 55

Gln Ser Ser Asp Leu Ser Arg
1 5

<210> 56
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 56

His Arg Ser Thr Arg Asn Arg
1 5

<210> 57
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 57

Arg Ser Asp Asp Leu Thr Arg
1 5

<210> 58
<211> 7

74435_ST25

<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 58

Asp Arg Ser Asn Leu Lys Ala
1 5

<210> 59
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 59

Asp Arg Ser His Leu Thr Arg
1 5

<210> 60
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 60

Gln Arg Ser Thr Leu Lys Ser
1 5

<210> 61
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 61

Arg Ser Asp Ala Leu Ser Arg
1 5

<210> 62
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 62

Arg Ser Asp Asp Leu Thr Arg
1 5

74435_ST25

<210> 63

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 63

Asp Arg Ser His Leu Thr Arg
1 5

<210> 64

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 64

Thr Ser Ser Asn Arg Lys Thr
1 5

<210> 65

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 65

Arg Ser Asp Thr Leu Ser Glu
1 5

<210> 66

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 66

Asp Arg Ser His Leu Ala Arg
1 5

<210> 67

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 67

Asp Arg Ser Ala Arg Thr Arg
1 5

<210> 68
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 68

Gln Ser Gly His Leu Ser Arg
1 5

<210> 69
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 69

Gln Ser Gly Asn Leu Ala Arg
1 5

<210> 70
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 70

Arg Ser Asp Val Leu Ser Thr
1 5

<210> 71
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 71

Arg Tyr Ala Tyr Leu Thr Ser
1 5

<210> 72
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 72

74435_ST25

Arg Arg Trp Thr Leu Val Gly
1 5

<210> 73

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 73

Arg Ser Asp Asn Leu Ser Gln
1 5

<210> 74

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 74

Ala Ser Asn Asp Arg Lys Lys
1 5

<210> 75

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 75

Gln Ser Gly Asp Leu Thr Arg
1 5

<210> 76

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 76

Leu Lys Asp Thr Leu Arg Arg
1 5

<210> 77

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 77

Gl n Ser Gl y Asn Leu Al a Arg
1 5

<210> 78

<211> 7

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> Zi nc Fi nger Protei n Recogni ti on Hel i ces

<400> 78

Gl n Ser Gl y Asp Leu Thr Arg
1 5

<210> 79

<211> 7

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> Zi nc Fi nger Protei n Recogni ti on Hel i ces

<400> 79

Met Gl n Asn Tyr Leu Ser Arg
1 5

<210> 80

<211> 7

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> Zi nc Fi nger Protei n Recogni ti on Hel i ces

<400> 80

Arg Ser Asp His Leu Ser Gl u
1 5

<210> 81

<211> 7

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> Zi nc Fi nger Protei n Recogni ti on Hel i ces

<400> 81

Gl n Asn Al a Asn Arg Lys Thr
1 5

<210> 82

<211> 7

<212> PRT

<213> Arti fi ci al Sequence

<220>

74435_ST25

<223> Zinc Finger Protein Recognition Helices

<400> 82

Arg Ser Ala Asp Leu Thr Arg
1 5

<210> 83

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 83

Arg Ser Asp Asn Leu Ser Glu
1 5

<210> 84

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 84

Gln Ser Ala Asn Arg Thr Lys
1 5

<210> 85

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 85

Arg Ser Asp Ala Leu Ser Arg
1 5

<210> 86

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 86

Asp Arg Ser Ala Leu Ala Arg
1 5

<210> 87

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 87

Arg Ser Asp His Leu Ser Glu
1 5

<210> 88

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 88

Asp Ser Gln Asn Arg Ile Lys
1 5

<210> 89

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 89

Gln Ser Gly Asp Leu Thr Arg
1 5

<210> 90

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 90

Asp Lys Gly Asn Leu Thr Lys
1 5

<210> 91

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc Finger Protein Recognition Helices

<400> 91

Arg Ser Ala Asp Leu Thr Arg
1 5

<210> 92

<211> 7

74435_ST25

<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 92

Asp Arg Ser His Leu Ala Arg
1 5

<210> 93
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 93

Arg Ser Asp Thr Leu Ser Glu
1 5

<210> 94
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 94

Asp Arg Ser Asn Arg Lys Thr
1 5

<210> 95
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 95

Asp Arg Ser Asn Leu Ser Arg
1 5

<210> 96
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 96

Leu Arg Gln Asp Leu Lys Arg
1 5

74435_ST25

<210> 97
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 97

Arg Ser Asp His Leu Ser Glu
1 5

<210> 98
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 98

Asp Arg Ser Ala Leu Ala Arg
1 5

<210> 99
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 99

Asp Arg Ser Ala Leu Ser Arg
1 5

<210> 100
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 100

Asn Arg Arg Gly Arg Trp Ser
1 5

<210> 101
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 101

Arg Pro Tyr Thr Leu Arg Leu
1 5

<210> 102
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 102

His Arg Ser Ser Leu Arg Arg
1 5

<210> 103
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 103

Arg Ser Asp Ser Leu Leu Arg
1 5

<210> 104
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 104

Trp Leu Ser Ser Leu Ser Ala
1 5

<210> 105
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 105

Gln Ser Gly Asp Leu Thr Arg
1 5

<210> 106
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 106

74435_ST25

Asp Arg Ser His Leu Ala Arg
1 5

<210> 107
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 107

Asp Arg Ser Asn Leu Ser Arg
1 5

<210> 108
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 108

Leu Lys Gln His Leu Asn Glu
1 5

<210> 109
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 109

Leu Arg His His Leu Thr Arg
1 5

<210> 110
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 110

Gln Ser Gly Asn Leu His Val
1 5

<210> 111
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc Finger Protein Recognition Helices

<400> 111

Thr Ser Gly His Leu Ser Arg
1 5

<210> 112

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 112

ctactccgtatgcgaaggca cg

22

<210> 113

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 113

tattcgcgggtggcacacttg at

22

<210> 114

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 114

ccggagccggggcctccca g

22

<210> 115

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 115

atcgcgacgc gacgcgacga gac

23

<210> 116

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 116

tgcatgcgca gta

13

<210> 117

<211> 18

74435_ST25

<212> DNA
 <213> Arti fi ci al Sequence

<220>
 <223> Zi nc Fi nger Bi ndi ng Sequences

<400> 117
 acaccggcgc acggcacg

18

<210> 118
 <211> 12
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <223> Zi nc Fi nger Bi ndi ng Sequences

<400> 118
 agaggtgtaa cc

12

<210> 119
 <211> 18
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <223> Zi nc Fi nger Bi ndi ng Sequences

<400> 119
 tcgggcacaa gaaacgag

18

<210> 120
 <211> 15
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <223> Zi nc Fi nger Bi ndi ng Sequences

<400> 120
 tacgctgaca atgca

15

<210> 121
 <211> 18
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <223> Zi nc Fi nger Bi ndi ng Sequences

<400> 121
 ccagctgatg gagaggac

18

<210> 122
 <211> 12
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <223> Zi nc Fi nger Bi ndi ng Sequences

<400> 122
 agagcaggcg ag

12

<210> 123		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Zinc Finger Binding Sequences		
<400> 123		
agcaaagtga gtagtt		16
<210> 124		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Zinc Finger Binding Sequences		
<400> 124		
tggatggaag gaatc		15
<210> 125		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Zinc Finger Binding Sequences		
<400> 125		
gaagctacat cccag		15
<210> 126		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Zinc Finger Binding Sequences		
<400> 126		
tacgcgcaac ggaacgca		18
<210> 127		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Zinc Finger Binding Sequences		
<400> 127		
caccgggtgtc gtgtAACAG		19
<210> 128		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		

74435_ST25

<223> Zinc Finger Binding Sequences

<400> 128

cccgacgac gccgag

16

<210> 129

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 129

gacatggcac gcgcacatcgag

20

<210> 130

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 130

gcatgtgtgg ttttg

15

<210> 131

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc Finger Binding Sequences

<400> 131

ggtcaaggta gtgac

15

<210> 132

<211> 2378

<212> DNA

<213> Artificial Sequence

<220>

<223> universal polynucleotide donor cassette sequence

<400> 132

aagttggta tacatgaacc aacacgaaga acccgccagt cctactacca ctctccttcg

60

tttgacctag ctggctggtt aagaaaactga tggatacc agccactact ccgagctagt

120

agtaaaagat ttttacagcc aggggagcca caggttagta gagtggtagg agcagtgttg

180

gactgatggc tcgcttacat aagcagttct gtcccatgga gccaatgtcc tgatacggta

240

ggacacatat cccttaatga atcggcaac gcgcggggag aggcggtttgcgtattggc

300

gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cggtcgctg cggcgagcgg

360

tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa

420

agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg

480

cgttttcca taggctccgc cccccgtacg agcatcacaa aaatcgacgc tcaagtca

540

74435_ST25

ggtggcgaaa	cccgacagga	ctataaagat	accaggcggt	tccccctgga	agctccctcg	600
tgcgctctcc	tgttccgacc	ctgcccgtta	ccggataacct	gtccgcctt	ctcccttcgg	660
gaagcgtggc	gcttctcat	agtcacgct	gtaggtatct	cagttcggtg	taggtcggtc	720
gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	780
gtaactatcg	tcttgagtcc	aaccggtaa	gacacgactt	atcgccactg	gcagcagcca	840
ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtgg	900
ggcctaacta	cggtacact	agaagaacag	tatttggtat	ctgcgctctg	ctgaagccag	960
ttacccctcg	aaaaagagtt	ggtagcttt	gatccggcaa	acaaaccacc	gctggtagcg	1020
gtggttttt	tgttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	1080
ctttgatctt	ttctacgggg	tctgacgctc	agtggAACGA	aaactcacgt	taaggattt	1140
tggtcatggc	gttcggAAC	gtgctgaccc	gcaagtggca	acctcccg	cctctgctca	1200
cctttaccgc	ctggcaactg	gcggccacct	gcagggcgat	cgcaccgagc	gcttagtgg	1260
aatttgtacc	ccttatcgaa	ccgggagcac	aggatgacgc	ctaacaattt	attcaagccg	1320
acaccgcttc	cgccgcggc	ttaattcagg	agttaaacat	catgagggaa	gcggtagtcg	1380
ccgaagtatc	gactcaacta	tcagaggtag	ttggcgtcat	cgagcgccat	ctcgaaccga	1440
cgttgctggc	cgtacattt	tacggctccg	cagtggatgg	cggcctgaag	ccacacagt	1500
atattgattt	gctggttacg	gtgaccgtaa	ggcttgcgt	aacaacgcgg	cgagcttgc	1560
tcaacgacct	tttggaaact	tcggcttccc	ctggagagag	cgagattctc	cgcgctgt	1620
aagtcaccat	tgttgtgcac	gacgacatca	ttccgtggcg	ttatccagct	aagcgcgaac	1680
tgcaatttgg	agaatggcag	cgcaatgaca	ttcttgagg	tatcttcgag	ccagccacga	1740
tcgacattga	tctggctatc	ttgctgacaa	aagcaagaga	acatagcgtt	gccttggtag	1800
gtccagccgc	ggaggaactc	tttgcgtccg	ttccctgaaca	ggatctattt	gaggcgctaa	1860
atgaaacctt	aacgctatgg	aactcgccgc	ccgactgggc	tggcgatgag	cgaaatgtag	1920
tgcttacgtt	gtcccgatt	tggtagcgc	cagtaaccgg	caaaatcg	ccgaaggatg	1980
tcgctgccc	ctggcaatg	gagcgcctgc	cggcccgat	tcagccg	atacttgaag	2040
ctaggcaggc	ttatcttgg	caagaagatc	gcttggctc	gcgcgcagat	cagttggaa	2100
aatttggca	ctacgtgaaa	ggcgagatca	ccaaggatgt	cggcaaataa	tgtctaaca	2160
ttcgttcaag	ccgacgccc	ttcgccgc	ggcttaactc	aagcgtaga	gagctgggaa	2220
agactatgcg	cgatcgctg	cagctacgt	ccttcgcata	cggagtagtt	tattcgccgt	2280
gggacactt	atagaaaggt	taagaggaca	cgcctaaaca	gttgtgaata	catacataca	2340
caccgataca	cagatgctaa	agcactaaag	cccctaa			2378

<210> 133
 <211> 2424
 <212> DNA
 <213> Artificial Sequence

74435_ST25

74435_ST25

gcttacgtt	1980
tcccgattt	
ggtacagcgc	
agtaaccggc	
aaaatgcgc	
cgaaggatgt	
cgctgccac	2040
tgggcaatgg	
agcgcctgcc	
ggcccagtat	
cagcccgtca	
tacttgaagc	
taggcaggct	2100
tatcttgac	
aagaagatcg	
cttgcctcg	
cgcgagatc	
agttggaaga	
atttttcac	2160
tacgtgaaag	
gcgagatcac	
caaggtagtc	
ggcaaataat	
gtctaacaat	
tcgttcaagc	2220
cgacgcccgt	
tcgcggcg	
gcttaactca	
agcgtagag	
agctgggaa	
gactatgcgc	2280
gatgcctgc	
aggtggttgc	
ctgggaggcc	
ccggctccgg	
gcatcgac	
gcgacgcgac	2340
gagacgcgta	
aaagtacacc	
gtcgcgct	
cgcatgcgc	
agggaggcag	
gcagggcagcg	2400
aacaatcg	
cacgcgcgtc	
gtcgactgcc	
tggcctggcc	
tggtccagct	
gaaaaccgccc	2424
ccggtttgcc	
tccg	

<210> 134

<211> 2225

<212> DNA

<213> Artificial Sequence

<220>

<223> universal polynucleotide donor cassette sequence

<400> 134

gcgttattggg	60
cgctttccg	
cttcctcgct	
cactgactcg	
ctgcgctcgg	
tcgttcggct	
gcggcgagcg	120
gtatcagctc	
actcaaaggc	
ggtataatcgg	
ttatccacag	
aatcagggga	
taacgcagga	180
aagaacatgt	
gagcaaaagg	
ccagcaaaag	
gccaggaacc	
gtaaaaaggc	
cgcgttgctg	240
gcgttttcc	
ataggctccg	
ccccctgac	
gagcatcaca	
aaaatcgacg	
ctcaagtcag	300
aggtggcgaa	
acccgacagg	
actataaaga	
taccaggcgt	
ttccccctgg	
aagctccctc	360
gtgcgctctc	
ctgttccgac	
cctgccgtt	
accggatacc	
tgtccgcctt	
tctcccttcg	420
ggaagcgtgg	
cgcttctca	
tagctcacgc	
tgttaggtatc	
tcagttcggt	
gtaggtcggt	480
cgctccaagc	
tggctgtgt	
gcacgaaccc	
cccgttcagc	
ccgaccgctg	
cgccttatcc	540
ggttaactatc	
gtcttgagtc	
caacccggt	
agacacgact	
tatcgccact	
ggcagcagcc	600
actggtaaca	
ggatttagcag	
agcgaggat	
gtaggcgtgt	
ctacagagtt	
cttgaagtgg	660
tggcctaact	
acggctacac	
tagaagaaca	
gtatggta	
tctgcgtct	
gctgaagcca	720
gttaccttcg	
gaaaaagagt	
tggtagctct	
tgatccggca	
aacaaaccac	
cgctggtagc	780
ggtggttttt	
ttgtttgcaa	
gcagcagatt	
acgcgcagaa	
aaaaaggatc	
tcaagaagat	840
ccttgatct	
tttctacggg	
gtctgacgct	
cagtggaaac	
aaaactcact	
ttaagggatt	900
ttggtcatgg	
cgttcggaaac	
cgtgctgacc	
cgcaagtggc	
aacctcccg	
gcctctgctc	960
accttaccc	
cctggcaact	
ggcggccacc	
tgcagggcga	
tcgcaccgag	
cgcttagtgg	1020
gaatttgcac	
cccttacgca	
accgggagca	
caggatgacg	
cctaacaatt	
cattcaagcc	1080
gacaccgcct	
cgccggcg	
cttaattcag	
gagttaaaca	
tcatgaggga	
agcggtgatc	1140
gccgaagtat	
cgactcaact	
atcagaggt	
gttggcgtca	
tcgagcgcca	
tctcgaaccg	1200
acgttgctgg	
ccgtacattt	
gtacggctcc	
gcagtggatg	
gcggcctgaa	

74435_ST25

gccacacagt	gatattgatt	tgctggttac	ggtgaccgta	aggcttcatg	aaacaacgcg	1260
gcgagcttg	atcaacgacc	tttggaaac	ttcggcttcc	cctggagaga	gcgagattct	1320
ccgcgctgta	gaagtcacca	ttgttgtgca	cgacgacatc	attccgtggc	gttatccagc	1380
taagcgcga	ctgcaatttg	gagaatggca	gcgcaatgac	attcttgcag	gtatcttcga	1440
gccagccacg	atcgacattg	atctggctat	cttgctgaca	aaagcaagag	aacatagcgt	1500
tgccttggta	ggtccagcgg	cggaggaact	ctttgatccg	gttcctgaac	aggatctatt	1560
tgaggcgccta	aatgaaacct	taacgctatg	gaactcgccg	cccgactggg	ctggcgatga	1620
gcgaaatgta	gtgcttacgt	tgtcccgcat	ttggtacagc	gcagtaaccg	gcaaaatcgc	1680
gccgaaggat	gtcgctgccg	actggcaat	ggagcgcctg	ccggcccgat	atcagcccg	1740
catactgaa	gctaggcagg	cttacgttgg	acaagaagat	cgcttggcct	cgcgcgcaga	1800
tcagttggaa	gaatttggtc	actacgtgaa	aggcgagatc	accaaggtag	tcggcaaata	1860
atgtctaaca	attcgtaaca	gccgacgccc	cttcgcggcg	cggcttaact	caagcgtag	1920
agagctgggg	aagactatgc	gcgatcgcc	gcagtcgc	gttaccttcc	ccatcatgaa	1980
cttggagacc	gaaagggtgt	gtgcctagtt	accccgaaaga	aatgaaacat	ctgcattgtc	2040
agcgttagtat	cccagctgat	ggagaggaca	tacccatgag	gagccacagg	ttagtagagt	2100
ggttaggagca	gtgttggact	gatggctcgc	ttacataagc	agttctgtcc	catggagcca	2160
atgtcctgat	acggttaggac	acatatccct	taatgaatcg	gccaacgcgc	ggggagaggc	2220
ggttt						2225

<210> 135
 <211> 2234
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> universal polynucleotide donor cassette sequence

<400> 135	gagagctggg	gaagactatg	cgcgatcgcc	tgcaagtgtcg	cgaggcaggg	agcagccgcg	60
	tgtccgcctg	ctgctgctgg	aatggcgccg	tggccgcgcg	cggtgacgtc	ggcaaggctg	120
	gtctcgcctg	ctcttggcaa	gcaaagttag	tagttacacg	gcgctggctg	gagccacagg	180
	ttagtagagt	ggttaggagca	gtgttggact	gatggctcgc	ttacataagc	agttctgtcc	240
	catggagcca	atgtcctgat	acggttaggac	acatatccct	taatgaatcg	gccaacgcgc	300
	ggggagaggc	ggtttgcgt	ttgggcgctc	ttccgcctcc	tcgctcactg	actcgctgcg	360
	ctcggcgtt	cggctgcggc	gagcggtatac	agctcactca	aaggcggtaa	tacggttatc	420
	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	aaaaggccag	480
	gaaccgtaaa	aaggccgcgt	tgctggcggt	tttccatagg	ctccgcggccc	ctgacgagca	540
	tcacaaaaat	cgacgctcaa	gtcagaggtg	gcgaaacccg	acaggactat	aaagatacca	600
	ggcgtttccc	cctggaaagct	ccctcggtcg	ctctcctgtt	ccgaccctgc	cgcttaccgg	660

74435_ST25

atacctgtcc	gccttctcc	cttcggaaag	cgtggcgctt	tctcatagct	cacgctgtag	720
gtatctcagt	tcggtgttagg	tcgttcgctc	caagctggc	tgtgtgcacg	aaccccccgt	780
tcagcccgac	cgctgcgcct	tatccgtaa	ctatcgctt	gagtccaacc	cggtaagaca	840
cgacttatcg	ccactggcag	cagccactgg	taacaggatt	agcagagcga	ggtatgtagg	900
cggtgctaca	gagttcttga	agtggtgcc	taactacggc	tacactagaa	gaacagtatt	960
tggtatctgc	gctctgctga	agccagttac	cttcggaaaa	agagttggta	gctcttgatc	1020
cggcaaacaa	accaccgctg	gtagcggtgg	ttttttgtt	tgcaggcagc	agattacgac	1080
cagaaaaaaaaa	ggatctcaag	aagatcctt	gatctttct	acggggtctg	acgctcagtg	1140
gaacgaaaac	tcacgttaag	ggattttgtt	catggcggtc	ggaaccgtgc	tgaccgc当地	1200
gtggcaacct	cccggtgcctc	tgctcacctt	taccgcctgg	caactggcgg	ccacctgc当地	1260
ggcgatcgca	ccgagcgc当地	agtgggaaatt	tgtaccctt	atcgaaccgg	gagcacagga	1320
tgacgcctaa	caattcattc	aagccgacac	cgcttcgc当地	cgcggcttaa	ttcaggagtt	1380
aaacatcatg	agggaaagcgg	tgatcgccg	agtatcgact	caactatcag	aggtagttgg	1440
cgtcatcgag	cgccatctcg	aaccgacgtt	gctggccgta	catttgc当地	gctccgc当地	1500
ggatggc当地	ctgaagccac	acagtgatat	tgatggctg	gttacggta	cgtaaggct	1560
tgatgaaaca	acgcggc当地	cttgatcaa	cgacctttt	gaaacttc当地	cttccctgg	1620
agagagc当地	attctcccg	ctgtagaagt	caccattgtt	gtgcacgacg	acatcattcc	1680
gtggcggtat	ccagctaagc	gcgaactgca	atttggagaa	tggcagc当地	atgacattct	1740
tgcaggtatc	ttcgagccag	ccacgatcga	cattgatctg	gctatcttgc	tgacaaaagc	1800
aagagaacat	agcgttgc当地	tggtaggtcc	agcggc当地	gaactcttt	atccggttcc	1860
tgaacaggat	ctatggagg	cgctaaatga	aacctaacc	ctatgaaact	cgc当地	1920
ctgggctggc	gatgagc当地	atgttagtgc	tacgttgc当地	cgc当地	acagcgc当地	1980
aaccggcaaa	atcgc当地	aggatgtc当地	tgccgactgg	gcaatggagc	gc当地	2040
ccagtatcag	cccgatc当地	ttgaagctag	gcaggctt当地	cttggacaag	aagatcg当地	2100
ggcctcg	gcagatc当地	tggaaaggat	tgttactac	gtgaaaggc当地	agatcaccaa	2160
ggtatgc当地	aaataatgtc	taacaattc当地	ttcaagccg	cgccgcttgc	c当地	2220
taactcaagc	gtta					2234

<210> 136
 <211> 2165
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> universal polynucleotide donor cassette sequence

<400> 136	gagagctggg	gaagactatg	cgc当地	tgc当地	tgc当地	cgtgccc当地	60
	gccc当地	gtctgc当地	gc当地	ttttctgaag	cgagccacag	gttagtagag	120

74435_ST25

tggtaggagc	agtgttggac	tgtggctcg	cttacataag	cagttctgtc	ccatggagcc	180
aatgtcctga	tacggtagga	cacatatccc	ttaatgaatc	ggccaaacgcg	cggggagagg	240
cggtttgcgt	attgggcgct	cttccgcttc	ctcgctcact	gactcgctgc	gctcggtcg	300
tcggctgcgg	cgagcggtat	cagctcactc	aaaggcggta	atacggttat	ccacagaatc	360
aggggataac	gcagggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	420
aaaggccg	ttgctggcg	tttccatag	gctccgcccc	cctgacgagc	atcacaaaaa	480
tcgacgctca	agtca	gaggt	ggcggaaaccc	gacaggacta	taaagatacc	540
cccttggaa	gc	tc	ccctcg	gctc	cctgt	600
cgcc	ttt	ctc	cctc	cc	gttacc	660
ttcgg	tt	tc	tc	tc	gttca	720
ccgctgc	tt	atccgg	ta	atcgt	tttac	780
gccactgg	ca	gccc	actg	gt	acaggat	840
agagt	tt	tt	gg	ta	tcggagcg	900
cgctcg	ct	cc	gg	gt	atgttag	960
aaccacc	gg	ttt	tt	tt	tttgc	1020
aggatct	aa	gatc	ttt	tttgc	tttgc	1080
ctcacgt	aa	ggat	ttt	tttgc	tttgc	1140
tcccg	ct	tc	cc	tc	tttgc	1200
accgag	cg	tc	cc	cc	tttgc	1260
acaattc	att	catt	ca	acttcg	tttgc	1320
gaggg	aa	gatc	cc	acttcg	tttgc	1380
gcgc	ccat	tc	cc	acttcg	tttgc	1440
cc	ttt	tttgc	tttgc	tttgc	tttgc	1500
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1560
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1620
tccag	cta	gact	tc	tttgc	tttgc	1680
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1740
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1800
tctattt	gag	gct	taa	atgg	tttgc	1860
cgatg	gca	act	at	tcg	tttgc	1920
aatcg	cgcc	at	tttgc	tttgc	tttgc	1980
ggcc	ccat	tc	tttgc	tttgc	tttgc	2040
cccg	gtc	taa	at	tttgc	tttgc	2100
caaataat	gt	taa	tttgc	tttgc	tttgc	2160

cgtta 2165

<210> 137
 <211> 2264
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> universal polynucleotide donor cassette sequence

 <400> 137
 gagagctggg gaagactatg cgcgatcgcc tgcagtaacg atttattttc ctgcgttctt 60
 gtgcccggaaa gagagagggtg taacccatcc tctataacag tgtggctttg acaacggttc
 aatatgtatg tttggcaaat gtagatttgt gccaattctt ggtcataatc agcgccgaca 120
 aaccggctac ccaaatttgg gagccacagg ttagtagagt ggttaggagca gtgtggact 180
 gatggctcgc ttacataagc agttctgtcc catggagcca atgtcctgtat acggtaggac 240
 acatatccct taatgaatcg gccaacgcgc ggggagaggc ggtttgcgtta ttggcgctc 300
 ttccgcttcc tcgctcaactg actcgctgctg ctcggcgtt cggtcgccg gagcgggtatc 360
 agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg cagaaagaa 420
 catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcggtt 480
 tttccatagg ctccgccccct ctgacgagca tcacaaaaat cgacgctcaa gtcagagggt 540
 gcgaaacccg acaggactat aaagatacca ggcgttccc cctggaaagct ccctcgctgc 600
 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc cttcggaaag 660
 cgtggcgctt tctcatagct cacgctgttag gtatctcagt tcggtgtagg tcgttcgctc 720
 caagctggc tgtgtgcacg aaccccccgt tcagccgcac cgctgcgcct tatccgtaa 780
 ctatcgctt gagtccaacc cggttaagaca cgacttatcg ccactggcag cagccactgg 840
 taacaggatt agcagagcga ggtatgttagg cggtgctaca gagttcttga agtggtgcc 900
 taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga agccagttac 960
 cttcgaaaaa agagttggta gctttgtatc cggcaaaacaa accaccgctg gtagcggtg 1020
 ttttttgtt tgcaaggcagc agattacgcg cagaaaaaaaaa ggatctcaag aagatcctt 1080
 gatctttct acggggcttg acgctcagt gaacgaaaac tcacgttaag ggattttgg 1140
 catggcggttc ggaaccgtgc tgacccgcaa gtggcaacct cccgtgcctc tgctcacctt 1200
 taccgcctgg caactggcgg ccacctgcag ggcgatcgca ccgagcgctt agtggaaatt 1260
 tgtacccctt atcgaaccgg gagcacagga tgacgcctaa caattcattc aagccgacac 1320
 cgcttcgcgg cgccggcttaa ttcaggagtt aaacatcatg agggaaagcgg tgatcgccga 1380
 agtatcgact caactatcg aggttagttgg cgtcatcgag cgccatctcg aaccgacgtt 1440
 gctggccgta catttgcacg gctccgcagt ggatggccgc ctgaagccac acagtgatata 1500
 tgatttgctg gttacggtga ccgtaaaggct ttagtggaaaca acgcggcggag ctttgcataa 1560
 cgacccttttgg gaaacttcgg cttccctgg agagagcggag attctccgcg ctgtagaagt 1620
 1680

74435_ST25

caccattgtt	gtgcacgacg	acatcattcc	gtggcgttat	ccagctaagc	gcgaactgca	1740
atttggagaa	tggcagcgca	atgacattct	tgcaggtatc	ttcgagccag	ccacgatcga	1800
cattgatctg	gctatcttgc	tgacaaaagc	aagagaacat	agcgttgcct	tggtaggtcc	1860
agcggcggag	gaactcttg	atccggttcc	tgaacaggat	ctatttgggg	cgctaaatga	1920
aaccttaacg	ctatgaaact	cgccgcccga	ctgggctggc	gatgagcgaa	atgttagtgc	1980
tacgttgc	cgcatttgg	acagcgagt	aaccggaaa	atcgcccgaa	aggatgtcgc	2040
tgccgactgg	gcaatggagc	gcctgcccggc	ccagtatcag	cccgatcatac	ttgaagctag	2100
gcaggcttat	cttggacaag	aagatcgctt	ggcctcgccgc	gcagatcagt	tggaagaatt	2160
tgttca	tactac	gtgaaaggcg	agatcacca	ggtagtcggc	aaataatgtc	2220
ttcaagccga	cgccgcttcg	cggcgccgct	taactcaagc	gtta		2264

<210> 138
 <211> 2373
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> universal polynucleotide donor cassette sequence

<400> 138	gcgtattggg	cgctttccg	cttcctcgct	cactgactcg	ctgcgctcgg	tcgttcggct	60
	gcggcgagcg	gtatcagctc	actcaaaggc	ggtataatcgg	ttatccacag	aatcagggga	120
	taacgcagga	aagaacatgt	gagcaaagg	ccagcaaag	gccaggaacc	gtaaaaaggc	180
	cgcgttgctg	gcgttttcc	ataggctccg	ccccctgac	gagcatcaca	aaaatcgacg	240
	ctcaagtcag	aggtgtcgaa	acccgacagg	actataaaga	taccaggcgt	ttccccctgg	300
	aagctccctc	gtgcgtctc	ctgttccgac	cctgccgtt	accggatacc	tgtccgcctt	360
	tctcccttcg	ggaagcgtgg	cgctttctca	tagtcacgc	tgttaggtatc	tcagttcggt	420
	gtaggtcggt	cgctccaagc	tggctgtgt	gcacgaaccc	cccggtcagc	ccgaccgctg	480
	cgccttatcc	ggttaactatc	gtcttgagtc	caacccgta	agacacgact	tatcgccact	540
	ggcagcagcc	actggtaaca	ggattagcag	agcgaggat	gtaggcggtg	ctacagagtt	600
	cttgaagtgg	tggcctaact	acggctacac	tagaagaaca	gtatggta	tctgcgtct	660
	gctgaagcca	gttaccttcg	aaaaaagagt	tggtagctct	tgatccggca	aacaaaccac	720
	cgctggtagc	ggtggtttt	tttttgcaa	gcagcagatt	acgcgcagaa	aaaaaggatc	780
	tcaagaagat	ccttgatct	tttctacggg	gtctgacgct	cagtggaaacg	aaaactcacg	840
	ttaagggatt	ttggtcatgg	cgttcggAAC	cgtgctgacc	cgcaagtggc	aaccccccgt	900
	gcctctgctc	accttaccg	cctggcaact	ggcggccacc	tgcagggcga	tcgcaccgag	960
	cgcttagtgg	gaatttgcac	cccttacgaa	accgggagca	caggatgacg	cctaacaatt	1020
	cattcaagcc	gacaccgctt	cgcggcgcgg	cttaattcag	gagttaaaca	tcatgaggga	1080
	agcggtgatc	gccgaagtat	cgactcaact	atcagaggta	gttggcgtca	tcgagcgcca	1140

74435_ST25

tctcgAACG	acgttgctgg	ccgtacattt	gtacggctcc	gcagtggatg	gcggcctgaa	1200
gccacacagt	gatattgatt	tgctggttac	ggtgaccgta	aggcttcatg	aaacaacgcg	1260
gcgagcttg	atcaacgacc	tttggaaac	ttcggcttcc	cctggagaga	gcgagattct	1320
ccgcgcgtta	gaagtcacca	ttgttgtgca	cgacgacatc	attccgtggc	gttatccagc	1380
taagcgcgaa	ctgcaatttg	gagaatggca	gcgcaatgac	attcttgcag	gtatcttcga	1440
gccagccacg	atcgacattt	atctggctat	cttgcgtaca	aaagcaagag	aacatagcgt	1500
tgccctggta	ggtccagcgg	cgaggaaact	ctttgatccg	gttcctgaac	aggatctatt	1560
tgaggcgcta	aatgaaacct	taacgctatg	gaactcgccg	cccgactggg	ctggcgatga	1620
gcgaaatgta	gtgcttacgt	tgtcccgcat	tttgtacagc	gcagtaaccg	gcaaaatcgc	1680
gccgaaggat	gtcgctgccg	actgggcaat	ggagcgcctg	ccggcccagt	atcagcccg	1740
catacttgc	gctaggcagg	cttatcttgg	acaagaagat	cgcttggcct	cgcgccgaga	1800
tcagttggaa	gaatttggc	actacgtgaa	aggcgagatc	accaaggtag	tcggcaaata	1860
atgtctaaca	attcgtaaa	gccgacgccc	cttcggcggc	cggttaact	caagcgtag	1920
agagctgggg	aagactatgc	gcatcgcc	gcagataagg	aactatatac	aaaaccacac	1980
atgcacacgt	ggtcaaggta	gtgactaata	tcgcctaata	cacggcgctg	gctgtatgc	2040
gcgtgacacg	gtggctagct	agctgttcat	cccgccggc	ccgtgtatgc	agcgctcg	2100
gtcttcaggc	ttcagaaccg	ttgtatcaagg	acgatgagct	tgagagctg	atccgcgtt	2160
cgtgggttcc	atctcaggct	gtctcgctgt	cgccccgtc	ggcagcggca	gaatttcatt	2220
tcagacttgg	gccacagggt	atgatgtgg	taggagcgt	gttggactg	tggctcg	2280
acataaggcg	ttctgtccca	tggagccat	gtcctgatac	ggtaggacac	atatccctta	2340
atgaatcgcc	caacgcgcgg	ggagaggcgg	ttt			2373

<210> 139
 <211> 2241
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> universal polynucleotide donor cassette sequence

<400> 139	gagagctggg	gaagactatg	cgcgatcgcc	tgcaggagct	tgcattaact	agcaaagtga	60
	ttccttccat	ccatgcaaga	agctacatcc	cagtgggtgc	ggcaaaagct	gtatgaaaag	120
	gttggagact	tccatataac	tgttgtgt	cgagtagtag	aaaccaacaa	caaagtcgag	180
	ccacaggta	gtagagtgg	aggaggcgt	ttggactgat	ggctcgctt	cataaggcgt	240
	tctgtcccat	ggagccaatg	tcctgatacg	gtaggacaca	tatcccttaa	tgaatcgcc	300
	aacgcgcggg	gagaggcgg	ttgcgtattt	ggcgcttcc	cgcttcctcg	ctcactgact	360
	cgctcgctc	ggtcgttccg	ctgcggcgg	cggtatcagc	tcactcaaag	gcccgtat	420
	ggttatccac	agaatcgcc	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	480

74435_ST25

aggccaggaa ccgtaaaaag gccgcgttgc tggcgccccccctg 540
acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa 600
gataccaggc gttccccctt ggaagctccc tcgtgcgc tcctgttccg accctgccc 660
ttaccggata cctgtccgccc tttctccctt cgggaagcgt ggcgtttct catacgctcac 720
gctgttaggta tctcagttcg gtgttaggtcg ttgcgtccaa gctgggctgt gtgcacgaac 780
cccccggttca gcccgaccgc tgccgccttat ccggtaacta tcgtcttgag tccaaccgg 840
taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt 900
atgttaggcgg tgctacagag ttcttgaagt ggtggctaa ctacggctac actagaagaa 960
cagtatttgg tatctgcgt ctgctgaagc cagttaccctt cgaaaaaaga gttggtagct 1020
cttgatccgg caaacaaacc accgctggta gcgggtgttt ttttgggtgc aagcagcaga 1080
ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg 1140
ctcagtgaa cgaaaactca cgtaaggga ttttggtcat ggcgttcgga accgtgctga 1200
cccgcaagtg gcaacctccc gtgcctctgc tcacctttac cgcctggcaa ctggcggcca 1260
cctgcaggc gatgcacccg agcgcttagt gggaaatttg accccttatac gaaccggag 1320
cacaggatga cgcctaacaa ttcatcaag ccgacaccgc ttgcggcgc ggcttaattc 1380
aggagttaaa catcatgagg gaagcggtga tcgcccgaatg atcgactcaa ctatcagagg 1440
tagttggcgt catcgagcgc catctcgaac cgacgttgcg ggcgtacat ttgtacggct 1500
ccgcagtggta tggcggcctg aagccacaca gtgatattga tttgctggtt acggtgaccg 1560
taaggcttga taaaacaacg cggcgagctt tgatcaacga cctttggaa acttcggctt 1620
ccctggaga gagcgagatt ctccgcgtg tagaagtac cattttgtg cacgacgaca 1680
tcattccgtg gcgttatcca gctaagcgac aactgcaatt tggagaatgg cagcgcaatg 1740
acattcttcg aggtatcttc gagccagcca cgatcgacat tgatctggct atcttgcgt 1800
caaaagcaag agaacatagc gttgccttgg taggtccagc ggcggaggaa ctctttgtac 1860
cggttccgtg acaggatcta tttgaggcgc taaatgaaac cttaacgcta tggaaactcgc 1920
cgccccgactg ggctggcgat gagcgaaatg tagtgcttac gttgtccgc atttggtaca 1980
gcmcagtaac cggcaaaatc ggcggcaagg atgtcgctgc cgactggca atggagcgcc 2040
tgccggccca gtatcagccc gtcatacttg aagctaggca ggcttatctt ggacaagaag 2100
atcgcttggc ctcgcgcgca gatcagttgg aagaatttg tcactacgtg aaaggcgaga 2160
tcacccaaggt agtcggcaaa taatgtctaa caattcgttc aagccgacgc cgcttcgccc 2220
cgccggcttaa ctcaagcggtt a 2241

<210> 140
<211> 2195
<212> DNA
<213> Artificial Sequence

<220>

74435_ST25

<223> universal polynucleotide donor cassette sequence

<400> 140						
gagagctggg	gaagactatg	cgcgatcgcc	tgcagggacc	ccgtcgccgt	cggcacagcg	60
tcagggcggt	aacatgcgtt	ccgttgcgcg	tacggaccac	cgggtgcgtg	taacaggaag	120
agctgtcagt	ggagccacag	gttagtagag	tggtaggagc	agtgttggac	tgtatggctcg	180
cttacataag	cagttctgtc	ccatggagcc	aatgtcctga	tacggttagga	cacatatccc	240
ttaatgaatc	ggccaacgcg	cggggagagg	cggttgcgt	attgggcgt	cttccgcttc	300
ctcgctcact	gactcgctgc	gctcggtcgt	tcggctgcgg	cgagcggtat	cagctcactc	360
aaaggcggta	atacggttat	ccacagaatc	aggggataac	gcaggaaaga	acatgtgagc	420
aaaaggccag	caaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	480
gctccgcccc	cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	540
gacaggacta	taaagatacc	aggcgttcc	ccctggaagc	tccctcgtgc	gctctcctgt	600
tccgaccctg	ccgcttaccg	gatacctgtc	cgccttctc	cttcgggaa	gcgtggcgct	660
ttctcatagc	tcacgctgta	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	720
ctgtgtgcac	gaacccccc	ttcagccga	ccgctgcgc	ttatccggta	actatcgtct	780
tgagtccaac	ccggtaagac	acgacttac	gccactggca	gcagccactg	gtaacaggat	840
tagcagagcg	aggtatgtag	gcggtgctac	agagttttg	aagtggtggc	ctaactacgg	900
ctacactaga	agaacagtat	ttggtatctg	cgctctgctg	aagccagtt	ccttcggaaa	960
aagagtttgt	agctttgat	ccggcaaaca	aaccaccgt	ggtagcggtg	gttttttgt	1020
ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	gaagatcctt	tgtattttc	1080
tacgggtct	gacgctcagt	ggaacgaaaa	ctcacgtta	gggattttgg	tcatggcggt	1140
cggaaccgtg	ctgaccgcga	agtggcaacc	tcccgtgcct	ctgctcacct	ttaccgcctg	1200
gcaactggcg	gccacctgca	ggcgatcgc	accgaggcgct	tagtggaaat	ttgtacccct	1260
tatcgAACG	ggagcacagg	atgacgccta	acaattcatt	caagccgaca	ccgcttcgcg	1320
gCGCGGCTTA	attcaggagt	taaacatcat	gagggaaagcg	gtgatgcgcg	aagtatcgcac	1380
tcaactatca	gaggtatgt	gcgtcatcga	gcgcacatctc	gaaccgacgt	tgctggccgt	1440
acatttgtac	ggctccgcag	tggatggcgg	cctgaagcca	cacagtata	ttgatttgct	1500
ggttacggtg	accgtaaggc	ttgatgaaac	aacgcggcga	gctttgatca	acgaccttt	1560
ggaaacttcg	gcttccctg	gagagagcga	gattctccgc	gctgtagaag	tcaccattgt	1620
tgtgcacgac	gacatcattc	cgtggcgta	tccagctaag	cgcgaactgc	aatttggaga	1680
atggcagcgc	aatgacattc	ttgcaggtat	cttcgagcca	gccacgatcg	acattgatct	1740
ggctatctt	ctgacaaaag	caagagaaca	tagcgtgccc	ttggtaggtc	cagcggcgga	1800
ggaactctt	gatccggttc	ctgaacagga	tctatttgag	gcgctaaatg	aaaccttaac	1860
gctatggAAC	tcgcccggcc	actgggctgg	cgatgagcga	aatgttagtgc	ttacgttgc	1920
ccgcatttgg	tacagcgcag	taaccggcaa	aatcgcccg	aaggatgtcg	ctgcccactg	1980

74435_ST25

ggcaatggag	cgcctgccgg	cccagtatca	gcccgtcata	cttgaagcta	ggcaggctta	2040
tcttggacaa	gaagatcgct	tggcctcgcg	cgcagatcag	ttggaagaat	ttgttcacta	2100
cgtgaaaggc	gagatcacca	agtagtcgg	caaataatgt	ctaacaattc	gttcaagccg	2160
acgccccttc	cgccgcggc	ttaactcaag	cgtta			2195

<210> 141
 <211> 2222
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> universal polynucleotide donor cassette sequence

<400> 141	gagagctggg	gaagactatg	cgcgatcgcc	tgcaggctcg	tcgctgatca	ccagtatcta	60
	ctcgtagt	actccatgga	tgcgtacgcg	cccgggaact	cctcggcgctc	gtccgggctg	120
	accgacatgg	cacgcgcac	gaggatgtag	atgcacgtga	gccacaggtt	atgtagagtgg	180
	taggacagt	gttggactga	tggctcgctt	acataaagcag	ttctgtccca	tggagccaat	240
	gtcctgatac	ggtaggacac	atatccctta	atgaatcgcc	caacgcgcgg	ggagaggcgg	300
	tttgcgtatt	gggcgcttt	ccgcttcctc	gctcaactgac	tcgctgcgct	cggtcgttcg	360
	gctgcggcga	gcggtatcag	ctcactaaa	ggcgtaata	cggttatcca	cagaatcagg	420
	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaaa	480
	ggccgcgtt	ctggcgttt	tccataggct	ccgccccct	gacgagcatc	acaaaaatcg	540
	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttcccc	600
	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccc	cttaccggat	acctgtccgc	660
	ctttctccct	tcgggaagcg	tggcgtttc	tcatagctca	cgctgttaggt	atctcagttc	720
	ggtgttaggtc	gttcgctcca	agctggctg	tgtgcacgaa	ccccccgttc	agcccgaccg	780
	ctgcgcctta	tccgtaact	atcgcttga	gtccaacccg	gtaagacacg	acttatcgcc	840
	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	900
	gttcttgaag	tggtggcta	actacggcta	cactagaaga	acagtatttgc	gtatctgcgc	960
	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgcgtcg	gcaaacaac	1020
	caccgctggt	agcggtggtt	tttttggttt	caagcagcag	attacgcgc	gaaaaaaagg	1080
	atctcaagaa	gatccttga	tctttctac	ggggctgac	gctcagtgg	acgaaaaactc	1140
	acgttaaggg	attttggtca	tggcggtcg	aaccgtgctg	acccgcaagt	ggcaacctcc	1200
	cgtgcctctg	ctcacctta	ccgcctggca	actggcggcc	acctgcaggg	cgatcgacc	1260
	gagcgcttag	tggaaatttgc	taccccttat	cgaaccggga	gcacaggatg	acgcctaaca	1320
	attcattcaa	gccgacacccg	cttcgcggcg	cggcttaatt	caggagttaa	acatcatgag	1380
	ggaagcggtg	atcgccgaag	tatcgactca	actatcagag	gtagttggcg	tcatcgacgc	1440
	ccatctcgaa	ccgacgttgc	tggccgtaca	tttgcacggc	tccgcagtgg	atggcggcct	1500

74435_ST25

gaagccacac agtgatattg atttgcttgt tacggtgacc gtaaggctt atgaaacaac	1560
gcggcgagct ttgatcaacg acctttgga aacttcggct tcccctggag agagcgagat	1620
tctccgcgct gtagaagtca ccattgttgt gcacgacgac atcattccgt ggcgttatcc	1680
agctaagcgc gaactgcaat ttggagaatg gcagcgaat gacattctt caggtatctt	1740
cgagccagcc acgatcgaca ttgatctggc tatcttgctg acaaaagcaa gagaacatag	1800
cgttgccctt gtaggtccag cggcggagga actcttgat ccggttccctg aacaggatct	1860
atttgaggcg ctaaatgaaa ccttaacgct atggaactcg ccgcccgaact gggctggcga	1920
tgagcgaat gtagtgctt cgttgtcccg catttggta agcgcagtaa ccggcaaaat	1980
cgcgccgaag gatgtcgctg ccgactgggc aatggagcgc ctgcccggcc agtatcagcc	2040
cgtcatactt gaagcttaggc aggcttatct tggacaagaa gatcgcttgg cctcgcgcgc	2100
agatcagttt gaagaatttgc ttcaactacgt gaaaggcgag atcaccaagg tagtccgcaa	2160
ataatgtcta acaattcgtt caagccgacg ccgcttcgcg ggcggctta actcaagcgt	2220
ta	2222

<210> 142
 <211> 110
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Analytical Domain

<400> 142 gagccacagg ttagtagagt ggttaggagca gtgttgact gatggctcgc ttacataagc	60
agttctgtcc catggagcca atgcctgat acggtaggac acatatccct	110

<210> 143
 <211> 118
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Analytical Domain

<400> 143 actagtttc ataggatata gtgaggacta accttgccca aaggagctgg aactgcctgc	60
agttatgtaa gggccttagt ccaaattgct ccaccctctg ggaagctaat ggactagt	118

<210> 144
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer

<400> 144 cggcacaat ctgaaccagc a	21
-------------------------------------	----

74435_ST25

<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 145
ccacgatcga cattgatctg gcta

24

<210> 146
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 146
gcgacatatc aggccaacag g

21

<210> 147
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 147
gggatatgtg tcctaccgta tcagg

25

<210> 148
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 148
ccagcataca gttagggccc a

21

<210> 149
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 149
gttgccttgg taggtccagc

20

<210> 150
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

74435_ST25

<400> 150	21
cgaaaactca gcatgcggga a	
<210> 151	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 151	21
gagccatcag tccaacactg c	
<210> 152	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 152	20
acaggcgtac agcaacacca	
<210> 153	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 153	22
gaccctatgg tggatcc ca	
<210> 154	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 154	21
cgggagctag gcaacaaatc g	
<210> 155	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 155	23
tctgactaaa cgggtggatg ctg	
<210> 156	
<211> 26	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223>	Primer	
<400>	156	
	cgatcgatgtt gattcgctca ctttca	26
<210>	157	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	157	
	gccgaaaagc agcaactggaa a	21
<210>	158	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	158	
	gattgctacg cagaccgcct a	21
<210>	159	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	159	
	cactattcct ccggcatgca g	21
<210>	160	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	160	
	tgacctattg atcggtcgcc tc	22
<210>	161	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	161	
	tgccttgaat ctcagggatg ca	22

74435_ST25

<210> 162
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 162
gccgaagcta actagcggac a

21

<210> 163
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 163
catggagtag cagctgtgct g

21

<210> 164
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 164
gaaaaggcgt caccggctct g

21

<210> 165
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 165
ccatggacat gaattcggca cg

22

<210> 166
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 166
cttttgcacc acggagcaga c

21

<210> 167
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

74435_ST25

<400> 167	25
gctagcaaaa ctttgaagct cgctc	
<210> 168	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 168	21
gaggtccctt acgggtcatc g	
<210> 169	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 169	22
accaggtcta tcttgcgcag ac	
<210> 170	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 170	21
aatagcgtgg tcgggtccta g	
<210> 171	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 171	21
acgaacgatc caaggtgcag t	
<210> 172	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 172	21
tagagacgag gactctgggc t	
<210> 173	
<211> 21	
<212> DNA	
<213> Artificial Sequence	

74435_ST25

<220>
<223> Primer

<400> 173
aagtccaaaca tgggcacaac c

21

<210> 174
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 174
cctcgtaag ggtgcagggtt g

21

<210> 175
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 175
ccaagtcagc ttctaaggcca tcaaac

26

<210> 176
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 176
aacccctagac ttctgcctgg tg

22

<210> 177
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 177
gctcacttac gagcagatcc ca

22

<210> 178
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 178
ggtgacgca tttctcatg t

21

74435_ST25

<210> 179
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 179
tgtttaccgc agccatgctt g

21

<210> 180
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 180
gttgtatacg gcatccatcc gct

23

<210> 181
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 181
gaatgaaact ggtggctg tcc

23

<210> 182
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 182
ccgacgaggt acaagtagca gg

22

<210> 183
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 183
cccgtagtcc agattcttgt ggt

23

<210> 184
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

74435_ST25

<400> 184	21
gtcgttgtt cggaagggga g	
<210> 185	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 185	21
cgtatgttc cggcatgtcc t	
<210> 186	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 186	21
tgtatccctt cggtagacac g	
<210> 187	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 187	22
tgaatcgact cgctgacagg tg	
<210> 188	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 188	24
ccacgatcga cattgatctg gcta	
<210> 189	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 189	25
gggatatgtc tcctaccgta tcagg	
<210> 190	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

74435_ST25

<220>
<223> Primer

<400> 190
gttgcccttgg taggtccagc 20

<210> 191
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 191
gagccatcag tccaacactg c 21

<210> 192
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 192
tggcactaat ctcaccggct 20

<210> 193
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 193
agtcttagaa gtacgctacc gt 22

<210> 194
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 194
tacttggctt cggcggcga 19

<210> 195
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 195
gggtgacttt tacgcgtctc g 21

74435_ST25

<210> 196
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 196
ggtcacgacg catggcctaa

20

<210> 197
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 197
aggatgcattt gatcaccgtc

20

<210> 198
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 198
gctctgttgtt gcagccgtac

20

<210> 199
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 199
cgttcagat accacagtgtt ac

22

<210> 200
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 200
gcttagtagctt gtttacacgg cgtct

25

<210> 201
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

74435_ST25

<400> 201 -
aggtcgagac aacccaatgg tag ag 22

<210> 202
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 202
acaggacatc gagcttgcatt

20

<210> 203
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 203
cagaagaaag gcatcaactc atg

23

<210> 204
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 204
ctctttcacc tctactttta cttcag

26

<210> 205
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 205
attqaaccqt tqtcaaqaqcc a

21

<210> 206
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 206
cacaqcqtc a qqqcqqt aac

20

<210> 207
<211> 20
<212> DNA
<213> Artificial Sequence

74435_ST25

<220>
 <223> Primer
 <400> 207
 ggcacgcacc tgcactgac 20

<210> 208
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer
 <400> 208
 gtacgcgccc gggaaactcct 20

<210> 209
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer
 <400> 209
 cctgcggccc acgtgcattc 20

<210> 210
 <211> 3213
 <212> DNA
 <213> artificial sequence

<220>
 <223> optimal loci_ 204637

<400> 210
 gaaaaacgaga gtgggataaaa caagcgtaaaa aatgaacgg gaacgagagt attaagcgga 60
 aacttataat ttaatacataaa acacacgtga tattgtatggc gagcttagcag tacaacaaca 120
 tggaaacaaac agatacagag agacaattaa tactacattt gttttgtttt gttttgttg 180
 tatatatata gctacgacca gcgttgttta agtctttagg acatttgcata ttaaggggag 240
 gcaattaata ctacattttt atttgcttgc ttgtgtgtt catatagctt ggtttttttt 300
 ccttttatgc tataatttgc atatataatg cttagcttgc tgcattatgc catctggc 360
 cgatccccggg tttctaaaat atataataaa taccgggttca acctggctaa aaacgagtgg 420
 gatagaccct atcatgtttt agaattttt cacaatataaaa aaaaacagacg gatcaaatat 480
 agaaaaatga tattggtcgg gacgtcctct ttcaacccttgcatgcgggtc ggtcgatcgag 540
 ccaattttca gctttgcggg tgaagtaaaa gaagcgaaagc caagtagcttgcacgcattgg 600
 gcatggccgc atggccgttgc cggcgttgc tggcacatgg cagcgcgcag cacatcgatg 660
 gatccctggc tccagccggc gtcaggcgttgc acagatgtct tccgttgc aaaaaggccgttgc 720
 aagagacgag acgaccgcgt tcttgcggaa gaaaagaagc gagatcgagg ctcggccgggg 780
 cgcccccttgc ggcagcaggc aaggcatcgatccatgcgatccatgcgatccatgcgatccatgcg 840

74435_ST25

ccggagctag	gccggaggga	agggagcctg	gggagagccg	aaggggaaac	agtgcggtcg	900
gcagcggtcc	gcggtaggaa	gggtgatgac	aggagcggga	gtaaatgcct	gtagcccgta	960
ggggcacggt	cgtctccgt	caaccggctg	gccgcccgc	ccgcctcggt	cgcgcaccca	1020
cctgcagcag	cagcagcatc	gagccctgc	atgcattgca	tgccatgcat	gcagcagcag	1080
cagcaggcca	ggtcaggcca	ggtagcgtag	cgcgcgtac	gcgggctccg	tccgtccatg	1140
tccctgtccc	tggccgcagc	tactaggagt	actatagtgt	gtagtagtgc	tcagcagccg	1200
tgca	tgca	tgca	tgca	tgca	tgca	1260
ggctagctt	ccgttggcgt	ggttggctt	tgcaggacag	ctggcgtacg	tgacggggcg	1320
ggagggggca	tgcttcccta	tatcagccac	agctaccgc	gtactagccc	ccgcaccta	1380
gcttagcta	gggccagccg	gccgcgcgtc	tccgcgtgc	gttgtggttg	tggtgagtg	1440
gatgggagat	gagatggatg	atgccattgt	cacatcacgc	acctgcgcgt	gccgcgcgcg	1500
caaggcgcac	ttgcctgccc	tggccctcc	tcccaccggg	ggtctcgct	ggcaccgtca	1560
cttcatgggg	aggggaagca	tggcatggc	tgcatggcgt	gtgcaccacg	cttcattcgt	1620
atatacagct	gttagccggg	atggatcgcc	tgatgctctc	aactgaagtg	atcgataaaa	1680
agcggcgt	tggtattagc	tggcctcggt	ccgtccggcg	ggacgcgttg	gaagcttttt	1740
cgactccggg	gagacttttt	tttagactt	gcaatccact	ctcactgatc	cactgctttt	1800
ctgctcggt	gctaaactgc	taactcgca	atatacgatc	actcattgc	ggtgcaactg	1860
cagtgcgcag	cctacagatc	caaagctacg	tactgtactc	taaattcctt	gctgttagtac	1920
gtgaaacgtc	atgcgtatcc	ggccggctcc	cgcgagacag	gaagagacag	cgactcgcag	1980
acttgcagct	gcccagcagg	cagtagctt	cccttttaa	tcgcagcact	tgggttgac	2040
agtcacacac	acactggcgt	cggcgccgca	gatgaggcgc	cacaatctg	aaccagcata	2100
cagttagggc	ccatgattt	cccccttct	ctatggtttt	tatataaaaa	aaaactgatt	2160
tatataa	ttttgtatga	ttccctctaa	attcctgcat	ttcaataa	acatcgagct	2220
agtgtaa	taggcctgca	aagctgcagc	tgcctgttcc	ctgtactact	tggcactaat	2280
ctcaccggct	acgtgccttc	gcatacggag	tagttattc	gccccggac	acttgataga	2340
aaggctacgg	tagcgtactt	ctaagactat	ggtcattaa	aacactattt	tataactatag	2400
tctatactgt	tactacacta	gagttaaaat	ataaagatga	atatagataa	attactgaag	2460
atagtctaaa	catctttcc	atttttaag	aggacacgac	taaacagttt	tgaatacata	2520
catacacacc	gatacacaga	tgctaaagca	ctaaagcccc	taaaaagttt	gtgatacatg	2580
aaccaacacg	aaatcgatca	ccttgaacc	cgcgcgtcct	actaccactc	tccttcgttt	2640
gacctagctg	gctggtaag	aaaaaaagtt	cgttttccgt	aaaagcgatc	caagtgacaa	2700
cgcgcacacg	tgatcccg	tacctgactg	atgttgcatac	cagccactac	tccgagctag	2760
tagtaaaaga	tttttacacg	caggggagag	acggcgttgc	tctgctagtg	gctagaccgc	2820
gcgtgttgcg	cgacgcccggg	ccggggcgccg	cggcgcgcacca	cggactggca	gccgggtgcga	2880

74435_ST25

ggcacgccgc	gtggtccagc	tagatcgccg	accgggcacg	gcagacgacg	gccggtccag	2940
cggctggaca	cgggcacacg	agagtacgag	actgcgcgcg	tttaggttgg	taccactacc	3000
accatgcatg	tcgcgactcg	ctcgccat	tatggagcaa	aaacacctgt	cgtcatgcga	3060
atcattgtac	ggcatagcga	taagaaaaaa	aaacttaccg	cttctagcat	gcccgctgta	3120
tgcgacgacg	aagttgagaa	atcatgccca	agcaagcttc	ccgcatgctg	agtttcgct	3180
gaccctgttg	gcctgatatg	tcgctgaccc	tga			3213

<210> 211
 <211> 4938
 <212> DNA
 <213> arti ficial sequence

<220>
 <223> optimal _loci _204726

<400> 211	ctcaatcgcc	aaagtagaga	atgatgttt	tcagcctaca	ggccccaggt	agcagctgtg	60
	tgttcaaag	caacttgtat	aatacaattg	gacaagttcg	agcttcaa	aactcatata	120
	ccatgcaaag	caaattggat	ggtttcagc	ccacgtaatt	aaatggaaat	caagtttcc	180
	aacctgtcaa	gcactacatg	attaattgaa	accttcagtt	ctgcatgggt	gccaatctgg	240
	ccaatagaag	tgttattgct	tatgcagtt	gcacatgatt	taaatagatg	aaaacaata	300
	acaaagtaga	gttagtgctt	gcagtcagct	tgtcccactc	ccataacttcc	tttgacttt	360
	tcctcccagc	aaatttagtac	cagctttac	gtgtcctcat	cataacaagt	attgaccatg	420
	aatcaaata	cagacatcac	tcacagctca	cagttccagg	ccatggttac	aacctagcac	480
	taagttgacc	aaggcttcta	aatttagaac	ttttatagc	agaagtgcct	tgaagatgta	540
	aagcctgcaa	atatacagga	gggacaatga	tcagattctc	caccaacata	actcactagt	600
	gctttgggtt	aacaataatc	atataaagga	accaagttat	gctgacagaa	aattatgg	660
	aataatacca	gcaatcaa	aaaagaacca	agttgtgctg	acaaaagcaa	cataaagacc	720
	aagaaactat	atgacaaaaaa	ttttgtgaat	acatcattct	tttgtggcg	aagagtatac	780
	gtagatatta	gtttatttaa	aaaattaaaa	aattggttt	aaatttagtt	aaagctcatt	840
	ttttgcctga	gtcaaggtaa	tacaacacat	cagtatcata	tatccaaatc	tgtggattca	900
	ccagctcaa	ggaagatagc	aaagataaca	acaggttagc	gttgctgaat	tgtaaagtac	960
	agaactagct	agtgttgctg	aattgtaaag	tccacaagca	aattgttgca	gctgccttc	1020
	atgctaagaa	attgacatgc	tgaattgtt	agcatgcacg	tgaacacac	ttgataaac	1080
	taaggatata	atacatgcag	cctaattaaa	gtactagaac	tactaattac	ttggtaatgc	1140
	actacatatg	tgtagaatgt	tcagaggaac	agctagcg	tttccaacat	gtgcatgaac	1200
	ttttaactga	aaggcagtg	tttatcaatc	tctttagacc	tcagtagagt	ttaggcagt	1260
	gaaagctact	aactaggaga	gatgtcattt	atttttaac	tatcactaa	caggcagaat	1320
	tagccaaaca	aaaaaaggac	catgcttta	catagacaac	ctgtaaagtc	catgtgacag	1380

74435_ST25

aaaatatatt	ggatgcaa	act	tttgtattt	1440
gatccaaaga	acccctgacc	at	gaaaattctt	1500
gtccattata	tcctattt	act	tcagagcaaa	1560
ctttactgaa	aagtggtggc	acatcgag	ggagaggaag	1620
taggaacgt	cgctgtgcac	atgcggc	ttt	1680
aggtcagg	aggcagagg	ggatcgat	gaccgatccg	1740
gaaggttcag	tgacggcga	ggcagtc	ccggagcgac	1800
aaaaggaca	gagggatccc	agaacgggc	gggggtgcgg	1860
cggcacgg	gggtgggcac	cattagatta	ctggtatct	1920
cgtacagcaa	caccagccac	acacaccgac	ccagccagca	1980
ggcttccagc	caggtttcg	tttcgcgt	tttccctc	2040
tcaatcactc	acccggc	gtcggttgc	cctccgc	2100
gggtggcgt	taagctag	ctggcgcata	gcgtccgc	2160
ctaggcaaca	aatcgaggc	ctctcg	tgtctgccc	2220
tgctgtact	tactgg	cgccggc	ccccgc	2280
ccggctccgg	gcatcg	gacgacgc	gagacgc	2340
cgc	aggaggc	gcaggc	aacaaatcg	2400
tggcctggcc	tggtccag	gaaaaccg	ccgg	2460
gggtgttt	cgcgtggc	gggtcaat	tccgttgc	2520
cggcggcg	tcacttcc	ttaactt	ggatctggat	2580
cgcagctgaa	aaggagg	aagaaatg	tcggccgg	2640
aagcgaacc	ttcttgct	gccgctgacc	atgacac	2700
gaggactt	ggcagctt	acgcgt	ccgg	2760
cgcaagc	agcacgc	ggcggat	gatttgac	2820
gcaagtat	acactcac	gcacgacc	tagcgt	2880
gtcaccata	ggagtagc	tctatata	aacagg	2940
tagtcgtcc	gaatttcaaa	aaaattggaa	atcagtc	3000
ccttggtagt	cggcacg	ggtatata	ggatgg	3060
tggacgt	attgattg	gtggcata	agactgt	3120
acatccaaga	cagcatcc	ccgtt	gactgg	3180
tcagacaaga	gccaaatcc	tttggatcc	gagcgg	3240
catggacc	gatcatgc	atatactat	gttctatt	3300
tcggccg	gataggcc	ctgacag	tagcatgc	3360
ccacctattt	tttctcg	atagagg	aggagag	3420

74435_ST25

<210> 212
<211> 1370
<212> DNA
<213> arti fi ci al sequence

<220>
<223> optimal_loci_156393

<400> 212 acggaagttg gcgcgcgag agcaggacgt gtttggacc agaccagatc agagcgtcgg 60
tcggttcctg ttctggtgg tatggcaccc atggaggccg ataaactaac tagtcaaggc 120
attggatccc gcgggcctgg aaaagcagtc accggctctg gacctggac tqggaggcaa 180

74435_ST25

gccctccggc	tttgaccca	cgagcagac	acgggctcca	ggaatcgatt	cagtgcagcg	240
gcacgcccag	gcccctaca	tgattcctca	gcacatgcct	gcctgcactg	cacagccggg	300
aagtctgttc	acttgtactg	cgtcgtccct	tggcgcgagg	atgatagcta	aggctcgctt	360
cccgccacac	acgtacccac	gcacgcacgg	aaccagaacg	tttgccgac	ttcgtgtgat	420
caaggaccgt	tgatcacgcc	gcccgtctac	taaaggatat	ataaaaaaaa	tgacagcgct	480
cggcgtttc	aggcttcaga	accgttgatc	aaggacgatg	agcttgagag	ctgaatccgg	540
acggatcgga	ctgcgtcgac	gacgataaac	agcagtgcct	gcatgctctg	ttgtcagcc	600
gtacgtgccg	tgcgccggtg	tatgtctgca	tgcgcagtac	ttatttctg	aaggatgtat	660
atacaatata	ctagctagta	cactgtggta	tctgcaacgt	agtactgatc	tggattctcc	720
atgttggcgt	gtatactctc	tttcttcac	aggatcaagt	tcatgcactg	agcaccagat	780
cagattcagc	caccgatcga	gggagagggg	gtgccggagc	cgagcaggg	cagggggcgg	840
cgacgtccca	cgtgcacggc	gatctcaatt	atattctcat	gcatgcagcg	gacaccggat	900
cgaggaagcg	cggcaaaagcc	tcgtgatttc	gatcgacgc	cccgatcgca	tcgcacatcgca	960
tcgcacatcgca	tcgcagcagt	gcccgtctac	agaaccgcag	ggcatggcgc	ccgaacggag	1020
cccatcagcg	cccagtcgat	cgcaagccc	agagcgagct	tcaaagttt	gctagttcg	1080
tgccgaattc	atgtccatgg	atatcgaat	gtgcacatcgat	cagttgttgc	cggcaatttgc	1140
atgcagacaa	ctctttttt	ttttcaaat	atccgggttt	atttatatat	atacgagata	1200
caatagatag	cttggccac	aaggattaa	atgacgctgg	tcggtaggga	agcttctgg	1260
ggagaccaga	cttgagaaaa	aaaataaacc	caagacctat	aaaggcaaga	caatcatcg	1320
tgctctgtcc	tccggaaaga	taaatggctg	catgaagcag	ttgaataaaaa		1370

<210> 213
 <211> 1190
 <212> DNA
 <213> artificial sequence

<220>
 <223> optimal_loci_198387

gaacatcctg	catgcatata	gcctggctgg	tggcagcatt	ctttcttca	tgcgagccag	60
accctttta	tcaagaaacc	aatcaaacc	tagacttctg	cctggtgcac	gcatgttctc	120
atgtcattta	agaaatgcac	ataatttgc	cggttctgta	cgattaggac	ttttcattta	180
atttcgtaca	tttttaccaa	aagttgtca	gattagttca	aaataaataa	aaaactagtt	240
tttccccaaa	aatcataaga	ccatttgtgg	taaagcatta	ttatatgata	acaaaagaaa	300
actaaggct	tgttgggtt	acttgtgag	ttgtgaagct	gctttgttt	tggtaaaaac	360
caaaagtcaa	taaagaggag	aaaagaaata	gctactttt	ctctagtgaca	taatttatga	420
ctcttcacc	tctactttt	cttcagttgt	aaaaataac	gatttatttt	cctcggttct	480
tgtgcccga	agagagaggt	gtaaccatc	ctctataaca	gtgtggctt	gacaacgggtt	540

74435_ST25

caaatgtat	gtttggatgc	aggcccaagg	tcgcttggcc	aaatattggc	cttgacaaac	600
caatttggcc	catgtttagt	tggaggccaa	atgttggcca	tgaccaggaa	attttggtcg	660
tgcaaatgta	gatttgtgcc	aattcttgggt	cataatcagc	gcggacaaac	cggctaccac	720
aatttggctt	ggtcgatattg	catttttaacc	ataaaacccaaa	catccaaact	tgaacccaaat	780
tttggcttga	tccaaactttg	gccagctacc	taatttttagc	atttctctgg	tccacaacac	840
aacaggccct	agtgcgagcg	tggccctggc	acgctaccct	gccttgacgc	gtgtgaagcc	900
ttagtggcag	cctcaaccgc	aggtgtggat	ccggcggcgg	tcatggcgtg	tgcggccctg	960
acaatggcca	tggtgcagggc	gcttccaaca	tggtcatggc	gtgggacagc	atgcggcct	1020
gtccccagcg	catgtgttgc	cccaacacaa	gcatggctgc	ggtaaacaac	tttggcgaga	1080
ggaagatgga	aatgtgagtc	taacaagtgg	gtctgcttat	aagtgtgtga	gagagaaagt	1140
tgagtggatg	acatgtggga	tctgctcgta	agtgagctac	aataaaacacg		1190

<210> 214
 <211> 3965
 <212> DNA
 <213> artificial sequence

<220>
 <223> optimal_loci_31710

<400> 214	gtttgtttca	atttcataat	ttaccattgc	aacagctgct	cttcgacgca	gaaacatttg	60
	tcgtggttgg	agaaatatgt	atatgtgcaa	ccaacaaagt	tcagattgat	tacgacgaag	120
	atcggcgcta	gcttgttca	agagaaaaca	aatgcatttc	ttgaggcaac	atcggagaga	180
	caaaaatggc	atgtagttt	cttacacaca	acggaattgc	tgtgaaggt	tttagtgatt	240
	gatggatgat	atttgttagta	actagttta	ttcatcaagg	gaagtttgtt	ccaatggaaa	300
	tgtgcacaac	tactaaaaat	atcttacgt	ctcagaagga	agaattggtg	aatatattta	360
	gcctcatttc	ctagacgcat	acatatattc	catactaagt	caataaatcc	atggacacca	420
	aaatgctgca	taattagcga	atgcaaggat	gcctcggcg	tttaagaaa	ttctggtagt	480
	agcttgcaag	ccaacgccaa	gacgacgaac	tagtcttaag	ttgaaaagat	cctgatggta	540
	aaactctatc	atcttcctt	tgcctcattg	tcttgcattga	caatttttg	gttttctgt	600
	gttctgattt	aattggttga	atgttgcatt	acagaaactg	ggttacttca	ttatcttaat	660
	gaaataaaat	cccttcataaa	aaaaaaagct	tgaatgtctt	agtgtatctag	ctcgatattc	720
	tctctttga	agcttccttgc	tccgttgcag	tatcgccaa	ttgcagaaaa	aatgggtgg	780
	aaatttgcgt	ttttcttgcg	ccaagatggc	tcatcagggt	ttgtatttgc	atatattctc	840
	tccctttaa	aattaggcaa	tatcggtgg	ttagtgcatt	ggttctctca	ccatgatgcc	900
	actatcaacc	tccatttgc	cagaagat	tcgcaaaaat	atacagccat	tctaattaa	960
	ttcgtgttgt	ggaagatgta	aatctgttgt	cctaaccgt	ctaaatatga	acaaagataa	1020
	ctagattgtt	tgcacgtata	gacacagcac	caaattcgac	caaattcgcc	ctcattgcag	1080

74435_ST25

aagtgtaaaa	tgttaacaac	tactacgcac	agctcctgct	gtatTTgtgt	aaaactgaca	1140
aagaaacttg	tgggcggcgg	attcggtgag	ctttatctct	acgtgttgca	cttttagatgt	1200
ttatataaa	attctgttga	caaaagatta	ctggagttc	tagttccacc	cagttaaaggc	1260
cgtacgccaa	cccttgaag	agtgggatc	ttctacgtgg	catgattcat	ttctgacagg	1320
gattattatt	aatggagaag	tttccttaag	ttcgaagcat	ggctaaacaa	gcaacaccta	1380
actaacctcc	tgcatagggt	aaaacagtcc	ccgaatattg	tattaagaag	aagacaggtg	1440
aagtaaactc	gtaaagcggc	accatatata	ggcattgtg	agaacggtcg	cagtaggat	1500
tgggtcttag	acatgtgctt	ttggcgtgag	attcagaaga	tctaaggatt	gctacgcaga	1560
ccgcctaatac	atataaatta	tgaaccaatg	catggattaa	ctaataatat	cgatagatgt	1620
gtctttttt	tctctctatt	ctgtggatc	ggatcagttg	attcgctcac	tttcactcac	1680
ttttcttttgc	cgccgatgtg	tccgcagtta	ccttccccat	catgaacttg	gagaccgaaa	1740
ggtgtggtgc	ctagttaccc	cgtactgcaa	tttaccaatg	gcgctggggt	ggaataaaag	1800
ggcaggcgca	caacacagaa	aggaccagca	gcagcaccac	caccaccggg	cactagctag	1860
ctagctctct	ggtcaatgga	gcatgcagct	tagctggat	tcagacactg	ttgctggctt	1920
gctgctgctg	caattgcttgc	ttcaaggcga	acacaagaga	gatccgaagc	atggttgagt	1980
ctctggcgt	agaaaacagt	gccggttcc	atcggttaga	caagaacgca	agagagagat	2040
cgtccatacg	acgtgcata	ggaccagatg	gagattcaga	gacgacccca	tcttcttgc	2100
ataaaagaaac	tagatgaagc	ttgtgtcg	gcctataaga	aatgaaacat	ctgcattgtc	2160
agcgtatgtat	cccgactgat	ggagaggaca	tacccatgag	gcaataaaatc	aaacgacctt	2220
ttaattttta	cagccaatgc	attgcata	gcattatcaa	actggcgaaa	agtgc	2280
ttaagggggg	ggaaggctac	catgggttgc	attgaccgag	tgccccctct	cgtagggcct	2340
atgccacatt	actttcttga	aaggcaacca	caggctgatc	tggaagtcca	ttccacggtg	2400
gcatgcata	gccccccac	acgtcagtca	tccgctcgag	ggcaagcttc	ggtcgatcga	2460
tgacgctgcc	cggctgc	ccggaggaat	agtggagaag	ggtgcagagc	agagggatgg	2520
tcagatcatt	ccagttgtc	ctttcggca	cttgcata	tgtatatgg	agcaaacagc	2580
accgctggct	ggatggatcg	gatgcata	accatata	atcgaagatg	agcctagcca	2640
tgcatgttgc	aatatggact	actatgtaca	tctgtcgac	gtactagctt	gatattaatt	2700
cagtgtacat	ccaattacac	acatgcata	gcagtaactg	gacgtttatt	tgcacacttg	2760
cactatatac	acatgcata	gacgtcg	cagagtacat	tcagcactgg	gtttttctt	2820
tctttggac	tgactgctat	gctagca	actaactca	ctatagctag	ctagctagct	2880
ttgtcttgc	tttttttcc	ctgtggatgg	atcgctc	cagtggagga	gattgttggt	2940
ggggtgtgg	agctgagatg	cagcattatt	tgaaagagat	gcccgtcaaa	tgattaagtc	3000
aggacgcct	ttccacat	tcgtgattca	gttggcata	ttgcactgca	ggcaggctag	3060
ctagttgacc	agaaaagtga	gttgggttg	cattgcattg	catgcata	atccaagtac	3120

74435_ST25

gtgttaacct	gggttaggatg	tttcctaaca	tgatcacaca	cttccccatc	atcatatcac	3180
tagtaagcta	gcccttgctg	gaatgtacag	gacccaacaa	aaagaccatg	catgcatgca	3240
tgactaaagt	ccataatgta	acactgacag	acagaggata	tagatagaac	agccgcgccc	3300
gcctgaagaa	acatcagcag	gtcatcaacc	acttagtggc	tgcatgctcc	tactagtctc	3360
ggcaggccat	ttctttctag	aggacaaaaaa	cgcttgcag	ggtactctag	cttagacggg	3420
cagagatcga	gatggtagc	tagtggagg	tgtggtaatg	ctgtgcccatt	ttgctggagg	3480
ctagctgctt	gttggagagc	tagctaaggc	gtgggagagg	ccaggggggg	ataagagatg	3540
atgctcgggc	aaggcaactt	gggtggtcgg	gccgagacct	gcaaaaggca	agtagtagct	3600
gagctggac	gacggcattt	gaggccttt	ttttccgatc	ccgccttacc	acttcttct	3660
atcgcatctc	atcgatcccc	caatcccagc	cgatcctcgc	tcatcgtggc	cccataatgc	3720
gtgctgccc	ctagcttagc	tgcattgcc	attggaaagca	ccagtccata	gcagcgcgtt	3780
gctgcattcc	gcggctgcct	gttggggagg	agacgatgca	tgcacgcgtc	caatccgtt	3840
gttcgttctc	aataatatca	ccccggcccg	gcccgtat	ttt	agagatattc	3900
agtccagcta	gcacagcaac	gcagtcgcag	tgcattcaat	gcaagttgga	gtctgtcagc	3960
gttac						3965

<210> 215
 <211> 1330
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> optimal_loci_31710

<400> 215	tatatatatc	cggttggcgc	ttaaaaaaaaaa	tccaaagctac	gccccgtgt	tcatcgatcg	60
	gttggttgctt	ggagagcatg	gaaaggctgg	gcatcactgg	gactggtaga	gcattgcatt	120
	gggtccctac	tcgactagcc	gactccttcc	ttgattgctc	gccggcgcgc	cgccgcggcgc	180
	gcgggcccatt	gcaacatgca	tgcattatgat	atggggcccg	ccgggacagg	gcccattgc	240
	tggggtgctt	gacctattga	tcggcggct	cctcggccgc	ggcgcgcgc	attccaccac	300
	caccgtcgcc	ggtcacccgc	cgaagctaac	tagcggacac	ccggcgcgcgc	gctccggcgc	360
	ttttccccca	tggcccccattc	cctctcccaa	agtggaaaag	gggggaaaag	ggataagaag	420
	ggacaaaacc	acggaaggta	cgtggAACGT	gggtgggggt	ctggaaagcca	agatagggtc	480
	acgacgcatt	gcctaaaaag	tgtcgcgagg	cagggagcag	ccgcgtgtcc	gcctgctgt	540
	gctggaaatgg	cgcggtggcc	gcgcgcgggt	acgggtatcc	atgcattcctc	ctgtcctatg	600
	tacaacctca	aagctactac	gactactact	gtggttttta	tactccgtat	atatgagaac	660
	tacaagtccgg	caaggctgggt	ctcgccctgct	cttgcacaagc	aaagtggatg	gttacacggc	720
	gctggctgat	gcatgcgtga	cacggctggct	agcttagctgt	tgcattccggc	cgccccgtgg	780
	acgaaccctgt	acgcgtacgt	gtgtttggcgt	tgcattccaa	acaagtgcctc	ggttgcgttt	840

74435_ST25

gccgtggacg atcgatcgat	cgccccacgc atcacatcat	cattcattcc	ggccggatcg	900
atcgggact gtggaagcaa	cgaaaccgcg	cgcagccgcc	actgtggctt	960
gcagcaggag gacgcagctg	cggccgtgg	ggcagggcg	gaggcggagg	1020
gagcaagcag cacagctgct	actccatgca	tgcattccctg	agattcaagg	1080
gcgtctcggt	ctctgagact	ctgactctct	gtagcgacta	1140
ggtcgacgca gtaagctcag	gtcagggcca	ctggccagc	atcgatttttta	1200
tggcgcgcg	cgagatggc	acccacagtc	gactgcccct	1260
ccgcctgcag	gcctacacaa	cacaacagcg	ggagcagtcg	1320
cagaaggcca			gctgcagagg	
			atcccgccc	
				1330

<210> 216

<211> 1081

<212> DNA

<213> artificial sequence

<220>

<223> optimal_loci_197372

<400> 216	agaacgggtc	ggtatcgagg	agcggcgaga	taatagaggc	aatgtgacaa	tgtgtaaaca	60
	cttagggtcc	tagcatcctt	gaagtatgt	tatgtgctaa	agaaatagca	cttggctcct	120
	tggaaggtcc	tagagacgag	gactctggc	tcctcgtaa	gggtgcaggt	tgaagtggag	180
	acccagagct	actagcaatt	acaggccatg	aggagatagt	atccctcatc	caacattgag	240
	tatccatggt	ataggtactt	atttataacc	aactgctctt	gttgtcttct	ttgttgtatg	300
	aactatagta	actcaagcat	atatctagat	cagtagtgat	ggtgaaatcc	ctagtggaa	360
	tcgatgccac	acgtaaattc	tttgtttggc	tactcaatag	aagaagattt	atataccac	420
	accccaagaa	acttgccccc	cagccatcca	tcaatccaa	gataacccaa	attgtagcac	480
	tagatgttga	aacgagtcgt	gttgagcaag	gaacaatgtc	tacactgaag	atggtggcag	540
	gacaggacat	cgagttgca	ttaactagca	aagtgattcc	ttccatccat	gcaagaagct	600
	acatcccagt	gggtgcggca	aaagccacac	taacactca	tgagttgatg	cctttttct	660
	gaatgttcaa	ttcaaatctt	gcatggcga	gggagctcta	gtctaagctg	tatgaaaagg	720
	ttggagactt	ccatacaact	gttgtgtgtc	gagtagtaga	aaccaacaac	aaagtcattg	780
	tatggactt	agagtagata	gggacaacat	gctattgtgt	gccaagtagc	aagaaacaac	840
	aatggagcca	ctatatgcta	cttagattag	ttggactagc	ttagaccata	gttttccaaat	900
	ggcttagagc	tgaattggaa	gatctggtca	tgtctgagtt	ggacttgtac	tcttgc当地	960
	ctaggtttgg	accatggtt	tttgc当地	tagaagctga	cttggaaatac	ttgggtgtgc	1020
	ccatgttgg	cttgc当地	tagtgaatt	gggttggaa	catagttgtc	ccttagctt	1080
	g						1081

74435_ST25

<210> 217
 <211> 3903
 <212> DNA
 <213> artificial sequence

<220>
 <223> optimal_loci_232228

<220>
 <221> misc_feature
 <222> (2818)..(2917)
 <223> n is a, c, g, or t

<400> 217						
ccgtgtgtca	gcatcacgtg	cgccgcgaga	ggaaggatga	cgatggcttg	gttgctcgta	60
gtttagaga	gatagaatga	aagcttcttt	cagttctttg	tatatgtaaa	ttcttgctaa	120
taattttttg	ttttaaatat	acatataatat	taacgttttc	gtggatggtt	attgtttag	180
tacttaacat	gagaatgagt	gcatggccgg	aatgggatgg	catgatgaac	catttcaatt	240
tagtatcagc	cttcgggtggg	aagcaaacca	taagcgcg	tacacatacc	acaccacacc	300
ggcatgagt	caaggcatta	acgactcgca	atggatgtcc	tgtcgaagcg	agagggacgg	360
ggtgggtggc	ctgggtccgg	cattatccct	ttgcccagct	cgagcagatc	aggcgaaaaaa	420
aaatcggatg	aggctgctcc	ggcgcggagt	cggccaccga	agcgagtgc	ggcgcaggca	480
gccagccgtc	gtggatcccg	cgatccgggc	cccggtatct	ccgctgccc	catggcccgg	540
tggccgccag	ggtggtgcc	gcacggagag	gcgtccggat	cgggcaccgc	ggctgccgct	600
gggaggacgt	gggacccacc	tctggacatc	aggacgtcag	gfcgcatttc	tcgttaggcca	660
cgcgtgaca	cgatcaactg	ttgcggaaaca	aaaatggcgc	tgtgtcacgt	ccatcatcca	720
tgccgtcagt	ataagcaagt	actactaatc	gagcgcgt	cacgctgatt	ggcgaccgag	780
gtggtgctaa	ttattggtgc	ctgtactacc	taaatggcta	ctgcattggaa	cggaaatcacc	840
ggaggcaggc	aggcaggcag	cgatgacgag	tcttaggcca	gagtcgctgc	gggcacctgt	900
cgcctcacgg	gcccctgggtt	gccgtcacgg	gctgtgcctg	ctcggcttcg	gcttcggctt	960
cggctccgccc	tgccgcccc	cgcgcgtcg	gatcggttgg	tttggctgct	cctatccgga	1020
acgggatgga	ttccgatagg	tggatgagta	aaactaactg	gagcgagccg	ggaccggcag	1080
gcagaggcgc	cgcgcgtcc	acgtcgacca	accagctcct	ccagtcccac	tagccgggga	1140
cggggaggac	agcatccgat	gtggccacac	ccgcttcacc	agccggccgg	tgaccacttc	1200
gaccagcag	cgagccgtt	tgtggctgct	ggttggacag	ccgacgcgcg	cggccgggggg	1260
gcccccttg	ttgtatacgg	catccatccg	ctgcccgtgc	ggcggggcggg	cggcgggggtg	1320
ccgacgaggt	acaagtagca	ggacaggagt	gcaggatggc	tgcgcggcta	cctgaccgtg	1380
accccgacg	gggacggggg	ggaccccg	gccgtcg	cagcgtcagg	gcggttaacat	1440
gcgttccgtt	gcgcgtacgg	accaccgg	tgcgtctaaca	ggaagagctg	tcagtgacag	1500
gtgcgtccg	ccgagtgacg	gccgcgcaac	ccatccgc	gctcctgctc	cggctagcct	1560
atccagtgcg	gttcgtggtg	ttccctctc	cgtgtctcg	cgtcggcccg	gtcggcagcg	1620

74435_ST25

gcagaatttc attcagact gttgcctcg	1680
cgccgatgg agagttccc gtacaaaagt	1740
atactcattc ttagccttgt ttacgtacta	1800
ctgcatgaac aaccctcc	1860
tcagcaaatg aaaaacaaag tacaaacaaa	1920
taagttataa tcatgcattt acggtttcc acgtagacag	1980
cattaattat gccaaaactt tagtgtact	2040
attaaaaaaaaa aatcaacatc cattgtgc	2100
agtaatatga tccagggcaa atatgtatgg	2160
tcatgttctt tatcttcagt gctaatacca	2220
agtttcattc atatattttt tttatgaaaa	2280
gtgggtgggg ctacttgctg cactcaaaac	2340
tatcaactat caagttcatt aaaaaatttata	2400
catatthaag ctgggttcag gagcagtagt	2460
taacacttca gtgcagcagt tgacctatac	2520
tgaaacacag cataccactt gaactcccag	2580
ctgagttgtg ccagggtga catataaagc	2640
aaaaaacaca tcatgcaact actaggattt	2700
caccgagata cttccctgaa aaggaaagaa	2760
aaggacaaca acacggcgt agaacatgga	2820
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	2880
nnnnnnnnnn nnnnnnnnnn nnnnnnnnaat	2940
atatggacaa gttcaagtgt caactgatgt	3000
gagagcaatg ttctacgatg tggttgtgg	3060
agccctcgac aacctaaaag aactatgcgg	3120
gccatcctgc aatggagatt gacgtgttt	3180
atgcatggaa ttttttttg aactgcaaaa	3240
agcacaactg gttaaagctaa ttaggactac	3300
tacctgacag atgcagttc gtgctcagca	3360
tttaaatata gctatttata gcatctaccg	3420
tttgagccct tggaaattttc tagtaaaatg	3480
cccatgcagc catgctgcac tagttcgaaa	3540
cattttccag tagtcttcta aacaatccct	3600
aatcccaaattt gtttttttc taacaaaattt	3660

74435_ST25

agcaaata	actaaaaaac	ctgctaagca	gtaacaatag	gactttaagc	tctggttgca	3720
gtataaata	aatcaaaatg	cggtggttat	gtgatctgta	gttcagattt	caaagatttt	3780
caagctag	ataacgcctt	gcatcatcag	attcccttgg	ttcaaacata	tgataaacct	3840
gagataaaat	ttaaactatt	cttgccttc	ccacatagca	ttctggtaa	gccattaaac	3900
ttc						3903

<210> 218
 <211> 1172
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> optimal_loci_285621

<400> 218	tacaacaaac	cgaattttaa	tttacaagaa	aataagaatt	tttgaacaaa	tatattctg	60
	aacttatgag	aatctctagt	ttttttata	ttttttcatg	cttgggtttt	gaattcgaaa	120
	ttccaaacga	aaaaaaatca	aaaaaaagac	ggtagaattt	gtttctgtcg	tttggcgga	180
	aggggagaaa	acggcgaaac	ccggcgaatc	ccgagcggga	tttgcgtccc	ttcggtgagc	240
	acgcggccca	cgcacacggc	agcgatcgtg	tccacgtgt	tatccggcag	cacaacacctg	300
	ctgcgcaaga	acttgcccat	ccggcgctcc	atgcgcaggt	attggcgtct	cgcgctcctc	360
	tggttgcccgc	tcgtcgctga	tcaccagtat	ctactcgta	agtactccat	ggatgcgtac	420
	gcccggcgggaa	actcctcg	gtcgccggg	ctgaccgaca	tggcacgcgc	atcgaggatg	480
	tagatgcacg	tggccgcag	gccaggctg	gccgtctggg	gccgtgacgc	cgggagccgc	540
	gccgctgtca	aaccgcgtca	gctcaatcct	agggtccgtt	ttctcaattc	ccaacgctgt	600
	agacgaaagg	ggtgtgtgg	gcctgagagg	tagagggccc	cggccggggc	tactcgatcc	660
	ggccatcatc	ggctcgccgg	agtcaccgt	gtcggtgtcc	tacaccacgt	gaccactcgc	720
	ctccatgaat	catcatcaat	tccaccctt	tgccaaggca	caatggccaa	ccatgtgcgt	780
	gctgttaatt	aatttaattt	aacggaacct	tgagggtttc	tttttggaaa	aaaataattg	840
	accagaataa	tccgatcgca	tcaccacttc	accggcagtc	ctgcagtcca	acactggaag	900
	cgaagcgacc	tctctctgtc	ttgcgtgcaa	cccgccgag	cgcgtcacgc	gtccatctgc	960
	cgcttcgttc	tggcttggcg	caaatgagca	tcacatgatt	ggccgacacc	agcaggcatt	1020
	gcagatcgca	caagcggggg	atgtgtgt	acgtgaggca	tacacctgtc	agcgagtcga	1080
	ttcaggcg	cacaacgaat	ggagtcgagt	agaacgagag	gacatgccgg	acaactacgc	1140
	ctcggcgagc	ctgcgagctg	taccgaccgg	at			1172

<210> 219
 <211> 1275
 <212> DNA
 <213> artificial sequence

<220>

74435_ST25

<223> optimal_loci_157315

<400> 219		
ggaccctata cactgaagat ctgccttgac tatggctaag gctgaggccc accgagcagg	60	
ggttgctcct aaggctcatt ggagaggaga cagttccaca ccacgagttt gatagaacag	120	
tctagaacaa cccggggccc tataggcagc tccaaccata agcgcttcta gathtagttc	180	
tcatggacgg ccgaggtccc ttacgggtca tcggatctct aataaggc tcagtcatt	240	
tagagaatag cgtggtcggg tcctagctag ggcctctcg gacttaaggc cggcctcctg	300	
atgagaagat aaatgagttc ctgatggaa gcaccagcat atcagagaac ataacttatt	360	
acgatttttt tttgtttgtg cgaggagagc ttattatttt gatggctagg tgtagtcatt	420	
aaggtagaaa acgatcttc attagcacga acaccttact gtaaataata agtagtcgtg	480	
tagaaaacat ttgaccttca aaggctgcaa cgagtaaatt aaaagaaaca tgcattgtca	540	
ttattcaatg tttcaacgaa aacgtgaaac ttgattttta tttgcgtga gggagcttaa	600	
ttatttctgt ttagtgcgtaa acacgttggaa aatggggccc ccgaaccaca cgtcatactt	660	
tttttaatta tttttgttagg ttgctatgct gagctagtag ctgtttacac ggcgtctgtt	720	
attctgataa ggaactatata caaaaaccac acatgcacac gtggtaagg tagtgcataa	780	
tctcgctaa taccactgac aaatcatctc tacttggttgc tctcgaccta tagttgctaa	840	
aatccatgtg gctaaacttt agtttctct gagttgacga ttaattatta cataacttt	900	
atacttgaac tatagttacc tgcattgtgt aaaattatct aaaaattcac gtaggtcaaa	960	
tgtgaaagaa gtgccataga aaacaacagt cccatattgt gcatcgcaaa tgaataatac	1020	
cacgtgctac cgaacacggt gaggattact ggtcggtcggt cccgtgatca agctggtagg	1080	
tggtatataat gcagcttta tgaagttgtt gagaagattg acgcagtgtat ctatcgtaa	1140	
actgaaacgg agacgggcat cactgcacct tggatcggttgc tgcgtttcc atttccattt	1200	
ctctgctgcc cgccagccagt gtgcagccgt cgtctgcgca agatagacct ggtcatccgc	1260	
tagagcgagc cctgt	1275	