

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 3 605 057 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

02.10.2024 Bulletin 2024/40

(21) Application number: **18776794.2**

(22) Date of filing: **16.03.2018**

(51) International Patent Classification (IPC):

**G01N 5/02 (2006.01) G01N 19/00 (2006.01)
G01N 29/02 (2006.01) G01N 29/036 (2006.01)
G01N 29/22 (2006.01) G01N 29/24 (2006.01)**

(52) Cooperative Patent Classification (CPC):

**G01N 29/022; G01N 5/02; G01N 19/00;
G01N 29/036; G01N 29/222; G01N 29/2437;
G01N 2291/0215; G01N 2291/0224;
G01N 2291/0255; G01N 2291/0256;
G01N 2291/02809; G01N 2291/0427**

(86) International application number:

PCT/JP2018/010449

(87) International publication number:

WO 2018/180589 (04.10.2018 Gazette 2018/40)

(54) SUBSTANCE DETECTING ELEMENT

ELEMENT FÜR DEN NACHWEIS VON SUBSTANZEN

ÉLÉMENT DE DÉTECTION DE SUBSTANCE

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **31.03.2017 JP 2017070353**

(43) Date of publication of application:

05.02.2020 Bulletin 2020/06

(73) Proprietor: **I-PEX Inc.**

**Momoyama-cho, Fushimi-ku
Kyoto-shi (JP)**

(72) Inventors:

- OGATA, Kenji**
Ogori-shi
Fukuoka 838-0106 (JP)
- KUROGI, Shogo**
Ogori-shi
Fukuoka 838-0106 (JP)

(74) Representative: **SSM Sandmair Patentanwälte Rechtsanwalt
Partnerschaft mbB
Joseph-Wild-Straße 20
81829 München (DE)**

(56) References cited:

**WO-A1-2013/157581 JP-A- 2007 240 252
JP-A- 2007 240 252 JP-A- 2009 204 584
JP-A- 2010 032 389 JP-A- 2010 032 389
JP-A- 2010 078 333 US-A1- 2010 000 292
US-A1- 2010 000 292 US-A1- 2014 305 191**

- GENKI YOSHIKAWA ET AL: "Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity", SENSORS, vol. 12, no. 11, 16 November 2012 (2012-11-16), CH, pages 15873 - 15887, XP055604343, ISSN: 1424-8220, DOI: 10.3390/s121115873**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Technical Field

[0001] The present disclosure relates to a substance detecting element.

Background Art

[0002] Patent Literature 1 discloses a chemical sensor device which is used for identifying a substance on the basis of variations in the resonance frequencies of vibrators, occurring when the substance is adsorbed or desorbed. The chemical sensor device includes the vibrators exhibiting the different properties of the desorption and adsorption of the substance, wherein each of the vibrators includes a piezoelectric substrate. Application of an alternating voltage allows such piezoelectric substrates to be deformed, thereby vibrating the vibrators. The substance can be identified by specifying a vibrator with a varying resonance frequency.

Citation List

Patent Literature

[0003]

Patent Literature 1: Unexamined Japanese Patent Application Kokai Publication No. 2009-204584
US 2010/000292 A1 discloses features of the supporting substrate, plate-shaped beam, piezoelectric transducer for driving the beam, and piezoresistive transducer.

JP 2007 240252 A discloses a disc-shaped oscillator in FIG. 2. Drive electrodes 32 and detection electrodes 33 are disposed near the oscillator.

JP 2010 078888 A discloses a detection sensor comprising an oscillator that has a beam shape, supported at both ends in a width direction that are at a middle portion in the longitudinal direction of the oscillator, varies the oscillation characteristics due to adhesion or adsorption of substances having a mass.

GENKI YOSHIKAWA ET AL: "Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity", SENSORS, vol. 12, no. 11, 16 November 2012 discloses in section 2.1 "Narrower Sensing Beams with Thinner Geometry" increasing the aspect ratio of a beam (narrowing the width) for the purpose of increasing the detection sensitivity.

JP 2010 082889 A discloses a physical quantity sensor comprising a detection unit that is configured by connecting in series piezoresistors using a metal wire.

Summary of Invention

Technical Problem

5 **[0004]** In the chemical sensor device disclosed in the above Patent Literature 1, the vibrators are merely two-dimensionally arrayed on a flat plate but are not efficiently arranged to help each vibrator to adsorb a substance included in air. In such a configuration, the flat plate in itself may block airflow, thereby deteriorating the efficiency of adsorption of a substance, of each vibrator.

10 **[0005]** The present disclosure was made under such actual circumstances with an objective to provide a substance detecting element that is capable of more efficiently detecting a substance.

15 **[0006]** In order to achieve the aforementioned objective, there is provided a substance detecting element according to claim 1.

20 **[0007]** Preferred embodiments of the present invention are defined in the dependent claims.

Solution to Problem

Advantageous Effects of Invention

25 **[0008]** According to the present disclosure, a through-hole through which gas including a substance passes is provided with a substance adsorption film, such a configuration is made that gas including a substance to be detected is helped to pass through the periphery of the substance adsorption film, and therefore, the substance can be more efficiently detected.

Brief Description of Drawings

[0009]

35 FIG. 1 is a perspective view of a substance detecting element according to Embodiment 1 of the present disclosure;

40 FIG. 2 is a perspective view of the substance detecting element of FIG. 1, viewed from the opposite side; FIG. 3 is a perspective view illustrating the partly crushed periphery of a through-hole;

45 FIG. 4 is an enlarged perspective view of the vicinity of a through-hole;

50 FIG. 5 is a top view of the vicinity of a through-hole; FIG. 6A is a cross-sectional view of a drive beam cut in a longitudinal direction;

55 FIG. 6B is a cross-sectional view of a detection beam cut in a longitudinal direction;

FIG. 7A is a view illustrating a state (1) in which the drive beam is deformed;

FIG. 7B is a view illustrating a state (2) in which the drive beam is deformed;

FIG. 8A is a view illustrating a state (1) in which the detection beam is deformed;

FIG. 8B is a view illustrating a state (2) in which the

detection beam is deformed;

FIG. 9 is a perspective view illustrating the wiring of a substance detecting element;

FIG. 10 is a view illustrating substance detecting elements to be inserted into an electronic instrument; FIG. 11A is a view illustrating the reference pattern (1) of constitutive substances included in a chemical substance;

FIG. 11B is a view illustrating the reference pattern (2) of constitutive substances included in a chemical substance;

FIG. 12 is a view illustrating a state in which gas passes through a through-hole;

FIG. 13A is a view illustrating an alternative example (1) of a piezoelectric element formed on beams;

FIG. 13B is a view illustrating an alternative example (2) of the piezoelectric element formed on the beams;

FIG. 13C is a view illustrating an alternative example (3) of the piezoelectric element formed on the beams;

FIG. 14A is a view illustrating an alternative example (1) of a beam;

FIG. 14B is a view illustrating an alternative example (2) of a beam; and

FIG. 14C is a view illustrating an alternative example (3) of a beam.

Description of Embodiments

[0010] An embodiment of the present disclosure will be described in detail below. A substance detecting element according to the present embodiment is produced using micro electro mechanical systems (MEMS) which are semiconductor production technology that realizes micro processing.

[0011] As illustrated in FIG. 1, a substance detecting element 1 according to the present embodiment includes a supporting substrate 2 having a generally rectangular flat-plate shape. The supporting substrate 2 is produced from, for example, a silicon-on-insulator (SOI) substrate. The SOI substrate, which is a semiconductor substrate with a layered structure, including a BOX layer which is a buried oxide layer and a silicon (SOI) layer which is a semiconductor layer on the BOX layer, is a wafer containing an oxide film.

[0012] The supporting substrate 2 is configured by laying a Si supporting layer 11 including a BOX layer formed of a substrate wafer and a buried oxide layer on a base 10 including a resin, as illustrated in FIG. 1 and FIG. 2. A Si active layer 12 (see FIG. 6A and FIG. 6B) which is an element wafer active layer is layered on the Si supporting layer 11.

[0013] An opening 13 having a circular shape is disposed in a part of the base 10 of the supporting substrate 2, and the Si supporting layer 11 is exposed in a portion corresponding to the opening 13. Seven through-holes 3 are disposed in the Si supporting layer 11 and the Si

active layer 12 in the portion corresponding to the opening 13. The through-holes 3 have a circular shape and each have the same diameter.

[0014] As illustrated in FIG. 3 and FIG. 4, each of the through-holes 3 is provided with a pair of plate-shaped beams 4. The pair of beams 4 includes a drive beam (first beam) 4A having a linear plate shape and a detection beam (second beam) 4B having a linear plate shape. Each of the beams 4 (the drive beam 4A and the detection beam 4B) includes a portion that is formed of the Si active layer 12 and extends from an edge toward an opposite edge.

[0015] The drive beam 4A and the detection beam 4B are orthogonal to each other and are coupled to each other at the middles of the drive beam 4A and the detection beam 4B. In an illustrative embodiment, the width of the drive beam 4A and the width of the detection beam 4B may be equal to each other, which is not according to the invention. The widths indicate the length of the drive beam 4A in a lateral direction and the length of the detection beam 4B in a lateral direction. The pair of beams 4 does not close the whole of each through-hole 3 but closes a part of each through-hole 3. Thus, the beams 4 prevent gas from remaining in each through-hole 3 to help the gas to pass through each through-hole 3.

[0016] As illustrated in FIG. 3, the beams 4 support a substance adsorption film 5 that adsorbs a substance to be detected. The substance adsorption film 5 is located at the middles of the beams 4, that is, the center in each through-hole 3, and is disposed on the coupling portion of the drive beam 4A and the detection beam 4B. The width of one beam 4 in the lateral direction and the width of the other beam 4 in the lateral direction, at the middles of the beams 4, that is, the portion at which the beams 4 in the pair are coupled to each other and on which the substance adsorption film 5 is formed, are set to be wider than those of the portions of the beams 4 other than the coupled portion. In addition, the substance adsorption film 5 has a dome shape (hemispheric shape). Therefore, the substance adsorption film 5 can have an increased surface area exposed to gas and therefore, more easily adsorb the substance to be detected, included in gas (for example, in air).

[0017] The substance to be detected is a gaseous substance (hereinafter referred to as "constitutive substance") constituting, for example, a chemical substance to be detected, included in air, in, for example, a chemical substance group (odor factor) constituting an odor. Examples of the chemical substance to be detected include an odor causative substance having a specific odor, such as ammonia, mercaptan, aldehyde, hydrogen sulfide, or amine. After a lapse of a certain period of time following the adsorption of a constitutive substance constituting an odor causative substance, the adsorbed constitutive substance is separated, and therefore, the substance adsorption film 5 can be reused.

[0018] The beams 4 are configured so that a vibration

frequency (for example, a resonance frequency) is varied when the substance adsorption film 5 adsorbs the constitutive substance. Since the substance adsorption film 5 is arranged in each through-hole 3 which is an opening through which gas including the constitutive substance passes, the substance adsorption film 5 is helped to adsorb the constitutive substance included in the gas. In order to prevent the vibrations of the beams 4 from being affected by the vibration of an apparatus (for example, an electronic instrument 50 described below) into which the substance detecting element 1 is incorporated, the vibration frequencies of the beams 4 are desirably set to be different from and to be higher than the vibration frequency of the apparatus.

[0019] As illustrated in FIG. 4, drive electrodes 16 in a pair are formed on both ends of the drive beam 4A, and detection electrodes 17 in a pair are formed on both ends of the detection beam 4B. In addition, a drive signal wire 21, an interelectrode signal wire 22, and a detection signal wire 23 as lead wires are formed on the supporting substrate 2 and the beams 4. The drive signal wire 21 is connected to the drive electrodes 16. In addition, the interelectrode signal wire 22 connects the detection electrodes 17 to each other on the detection beam 4B. The detection signal wire 23 is connected to one detection electrode 17.

[0020] A voltage signal that drives the beams 4 is applied to the drive electrodes 16 through the drive signal wire 21. In addition, a voltage signal generated from one detection electrode 17 by the vibrations of the beams 4 is sent to the other detection electrode 17 through the interelectrode signal wire 22. In addition, voltage signals from the detection electrodes 17 in the pair are collectively output through the detection signal wire 23.

[0021] As illustrated in FIG. 6A which is a cross-sectional view taken along the line A-A of FIG. 5, the drive beam 4A principally includes the Si active layer 12 of the supporting substrate 2. A lower electrode layer 14 is formed on the Si active layer 12, and a piezoelectric element 15 is formed on the lower electrode layer 14. In the middle of the drive beam 4A, the lower electrode layer 14 and the piezoelectric element 15 are removed to pass the interelectrode signal wire 22. An insulating layer which is not illustrated is disposed between the interelectrode signal wire 22 and the Si active layer 12. In FIG. 6A, the illustration of the BOX layer is omitted.

[0022] The lower electrode layer 14 includes a conductive material (for example, a metal such as aluminum or copper). The same applies to the drive electrodes 16 and the detection electrodes 17. The piezoelectric element 15 includes, for example, a material (material exhibiting piezoelectric properties) such as lead zirconate titanate (PZT). The piezoelectric element 15 has a property of extending and contracting in a longitudinal direction (direction orthogonal to a thickness direction) when a voltage having a predetermined polarity is applied in the thickness direction.

[0023] As illustrated in FIG. 6A, the drive electrodes

16 in the pair are formed on the piezoelectric element 15 at the edge portions of each through-hole 3. A piezoelectric layer is formed of the lower electrode layer 14, the piezoelectric element 15, and the drive electrodes 16.

5 The drive electrodes 16 and the lower electrode layer 14 vibrate and deform the drive beam 4A which applies a voltage to the piezoelectric element 15.

[0024] More specifically, a stress is applied to the piezoelectric layer in the direction of extending in a longitudinal direction (direction along the x axis) and extending in a surface direction (direction along the y axis) by applying a voltage having a polarity that allows the drive electrodes 16 to be positive and the lower electrode layer 14 to be negative (hereinafter referred to as "positive polarity"), as illustrated in FIG. 7A. As a result, a face, on which the lower electrode layer 14 is formed, of the Si active layer 12 extends, and the drive beam 4A is warped in an upwardly convex manner (in the +z direction).

[0025] In contrast, a stress is applied to the piezoelectric layer in the direction of contracting in the longitudinal direction (direction along the x axis) and contracting in the surface direction (direction along the y axis) by applying a voltage having a polarity that allows the drive electrodes 16 to be negative and the lower electrode layer

20 14 to be positive (hereinafter referred to as "negative polarity"), as illustrated in FIG. 7B. As a result, the face, on which the lower electrode layer 14 is formed, of the Si active layer 12, contracts, and the drive beam 4A is warped in a downwardly convex manner (in the -z direction).

[0026] It will be appreciated that a piezoelectric element may be used that has the properties of contracting in the longitudinal direction by applying a voltage between both the drive electrodes 16 and the lower electrode layer 14 so as to allow a side closer to the drive electrodes 16 to be positive and a side closer to the lower electrode layer 14 to be negative, and of extending in the longitudinal direction by applying a voltage between both the drive electrodes 16 and the lower electrode layer 14

30 40 so as to allow the side closer to the drive electrodes 16 to be negative and the side closer to the lower electrode layer 14 to be positive. In such a case, application of a voltage having a positive polarity results in downwardly convex warpage while application of a voltage having a negative polarity results in upwardly convex warpage. As described above, the drive beam 4A may be bent and vibrated due to the extension and contraction of the piezoelectric layer.

[0027] In any case, a deformation illustrated in FIG. 7A or FIG. 7B can be caused by applying a voltage having a predetermined polarity between the drive electrodes 16 and the lower electrode layer 14. The degree of the deformation depends on the value of an applied voltage.

A polarization action varies according to a material included in the piezoelectric element (according to, for example, a bulk or a thin film), and therefore, the polarity of the voltage and the relationship of extension and contraction may reverse with respect to the foregoing.

[0028] In contrast, the detection electrodes 17 in the pair are formed at the edges of each through-hole 3, on the detection beam 4B, to come into contact with the piezoelectric element 15, as illustrated in FIG. 6B which is a cross-sectional view taken along the line B-B of FIG. 5. A piezoelectric layer is formed of the lower electrode layer 14, the piezoelectric element 15, and the detection electrodes 17. When the detection beam 4B is vibrated due to the vibration of the drive beam 4A described above, the piezoelectric element 15 included in the detection beam 4B is deformed, and a potential difference is generated between the detection electrodes 17 and the lower electrode layer 14. In FIG. 6A, the illustration of the BOX layer is omitted.

[0029] More specifically, a stress is applied to the piezoelectric layer in the direction of extending in a longitudinal direction (direction along the y axis) and extending in a surface direction (direction along the x axis) when the detection beam 4B is warped in an upwardly convex manner (in the +z direction), as illustrated in FIG. 8A. As a result, a voltage having a polarity that allows the detection electrodes 17 to be positive and the lower electrode layer 14 to be negative (hereinafter referred to as "positive polarity") is generated.

[0030] In contrast, a stress is applied to the piezoelectric layer in the direction of contracting in the longitudinal direction (direction along the y axis) and contracting in the surface direction (direction along the x axis) when the detection beam 4B is warped in a downwardly convex manner (in the -z direction), as illustrated in FIG. 8B. As a result, a voltage having a polarity that allows the detection electrode 17 to be negative and the lower electrode layer 14 to be positive (hereinafter referred to as "negative polarity") is generated.

[0031] It will be appreciated that a piezoelectric element may be used that has properties in which contraction in a longitudinal direction results in occurrence of a potential difference that allows a side closer to the detection electrodes 17 to be positive and a side closer to the lower electrode layer 14 to be negative while extension in the longitudinal direction results in occurrence of a potential difference that allows the side closer to the detection electrodes 17 to be negative and the side closer to the lower electrode layer 14 to be positive. In such a case, warpage in a downwardly convex manner results in generation of a voltage having a positive polarity while warpage in an upwardly convex manner results in generation of a voltage having a negative polarity. As described above, the detection beam 4B may be bent, thereby resulting in extension and contraction of the piezoelectric layer and in generation of a voltage.

[0032] In any case, occurrence of a deformation illustrated shown in FIG. 8A or FIG. 8B can result in generation of a voltage having a predetermined polarity between the detection electrodes 17 and the lower electrode layer 14. The magnitude of the voltage depends on the detection beam 4B. A polarization action varies according to a material included in the piezoelectric element

(according to, for example, a bulk or a thin film), and therefore, the relationship between the extension and contraction and the polarity of the voltage may reverse with respect to the foregoing.

[0033] For example, when a sinusoidally varying voltage is applied between the drive electrodes 16 and the lower electrode layer 14, the drive beam 4A is sinusoidally vibrated. In response to the vibration of the drive beam 4A, the detection beam 4B is also vibrated. When the detection beam 4B is vibrated, a sinusoidally varying potential difference is generated between the drive electrodes 16 and the lower electrode layer 14.

[0034] In addition, when the frequency of a sinusoidal voltage applied between the drive electrodes 16 and the lower electrode layer 14 is increased or decreased, the frequencies of the vibrations of the drive beam 4A and the detection beam 4B are also increased or decreased, and the frequency of a voltage signal generated between the detection electrodes 17 and the lower electrode layer 14 is also increased or decreased. The vibration amplitude of the beams 4 is increased as the frequencies of the vibrations of the drive beam 4A and the detection beam 4B approach the resonance frequency of the beams 4. When the frequencies of the vibrations of the drive beam 4A and the detection beam 4B become the resonance frequency of the beams 4, the vibration amplitude of beam 4 becomes the greatest.

[0035] As described above, the beams 4 are configured so that the adsorption of a constitutive substance on the substance adsorption film 5 results in a variation in vibration frequency (for example, resonance frequency). In addition, the vibration frequencies of the beams 4 vary according to the degree of the adsorption of the constitutive substance on the substance adsorption film 5.

[0036] As a result, the frequencies at which the vibration amplitudes of the beams 4 are the greatest also vary. Conversely, a change from a state in which the substance adsorption film 5 does not adsorb the constitutive substance to a state in which the substance adsorption film 5 adsorbs the constitutive substance can be detected by determining a variation in vibration frequency at which the amplitudes of the voltage signals of the detection electrodes 17 and the lower electrode layer 14 are the greatest.

[0037] The potential difference generated between the detection electrodes 17 and the lower electrode layer 14 becomes a voltage signal, which is output through the interelectrode signal wire 22 and the detection signal wire 23. The output voltage signal is regarded as information about the vibration frequencies of the beams 4, and variations in the vibration frequencies of the beams 4 are detected based on the information, whereby the inclusion of a substance adsorbed by the substance adsorption film 5 in gas passing through the through-holes 3 can be detected.

[0038] In the supporting substrate 2, the lower electrode layer 14 is formed on the Si active layer 12, and an insulating layer 18 is formed on the lower electrode layer

14, as illustrated in FIG. 6A and FIG. 6B. However, the lower electrode layer 14 and the insulating layer 18 are removed around each through-hole 3, as illustrated in FIG. 5. However, the lower electrode layer 14 forming the drive beam 4A and the detection beam 4B, which is not removed, is connected to the lower electrode layer 14 on the supporting substrate 2.

[0038] In addition, the lower electrode layer 14 is removed in a region S in which the drive signal wire 21 and the detection signal wire 23 are wired on the supporting substrate 2. This is because a parasitic capacitance is prevented from being generated between the drive signal wire 21 and the detection signal wire 23, and the lower electrode layer 14, thereby inhibiting the appropriate input of voltage signals into the piezoelectric layers of the drive beam 4A and the detection beam 4B.

[0039] As illustrated in FIG. 9, a signal processing circuit 20 is disposed in the substance detecting element 1. The signal processing circuit 20 is connected to one drive signal wire 21 and seven detection signal wires 23. The drive signal wire 21 from the signal processing circuit 20 is branched into 14 wires, which are connected to the drive electrodes 16 in the pairs of the respective through-holes 3. In other words, the drive signal wires 21 that are electrically connected to the respective drive electrodes 16 formed on both the ends of the drive beams 4A are drawn to the outside of the drive beams 4A and unified into one. In addition, the seven detection signal wires 23 from the respective through-holes 3 are independently connected to the signal processing circuit 20. The signal processing circuit 20 inputs and outputs a voltage signal on the basis of the potential of the lower electrode layer 14.

[0040] The signal processing circuit 20 outputs, for example, a sinusoidal voltage signal to the drive electrodes 16 corresponding to each through-hole 3 through the drive signal wires 21, and inputs, through the detection signal wire 23, the voltage signal output from the detection electrode 17 corresponding to each through-hole 3. The signal processing circuit 20 detects variations in the vibration frequencies (for example, resonance frequencies) of the beams 4 on the basis of the input voltage signal. In the substance detecting element 1, the adsorption of a constitutive substance can be detected, for example, in a unit of a nanogram.

[0041] In the substance detecting element 1, the beams 4 are disposed in each through-hole 3, and the kinds of the substance adsorption films 5 supported by the respective pairs of beams 4 are different. The signal processing circuit 20 inputs, through the detection signal wires 23, a voltage signal output from the detection electrodes 17 of each through-hole 3, and detects a variation in the vibration frequency of each beam 4, that is, the adsorption of a constitutive substance on the substance adsorption film 5 corresponding to the beam 4, on the basis of the input voltage signal. The signal processing circuit 20 includes a memory, and the detection result of the constitutive substance of each substance adsorption

film 5 is stored in the memory.

[0042] As illustrated in FIG. 10, the substance detecting element 1 according to the present embodiment includes an interface 30 for a memory card for the electronic instrument 50 such as a smartphone. It is assumed that there are substance detecting elements 1A and 1B for different specified substances to be detected, as the substance detecting elements 1.

[0043] The substance detecting element 1A is connected to the electronic instrument 50 via the interface 30. The electronic instrument 50 can read the detection result of a constitutive substance, stored in the memory of the signal processing circuit 20 of the substance detecting element 1A. The electronic instrument 50 reads the data of the memory of the signal processing circuit 20 of the substance detecting element 1A inserted into the interface 30, and analyzes a substance to be detected on the basis of the read data.

[0044] It is assumed that for example, the constitutive substances to be detected of the substance detecting element 1A are 1a to 1g. In addition, it is assumed that the constitutive substances of a certain chemical substance A are 1a, 1b, and 1c, and the constitutive substances of another chemical substance B are 1a, 1d, 1e, and 1f. When the chemical substance A is included in gas, the detection results of the chemical substance A indicate the detections of 1a, 1b, 1c as illustrated in FIG. 11A. When the chemical substance B is included in gas, the detection results of the chemical substance B indicate the detections 1a, 1d, 1e, and 1f, as illustrated in FIG. 11B. The electronic instrument 50 stores the reference patterns of the chemical substances to be detected, and performs the pattern matching of an actual detection result and the reference patterns to specify a chemical substance included in gas.

[0045] In the present embodiment, the pattern matching is performed with the patterns based on the presence or absence of the constitutive substances. However, the present disclosure is not limited thereto. It is also acceptable to determine the adsorption degree of a constitutive substance on the substance adsorption film 5 according to variations in the vibration frequencies of the beams 4, to generate a pattern according to the content ratio of the constitutive substance in a chemical substance, and to perform pattern matching with the pattern to specify the chemical substance.

[0046] Since the substance detecting elements 1A and 1B are produced by MEMS, the very small substance detecting elements 1A and 1B can be produced. Accordingly, the substance detecting elements 1A and 1B can be allowed to be in conformity with, for example, the standards of a small mini SD card. As a result, it is also possible to prepare, for example, the substance detecting elements 1A and 1B with the different combinations of the detectable constitutive substances, to replace the substance detecting element 1A with the substance detecting element 1B, as the substance detecting element 1 mounted to the electronic instrument 50, and to in-

crease the number of the combinations of the detectable chemical substances.

[0047] The substance detecting element 1 is used for detecting various chemical substances that can be included in gas. With regard to the substance detecting element 1, for example, the substance detecting element 1 is placed in the flow of gas, and is used for detecting a constitutive substance constituting a chemical substance included in the gas passing through the through-hole 3, as illustrated in FIG. 12. In such a case, the beams 4 which support the substance adsorption film 5 which absorbs the constitutive substance do not close the whole of the through-hole 3 but close a part of the through-hole 3. Thus, the beams 4 prevent the gas including the chemical substance to be detected from remaining in the through-hole 3 to help the gas to pass through the through-hole 3.

[0048] In accordance with the present embodiment, a chemical substance can be more efficiently detected because the substance adsorption film 5 is disposed in each through-hole 3 through which gas including the chemical substance passes, and is configured so that the gas including the chemical substance to be detected easily passes through the periphery of the substance adsorption film 5, as described in detail above.

[0049] In the embodiment described above, the width W1 (the length in the lateral direction) of the drive beam 4A and the width W1 (the length in the lateral direction) of the detection beam 4B may be equal to each other, as illustrated in FIG. 13A, which is not according to the invention and is present for illustration purposes only. As illustrated in FIG. 13B, the width W2 of drive beam 4A is set to be wider than the width W1 of the detection beam 4B. As illustrated in FIG. 13C, it is also acceptable to set the width of the drive beam 4A at W2 and the width of the detection beam 4B at W1, to shorten the diameter of the through-hole 3, and to shorten the length L1 of the drive beam 4A to L2. In such a manner, the vibration frequencies of all the beams 4 can be set at higher levels to reduce the influence of vibrations from the outside, and variations in the vibration frequencies of the beams 4 per unit weight of an adsorbed constitutive substance can be increased to improve the accuracy of the detection of the adsorption of the constitutive substance.

[0050] The widths and lengths of the beams 4 are desirably determined based on a relationship with respect to the size of each through-hole 3, required for the flow of gas.

[0051] In the present embodiment, each beam 4 is fixed to at least two edges of each through-hole 3. In such a manner, the beams 4 can be stably retained, and the vibration frequencies of the beams 4 can be increased, in comparison with a cantilever 4.

[0052] In the embodiment described above, the beams 4 are fixed to the four edges of each through-hole 3. As illustrated in FIG. 14A, which is not according to the invention and is present for illustration purposes only, a beam 41 may be a cantilever. In such a case, the vibration

frequency of the beam 41 is desirably increased by increasing the width or thickness of the beam 41. A drive electrode 16 and a detection electrode 17 may be disposed together on one end of the beam 41 (one end fixed to an edge of the through-hole 3).

[0053] As illustrated in FIG. 14B, which is not according to the invention and is present for illustration purposes only, a beam 42 fixed to two edges of a through-hole 3 may also be used. In such a case, drive electrodes 16 and detection electrodes 17 may be disposed together on both ends of the beam 42.

[0054] As illustrated in FIG. 14C, which is not according to the invention and is present for illustration purposes only, a beam 43 fixed to three edges of a through-hole 3 may also be used. In such a case, drive electrodes 16 in a pair may be arranged on two of the ends of the beam 43, and a detection electrode 17 may be arranged on the remainder of the ends.

[0055] In the embodiment described above, the beams 4 are configured so that the two doubly supported beams, which are the drive beam 4A and the detection beam 4B, are coupled to each other at the middles of the doubly supported beams. In such a manner, the entire beams 4 are vibrated by the one drive beam 4A, and the vibrations of the beams 4 are detected by the other detection beam 4B, whereby wire-saving can be achieved for the wiring of a circuit that drives the beams 4 and the wiring of a circuit that detects the vibrations of the beams 4.

[0056] In the embodiment described above, the drive beam 4A and the detection beam 4B are orthogonal to each other. In such a manner, the vibration of the drive beam 4A can be prevented from being inhibited by the detection beam 4B. However, the drive beam 4A and the detection beam 4B need not be orthogonal to each other but may intersect each other.

[0057] In the embodiment described above, the drive electrodes 16 are disposed on both the ends of the drive beam 4A, and the detection electrodes 17 are disposed on both the ends of the detection beam 4B.

[0058] In the embodiment described above, the detection electrodes 17 are connected to each other through the interelectrode signal wire 22. In such a manner, the detection signal wires 23 drawn from the detection electrodes 17 can be unified into one, and therefore, wire-saving can be achieved on the supporting substrate 2.

[0059] In the embodiment described above, the drive signal wire 21, connected to the drive electrodes 16, is drawn to the outside, and the drive signal wire 21, from the signal processing circuit 20, is branched into the wires, which are input into the drive electrodes 16. In such a manner, the drive signal wire 21 from the signal processing circuit 20 can be unified into one, and therefore, wire-saving can also be achieved for the drive signal wire 21 connected to drive electrodes 16.

[0060] In the embodiments described above, the through-holes 3 are disposed in the supporting substrate 2, the pair of beams 4 is disposed in each through-hole 3, and the kinds of the substance adsorption films 5 sup-

ported by the respective pairs of beams 4 are different. In such a manner, a chemical substance can be specified based on the detection patterns of constitutive substances.

[0061] In the embodiment described above, the number of the through-holes 3 or the pairs of the beams 4 is seven. However, the present disclosure is not limited thereto. The number of the through-holes 3 or the pairs of the beams 4 may be six or less, or may be eight or more. The number of the through-holes 3 or the pairs of the beams 4 may depend on the number of constitutive substances to be detected.

[0062] In the embodiment described above, each through-hole 3 has a circular shape. However, the present disclosure is not limited thereto. Each through-hole may have an elliptical or rectangular shape, or may have an outer diameter of a combination of curved and straight lines.

[0063] In the embodiment described above, the substance to be detected is a chemical substance constituting an odor. However, the present disclosure is not limited thereto. For example, an odorless chemical substance included in gas may be detected.

[0064] In the embodiment described above, the chemical substance is included in gas. However, the present disclosure is not limited thereto. The present disclosure can also be applied to the detection of a substance in liquid.

[0065] In the embodiment described above, the substance detecting element 1A is produced using an SOI wafer. However, the present disclosure is not limited thereto. The substance detecting element may be produced using another wafer.

[0066] In the embodiment described above, the lower electrode layer 14 and the piezoelectric element 15 are disposed on the approximately entire surface of the beams 4. However, the present disclosure is not limited thereto. The lower electrode layer 14 and the piezoelectric element 15 may be disposed only on the portions on which the drive electrodes 16 and the detection electrodes 17 are formed.

[0067] In the embodiment described above, the detection electrodes 17 formed on both the ends of the detection beam 4B are connected to each other through the interelectrode signal wire 22. However, the present disclosure is not limited thereto. Separate detection signal wires 23 may be drawn from the detection electrodes 17, may be disposed, and may be configured to output separate voltage signals.

[0068] The foregoing describes some example embodiments for explanatory purposes. Although the foregoing discussion has presented specific embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. This detailed description, therefore, is not to be taken in a limiting sense, and the scope of

the invention is defined only by the included claims, along with the full range of equivalents to which such claims are entitled.

[0069] This application claims the priority of Japanese Patent Application No. 2017-70353, filed on March 31, 2017.

Industrial Applicability

10 **[0070]** The present disclosure can be applied to the detection of a chemical substance included in fluid.

Reference Signs List

15 **[0071]**

1, 1A, 1B	Substance detecting element
2	Supporting substrate
3	Through-hole
20 4	Beam
4A	Drive beam (first beam)
4B	Detection beam (second beam)
5	Substance adsorption film
10	Base
25 11	Si supporting layer
12	Si active layer
13	Opening
14	Lower electrode layer
15	Piezoelectric element (piezo element)
30 16	Drive electrode
17	Detection electrode
18	Insulating layer
20	Signal processing circuit
21	Drive signal wire
35 22	Interelectrode signal wire
23	Detection signal wire
30	Interface
41, 42, 43	Beam
50	Electronic instrument

40

Claims

1. A substance detecting element (1) comprising:

45

a supporting substrate (2) in which a through-hole (3) is disposed;
a plate-shaped beam (4) that comprises a piezoelectric element (15), extending from an edge of the through-hole (3) toward an opposite edge to close a part of the through-hole (3), supporting a substance adsorption film (5) to which a substance to be detected adheres, and extending and contracting due to application of a voltage, the beam (4) being bent and vibrated due to the extension and contraction of the piezoelectric element (15);
drive electrodes (16) provided for applying a

50

55

voltage to the piezoelectric element (15) to vibrate and deform the beam; and
5 detection electrodes (17) provided for outputting a voltage generated in the piezoelectric element (15) for detecting information about a vibration frequency of the beam (15),
the beam (4) comprising an elongated plate-shaped first beam (4A) having both ends fixed to edges of the through-hole (3) and provided with the drive electrodes (16) on both ends and an elongated plate-shaped second beam (4B) having both ends fixed to edges of the through-hole (3) and provided with the detection electrodes (17) on both ends, the second beam (4B) intersecting the first beam (4A),
10 the first beam (4A) and the second beam (4B) being coupled to each other at respective middles of the first beam (4A) and the second beam (4B),
15 **characterized in that**

a width of the first beam (4A) is set to be wider than a width of the second beam (4B).
20

2. The substance detecting element (1) according to claim 1, wherein
25 a lead wire (22) that connects the detection electrodes (17) formed on both the ends of the second beam (4B) is formed on the second beam, and a lead wire (23) that is electrically connected to one of the detection electrodes (17) is drawn to outside of the second beam (4B).
30
3. The substance detecting element (1) according to claim 1 or 2, wherein
35 lead wires (21) that are electrically connected to the respective drive electrodes (16) formed on both the ends of the first beam (4A) are drawn to outside of the first beam (4A) and unified into one.
40
4. The substance detecting element (1) according to any one of claims 1 to 3, wherein
45 a width of a coupling portion of the first beam (4A) and the second beam (4B) is set to be wider than widths of portions of the first beam (4A) and the second beam (4B) other than the coupling portion, and
50 the substance adsorption film (5) is located at the coupling portion.
55
5. The substance detecting element (1) according to claim 4, wherein
the through-hole (3) is circular, and
the coupling portion is located at a center of the through-hole (3).
60

6. The substance detecting element (1) according to any one of claims 1 to 5, wherein the first beam (4A) and the second beam (4B) are orthogonal to each other.
5
7. The substance detecting element (1) according to any one of claims 1 to 6, further comprising
10 a plurality of through-holes (3) disposed in the supporting substrate (2),
different kinds of substance adsorption films (5),
a plurality of plate-shaped beams (4), each of the plate-shaped beams (4) being disposed in a respective through-hole (3),
each plate-shaped beam (4) being arranged to support a different kind of the substance adsorption film (5).
15

20 Patentansprüche

1. Substanzerfassungselement (1), das auf:
25 einen Substrathalter (2), in welchem ein durchgängiges Loch (3) angeordnet ist;
ein plattenförmiger Stab (4), der ein piezoelektrisches Element (15) aufweist, der sich von einer Kante des durchgängigen Loches (3) in Richtung einer gegenüberliegenden Kante erstreckt, um einen Teil von dem durchgängigen Loch (3) zu schließen, der einen Substanzabsorptionsfilm (5) trägt, an welchem eine Substanz, die zu erfassen ist, klebt, und der sich erstreckt und kontrahiert Aufgrund des Anlegens von einer Spannung, wobei der Stab (4) gebogen und vibriert wird, Aufgrund der Erstreckung und der Kontraktion von dem piezoelektrischen Elements (15);
30 Antriebselektroden (16), die zum Anlegen einer Spannung an das piezoelektrische Element (15) zur Verfügung gestellt sind, um den Stab vibrieren zu lassen und zu deformieren; und Erfassungselektroden (17), die zum Ausgeben einer Spannung zur Verfügung gestellt sind, die in dem piezoelektrischen Element (15) erzeugt wird, um Informationen über eine Vibrationsfrequenz von dem Stab (4) zu erfassen, wobei der Stab (4) einen längserstreckten plattenförmigen ersten Stab (4A), der an beiden Enden an Kanten von dem durchgängigen Loch (3) festgelegt ist und mit Antriebselektroden (16) an beiden Enden versehen ist, und einen längserstreckten plattenförmigen zweiten Stab (4B) aufweist, dessen beide Enden an Kanten von dem durchgängig Loch (3) festgelegt sind und der mit den Erfassungselektroden (17) an beiden Enden versehen ist, wobei der zweite Stab (4B) den ersten Stab (4A) überschneidet,
35

wobei der erste Stab (4A) und der zweite Stab (4B) miteinander an jeweiligen Mitten von dem ersten Stab (4A) und dem zweiten Stab (4B) gekoppelt sind,

dadurch gekennzeichnet, dass 5
eine Breite von dem ersten Stab (4A) eingestellt ist, um breiter als eine Breite von dem zweiten Stab (4B) zu sein.

2. Substanzerfassungselement (1) gemäß Anspruch 1, wobei
ein Leiterdraht (22), der die Detektionselektroden (7) verbindet, die an beiden Enden von dem zweiten Stab (4B) ausgebildet sind, an dem zweiten Stab ausgebildet ist, und ein Leiterdraht (23) der elektrisch an eine der Erfassungselektroden (17) angeschlossen ist, ist zur Außenseite von dem zweiten Stab (4B) gezogen. 15
3. Substanzerfassungselement (1) gemäß Anspruch 1 oder 2, wobei
Leiterdrähte (21), die elektrisch an die jeweiligen Antriebselektroden (16) angeschlossen sind, die an beiden Enden von dem ersten Stab (4A) ausgebildet sind, zu der Außenseite von dem ersten Stab (4A) gezogen sind und zu einem vereinigt sind. 20 25
4. Substanzerfassungselement (1) gemäß irgendeinem der Ansprüchen 1 bis 3, wobei
eine Breite von einem Kopplungsabschnitt von dem ersten Stab (4A) und dem zweiten Stab (4B) eingestellt ist, um breiter als Breiten von Abständen von dem ersten Stab (4A) und dem zweiten Stab (4B), anders als der Kopplungsabschnitt, zu sein und 30
der Substanzaufnahmefilm (5) ist an dem Kopplungsabschnitt angeordnet. 35
5. Substanzerfassungselement (1) gemäß Anspruch 4, wobei
das durchgängige Loch (3) kreisförmig ist, und der Kopplungsabschnitt ist an einem Zentrum von dem durchgängigen Loch (3) angeordnet. 40 45
6. Substanzerfassungselement (1) gemäß irgendeinem der Ansprüche 1 bis 5, wobei der erste Stab (4A) und der zweite Stab (4B) orthogonal zueinander sind. 50
7. Substanzerfassungselement (1) gemäß irgendeinem der Ansprüche 1 bis 6, das ferner aufweist
mehrere durchgängige Löcher (3), die in dem Haltesubstrat (2) angeordnet sind, verschiedene Arten von Substanzaufnahmefilmen (5), mehrere plattenförmige Stäbe (4), wobei jeder 55

der plattenförmigen Stäbe (4) in einem jeweiligen durchgängigen Loch (3) angeordnet ist, jeder plattenförmige Stab (4) ist angeordnet, um eine verschiedene Art von Substanzaufnahmefilm (5) zu halten.

Revendications

1. Élément de détection de substance (1) comprenant :
un substrat de support (2) dans lequel un orifice traversant (3) est disposé ;
un longeron (4) en forme de plaque qui comprend un élément piézoélectrique (15), s'étendant d'un bord de l'orifice traversant (3) vers un bord opposé pour fermer une partie de l'orifice traversant (3), supportant un film d'adsorption de substance (5) auquel une substance à déceler adhère, et s'étendant et se contractant en raison de l'application d'une tension, le longeron (4) étant courbé et mis en vibration en raison de l'extension et de la contraction de l'élément piézoélectrique (15) ;
des électrodes d'attaque (16) prévues pour appliquer une tension à l'élément piézoélectrique (15) pour mettre en vibration et déformer le longeron (15) ; et
des électrodes de détection (17) prévues pour fournir en sortie une tension générée dans l'élément piézoélectrique (15) pour déceler des informations relatives à une fréquence de vibration du longeron (15),
le longeron (4) comprenant un premier longeron (4A) allongé en forme de plaque dont les deux extrémités sont fixées à des bords de l'orifice traversant (3) et muni des électrodes d'attaque (16) sur les deux extrémités et un deuxième longeron (4B) allongé en forme de plaque dont les deux extrémités sont fixées à des bords de l'orifice traversant (3) et muni des électrodes de détection (17) sur les deux extrémités, le deuxième longeron (4B) croisant le premier longeron (4A), le premier longeron (4A) et le deuxième longeron (4B) sont couplés l'un à l'autre aux milieux respectifs du premier longeron (4A) et du deuxième longeron (4B),
caractérisé en ce que
une largeur du premier longeron (4A) est définie pour être plus large qu'une largeur du deuxième longeron (4B).
2. Élément de détection de substance (1) selon la revendication 1, dans lequel
un fil conducteur (22) qui connecte les électrodes de détection (17) formées sur les deux extrémités du deuxième longeron (4B) est formé sur le deuxième longeron, et un fil conducteur (23) qui est connecté

électriquement à l'une des électrodes de détection (17) est tiré vers l'extérieur du deuxième longeron (4B).

3. Élément de détection de substance (1) selon la revendication 1 ou 2, dans lequel des fils conducteurs (21) qui sont connectés électriquement aux électrodes d'attaque (16) respectives formées sur les deux extrémités du premier faisceau (4A) sont tirés vers l'extérieur du premier longeron (4A) et unifiés en un seul. 5

4. Élément de détection de substance (1) selon l'une quelconque des revendications 1 à 3, dans lequel 15
une largeur d'une partie de couplage du premier longeron (4A) et du deuxième longeron (4B) est définie pour être plus large que des largeurs de parties du premier longeron (4A) et du deuxième longeron (4B) autres que la partie de couplage, 20 et le film d'adsorption de substance (5) est situé au niveau de la partie de couplage.

5. Élément de détection de substance (1) selon la revendication 4, dans lequel 25
l'orifice traversant (3) est circulaire, et la partie de couplage est située en un centre de l'orifice traversant (3). 30

6. Élément de détection de substance (1) selon l'une quelconque des revendications 1 à 5, dans lequel le premier longeron (4A) et le deuxième longeron (4B) sont orthogonaux l'un à l'autre. 35

7. Élément de détection de substance (1) selon l'une quelconque des revendications 1 à 6, comprenant en outre 40
une pluralité d'orifices traversants (3) disposés dans le substrat de support (2), différents types de films d'adsorption de substance (5), une pluralité de longerons (4) en forme de plaque, chacun des longerons (4) en forme de plaque étant disposé dans un orifice traversant respectif (3), 45 chaque longeron (4) en forme de plaque étant agencé pour supporter un différent type de film d'adsorption de substance (5). 50

FIG.1

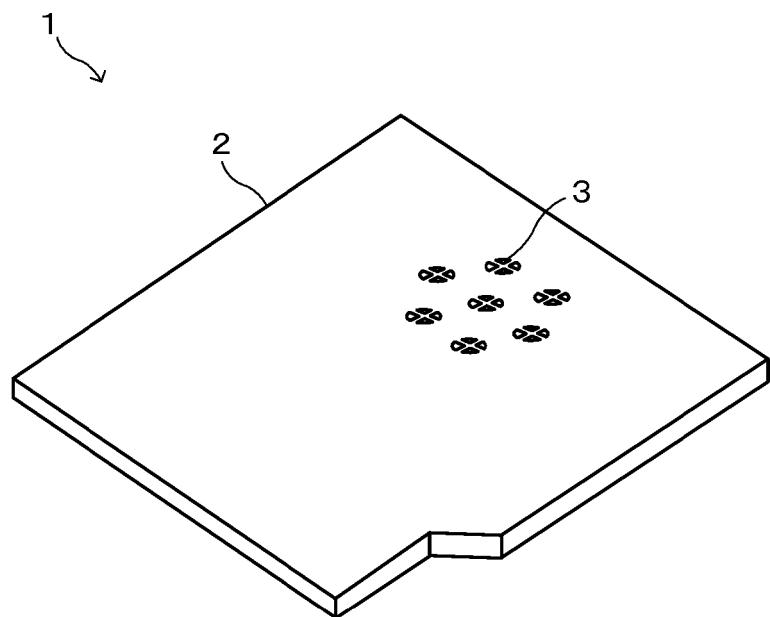


FIG.2

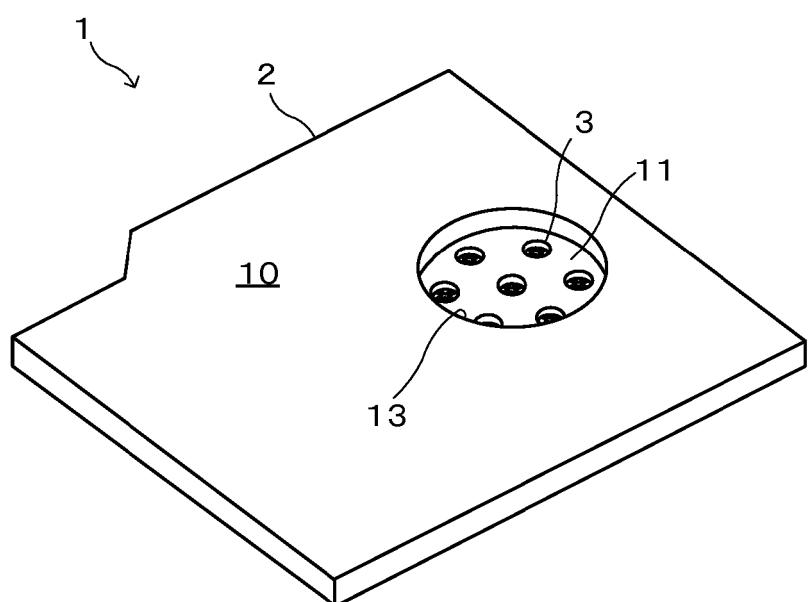


FIG.3

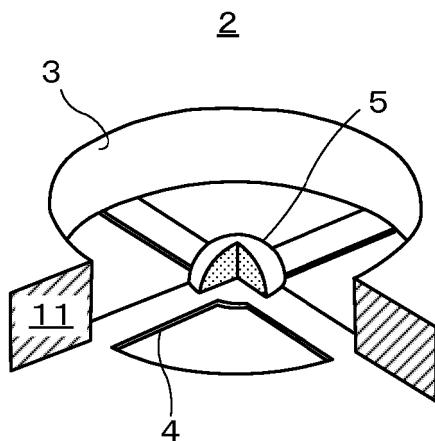


FIG.4

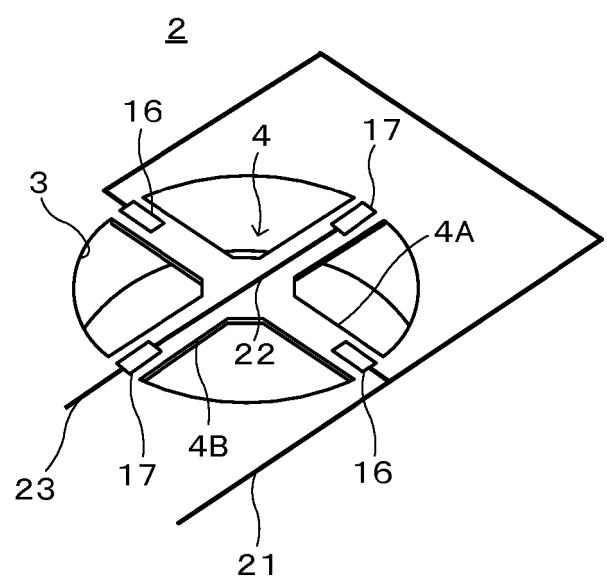


FIG.5

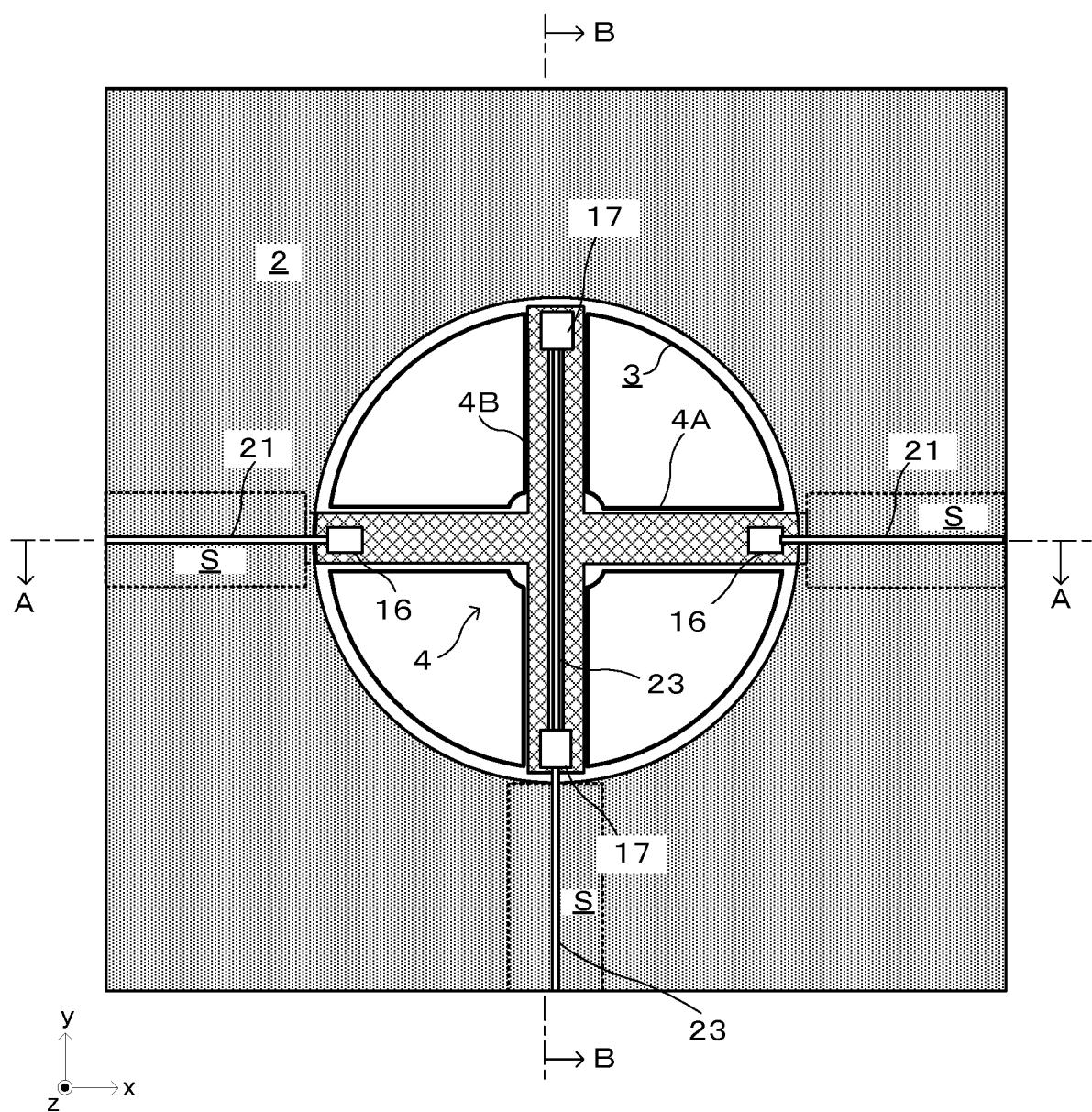


FIG.6A

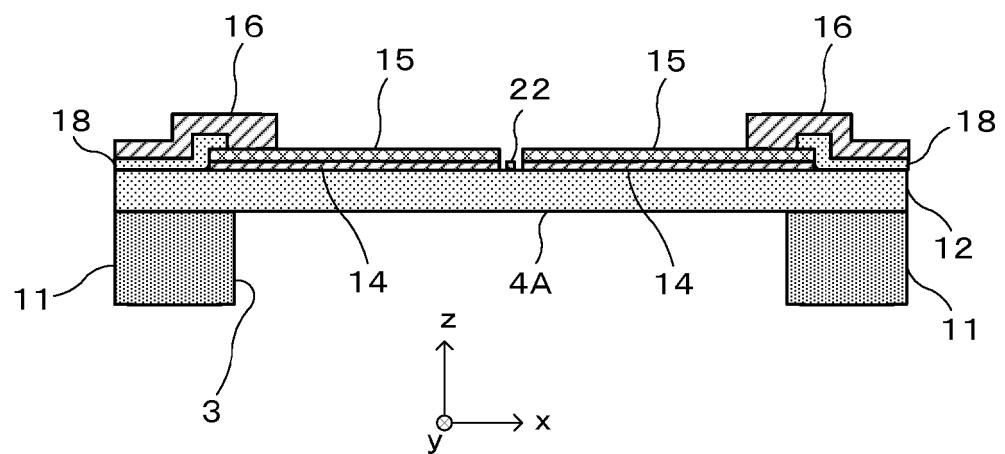


FIG.6B

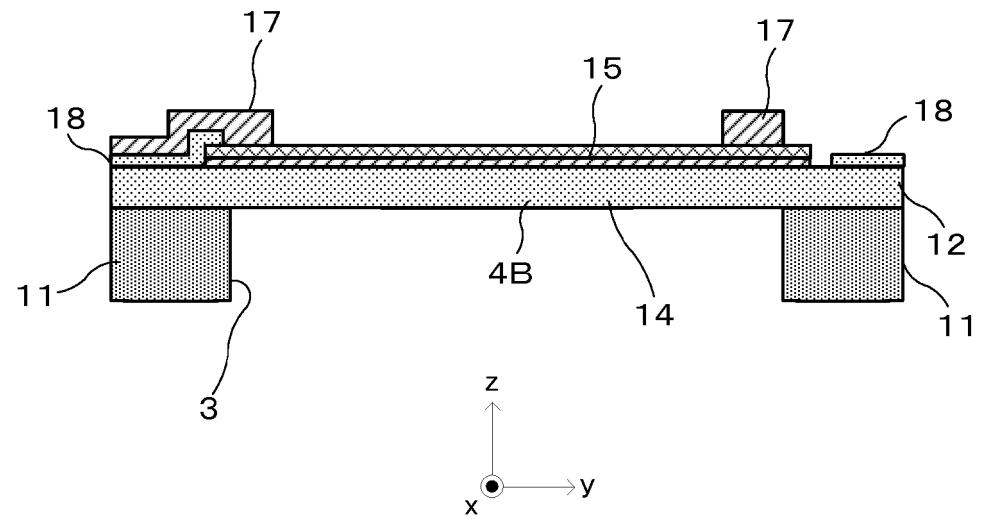


FIG.7A

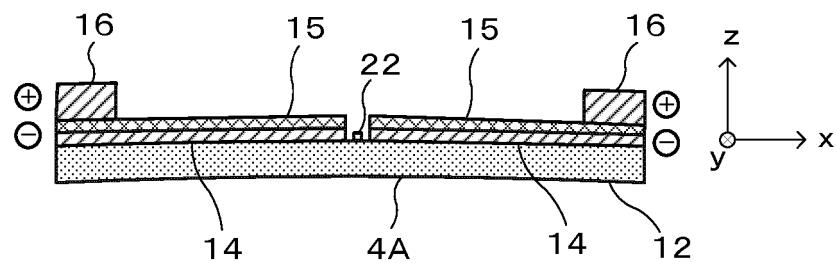


FIG.7B

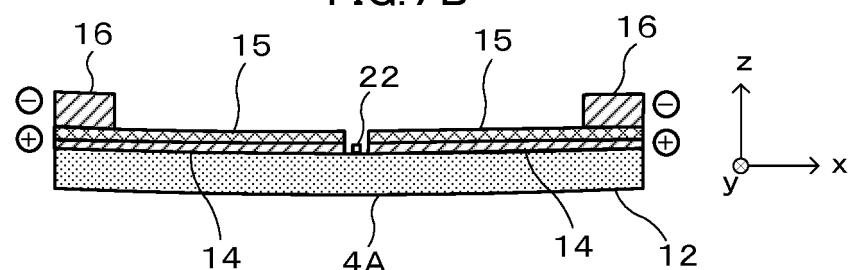


FIG.8A

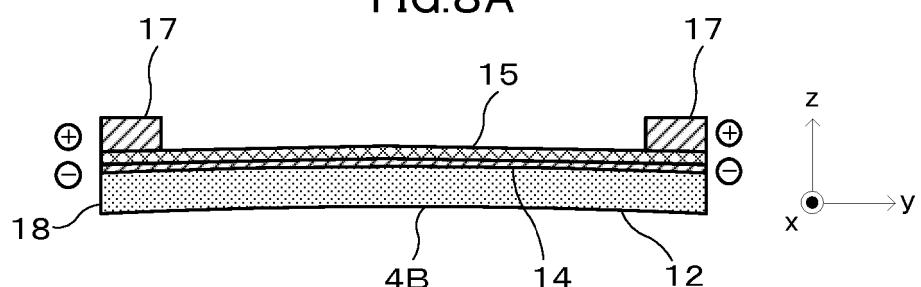


FIG.8B

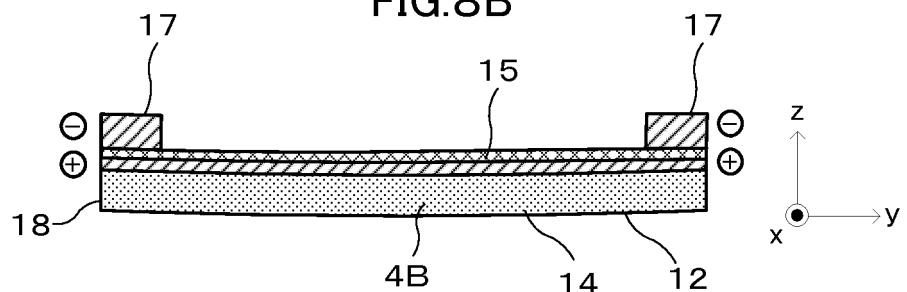


FIG.9

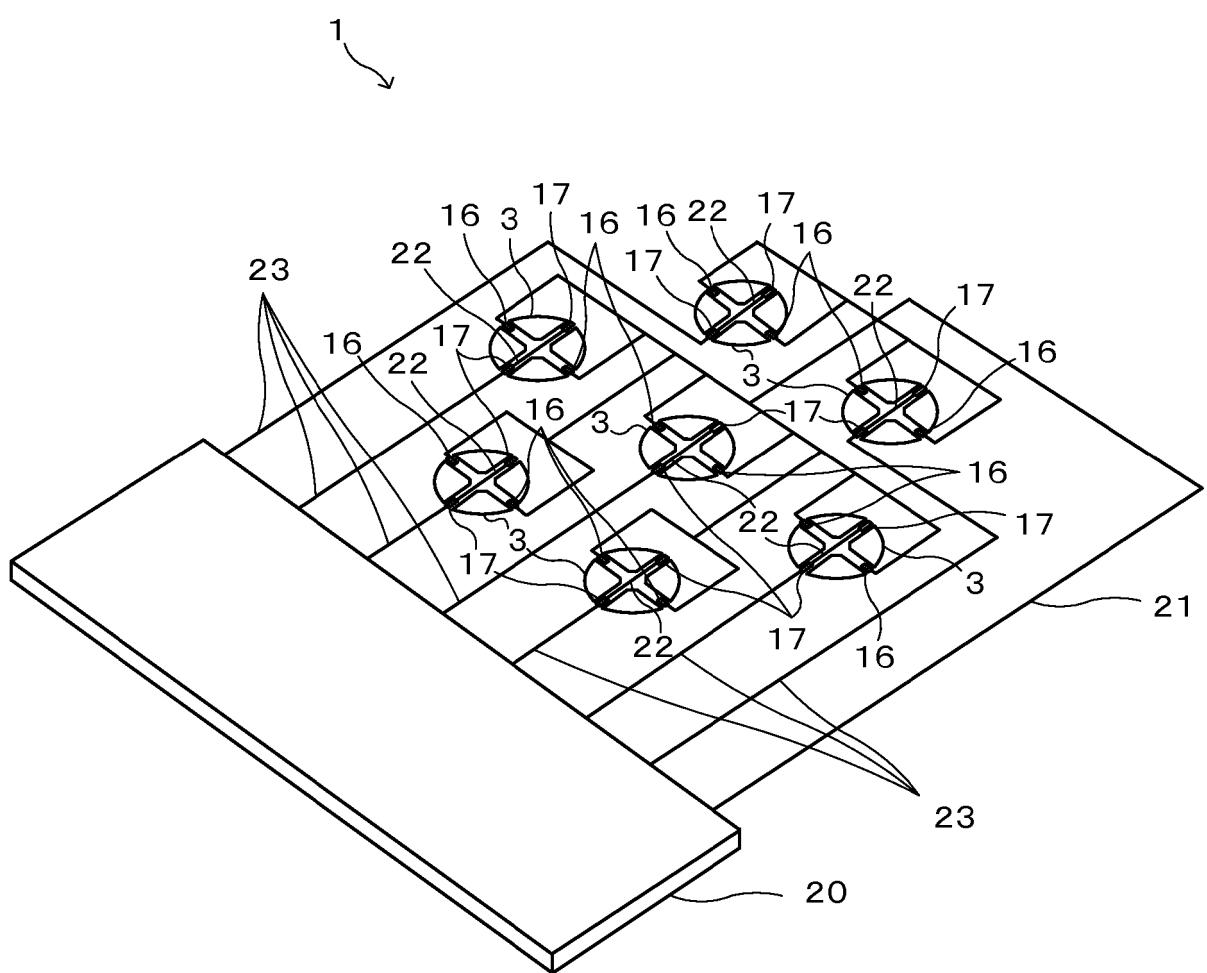


FIG.10

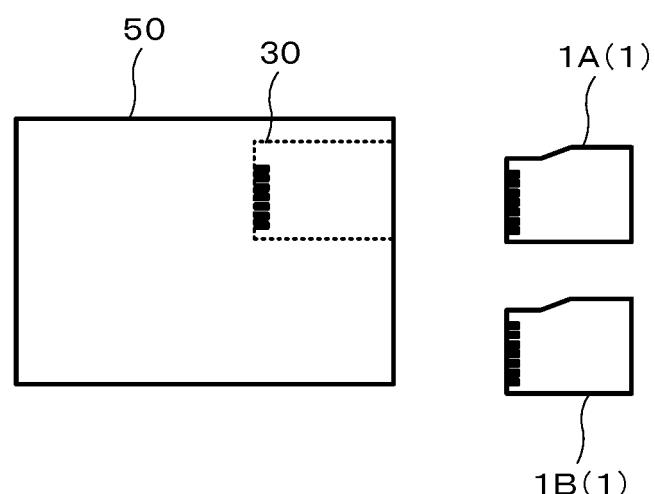


FIG.11A

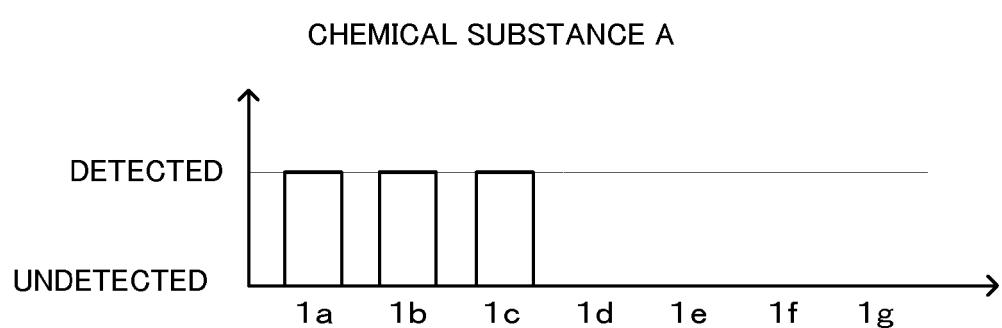


FIG.11B

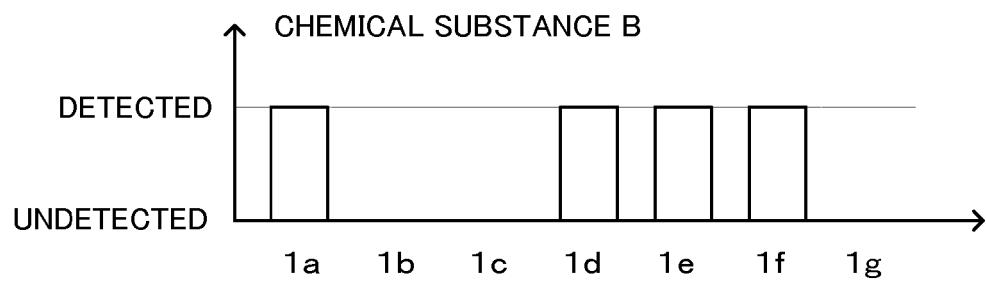


FIG.12

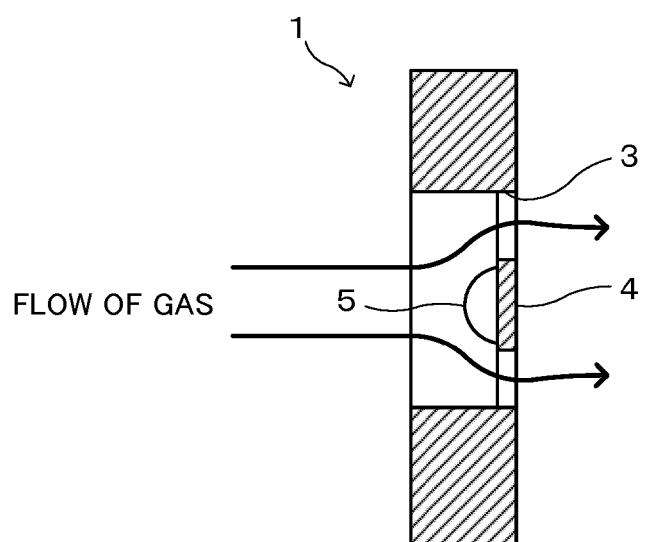


FIG.13A

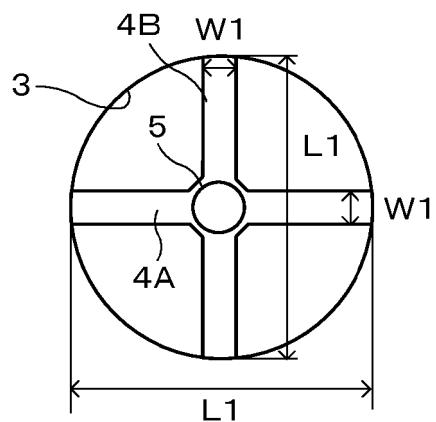


FIG.13B

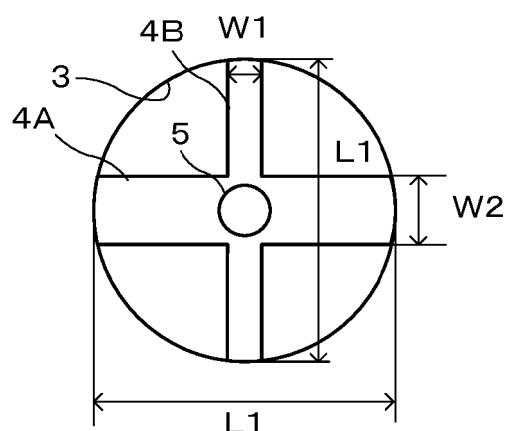


FIG.13C

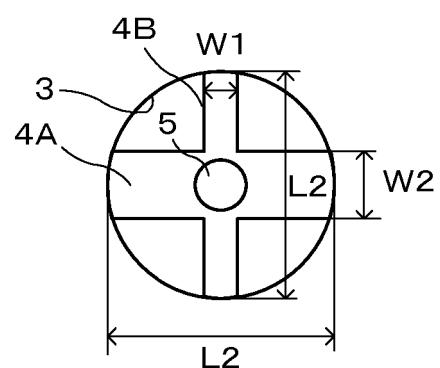


FIG.14A

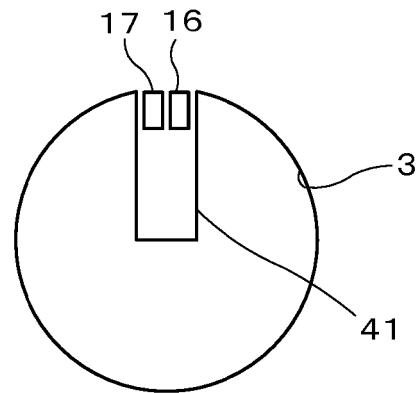


FIG.14B

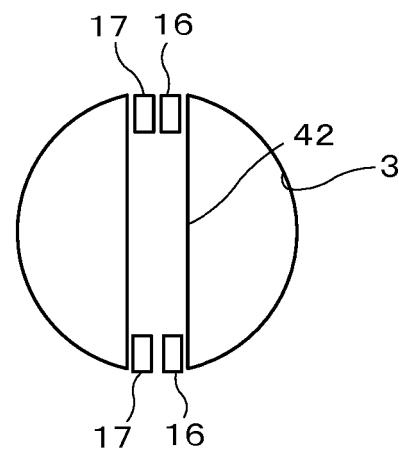
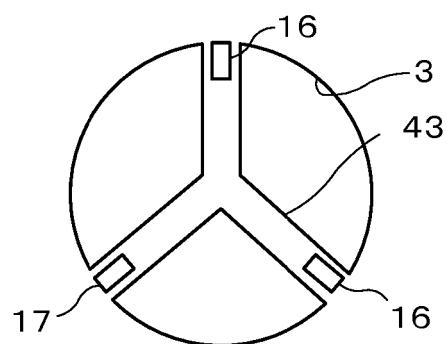



FIG.14C

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2009204584 A [0003]
- US 2010000292 A1 [0003]
- JP 2007240252 A [0003]
- JP 2010078888 A [0003]
- JP 2010082889 A [0003]
- JP 2017070353 A [0069]

Non-patent literature cited in the description

- **GENKI YOSHIKAWA et al.** Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity. *SENSORS*, 16 November 2012, vol. 12 (11) [0003]