Abstract: An AC coupling circuit is provided that has a level shifter circuit having a p input voltage and an n input voltage and producing a p output voltage and a p output voltage. There is a common mode voltage adjustment feedback circuit configured to cause a common mode voltage output to tend towards a specified reference voltage, the common mode voltage output being an average of the p output and n output voltages of the level shifter circuit.
System and Method for A C Coupling

Related Application

Field

The application relates to AC (alternating current) coupling mechanisms for interfaces.

Background

When transmitting a high data rate signal over an interface from a first chip or circuit with a first DC (direct current) bias or common mode voltage, to a second chip or circuit with a second DC bias or common mode voltage, DC blocking capacitors, also referred to as AC coupling capacitors, are used to isolate the DC behaviour on either side of the interface. Most high speed (e.g. 5GHz plus) circuits are AC coupled, with board level capacitors. DC blocking capacitors between parts use board area, and degrade signal quality.

An example of a conventional off-chip AC coupling scheme is shown in Figure 1. Shown is a first circuit 10 connected to a second circuit 14 through board level AC coupling circuit 12 including board level capacitors 16. Also shown is an interconnect 18 that typically has a voltage drop as a function of frequency. In conventional systems, this can be compensated for using an equalizer; however, active equalizers consume significant power.

Summary

According to one aspect of the present invention, there is provided an AC coupling circuit comprising: a level shifter circuit having a p input voltage and an n input voltage and producing an n output voltage and a p output voltage; a common mode voltage adjustment feedback circuit configured to cause a
common mode voltage output to tend towards a specified reference voltage, the common mode voltage output being an average of the p output and n output voltages of the level shifter circuit.

In some embodiments, the level shifter circuit comprises an RC (resistor capacitor) network.

In some embodiments, the RC network comprises a first RC network that produces the p output voltage and a second RC network that produces that n output voltage.

In some embodiments, the first RC network comprises a first resistor divider in parallel with a first capacitor divider; the second RC network comprises a second resistor divider in parallel with a second capacitor divider.

In some embodiments, the level shifter circuit comprises adjustable components such that a frequency response of the level shifter circuit can be adjusted by adjusting the adjustable components.

In some embodiments, the RC network comprises adjustable resistors and adjustable capacitors such that a frequency response of the RC network can be adjusted by adjusting the adjustable resistors and adjustable capacitors.

In some embodiments, the resistors and capacitors are adjusted such that the frequency response of the level shifter circuit level shifter circuit cancels out at least part of another frequency response.

In some embodiments, the common mode voltage adjusting feedback circuit sources current or sinks current through a respective resistor in each of the first and second RC networks.

In some embodiments, the first RC network comprises a first resistor divider in parallel with a first capacitor divider; the second RC network comprises a second resistor divider in parallel with a second capacitor divider; and the
respective resistor in each of the first and second RC networks is a respective first resistor in each of the first and second resistor dividers.

In some embodiments, the common mode voltage adjusting feedback circuit comprises: a comparator that compares the common mode output voltage to the reference voltage and produces an output based on the comparison; a filter that filters the output of the comparator to produce a filtered output; a digital to analog converter that receives the filtered output and produces a control signal.

In some embodiments, the common mode voltage adjusting feedback circuit comprises an analog feedback loop.

In some embodiments, the common mode voltage adjusting feedback circuit comprises at least one current source the control signal is for the at least one current source.

In some embodiments, the at least one current source comprises a first pull-up current source and a first pull-down current source each connected to the first RC network, and a second pull-up current source and a second pull-down current source each connected to the second RC network.

In some embodiments, at any instant, either: the first pull-up current source sources current through a resistor in the first RC network, and the second pull-up current source sources current through a resistor in the second RC network; or the first pull-down current source sinks current through a resistor in the first RC network, and the second pull-down current source sinks current through a resistor in the second RC network.

In some embodiments, the first pull-up current source and the first pull-down current source both form part of a first sourcing and sinking current source; and the second pull-up current source and the second pull-down current source each form part of a second sourcing and sinking current source.
In some embodiments, the level shifter circuit comprises a first T-coil inductor for the p input voltage and a second T-coil inductor for the n input voltage.

In some embodiments, the circuit further comprises first and second termination resistors for the p input voltage and the n input voltage respectively; wherein the first T-coil inductor circuit is connected between a p input of the AC coupling circuit, a p input of the level shifter circuit, and one of the first termination resistors; the second T-coil inductor circuit is connected between a n input of the AC coupling circuit, an n input of the level shifter circuit, and the second termination resistor.

In some embodiments there is provided an integrated circuit comprising the AC coupling circuit of any one of the methods summarized above, or detailed below.

In some embodiments, the reference voltage is set to equal a common mode voltage suitable for input to a remainder of the integrated circuit.

In another aspect of the present invention, there is provided a method of AC coupling: performing level shifting with a level shifter circuit having a p input voltage and an n input voltage and producing a p output voltage and a p output voltage; using a feedback circuit to cause a common mode voltage output to tend towards a specified reference voltage, the common mode voltage output being an average of the p output and n output voltages of the level shifter circuit.

In some embodiments, the method further comprises: adjusting at least one adjustable component in the level shifter circuit to adjust a frequency response of the level shifter circuit.

In some embodiments, the method comprises adjusting at least one adjustable component in the level shifter circuit to adjust a frequency response of the level shifter circuit to cancel out at least part of a frequency response of an
interconnect between a first circuit and a second circuit, the level shifter circuit and the feedback circuit both forming part of the second circuit.

Brief Description of the Drawings

- Figure 1 is a block diagram of a conventional AC coupling circuit;
- Figure 2 is a block diagram of a system featuring an AC coupling circuit provided by an embodiment of the invention;
- Figure 3A is a circuit diagram of a level shifter circuit;
- Figure 3B is a circuit diagram of another level shifter circuit;
- Figures 4 and 5 are plots of transfer characteristics of the level shifter circuit of Figure 3A; and
- Figure 6 is a circuit diagram of a common mode voltage adjusting feedback circuit.

Detailed Description

Referring now to Figure 2, shown is a system featuring an AC coupling circuit provided by an embodiment of the invention. There is a first circuit 100 connected to a second circuit 102 through an interconnect 104. Each of the first and second circuit may, for example, be an integrated circuit, for example an ASIC (application specific integrated circuit), FPGA (field programmable gate array), or a circuit that implements a high speed electrical link. Interconnect 104 may be a cable, circuit board trace etc. The second circuit includes an AC coupling circuit comprised of a level shifter circuit 106 and a common mode voltage adjusting feedback circuit 110. The remainder of the second circuit 102 is indicated at 108. The level shifter circuit 106 receives inputs P_input and
N_input via the interconnect 104, and produces equalized P and N outputs
P_output, N_output as shown, which are passed on to the remainder of the
second circuit 108. The level shifter circuit 106 also produces a common mode
output voltage vcmode_out which is the average of the outputs P_output and
N_output. The common mode output voltage is connected as a first input to the
common mode voltage adjusting feedback circuit 110. The second input of the
common mode voltage adjusting feedback circuit 110 is a reference voltage Vref.
The common mode voltage adjusting feedback circuit 110 has an output 111 that
is connected to the level shifter circuit 106 so as to have an effect upon the
common mode output voltage vcmode_out. The first circuit 100 may be a first
chip and the second circuit 102 may be a second chip, in which case the level
shifter circuit and the common mode voltage adjusting circuit form part of the
second chip and can be referred to as being "on-chip".

In operation, the level shifter circuit 106 introduces a shift in the common
mode output voltage vcmode_out relative to a common mode voltage at the input.
In some embodiments, the level shifter circuit 106 has a transfer function that
implements a specified frequency response, for example a frequency response
that compensates for, or cancels out, at least some of a frequency response
introduced by the interconnect 104. In some embodiments, the components are
adjustable such that the frequency response can be adjusted. The output of the
common mode voltage adjusting feedback circuit 110 has the effect of causing
the common mode output voltage vcmode_out to tend towards Vref, irrespective
of the input common mode voltage, which is the average of Pjinput and N_input.
In a specific example, the common mode voltage adjusting feedback circuit 110
sources current through resistors in the level shifter circuit 106 or sinks current
through resistors in the level shifter circuit 106 so as to adjust the vcmode_out
relative to vcmode_in so as to tend towards Vref. The common mode voltage
adjusting feedback circuit 110 may include a digital feedback loop or an analog
feedback loop, for example.
A specific implementation of the system of Figure 2 will now be described with reference to Figure 3A which shows an example implementation of a level shifter circuit, and Figure 6 which shows an example implementation of a common mode voltage adjusting feedback circuit. Referring first to Figure 3A, shown is a first circuit 40 having p and n outputs that are connected to p and n inputs at points P5,P6 of a second circuit 42 through a cable 44. In the illustrated example, the first circuit 40 is shown to include an output driver 50, but may include additional or different functionality specific to the first circuit. The second circuit 42 is shown to include a limiting amplifier 60, but may include additional, or different functionality, specific to the second circuit. This might, for example, include an active equalizer or direct drive of a CDR (clock and data recovery) circuit.

At the input to the second circuit, there are two resistors 52,54. Resistors 52,54 may, for example, be 50 ohm termination resistors for the high speed transmission interconnect. A different impedance for these resistors is possible, but 50 ohms is most common. 75 ohms is also common for cable applications. The common mode voltage vcmode_in at the input to the second circuit 42 is the voltage at point P1, this also being equal to the common mode voltage at the output of the first circuit 40.

Shown is a level shifting circuit that includes a network 56 for the p input, and a network 58 for the n input. The network 56 for the p input comprises a resister divider formed of resisters 62,64 having respective resistances R1 and R2. The resistor divider is in parallel with a capacitor divider formed of capacitors 58,60, having respective capacitances C1 and C2.

The network 58 for the n input comprises a resister divider formed of resisters 72,74 having respective resistances R1 and R2. The resistor divider is in parallel with a capacitor divider formed of capacitors 68,70, having respective capacitances C1 and C2.
The double sided output of the level shifter circuit, which functions as the input to the remainder of the second circuit, includes a P output from network 56 at point P2 and an N output from network 58 at point P3. The common mode voltage of the output of the level shifter circuit, vcmode_out, is available at point P4. The voltage vcmode_out is the average value of the P and N signals.

The use of the resister divider in parallel with the capacitor divider (referred to hereinafter as an RC divider) allows direct DC coupling between circuits. The circuit allows two different common modes to be connected, while passing a band of interest. The RC divider can tolerate the same DC voltages as board mounted AC coupling capacitors. In addition, the RC divider can be configured to be broad-band, having a wider pass band than board mounted AC coupling capacitors.

It is noted that the resistors in the RC divider have the additional benefit of not allowing high voltage to reach the remainder of the second circuit, e.g. the input to the limiting amplifier 60 which may be, for example, a sensitive transistor gate.

The cable 44 (or other interconnect) may have a voltage drop as a function of frequency. By adjusting the component values R1,R2,C1 and C2, an equalization function is realized with no extra power consumption.

In some embodiments, all four components R1,R2,C1 and C2 are adjustable components, for example register controlled resistances and register controlled capacitances. A register controlled resistance, may for example, be a set of resistances in series that can be switched in or out; similarly, register controlled capacitance may, for example, be a set of capacitors in parallel that can be switched in or out. In some embodiments, one or more of the resistors are implemented using MOSFET channels. This is another way of making an adjustable resistor.
Through proper selection of the programmable components, R_1, R_2, C_1, C_2 at least some of the voltage drop due to cable 44 as a function of frequency over at least some of the bandwidth of interest can be cancelled. Advantageously, with the circuit shown, the frequency response is a function of ratios of component values, and therefore does not depend on the process used to implement the resistors or capacitors.

The RC divider behaves like the combination of a low pass filter based on resistors and a high pass filter based on capacitors. At low frequency, capacitors behave like open circuit, and two resistors behave like a voltage divider. The DC gain can be expressed as follows:

$$\text{DC gain} = \frac{R_2}{R_1 + R_2}.$$

At high frequency, the capacitors dominate, and the high frequency gain can be expressed as follows:

$$\text{HF gain} = \frac{C_1}{C_1 + C_2}.$$

Appropriate setting of the component values can set the relative gain at high frequency compared to DC. For example, assuming R_1 and R_2 are set such that $R_2/(R_1 + R_2) = .5$, and C_1 and C_2 are set such that $C_1/(C_1 + C_2) = .8$, the overall effect will be gain in the high frequency relative to low frequency.

Figure 3B depicts a variant of the embodiment of Figure 3A. In Figure 3B, there is a T-coil inductor structure embedded in the AC coupling circuit to improve performance. There is a first T-coil inductor 76 connected between point P5, resistor 54, and resistor 62. There is a second T-coil inductor 78 connected between point P6, resistor 52, and resistor 72. The effect of the T-coil inductors is to cancel capacitance on the input pads. In effect, the inductors make it appear as though any capacitance on the input pad is not there. For completeness, a common mode virtual ground capacitor C3 80 is shown in Figure 3B. However, as it is well known to a person skilled in the art, this is
accepted practice to include a common virtual ground capacitance connecting a common mode input to ground. For example, a person skilled in the art would understand that such a capacitor could be included with the embodiments of Figure 3A.

Example frequency responses for the circuit of Figure 3A are depicted in Figures 4 and 5. In Figure 4, R2/R2 is equal to C1/C2 with the result there is a wideband flat frequency response. In Figure 5, R2/R2 is less than C1/C2 with the result there is an equalizing frequency response.

Referring now to Figure 6, shown is an example of the common mode voltage adjusting feedback circuit that sets the common mode voltage output of the level shifter circuit of Figure 3A to a desired reference value, Vref. Shown is a comparator 100 having a first input 101 that is the common mode voltage vcmode_out output by the RC divider (i.e. the voltage taken at point P4 of Figure 3A), and having a second input 102 that is set to a reference voltage input Vref which is the desired common mode voltage. The output of the comparator 100 is input to a digital filter 103. The output of the digital filter is connected to a DAC (digital to analog converter) 104. The DAC produces an output that is connected to a first current source 106 and a second current source 108. The first current source 106 is a sourcing and sinking current source that both sources and sinks current, and is connected to point P2 of Figure 3A. The first current source may be comprised of a sourcing current source and a sinking current source. The second current source 108 is a sourcing and sinking current source that both sources and sinks current, and is connected to point P3 of Figure 3A. The second circuit source may be comprised of a sourcing current source and a sinking current source.

In operation, the comparator 100 produces an output that is a function of the difference between vcmode_out and Vref. In a specific example, it produces a digital output Cout that is either a 1 or a 0 (or +1/-1). For example,
vcmode_out > VRef, Cout = +1 (or 1), and when vcmode_out < VRef, Cout = 0 (or -1).

This comparator output is input to the digital filter 103 which behaves like an integrator, and has the effect of smoothing the output of the comparator. This is so adjustment happens slowly at a frequency that is below the band of the data going through. The output of the digital filter 103 may still be 1 or 0, (or +1/-1), but transitions are much slower compared to those on the input to the digital filter.

The DAC 104 receives the filtered comparator output and produces an output voltage that controls the two current sources 106, 108. When the filtered comparator output is a 1, the DAC output is incremented (for example by one), and when the filtered comparator output is a 0 (or -1), the DAC output is decremented (for example by one). The two current sources 106, 108 drive the same values, with one going to point P2, and the other going to point P3.

The tendency of the feedback circuit is to make the differential at the input to the comparator 100 go to zero, or equivalently to make vcmode_out move towards Vref.

As noted above, the two current sources 106,108 each have a current sink, also referred to as a pull-down current source and a current source, also referred to as a pull-up current source function. Because the same input is connected to the current sources, the two pull-down current sources always sink equal currents, and the two pull-up current sources always source equal currents. However, only one of current sourcing and current sinking is happening at any given time. Thus, at a given instant, one of the following two situations exist:

Current sinking: current source 106 is sinking current through resistor 62 having resistance R1, and current source 108 is sinking current through resistor 72 having resistance R1; or
Current sourcing: current source 106 is sourcing current through resistor 62, and current source 108 is sourcing current through resistor 72.

The common mode voltage at inputs P5, P6 is set by the driver on the first circuit 40. The common mode output of the RC divider is set by the feedback current sourced or sunk through resistors 62, 72. The current through resistors 62, 72 is adjusted until vcmode_out is the right value, namely Vref.

Sourcing current through resistors 62, 72 has the effect of increasing vcmode_out relative to vcmode_in, while sinking current through resistors 62, 72 has the effect of decreasing vcmode_out relative to vcmode_in.

The AC coupling circuits described may, for example, be used in applications where serdes (serializer-deserializer) are used. For example, they may be used in OTN (optical transport network), PON (passive optical networks), Ethernet.

Numerous modifications and variations of the present disclosure are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced otherwise than as specifically described herein.
Claims:

What is claimed is:

1. An AC coupling circuit comprising:
 a level shifter circuit having a p input voltage and an n input voltage and producing an n output voltage and a p output voltage;
 a common mode voltage adjustment feedback circuit configured to cause a common mode voltage output to tend towards a specified reference voltage, the common mode voltage output being an average of the p output and n output voltages of the level shifter circuit.

2. The circuit of claim 1 wherein the level shifter circuit comprises an RC (resistor capacitor) network.

3. The circuit of claim 2 wherein the RC network comprises a first RC network that produces the p output voltage and a second RC network that produces that n output voltage.

4. The circuit of claim 3 wherein:
 the first RC network comprises a first resistor divider in parallel with a first capacitor divider;
 the second RC network comprises a second resistor divider in parallel with a second capacitor divider.

5. The circuit of claim 1 wherein the level shifter circuit comprises adjustable components such that a frequency response of the level shifter circuit can be adjusted by adjusting the adjustable components.
6. The circuit of claim 2 wherein the RC network comprises adjustable resistors and adjustable capacitors such that a frequency response of the RC network can be adjusted by adjusting the adjustable resistors and adjustable capacitors.

7. The circuit of claim 6 wherein the resistors and capacitors are adjusted such that the frequency response of the level shifter circuit level shifter circuit cancels out at least part of another frequency response.

8. The circuit of claim 3 wherein the common mode voltage adjusting feedback circuit sources current or sinks current through a respective resistor in each of the first and second RC networks.

9. The circuit of claim 8 wherein:

 the first RC network comprises a first resistor divider in parallel with a first capacitor divider;

 the second RC network comprises a second resistor divider in parallel with a second capacitor divider; and

 the respective resistor in each of the first and second RC networks is a respective first resistor in each of the first and second resistor dividers.

10. The circuit of claim 1 wherein the common mode voltage adjusting feedback circuit comprises:

 a comparator that compares the common mode output voltage to the reference voltage and produces an output based on the comparison;

 a filter that filters the output of the comparator to produce a filtered output;

 a digital to analog converter that receives the filtered output and produces a control signal.
11. The circuit of claim 1 wherein the common mode voltage adjusting feedback circuit comprises an analog feedback loop.

12. The circuit of claim 10 wherein:
 the common mode voltage adjusting feedback circuit comprises at least one current source;
 the control signal is for the at least one current source.

13. The circuit of claim 12 wherein the at least one current source comprises a first pull-up current source and a first pull-down current source each connected to the first RC network, and a second pull-up current source and a second pull-down current source each connected to the second RC network.

14. The circuit of claim 13 wherein at any instant, either:
 the first pull-up current source sources current through a resistor in the first RC network, and the second pull-up current source sources current through a resistor in the second RC network; or
 the first pull-down current source sinks current through a resistor in the first RC network, and the second pull-down current source sinks current through a resistor in the second RC network.

15. The circuit of claim 13 wherein:
 the first pull-up current source and the first pull-down current source both form part of a first sourcing and sinking current source; and
 the second pull-up current source and the second pull-down current source each form part of a second sourcing and sinking current source.
16. The circuit of claim 1 wherein the level shifter circuit comprises a first T-coil inductor for the p input voltage and a second T-coil inductor for the n input voltage.

17. The circuit of claim 16 further comprising:

 first and second termination resistors for the p input voltage and the n input voltage respectively;

 wherein the first T-coil inductor circuit is connected between a p input of the AC coupling circuit, a p input of the level shifter circuit, and one of the first termination resistors;

 the second T-coil inductor circuit is connected between a n input of the AC coupling circuit, an n input of the level shifter circuit, and the second termination resistor.

19. The integrated circuit of claim 18 wherein the reference voltage is set to equal a common mode voltage suitable for input to a remainder of the integrated circuit.

20. A method of AC coupling:

 performing level shifting with a level shifter circuit having a p input voltage and an n input voltage and producing a p output voltage and a p output voltage;

 using a feedback circuit to cause a common mode voltage output to tend towards a specified reference voltage, the common mode voltage output being an average of the p output and n output voltages of the level shifter circuit.
21. The method of claim 20 further comprising:

adjusting at least one adjustable component in the level shifter circuit to adjust a frequency response of the level shifter circuit.

22. The method of claim 20 further comprising adjusting at least one adjustable component in the level shifter circuit to adjust a frequency response of the level shifter circuit to cancel out at least part of a frequency response of an interconnect between a first circuit and a second circuit, the level shifter circuit and the feedback circuit both forming part of the second circuit.
Wide Band Flat Response
\[\frac{R_2}{R_1} = \frac{C_1}{C_2} \]

FIG. 4

Equalizing Response
\[\frac{R_2}{R_1} < \frac{C_1}{C_2} \]

FIG. 5
FIG. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - H03L 5/00 (2014.01)
USPC - 327/333

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - G01 R 31/02, 31/29; G06F 17/50; H03L 27/06; H03F 3/45; H03H 5/00, 7/00; H03K 5/22; H03L 5/00; H04B 3/14 (2014.01)

USPC - 324/537; 326/80, 81; 327/52, 54, 56, 63, 66, 280, 287, 311, 323, 332, 333; 330/257, 258, 259, 261; 375/222, 229; 716/122

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CPC - G01 R 31/2805; G06F 17/5054; H01L 23/5227; H03F 3/45475; H03K 19/018521; H04L 25/03057 (2013.01)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Orbit, Google Patents, Google

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2012/0043968 A1 (KOJIMA) 23 February 2012 (23.02.2012) entire document</td>
<td>2-4, 6-9, 21</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,107,882 A (GABARA et al.) 22 August 2000 (22.08.2000) entire document</td>
<td>8, 9, 13, 15</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,646,569 A (BRUHNS et al.) 08 July 1997 (08.07.1997) entire document</td>
<td>10, 12-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "R" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "G" document member of the same patent family

Date of the actual completion of the international search: 26 March 2014

Date of mailing of the international search report: 25 April 2014

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (July 2009)