PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

HO04L A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/56131

10 December 1998 (10.12.98)

(21) International Application Number: PCT/US98/11540

(22) International Filing Date: 4 June 1998 (04.06.98)

(30) Priority Data:

08/870,028 5 June 1997 (05.06.97) Us

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: SIDOROFF, Donald, D.; 14227 192nd Avenue,
N.E., Woodinville, WA 98072 (US). YANG, Yongqi; 2105
137th Place, S.E., Bellevue, WA 98005 (US).

(74) Agent: MICHALIK, Albert, S.; The Law Offices of Albert S.
Michalik, Suite 193, 704 — 228th Avenue, N.E., Redmond,
WA 98053 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ,BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: COORDINATING INPUT OF ASYNCHRONOUS DATA

(57) Abstract

A method and mechanism for handling user input.

Messages corresponding to the user input are placed in a
message queue. An input handler differentiates between
messages in the queue, such as handwritten character
strokes, which are to be handled in real time, and
ordered messages, such as characters, cursor movement
and editing commands, which are to be handled in a
synchronized order of input. The input handler handles
each ordered message only after completion of any
previous ordered message, while real time messages
are handled regardless of the completion status of
the ordered messages. In this manner, handwritten
character strokes are immediately written to the display
area. Ordered messages, which may correspond to
handwritten characters having a recognition delay time
associated therewith, are handled in the same order as
input by the user regardless of any recognition delay
time.

35
30 30 30
1 N 2L Ja { 34
/] £ L -
UserR /| [TUsEr /| |[VUSER [/ USER |,
INPUT input | | ToucH | outpur |,
pevice 1| [pEvice2| ,| INPUT | DEWICE |,
= — 1
vo
y
zz\ 28
"PROCESSOR COMPUTER
SYSTEM
20
24 -'-\
STORAGE \
80 [
\ o:\\ TIMER HANDWRITING | ||,
\ T RECOGNITION 111
F ENGINE /
messace | | 4SVNC .
QUEUE A
HANDLER | DISPLAY
WRITING
PROCESS

AL

AT
AU
AZ
BA
BB
BE
BF

BG
BJ

BR
BY
CA
CF

CG
CH
CI

CM
CN
CuU
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp

KE
KG
KP
KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

Coordinating Input of Asynchronous Data

FIELD OF THE INVENTION

The invention relates generally to computer systems,
and more particularly to a method and mechanism for

handling user input into a computer system from computer

input devices.

BACKGROUND OF THE INVENTION

Computer users input information into the computer
from various input devices, including a keyboard, mouse
and pen input device. Problems arise when the processing
of one type of input is slow relative to another. In
particular, when processing_handwritten characters input
via the pen device, the handwriting recognition
(translation) process takes a relatively substantial
amount of time compared to other types of input,
including other types of pen-initiated messages. Indeed,
while one or more characters are being translated, the
user can input additional information which is intended
to impact the pending character or characters, but may
wind up operating on others.

By way of example, if a user writes the string “ABC”
into a handwriting input area and then enters the
BackSpace key, (either via a conventional keyboard or by
touching the pen to a displayed, virtual BackSpace key),
the BackSpace key message may be received and handled
before the “C” is done processing. If this timing
problem occurs, the “B” character, and not the “C”
character, is erased, because information is handled in
the order it is processed rather than the order it is
input. Similarly, if the user writes a string such as
“DEF,” and then, while the “F” is being recognized, moves

the input focus (cursor) to between the “D” and “E,” the

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

string will be recognized by the application program as
“DFE” instead of the intended “DEF.”

The reason that the input is handled in the order
processed rather than the order received is that it is
even less desirable to wait until character recognition
is complete before handling subsequent input information.
More particularly, if the user writes a stroke with a pen
but does not receive rapid visual feedback on the pen
input display area, (because a previously-input character
is still being translated), the user tends to rewrite the
stroke, adding another, unwanted stroke to the input
queue. Having the pen temporarily appear to “run out of
ink” and then suddenly recover is extremely frustrating
to the user. Even more frustrating, however, is to have
the system not only appear to recover at some later
stroke, but restore any previous strokes that were not
displayed earlier.

As a result, one approach to these above problems
has been to ignore further input until the previous
character is recognized. This avoids the stroke-
rewriting problem, but slows the user down to the speed
of recognition and thus frequently makes it appear as if
the application is temporarily frozen. An alternative
approach has been to accept the above-described timing
problems (and other related problems) and hope the user
adapts to the system by not providing further input until
after appropriate visual feedback, such as indicative of
complete character recognition, is received. In short,
both approaches are poor tradeoffs, as the former makes
the system look and act inferior, while the latter forces
the user to learn and follow undesirable rules else risk

inputting something other than intended.

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, it is a general object of the present
invention to provide an improved method and mechanism for
handling user input.

In accomplishing that object, it is a related object
to provide a method and mechanism that handles user input
without delaying visual feedback of the input to the
user.

Another related object is to provide the method and
mechanism as characterized above that handles user input
in the order that the user enters the input.

Yet another object is to provide the above method
and mechanism for dealing with pen input, and
particularly the input of handwritten characters and
editing commands related thereto.

Another object is to provide the method and
mechanism as characterized above that is reliable,
flexible and extensible to future types of user input.

Briefly, the present invention provides a
method and mechanism for handling user input, wherein
messages corresponding to user input information are
rlaced into a message queue. An input handler
differentiates between real time messages (such as
handwritten character strokes) which are to be handled in
real time, and ordered messages (such as characters,
cursor movement and editing commands) which are to be
handled in a synchronized order of input. The input
handler handles each ordered message only after
completion of any previous ordered messadge, while real
time messages are handled regardless of the completion
status of the ordered messages.

Other objects and advantages will become apparent
from the following detailed description when taken in

conjunction with the drawings, in which:

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram representing a computer
system into which the present invention may be
incorporated;

FIG. 2 is a block diagram illustrating various
components used to handle input data in accordance with
one aspect of the present invention;

FIGS. 3 - 6 represent the exemplary contents of a
message queue at various times reflecting various states;
and

FIGS. 7 - 9 comprise a flow diagram representing the
general steps taken to handle various messages in

accordance with one aspect of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Turning to the drawings and referring first to FIG.
1, there is shown a computer system generally designated
20 into which the present invention may be incorporated.
The computer system 20 includes a processor 22
operatively connected to storage 24, the storage
including random access memory (RAM) and non-volatile
storage such as a hard disk-drive, optical drive or the
like. As can be appreciated, the non-volatile storage
can be used in conjunction with the RAM to provide a
relatively large amount of virtual memory via well-known
swapping techniques.

The processor 22 also connects through I/0 circuitry
28 to one or more input devices 30; - 303, such as a
keyboard and/or a pointing device such as a mouse. The
system 20 preferably includes means for inputting pen-
based information, including handwritten characters, such
as a pen and/or pen-sensitive (e.g., touch-sensitive)
input device 303. The system 20 also includes at least
one local output device 34 connected to the I/O circuitry
28 for communicating information, such as via a graphical

user interface, to the user of the system 20. The output

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

device 34 may include a liquid crystal display screen or
the like integrated with the pen-input device 303 which

taken together can be considered a pen-sensitive screen

35 (FIG. 2).

A preferred system 20 is a hand-held personal
computing device running on the Windows CE operating
system loaded in the storage 24. Other preferred systems
include tablet-based desktop personal computers running
under the Windows 95 or Windows NT operating systems. At
least one application program such as a word processing
program may also be loaded into the storage 24.

As shown in FIG. 2, the pen-sensitive screen 35
includes a visible text buffer 36 for displaying text
characters that have been input into the system 20. For
example, if the character is a handwritten character, the
system 20 recognizes the character from among a set of
possible characters, (e.g., Unicode code points), and
displays the recognized character in the text buffer 36
in an appropriate font and font size.

Within the text buffer 36, the user may adjust the
input focus by adjusting the position of a cursor or the
like therein, generally by touching the pen to the
desired cursor location and/or dragging the pen to mark
text. The screen 35 preferably includes a button input
area 38 (FIG. 2), which may provide a virtual keyboard
through which the user may directly input characters,
character-based editing commands and so on. For example,
the buttons may represent characters, such that when
contacted by a pen, the character is input into the
system as if it was typed by the user on a conventional
keyboard. 1In addition, the user may use such buttons to
enter editing commands, such as BackSpace or Enter
commands, by touching the screen at an appropriately
displayed button in the area 38.

As shown in FIG. 2, for inputting handwritten

characters, the display/touch-sensitive screen 35

10

15

20

25

30

35

WO 98/56131 PCT/US98/11540

typically includes two or more pen input display areas
40, 42. 1In general, the pen input display areas 40, 42
are used to receive handwritten characters from the user
in the form of strokes. The user typically alternates
character input between the boxes 40, 42. For example, a
user will write in the first box 40, with the system
echoing the pen movement on the screen by darkening or
coloring the contacted areas, giving the user the
impression that the pen has ink therein. When the user
begins writing in the second box 42, it is assumed that
the character in the first box 40 is complete. The
stroke information from the first box 40 is then sent to
a handwriting recognition engine 44, and the displayed
strokes (ink) in the first box 40 are erased. Similarly,
the same actions occur in the second box 42, i.e., the
strokes are sent for character recognition thereof and
the second box 42 erased upon a detection that the user
is writing in the first box 40. A time-out when no pen
activity is detected will also be treated as a completed
character, as will a direct command from the user,
entered via the button input area 38 or the like
indicating that the user is finished with a character.

In accordance with one aspect of the present
invention and as best represented in FIG. 2, an
asynchronous input handler 46 is provided for
coordinating the various input events. The asynchronous
input handler 46 coordinates all events with respect to
the state of the recognition engine 44 (or engines) and
the state of the pen-sensitive screen 35 in a manner that
maintains the order of events intended by the user, while
handling certain events in real time. More particularly,
the asynchronous input handler 46 differentiates between
certain pen events and other types of events to maintain
the order of completed character and other user-command
input while handling the display of electronic ink in

real time. As a result, the system 20 rapidly updates

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

the input areas 40, 42 and thus does not appear to free:ze
while the handwriting or other (e.g., speech) recognition
is taking place, yet the order of user input is
maintained in the order intended by the user.

To accomplish the above-described coordination, the
system 20 places messages corresponding to input from any
of the user input devices 30; - 303 into a message queue
50, preferably a Windows® message queue. For example,
pen down events, pen move events and others are placed as
messages in the message queue 50. It should be noted
that in certain systems, there is no distinguishing
between pen and mouse events, e.g., a pen down 1is treated
the same as a left button down event, a pen move as a
mouse move, and a pen up as a left button up. Similarly,
it should be noted that the system 20 may preprocess some
of the messages, such as keyboard messages and button
messages from the button input area 38, and convert those
messages into character or editing command messages which
are then placed in the message queue 50. For example, a
pen down event on a displayed BackSpace button in the
button input area 38 may cause an IDC BackSpace (Index
Dialog Control) message to appear in the message queue
50. Alternatively, a button down event, at screen
coordinates corresponding to the BackSpace key, may be
converted to a BackSpace command by the asynchronous
input handler 46 as needed. Note that some hand-held
devices use a “Delete” key to delete the previous
character. 1In any event, button and pen/mouse move
events, characters and editing commands appear as
messages in the message queue 50.

In keeping with the invention, the asynchronous
input handler 46 examines and otherwise handles all such
messages. Thus, for example, pen movements, detected in
the pen input display'areas 40, 42 by a pen movement
detection process or the like, do not directly result in

ink being drawn on the pen-detected locations. Instead,

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

the ink is indirectly drawn as the asynchronous input
handler 46 identifies pen messages in the message queue
at the appropriate pen input coordinates, and sends
corresponding drawing messages to the user output device
34 (i.e., to a display writing process 52 which writes to
the pen input display areas 40 or 42). Similarly, the
hardware and/or software that detects pen movement does
not send pen strokes to the handwriting recognition
engine 44, but instead places pen movement information as
messages in the message queue 50.

In accordance with another aspect of the invention,
the asynchronous input handler 46 differentiates between
various types of messages. Those messages which are to
be handled in real time, such as those resulting in ink
being written to the areas 40 and 42, are processed
without delay. Those messages which are to be handled in
a specific order, such as character and character editing
commands, are processed as soon as the previous such
message has been handled and completed. By way of
example, a directly input BackSpace command character is
not handled until the preceding character has been
completely handled. Depending on how the preceding
character was input, this may require waiting until the
handwriting recognition engine 44 has completed its
recognition process. As can be appreciated, it
ordinarily takes substantially longer to translate
strokes into a character than to receive a code from
input hardware that directly identifies a key.

Iﬁ keeping with the invention, the handwriting
recognition engine 44 runs in a separate thread and
communicates with the asynchronous input handler 46
through a semaphore protected area. This allows the
handwriting recognition engine 44 to run in parallel with
the ink and text displays from the asynchronous input
handler 46, thus enabling real-time messages to be

handled while a recognition is pending.

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

Turning now to an explanation of the operation of
the invention with particular reference to the flow
diagram of FIG. 4, a plurality of user input messages are
received in the message gqueue 50 as represented in the
diagrams of FIGS. 3 - 6. 1In the following examples, for
simplicity it is assumed that only certain types of
events occur, including pen down, pen movement and pen up
events in the user input boxes. These pen events write
the characters “ABC” followed by a keyboard key or button
entry which directly enters a BackSpace message. Then, a
handwritten “E” is input to the system. In other words,
the user intends to write “ABE” but accidentally writes a
“C” after the “B” whereby the “C” is to be deleted by the
BackSpace command, and the “E” written thereafter.

As the user starts writing the letter “A” in the pen
input display box 40 (FIG. 2), a pen down message is
received (as a left mouse button down event) in the
message gqueue 50, followed by a series of movement
messages and a pen up (WM LButtonUp) message. Note that
depending on the circumstances, each message may be
handled and removed from the queue 50 before the next
message 1s ever placed in the queue 50. However for
purposes of simplicity and clarity, each of FIGS. 3 - 6
represent a plurality of event-driven messages in the
message gueue 50. Moreover, rather than show actual
coordinates, the identity of the box (as numbered in FIG.
2) wherein the pen event took place is shown in
parentheses in FIGS. 3 - 6.

At step 400 of FIG. 4, the asynchronous input
handler 46, which is in a message loop, peeks in the
message queue 50 (via the Windows PeekMessage () function
or the like) and examines the message, i1f any. As
generally shown in FIG. 4, the asynchronous input handler
46 handles each pen (mouse) message based on the type of
message received, the coordinates where the pen message

was originated, and the current state of the display

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

input areas. For example, with the pen down event that
starts the handwritten “A” character, the asynchronous
input handler 46 knows via the coordinates that a pen
down has occurred in the left user input box 40 (FIG. 3)
and that no other strokes have yet been written in the
right input box 42. Accordingly, step 404 branches to
step 406 to determine if the pen down was in the same
input box. Because at this time the state of these
display areas is empty, there is no previous stroke
information to send to the handwriting recognition engine
44. Accordingly, the asynchronous input handler 46
treats the pen down message as the start of a stroke in
the same box without passing any information to the
handwriting recognition engine 44, i.e., step 406
branches to step 408. At step 408, a timer 60 is reset
(described below), and at step 412 the message is removed
(e.g., via the Windows GetMessage () function) from the
message queue 50 and ink is caused to be drawn at the
appropriate coordinates in the user input box 40.

The process then loops back to step 400 to peek at
the next message, if any. Since the user is inputting a
stroke, the user next moves the pen, generating a series
of pen move messages as also represented in FIG. 3. Each
such message is detected by the asynchronous input
handler 46 in step 420 as a pen move message, and, since
the movement is in the same box 40, at step 412, each
message is removed from the message queue 50 and ink
drawn. After each move event is handled, the process
loops back to step 400 to peek at the next message, if
any. Note that in the present example, the user keeps
the pen within the boundaries of the user input box 40,
and the pen continues to move (step 420) until the user
lifts the pen. To ensure that the strokes stay within
the box while allowing the user to safely write to the
very edge of the box, coordinates are trimmed to the

nearest edge of the current box. Thus, once a stroke

— 10 —_

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

starts in a box, it will finish in that box, and the user
will not inadvertently terminate a character by straying
from the box boundaries.

Ultimately, when the user lifts the pen, a pen up
(LbuttonUp) message (FIG. 3) is detected at step 430,
whereby at step 432 the asynchronous input handler 46
tests the coordinates of the pen-up event to determine if
the action occurred in the same input box 40. Likewise,
an input from the keyboard, received in a message when
the pen is down, will terminate the current stroke. 1In
either case, the asynchronous input handler 46 considers
such an event to be the completion of a stroke.
Consequently, at step 434, the asynchronous input handler
46 removes the pen-up message from the queue 50 and
starts the time-out timer 60.

In general, the time-out timer 60 operates to send
any input in the box 40 (or the box 42) to the character
recognition engine 44 if the user has input strokes, but
after a period of time has neither written in the other
box nor directly commanded the system to recognize the
character. As will become apparent, a time-out event is
treated as 1f the user either directly commanded the
system to recognize a character, or began writing in the
other box (as described with reference to FIG. 8). In
the present example, however, the user continues to write
in the input box 40 before the time out event occurs.

Thus, step 404 detects another pen down event in the
same box 40, whereby step 406 branches to step 408 which
resets the timer 60. Note that the timer 60 is reset
because such an action in the same box is considered to
be the start of another stroke, and thus the user assumed
to be still writing the same character. In the present
example, as evident from FIG. 3, the user continues to
draw the new stroke, (i.e., move the pen), which is

handled as described above with reference to steps 420,

10

15

20

25

30

35

WO 98/56131 PCT/US98/11540

422 and 412. Eventually, the user lifts the pen (steps
430 - 434) and finishes writing the first character.

When the user puts the pen down in the next box 42,
as shown in the last message of FIG. 3, (which is also
the first message of FIG. 4}, step 406 detects the new
screen area and as a result branches to step 450 of FIG.
8. Because the user has begun to write in something
other than the same box 40, the asynchronous input
handler 46 considers the previous character to be
finished by the user. Note that if the pen down is in an
invalid area, another action may alternatively be taken,
such as ignoring such an undefined pen down. In any
event, the next message is in the other beox 42, and thus
the process executes step 450.

At step 450, a determination is made as to whether a
recognition is pending in the handwriting recognition
engine 44. A flag, which is set by the asynchronous
input handler 46 when strokes are sent for recognition
and reset by the handwriting recognition engine 44 when
the recognition is complete, is used for this test. At
this time, no recognition is pending, and thus step 452
sends the stroke information from box 40 to the
handwriting recognition engine 44, after which step 454
sets the recognition flag. The process then returns to
step 414 which erases the ink in the old box 40 and tests
the coordinates of the new pen down to determine how to
handle the event. More particularly, if the pen down was
in the other input box 42, then ink is to be drawn and
the message removed. If the pen down is elsewhere, other
actions may be taken as described in more detail below.

In the present example, the user is writing a “B” in
the second input box 42. Accordingly, the pen down event
(WM _LbuttonDown) in this box 42 is detected in the queue
50 (FIG. 4) at step 416, whereby the process branches to
step 412. Step 412 removes this message from the queue

50 and draws ink at the pen (button) down coordinates

- 12 —

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

within the box 42. As can be readily appreciated, the
subsequent pen move events and pen up event in this box
42, as shown in FIG. 4, are handled as described above
with reference to steps 420 - 426 and 430- 434,
respectively.

The user continues by beginning to write a “C” in
the first box 40. Again, step 406 branches the process
to step 450 of FIG. 8. This time, however, the
handwriting recognition engine 44 is still recognizing
the “A” character, and thus the state of the “pending”
flag causes the process to branch to step 456. Step 456
enqueues a send message or the like (e.g., via the
Windows PostThreadMessage () function) into the message
queue 50, while step 454 saves the stroke data (e.g., as
a bitmap or other appropriate format as reguired) for
later use by the handwriting recognition engine 44. The
input box 42 is erased at step 414, and steps 416 and 412
are executed to begin drawing the “C” ink. In keeping
with the invention, this “send-to-the-handwriting
recognition engine 44” message, shown in italics in FIG.
4, is not removed from the message queue 50. Instead,
this message will be removed and handled when the
handwriting recognition engine 44 clears the flag to
indicate that no character is pending.

The process continues handling the “C” stroke input
in the message box 40, as shown in FIG. 4, by handling
the pen move messages to draw ink (step 412) in the
manner described above. For purposes of the present
example, while the “C” is being input, the handwriting
recognition engine 44 returns with the “A” having been
recognized (or returns a set of possible alternatives
including the “A”). The flag change can be detected with
a simple test before beginning the steps of FIG. 7. When
detected, any messages left in the queue 50 are handled
and removed until the flag is again set for another

pending recognition, or until no messages remain.

- 13 -

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

Thus, the “A” input is sent to the appropriate
buffer or program (e.g., word processor) as if it was any
other keyed input. Also, the “A” may be displayed in the
text box 36. Then, the saved “B” stroke information is
sent to the handwriting recognition engine 44 and the
flag is again set to indicate the pending recognition.

The user then enters a BackSpace, such as via the
keyboard 30:; or button input area 38, to erase the
completed “C” character. At this time, the asynchronous
input handler 46 posts a “send C data to handwriting
recognition engine 44” message into the queue 50. As
described above, the system may write a BackSpace message
into the queue 50 instead of the pen down message and its
coordinates. If not, however, the asynchronous input
handler 46 can take care of the conversion. In any
event, however, a BackSpace message remains in the gueue
50 following the “send C” message. In accordance with
one aspect of the invention, the BackSpace is not yet
handled because at least one character is still pending
in the handwriting recognition engine 44. Note that as
described below, in some implementations (including
Microsoft IME 98), the BackSpace message is a special
case that can be recognized and used by the asynchronous
input handler 46 to terminate the ongoing recognition of
a handwritten character directly preceding the BackSpace
message. For purposes of the present example, it is
assumed that this enhancement is not yet active to
demonstrate the handling of ordered messages provided by
the present invention. As can be appreciated, however,
even with the enhancement, the handling of ordered
messages in accordance with the present invention
provides advantages in many other situations, e.g., other
keystroke characters or commands are not handled before
any ongoing recognitions are complete, a BackSpace does
not cancel an ongoing recognition two or more characters

prior thereto, and so on.

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

When the “B” recognition is complete, the process
next sends the “C” to the handwriting recognition engine
44. During the pending recognition, the user begins to
write “E” strokes into the input box 42. These events
cause ink to be drawn immediately as described above,
while the other, ordered messages are left in the gqueue
until all preceding ordered messages are handled.

In the present example, once the “C” is returned by
the handwriting recognition engine 44, the flag is
cleared and the subsequent BackSpace is handled without
delay. Thus, the “C” is erased and the “E” character,
when recognized, will be properly written to the text box
36 following the “AB” characters. As described above,
the process maintains the order intended by the user
while not delaying the writing of ink into the user input
display area boxes 40, 42.

If no recognition is pending, the process works in
the same general way except that all messages, including
pen events, are handled immediately. This is represented
in FIG. 9, where if no recognition is pending at step
460, the process branches to step 462. As detected by
step 462, pen events in the text box 36 are used to move
the cursor, mark text and so on as represented by step
464, and the message is removed. Other, non-text box
events such as BackSpace key inputs, typed characters and
so on are removed and handled immediately (e.g.,
displayed in the text box and/or sent to a buffer or
other message gqueue of a program) as represented by step
466. Note that instead, if a recognition is pending,
step 460 leaves such other event messages in the message
queue 50 as described above.

Although not necessary to the invention, it should
be noted that the asynchronous input handler 46
alternatively can detect a BackSpace message following a
“send to recognizer” message that has not yet been sent

to the handwriting recognition engine 44. In such an

—_ 15 -

10

15

20

25

30

35

WO 98/56131 PCT/US98/11540

event, the asynchronous input handler can cancel the two
messages, since regardless of the resulting character,
when recognized, it will be erased. LikeWise, detection
of a succeeding BackSpace by the asynchronous input
handler 46, while a recognition is pending, alternatively
can result in the asynchronous input handler 46
communicating with the handwriting recognition engine 44
to halt the pending recognition process for the given
character, thereby further enhancing system performance.

As shown in FIG. 6, a pen down event may also be
located in the text box 36. In the present example, the
user thereafter lifts the pen up without dragging it,
intending that the input focus (cursor) be moved to an
appropriate location in the text box 36 such as between
the “A” and “B” characters. However, in keeping with the
invention, such a movement is not allowed by step 460
until all preceding synchronous events have been handled.
In other words, if a character recognition is pending at
step 460, the asynchronous input handler 46 leaves the
pen down, pen up commands in the queue 50, for sequential
processing after all preceding results from the
handwriting recognition engine 44 have been handled. For
example, if the user has handwritten “ABE” into the
system, and while the “E” is being recognized, the user
clicks between the “A” and the “B” and writes a “D”
character, the insertion point (input focus) will not
appear to change until the “E” appears at the end. At
that time, the “D” will appear between the “A” and the
“B” in the text buffer 36. Without waiting for the
completion of the recognition, the result would have been
the erroneous string “AEDB” instead of the intended
string “ADBE.” Although the user may have to wait a
short while before receiving visual feedback, the order
is preserved.

In the above-described manner, the asynchronous

input handler handles user input both where no

—_ 16 -_

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

recognitions are pending, or where one or more
recognitions are pending. The order is maintained in the
intended order input by the user, yet there is no delay
in receiving visual feedback of stroke input. As can be
readily appreciated, the asynchronous input handler 46
does not simply differentiate between pen events and
character input, but takes appropriate actions based on
the type of message, the accompanying coordinates, if
any, and the state of the system.

In addition to the recognition of handwritten
characters, the present invention is flexible and
adaptable to all types of input including speech input.
More particularly, speech input, whether output as words,
syllables and/or characters, also has a recognition time
associated therewith. During this recognition time,
other user input such as handwritten character strokes,
keyboard input and other speech is handled in the order
entered by the user. To this end, ordered messages are
left enqueued if a recognition flag is pending, while
real time messages such as those reflecting stroke or
speech input are handled immediately.

As can be seen from the foregoing detailed
description, there is provided an improved method and
mechanism for handling user input, which handles user
input with selected visual feedback of the input to the
user. The method and mechanism handles user input in the
order that the user enters the input, including the input
of handwritten characters and editing commands related
thereto. The method and mechanism is reliable, flexible
and extensible to future types of user input.

While the invention is susceptible to various
modifications and alternative constructions, a certain
illustrated embodiment thereof is shown in the drawings
and has been described above in detail. It should be
understood, however, that there is no intention to limit

the invention to the specific form disclosed, but on the

- 17 -

WO 98/56131 PCT/US98/11540

contrary, the intention is to cover all modifications,
alternative constructions, and equivalents falling within

the spirit and scope of the invention.

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

WHAT IS CLAIMED IS:

1. In a computer system, a method of handling user
input, comprising the steps of, placing messages
corresponding to user input information into a message
queue, differentiating between real time messages which
are to be handled in real time and ordered messages which
are to be handled in a synchronized order of input,
handling each ordered message only after completion of
any previous ordered message, and handling real time

messages regardless of the completion status of ordered

messages.

2. The method of claim 1 wherein the user input
includes handwritten character information, wherein
messages corresponding to the handwritten character
information are placed as ordered messages in the message
queue, and wherein the step of handling each ordered
message includes the step of providing the character

information to a handwriting recognition engine.

3. The method of claim 2 wherein the user input
includes keystroke character information from a physical

or virtual keyboard.

4. The method of claim 1 wherein the user input
includes speech information, wherein messages
corresponding to the speech information are placed as
ordered messages in the message queue, and wherein the
step of handling each ordered message includes the step
of providing the speech information to a speech

recognition engine.

5. The method of claim 1 wherein the step of

handling each ordered message includes the step of

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

polling the completion status of the handling of the

previous ordered message.

6. The method of claim 1 wherein the step of
handling each ordered message includes the step of
receiving information indicative of the completion of the

handling of the previous ordered message.

7. The method of claim 1 wherein the user input
includes pen events for inputting character information,
wherein messages corresponding to the pen events for
inputting character information are placed as real-time
messages in the message queue, and wherein the step of
handling each real time message includes the step of

causing display changes corresponding to the pen events.

8. The method of claim 1 wherein the user input
includes a command to delete a previous character, and
wherein the message corresponding to said command is a
real-time message handled by cancelling the recognition

of the previous character.

9. The method of claim 1 wherein the user input
includes a command to delete a previous character, and
wherein the message corresponding to said command is an
ordered message until a handwritten character previous
theretc is being recognized, and a real-time message when
the previous character is being recognized and handled by

terminating the recognition of the previous character.

10. In a computer system, a mechanism for handling
user input, comprising means for placing messages
corresponding to user input information into a message
queue, an input handler for differentiating between real-
time messages which are to be handled in real time and

ordered messages which are to be handled in a

— 20 -

WO 98/56131 PCT/US98/11540

10

15

20

25

30

35

synchronized order of input, the input handler including
means for detecting completion of a previous ordered
message, and further including means for handling each
ordered message only after completion of any previous
ordered message and for handling real time messages

regardless of the completion status of ordered messages.

11. The mechanism of claim 10 further comprising
means for inputting handwritten character information,
wherein messages corresponding to the handwritten
character information are placed as ordered messages in
the message queue, and further comprising a handwriting
recognition engine, wherein the means for handling each
ordered message includes means for providing the
character information to the handwriting recognition

engine.

12. The mechanism of claim 11 further comprising
means for inputting keystroke character information from

a physical keyboard.

13. The mechanism of claim 11 further comprising
means for inputting keystroke character information from

a virtual keyboard.

14. The mechanism of claim 11, wherein the means
for detecting completion of a previous ordered message
includes a flag having a state set by the handwriting
recognition engine when recognition of character

information is complete.

15. The mechanism of claim 10 further comprising
means for inputting speech information, wherein messages
corresponding to the speech information are placed as
ordered messages in the message queue, and further

comprising a speech recognition engine, wherein the means

- 21 -

WO 98/56131 PCT/US98/11540

10

15

20

25

30

for handling each ordered message includes means for
providing the speech information to the speech

recognition engine.

l6. The mechanism of claim 10 wherein the user
input includes pen events for inputting character
information, wherein messages corresponding to the pen
events for inputting character information are placed as
real-time messages in the message queue, and wherein the
means for handling each real time message includes means
for causing display changes corresponding to the pen

events.

17. In a computer system, a method of handling
input from a user, comprising the steps of:

placing messages corresponding to keystroke input
and messages corresponding to pen events, including pen
event messages related to handwritten characters, into a
message queue;

determining from the messages in the message queue
when the user has finished a character, and when the
character is finished, sending information corresponding
to the character to a handwriting recognition engine;

awaiting a result from the handwriting recognition
engine, and while awaiting said result, determining which
pen event messages are caused by the writing of a
handwritten character stroke and handling only those
messages by outputting information corresponding to the
handwritten character stroke to a display: and

handling any message in the message gueue while not
awaiting a result from the handwriting recognition

engine.

WO 98/56131

35

PCT/US98/11540

30 30 30
1\ 2\ 3 (34
| T~ 7 —
USER / USER /| ||‘USER |/ USER |
INPUT INPUT | | ToucH | ouTpuT |,
DEVICE 1| |DEVICE2| | INPUT | DEVICE |
> 110
3
22\ 28
\
PROCESSOR COMPUTER
SYSTEM \
| 20
24
! ~\
STORAGE \
50 60
\ 46\\ TIMER HANDWRITING "
\ T RECOGNITION |+
\ ENGINE /
MESSAGE | |’ ASYNC
INPUT L. 52
QUEUE [™]
HANDLER I pispLAY)
WRITING /|
PROCESS
FIG. 1
1/6

SUBSTITUTE SHEET (R

ULE 26)

(92 31nY) L33HS 31nLILSANS

o/

KEYBOARD
MESSAGES

BUTTON
MESSAGES

MOUSE

MESSAGES
\.

PEN
MESSAGES

SPEECH
MESSAGES

S

MESSAGE
QUEUE

4)
46\ HANDWRITING
\ l . RECOGNITION
ENGINE
_ J
ASYNCHRONOUS INPUT 44 -
HANDLER > SPEECH
RECOGNITION
' ENGINE
J
36 62 —
35"} v ‘\\\
Y
USER INPUT DISPLAY AREA (TEXT BOX)
38
d N ~N 7 ~ /
PEN INPUT PEN INPUT \ \ — Y
DISPLAY DISPLAY —) [
AREA AREA L
/ o N [) (™)
40 J 42 / L \

N

FIG. 2

I€195/86 OM

OprSI1/86S1/1LOd

WO 98/56131 PCT/US98/11540

WNM_LButtonDown (box 40)
WM_MouseMove (box 40)

WM_MouseMove (box 40) >
WM_LButtonUp (box 40) ‘/
WM_LButtonDown (box 40)
WM_MouseMove (box 40)

WM_MouseMove (box 40)
WN_LButtonUp (box 40)
WM_LButtonDown (box 42)

FIG. 3

WM_LButtonDown (box 42)
WM_MouseMove (box 42)

WM_MouseMove (box 42) 50

WM_LButtonUp (box 42)

WNM_LButtonDown (box 40) ‘J
[Send box 42 to Recognizer]
WM_MouseMove (box 40)

WM_MouseMove (box 40)
WN_LButtonUp (box 40)
[Send box 40 to Recognizer]
IDC_BackSpace

FIG. 4

3/6
SUBSTITUTE SHEET (RULE 26)

WO 98/56131

PCT/US98/11540

[Send box 40 to Recognizer]
IDC_BackSpace
WN_LButtonDown (box 42)
WM_MouseMove (box 42)

WNM_MouseMove (box 42)
WNM_LButtonUp (box 42)
WM_LButtonDown (box 42)
WM_MouseMove (box 42)

WM_MouseMove (box 42)
WM_LButtonUp (box 42)

50

L

FIG. 5

IDC_BackSpace
WM_LButtonDown (box 36)
WM_LButtonUp (box 36)
WM_LButtonDown (box 40)
WM_MouseMove (box 40)

WM_MouseMove (box 40)
WN_LButtonUp (box 40)

50

FIG. 6

4/6

SUBSTITUTE SHEET (RULE 26)

WO 98/56131

FIG. 7

PCT/US98/11540

2

YES
SAME
BOX?

NO

TO/FROM
FIG. 8

ERASE
INK

—/

YES

408

\

404

NO NO

406

RESET
TIMER

414

y

SAME NO
BOX?

412

NO
TO/FROM

REMOVE
MESSAGE,
DRAW INK

o\

FIG. 9

!

PEEKAT [~
MESSAGE IN | 400
QUEUE
430
420 NO
PEN UP?

YES

422

YES
434

42

426

\

START
TIME-OUT
TIMER

TO/FROM
FIG. 9

432 A

YES

REMOVE
MESSAGE

TO/FROM
FIG. 9

l

5/6

SUBSTITUTE SHEET (RULE 26)

WO 98/56131 PCT/US98/11540

452
456
ENQUE SEND
TO SEND TO
RECOGNIZER RECOGNIZER
458 454
SAVE))
DATA SET FLAG
' -
TO
FIG. 7

460

PENDING
?

462

EVENT IN

TEXT BOX 464
466 » YES /
HANDLE, ADJUST
REMOVE CURSOR,
REMOVE

TO v]
FIG.7

6/6
SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

