发明名称
一种综合利用脱脂米糠的方法

摘要
本发明属于资源综合利用技术领域，特别涉及一种综合利用脱脂米糠的方法。在脱脂米糠中加入液化酶进行液化，固液分离获得上清液 A 和残渣 A，上清液 A 直接作为发酵用原料；残渣 A 加水混匀后调节 pH 值为酸性，然后固液分离获得上清液 B 和残渣 B；上清液 B 调节 pH 为碱性后进行过滤，所得滤饼干燥后获得植酸盐产品；残渣 B 加水后与碱性蛋白酶反应，固液分离获得残渣 C 和上清液 C。残渣 C 经后处理获得膳食纤维产品，上清液 C 后处理获得米糠蛋白产品，其中，在步骤 1) 液化后或者步骤 3) 进行酶解前加入糖化酶进行糖化处理。本发明的方法脱脂米糠综合利用率高，减少了生产过程废弃物的产生。
1. 一种综合利用脱脂米糠的方法，其特征在于，步骤如下；

1) 将脱脂米糠中加入其 3-6 倍重量的水，1-2% 质量比例的液化酶，于 90℃ 液化至碘试完全，分离得到残渣 A 和上清液 A，上清液 A 直接作为生产发酵用培养基；

2) 将残渣 A 加入 5-7 倍重量的水，调节 pH 值至 3.9-4.0，在 60℃ 搅拌反应 4.5-5.5h，过滤得到残渣 B 和上清液，用水清洗残渣 B，合并上清液与清洗液为上清液 B，用氢氧化钙溶液调节 pH 至 4.5-5.0，后用氨水调节 pH 至 9.0-10.0，过滤，得到的滤饼清洗后烘干得到植酸盐产品；

3) 残渣 B 加入 3-5 倍重量的水，调节 pH 值至 4-5，加入残渣 B 质量 2-3% 的糖化酶糖化 1-2h，过滤，滤渣加入 3-5 倍重量的水，调节 pH 值至 8.5-9.0，加入 0.2-0.3% 碱性蛋白酶 55-60℃ 酶解 1-2h，分离得到残渣 C 和上清液 C，残渣 C 中加入 3-4 倍重量加热到 55-60℃ 的 95% 乙醇溶液静置 1h 后过滤，用水清洗滤饼后烘干得到膳食纤维产品；上清液 C 调节 pH 值至 6.5-7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品。

2. 一种综合利用脱脂米糠的方法，其特征在于，步骤如下；

1) 在脱脂米糠中加入 3-6 倍重量的水，1-2% 的液化酶，在 90℃ 进行液化至碘试完全；冷却至 60℃，调节 pH 值至 4-5，加入 2-3% 糖化酶糖化 1-2h，分离后得到残渣 A 和上清液 A，上清液 A 直接作为发酵用原料；

2) 将残渣 A 加入 5-7 倍重量的水，调节 pH 值至 3.9-4.0，在 60℃ 搅拌反应 4.5-5.5h，过滤得到残渣 B 和上清液，用水清洗残渣 B，合并上清液与清洗液为上清液 B，用氢氧化钙溶液调节 pH 至 4.5-5.0，后用氨水调节 pH 至 9.0-10.0，过滤，得到的滤饼清洗后烘干得到植酸盐产品；

3) 残渣 B 加入 3-5 倍重量的水，调节 pH 值至 8.5-9.0，加入 0.2-0.3% 碱性蛋白酶，55-60℃ 酶解 1-2h，分离得到残渣 C 和上清液 C，残渣 C 加入 3-4 倍重量加热到 55-60℃ 的 95% 乙醇溶液，常温静置 1h 后过滤，用水清洗滤饼后烘干得到膳食纤维产品；上清液 C 调节 pH 值至 6.5-7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品。
一种综合利用脱脂米糠的方法

技术领域
[0001] 本发明属于资源综合利用技术领域，特别涉及一种综合利用脱脂米糠的方法。

背景技术
[0002] 我国每年稻谷总产量在2亿吨左右，加工过程中会副产1000多万吨米糠。米糠的营养丰富，其中蛋白质含量约12-18%，脂肪16-20%，矿物质12%，膳食纤维约14%，碳水化合物总量约50%。
[0003] 脱脂米糠是利用米糠生产米糠油的副产品，脱脂过程使米糠中的脂肪酶失去活性，除去了米糠中的真菌、细菌等不良物质，保留了米糠的天然营养成分。目前，国内大部分脱脂米糠只是作为饲料原料使用，附加值较低，大量的营养成分未能得到再加工和综合利用。目前脱脂米糠利用的方法主要是单—提取植酸盐或者米糠蛋白和米糠纤维，由于未能对脱脂米糠中的淀粉和糖类物质进行处理，生产过程中易发生颜色反应，得到的各种产品颜色较深、纯度较低，且过程中产生大量废弃物。
[0004] 脱脂米糠中含有丰富的碳水化合物，可作为各种生物发酵制品的发酵生产用培养基，脱脂米糠约含有12-20%的低过敏性蛋白质，可用于开发各种米糠蛋白产品；脱脂米糠中含有约6-10%的植酸，是目前工业化生产植酸盐及其衍生物（植酸或其酯）的理想原料；脱脂米糠中富含纤维素和半纤维素，是制造膳食纤维的良好原料。因此，可以采用合理的工艺进行综合利用来提高脱脂米糠的附加值。
[0005] 现在大部分的研究集中在对于米糠油和米糠蛋白的提取利用方面，如CN101575620A提出了一种综合利用米糠生产发酵用原料、米糠油及蛋白饲料的方法。主要以米糠为原料，用淀粉酶、糖化酶处理，上清液作为生物发酵用原料的碳源；残渣用来提取油脂，得到米糠油；提油后的残渣提取蛋白。该法没有对米糠中所含的纤维、植酸进行分离处理。
[0006] CN102178151A提供了一种利用脱脂米糠联产制备米糠膳食纤维和米糠蛋白的方法，利用脱脂米糠为原料，经过碱处理、离心处理及酶处理降解技术、离心沉淀及等电点沉淀技术，实现了米糠膳食纤维与米糠蛋白的联产制备。该法对米糠中所含的淀粉糖分、植酸成分没有进行分离处理。
[0007] 上述方法没有对米糠主要成分进行深度分离，只是分离了其中的一部分，降低了米糠资源的增值率。

发明内容
[0008] 本发明的目的在于提供一种综合利用脱脂米糠的方法，实现对米糠中的主要成分进行综合利用，可以生产发酵用原料、植酸盐、米糠蛋白和米糠纤维。
[0009] 本发明采用的技术方案如下：
[0010] 一种综合利用脱脂米糠的方法，步骤如下：
[0011] 1）在脱脂米糠中加入液化酶进行液化，固液分离获得上清液A和残渣A，上清液A
直接作为发酵原料；
[0012] 2) 残渣 A 加水混匀后调节 pH 值为酸性，然后固液分离获得上清液 B 和残渣 B，上
清液 B 调节 pH 值为碱性后进行过滤，所得滤饼干燥后获得植酸盐产品；
[0013] 3) 残渣 B 加水后与碱性蛋白酶反应，固液分离获得残渣 C 和上清液 C。残渣 C 经后
处理获得膳食纤维产品，上清液 C 后处理获得米糠蛋白产品。
[0014] 其中，在步骤 1) 液化后或者步骤 3) 进行酶解前加入糖化酶进行糖化处理，
[0015] 步骤 2) 中调节上清液 B 时依次用氯化钙溶液和氨水调节 pH 至为 4.5-5.0 和
9.0-10.0。具体的，所用的氯化钙和氨水的质量浓度可选用 10%。
[0016] 残渣 A 加水混匀后调节 pH 值为 3.9-4.0。
[0017] 步骤 3) 中加入碱性蛋白酶后于 55-60℃酶解 1-2h。
[0018] 残渣 C 加入 3-4 倍重量加热到 55-60℃的 95% 乙醇溶液，常温静置 1h。滤，过滤，用水
清洗滤饼后烘干得到膳食纤维产品。
[0019] 上清液 C 调节 pH 值至 6.5-7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品。
[0020] 具体的，步骤如下：
[0021] 1) 将脱脂米糠中加入其 3-6 倍重量的水，1-2% 质量比例的液化酶，于 90℃液化直
至试液完全，分离得到残渣 A 和上清液 A。上清液 A 直接作为生产发酵用培养基；
[0022] 2) 将残渣 A 加入 5-7 倍重量的水，调节 pH 值至 3.9-4.0，在 60℃搅拌反应
4.5-5.5h，过滤得到残渣 B 和上清液，用水清洗残渣 B，合并上清液与清洗液为上清液 B，用
氨化钙溶液调节 pH 至 4.5-5.0，后用氨水调节 pH 至 9.0-10.0，过滤，得到的滤饼清洗后
烘干得到植酸盐产品；
[0023] 3) 残渣 B 加入 3-5 倍重量的水，调节 pH 值至 4-5，加入残渣 B 质量 2-3% 的糖化酶
糖化 1-2h，过滤，滤渣加入 3-5 倍重量的水，调节 pH 值至 8.5-9.0，加入 0.2-0.3% 碱性蛋白
酶 55-60℃酶解 1-2h，分离得到残渣 C 和上清液 C。残渣 C 中加入 3-4 倍重量加热到 55-60℃
的 95% 乙醇溶液静置 1h 后过滤，用水清洗滤饼后烘干得到膳食纤维产品；上清液 C 调节 pH
值至 6.5-7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品。
[0024] 或者，步骤如下：
[0025] 1) 在脱脂米糠中加入 3-6 倍重量的水，1-2% 的液化酶，在 90℃进行液化直至酶
至 60℃，调节 pH 值至 4-5，加入 2-3% 糖化酶糖化 1-2h，分离后得到残渣 A 和上
清液 A。上清液 A 直接作为发酵用原料；
[0026] 2) 将残渣 A 加入 5-7 倍重量的水，调节 pH 值至 3.9-4.0，在 60℃搅拌反应
4.5-5.5h，过滤得到残渣 B 和上清液，用水清洗残渣 B，合并上清液与清洗液为上清液 B，用
氨化钙溶液调节 pH 至 4.5-5.0，后用氨水调节 pH 至 9.0-10.0，过滤，得到的滤饼清洗后
烘干得到植酸盐产品；
[0027] 3) 残渣 B 加入 3-5 倍重量的水，调节 pH 值至 8.5-9.0，加入 0.2-0.3% 碱性蛋白
酶，55-60℃酶解 1-2h，分离得到残渣 C 和上清液 C。残渣 C 加入 3-4 倍重量加热到 55-60℃
的 95% 乙醇溶液，常温静置 1h 后过滤，用水清洗滤饼后烘干得到膳食纤维产品；上清液 C 调
节 pH 值至 6.5-7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品。
[0028] 本发明是一种综合利用脱脂米糠生产发酵用原料、植酸盐、米糠蛋白和米糠纤维
的方法。通过对提取步骤、提取顺序以及提取参数的设计，对脱脂米糠中的主要成分进行了
深度分离，大大提高了脱脂米糠的利用率和经济价值，有效地降低了生产成本。其中，脱脂米糠中淀粉和多分子糖类物质酶解后作为发酵原料，降低了后续提取植酸盐、米糠蛋白和米糠纤维的成本，提高了相关产品的纯度，充分利用了生物资源，产生更大的经济效益；在提取糖液、蛋白质、植酸盐后，其残渣中膳食纤维纯度和含量大大提高。

[0029] 本发明相对于现有技术，有以下优点:
[0030] 本发明的方法脱脂米糠综合利用度高，减少了生产过程废物污染的产生。

附图说明

[0031] 图1 为本发明实施例1综合利用脱脂米糠的方法的流程示意图。

具体实施方式

[0032] 以下以具体实施例来说明本发明的技术方案，但本发明的保护范围不限于此。
[0033] 以下实施例与对比例中所用液化酶为购自诺维信的淀粉酶Termamyl SC，糖化酶为购自诺维信的糖化酶AMG300L，碱性蛋白酶为购自无锡杰能科的碱性蛋白酶Protease6L。
[0034] 实施例1
[0035] 1）50g脱脂米糠中加入5倍重量的水（250g），1%（0.5g）的液化酶，于90℃搅拌反应，直至酸度完全，冷却至60℃，调节pH值至4.5，加入2%（1g）糖化酶，糖化2h，过滤，得到残渣A和上清液A。
[0036] 上清液A直接作为生产发酵用培养基；将上清液A用氨水调整pH至5.5后经过121℃高温蒸汽灭菌15min，冷却后加入丙酮丁醇梭菌进行厌氧发酵，接种量为培养基体积的2%，发酵温度32℃，发酵时间为72h，经过发酵后可以得到溶剂含量16.5g/L的发酵液，其中丙酮、丁醇、乙醇的比例约为3：6：1，发酵液蒸馏分离得丙酮、丁醇和乙醇。
[0037] 2）将残渣A加入其5倍重量的水，调节pH值至3.9，在60℃搅拌反应5h，过滤得到残渣B和上清液，用水清洗残渣B，上清液与清洗液合并作为上清液B，用10%（wt%，下同）氢氧化钙溶液调节pH值至4.5，再用10%氨水调节pH值至9.0，过滤，得到的滤饼用水冲洗3次，烘干后得到植酸盐产品2.33g。
[0038] 3）残渣B加入其5倍重量的水，调节pH值至9.0，加入残渣B质量0.2%的碱性蛋白酶，60℃酶解1h，后离心，得到残渣C和上清液C，残渣C中加入4倍重量加热到60℃的95%乙醇溶液静置1h后过滤，用水清洗滤饼后烘干得到膳食纤维产品10.02g，上清液C调节pH值至7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品5.15g（蛋白含量57.55%）。
[0039] 蛋白质测定按照GB/T5009.5-2010方法进行，膳食纤维测定按照GB/T5009.88-2008进行，下同。
[0040] 实施例2
[0041] 1）50g脱脂米糠中加入5倍重量的水，1%的液化酶，于90℃搅拌反应，直至酸度完全，过滤，得到残渣A和上清液A，上清液A直接作为生产发酵用培养基，按照实施例1方法经发酵得到生物化工产品丙酮、丁醇和乙醇；
[0042] 2）将残渣A加入5倍重量的水，调节pH值至3.9，在60℃搅拌反应5h，过滤得到残渣B和上清液，用水清洗残渣B后过滤得到上清液和残渣，两次上清液合并作为上清液B，用10%氢氧化钙溶液调节pH至4.5，后用10%氨水调节pH至9.0，过滤，得到的滤饼用水冲
洗3次，后烘干得到植酸盐产品3.15g。
[0043]3)残渣B加入5倍的水，调节pH值至4.5，加入2%糖化酶，糖化2h，过滤，得到滤渣，加入5倍重量的水，调节pH值至9.0，加入0.2%碱性蛋白酶，60℃酶解1h，后离心，得到残渣C和上清液C。残渣C中加入4倍重量加热到60℃的95%乙醇溶液静置1h后过滤，用水清洗滤饼后烘干得到膳食纤维产品9.12g；上清液C调节pH值至7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品5.80g（蛋白含量64.06%）。
[0044]对比例1
[0045]1)50g脱脂米糠中加入5倍重量的水，1%的液化酶，于90℃搅拌反应，直至碘试完全，冷却至60℃，调节pH值至4.5，加入2%糖化酶，糖化2h，过滤，得到残渣A和上清液A，上清液A直接作为生产发酵用培养基，按照实施例1方法经发酵得到生物化工产品丙酮，丁醇和乙醇；
[0046]2)残渣A加入5倍的水，调节pH值至9.0，加入0.2%碱性蛋白酶，60℃酶解1h，后离心，得到残渣B和上清液B；上清液B调节pH值至7.0，减压浓缩后喷雾干燥，得到米糠蛋白产品5.56（蛋白含量45.36%）g。
[0047]3)将残渣B加入5倍重量的水，调节pH值至3.9，在60℃搅拌反应5h，过滤得到残渣C和上清液C，用水清洗残渣C后过滤得到上清液D和残渣D，两次上清液合并，用10%氢氧化钙溶液调节pH至4.5，后用10%氨水调节pH至9.0，过滤，得到的滤饼用水冲洗2～3次，后烘干得到植酸盐产品2.13g。残渣D中加入4倍重量加热到60℃的95%乙醇溶液静置1h后过滤，用水清洗滤饼后烘干得到膳食纤维产品10.21g。
[0048]上述实施例为本发明优选的实施方式，但本发明的实施方式并不受上述实施例的限制，其他的任何未背离本发明所作的改变均应为等效的置换方式，都包含在本发明的保护范围之内。
图 1