ABSTRACT: An arrangement for the selective feeding or presenting of weft yarns of various kinds to a yarn transfer position for transferring the yarns to a receiving means and to means for picking the yarns into a shed, said arrangement comprising a separate yarn presenting means for presenting each kind of weft yarn, and control means for selectively moving said presenting means out of an inactive position into a yarn transfer position, the yarn presenting means being so arranged in the transfer position that the yarns selectively retained by said yarn presenting means are disposed in substantially identical positions at least within the zone of the yarn transfer position.
ARRANGEMENT FOR THE SELECTIVE PRESENTATION OF WEFIT YARNS TO WEFT INSERTING MEANS

The present invention relates to an arrangement for the selective feeding or presenting of weft yarns of varying types to a yarn-receiving or transferring station, for the purpose of transferring the yarns to a receiving means and of picking them into a shed, the arrangement having, for each type of weft yarn, a separate yarn feeder or presenting means adapted to be displaced out of an inoperative or inactive position into a working position, i.e., a yarn transfer position.

In weaving processes, wherein the weft yarns are picked as individual picks into the shed by a picking member, e.g., a shuttle, when weft yarns of various types (for example, weft yarns of varying color) are employed, it is necessary, before every pick, to feed the yarn having the predetermined color to the picking member or to a means for producing yarn pieces of predetermined length and to transfer it thereto. It is already known to arrange the yarns of the various colors over a sector of the generated surface of a circular cylinder and, by appropriate rotation of the cylinder, in each case to feed the yarn having the desired color to the picking member. With this device, all the yarns or threads at each yarn feeder are always displaced and furthermore the magnitudes of the movements vary. In this way, the yarns extending to the circular cylinder become loose and the danger arises that they may become tangled.

Also it is already known to guide the yarns or threads through rod-shaped yarn feeders arranged in a row. With this arrangement, only that specific yarn which is being picked is displaced through the appropriate yarn feeder and conveyed to a receiving station for being received by the picking member. With this arrangement, the yarns of the different types are not transferred to the picking member at the same points. Consequently, the picked weft yarns vary in length, depending on the type of yarn, and this known arrangement is unsuitable for picking processes wherein the place of transfer or the transfer station is at a prefixed position.

Thus, it is also already known, when there is a multiplicity of yarn feeders, to move the yarn feeders by appropriate guide channels that they all travel, with their guide eyelets, towards one and the same transfer station. With this arrangement, however, the positions in which the yarns of the various types extend in their transfer stations are nonidentical, i.e., the yarns retained by the various yarn feeders at the picking position are not identical positions. Consequently, reliability of yarn transfer is not entirely satisfactory in these known devices.

These disadvantages are obviated by the present invention. Furthermore, the invention (in particular due to the fact that the yarn transfer movements are extremely rapid movements) is to satisfy the generally valid rule that a yarn once retained must not again be released by endeavouring to achieve at the yarn transfer station or point the most clearly defined position of a yarn. Since the present invention satisfies this rule to the maximum extent, it makes yarn transfer or yarn-receiving reliable to the optimum extent. Furthermore, twisting of the yarn or variable travel thereof, for example in the case of electrostatic charges, is avoided.

Thus, this invention contemplates an arrangement for the selective presenting of weft yarns which is further characterised in that, in the transfer positions of the yarn-presenting means, the yarns retained by the various means are disposed in the substantially identical or the same positions at least at within the zone of the yarn transfer station. Since the weft yarns of all kinds are always received at exactly the same point, then the receiving means to which the yarn is transferred, whether the latter means be a weft yarn picking member, a device for the premetering of the lengths of the weft yarn to be picked or a drawing-in means for drawing the weft yarn into a shuttle, does not require to effect overtravel, which it would have to do if the weft yarns of various types were to be transferred at nonidentical points. Due to the above-mentioned, extremely short period of time available to effect transfer, this factor is significant.

The invention will now be described in greater detail with reference to one of its embodiments and to the accompanying drawings, in which:

FIG. 1 shows a diagrammatic plan view of a weft yarn selector of the invention;
FIG. 2 shows a lateral elevation of four suction nozzles serving as one set of yarn holders for the invention;
FIG. 3 shows a perspective view of the driving mechanism or means for the suction nozzles shown in FIG. 4 and of an additional set of yarn holders; and
FIG. 4 shows a lateral elevation of the four additional yarn holders shown in FIG. 3.

FIG. 1 shows the arrangement of the invention for the selective presenting of one of a plurality of weft yarns on a loom. Disposed on the sley 11, at the right-hand end thereof, is a yarn-picking member in the form of a shuttle 12. The reed 13 serves for beating-up of the picked weft yarns. The finished cloth is designated by the reference numeral 14. According to this embodiment, there are provided four different weft yarns 15 to 18, which are selectively picked. These weft threads or yarns 15 to 18 extend from large supply bobbins (not shown) disposed on the right-hand side of FIG. 1, over controllable yarn clamping means 19 to 22, over four eyelets carried by the carrier 42, and over movable, first yarn holders 23 to 26, to the suction nozzles 28 to 31, which serve as second yarn holders and in which the free ends of the yarns 15 to 18 are retained by suction.

Each weft yarn 15 to 18 travels over a specific one of the yarn clamps 19 to 22, a specific eyelet in the carrier 42, a specific one of the first yarn holders 23 to 26 and a specific one of the second yarn holders or suction nozzles 28 to 31. The appropriate arrangement will be readily apparent from FIG. 1. For example there are associated with the yarn 16 the clamping means 20, the yarn holder 24, and the suction nozzle 29. Each of the yarn holders 23 to 26 has at its end an eyelet through which the appropriate weft yarns 15 to 18 are able to slide. The eyelets are shown in FIG. 4 and are designated by the reference numeral 86. FIG. 4 also shows the arrangement of the yarn holders 23 to 26, as seen in elevation. The arrangement of the second yarn holders, or suction nozzles, 28 to 31 is seen in FIG. 2. FIG. 1 shows all the yarn holders 23 to 26 and 28 to 31 in their inactive position. The yarn-transferring position of the first yarn holders 23 to 26 and of the second yarn holders 28 to 31 is shown in dot-dash lines and is designated by reference numerals 88 and 38, respectively, in FIG. 1. Formed in the shuttle 12 is an aperture 33 which extends completely through it, horizontally, and through which the hook 32 may be displaced.

Referring to FIG. 2, the suction nozzle 30 is in the receiving position designated by FIG. 1. Each of the nozzles 28 to 31 is secured to a guide member 40 adapted to slide parallel to its longitudinal direction. Each of the guide members 40 slides in a guideway 41 and is provided with a rack 43. The teeth of the rack mesh with the teeth of each one of the gear segments 44. Each of the segments 44 is connected with one of the pivotal elements or shafts 45 and is adapted to be pivoted upon the or rotation of the shafts. In the case of each of the shafts 45, and due to clockwise rotation thereof, the associated gear segment 44 is pivoted and as a result the corresponding guide member 40 is displaced towards the left. Consequently, the suction nozzles 28 to 31 pass selectively towards the left from their inactive positions into their yarn-transferring and receiving positions.

The suction nozzles 28 to 31 are, together with the guide members 40 (which carry them) divided with uniform angular spacing over a sector of a circle. Their longitudinal axes coincide at a point 46 (i.e., the longitudinal axes extend radially from the suction nozzles, are located within a sector of a circle and are distributed over the circle sector with uniform angular spacing). It will be seen from FIG. 2 that the points at which the yarns or threads 15 to 18 are in actual fact retained by the nozzles 28 to 31, i.e., the points of actual yarn-retaining, are formed by the apertural nozzles of the nozzles 28 to 31. These points of actual yarn-retaining by the nozzles 28 to
3,532,135

31 are thus, in the yarn-transferring positions, all displaced to the same point, i.e., to the center point or position 46. The guides 41 and the pivots 45 are carried by two lateral walls, of which the lateral wall 47 is shown in FIG. 2.

FIG. 3 shows, in perspective illustration, the nature of the drive means and of the control means for a geared-wheel segment 44. The segment is shown, again, with the shaft 45 to which it is fast. FIG. 3 shows, furthermore, members 50 which, during the operation of the loom, carry out continuous pivoting movements about a pivot 51, so that the members constitute a continuously moved or actuated driving means. The drive of the members 50 may be effected for example by means of a continuously rotating cam disc. Secured onto the members 50 are two rollers 52 and 53 for actuation of the stubs 54 and 55. The stubs 54, 55 are fast on the cylindrical displacement member 56. Member 56 is pivotally coupled with the shaft 45 for rotation therewith and displaceable along the shaft, so that either the stub 54 or the stub 55 is able to pass into the zone of movement of the rollers 52 or 53.

The displacement of the cylinder 56 parallel to the shaft 45 is effected by the fork 57. The fork is fast with another cylinder 58 which is adapted to be reciprocated parallel to its axis. Cylinder 58 is subjected to a permanent pressure towards the left by a spring 59. A magnet 60 exerts pressures or force against the influence of the spring 59, when the magnet is actuated. A separate fork 57 and a separate magnet 60 is provided for each gear segment 44.

Furthermore, there is provided on the shaft 45 a profiled member 61 which follows the pivoting or rotating movements of the shaft 45. The member 61 has the recesses 62 and 63. The roller 64 is continuously pressed against the profiled member by means of the tension spring 65 and via the arm 66 pivotal about the pivot 67. This control arrangement therefore determines two pivoting positions of the shaft 45. The end of the spring 66 is secured at a fixed point 68.

The gear segment 70 serves to move one of the first yarn holders 23 to 26 shown in FIG. 4. The movement of the yarn holders 23 to 26 is achieved in the same manner as the movement of the suction nozzles 28 to 31. As can be seen from FIG. 4, a gear segment 70 is provided for each of the four yarn holders 23 to 26. Each of the gear segments 70 meshes, via its teeth, with an associated rack 71 and each of the racks 71 is fast with a sliding member 72. Each sliding member is slidable in a slide way 73, and each sliding member 72 carries, at one end, an arm 74, one of which is secured to the yarn holders 23 to 26 and one about a pivot 75. Each of the yarn holders 23 to 26 has, as heretofore mentioned, an eyelet 86 through which the corresponding one of the yarns 15 to 18 is guided. For the sake of clarity, the yarns are not shown in FIG. 4. The eyelets 86 are, therefore, the yarn-retaining retaining or guide means proper on the yarn holders 23 to 26 in which the yarn is actually guided.

As can be seen from FIG. 2, the suction apertures of the suction nozzles 28 to 31 are moved into their transferring and receiving positions at a predetermined, identical point 46. Similarly, as can be seen from FIG. 4, all the guide members 72 move towards a predetermined point 76, into their working positions, i.e., their paths of travel lie on straight lines which extend perpendicularly to a central point 76, which are located within the sector of a circle and are distributed over the sector with uniform angular spacing. The movement of the guide members 72 is effected along predetermined travel paths.

Furthermore, the eyelets 86 are, with the exception of the eyelet of the yarn holder 23, laterally offset with respect to the radially extending straight lines due to the oblique extending direction of the path 74. The travel paths of the guide members 72 and the shape given to the arms 74 are so selected that the points of the yarn guide means proper, i.e., the eyelets 86 of the yarn holders 23 to 26, all travel to the same point, i.e., to the point 77, into their yarn-transferring position, when the yarn holders 23 to 26 are actuated. In this way, all the yarns 15 to 18 pass, when they are displaced into the transfer position, with their component parts disposed between the apertures in the nozzles 28 to 31 and the eyelets 86 of the yarn holders 23 to 26, into identical or equal positions.

The yarn 15 travels, as can be seen from FIG. 1, through the eyelet 86 of the yarn holder 23 and its end is retained by or sucked into the suction nozzle 28. In the same manner, the yarns 16 to 18 are retained by the guide member 17 with the elements 24 and 25, the elements 17 to 20 and the yarn 18 by the elements 26 and 31. Yarn holders having the same yarn, such as the holders 23, 24, 28, the holders 24, 29, the holders 25, 30, and the holders 26, 31, each form a yarn feeder or presenting means.

In order to move one of the yarns 15 to 18 from the inactive position into a yarn transfer position, the corresponding yarn-presenting means is moved into its yarn transferring position, simultaneously, that one of the first yarn holders 23 to 26 which carries the yarn and that one of the second yarn holders, i.e., that one of the suction nozzles 28 to 31, which carries the same yarn are guided into their transferring positions. As already stated, in FIG. 1 the transferring position of the yarn holders 23 to 26 is designated by reference numeral 88. The first and second yarn holders forming a yarn-presenting means are actuated by gear segments 44 and 70 arranged on the same pivot 45. The pivot 45, shown in FIG. 3, and the gear segments 44 and 70 may serve, for example, to actuate the suction nozzle 30 and the yarn holder 25. In this manner the suction nozzles 28 to 31 and yarn holders 23 to 26 forming the same yarn-presenting means are always moved simultaneously.

In operation of the loom, the control means is so designed that in every case only one of the magnets 60 can be actuated. If, then, the suction nozzle 30 and the yarn holder 25 (and consequently the yarn 17 associated with these elements) require to be moved into the yarn transfer position, then the gear segment 44 associated with the suction nozzle 30 and the gear segment 70 associated with the yarn holder 25 are actuated. These segments are, as already stated, arranged on the same shaft 45. In order to illustrate operations of the yarn, i.e., it can be assumed that these segments are the gear segments 44 and 70 shown in FIG. 3. In this case when the magnet 60 is actuated (for example, by an electric current), the cylinder 58, and with it the fork 57, are pressed towards the right against the tension force of the compression spring 59. Thus, the stub 55 which, in this working phase, is directed forwardly, passes into the path of the roller 53 secured to the continuously moved member 50. The roller 53 presses the stub 55 into the upwardly-directed position shown in FIG. 3. During this movement, the stub 55 pivots the shaft 45 and therewith also the gear segments 44 and 70. As can be seen from FIG. 2, the segment 44 meanwhile displaces the suction nozzle 30 into its working position, due to the intervention of its teeth with the rack 43. The same type of interaction applies also to the yarn holder or guide 25 shown in FIG. 4. The pivoting of the shaft 45 rotates the gearwheel segment 70 of the yarn holder 25 and the holder is displaced, via the rack 71 and the arm 74, into its yarn-transferring position (designated by reference numeral 88 in FIG. 1). With the pivoting of the shaft 45, also the profiled member 61 (see FIG. 3) is pivoted. As this takes place, the roller 64, which was initially in the recess 63, travels over the raised portion or the dead center 49 into the recess 62 and thereby retains the shaft 45 and the elements connected with it in a stable pivoting or rotating position, i.e., in the yarn-transferring position thereof.

As long as the yarn 17 retained by the nozzle 30 and the yarn holder 25 is being picked as weft yarn, the magnet 60 remains actuated. The roller 53, on the other hand, no longer contacts the stub 55 during its further movement, since the last part of the travel of the stub 55 is produced not by the roller 53 but by the movement of the roller 45 along the component portion of its travel which it covers after passing over the raised portion or the dead center 49 until it reaches the recess 62. This movement of the roller 64 is produced by the spring 65. Thus, the yarn which engages the suction nozzle 30 and the yarn guide 25 remains at a standstill in its forward position until the control system requires a change.
A change is necessary when a weft yarn of a different sort is to be picked. In this case, first of all the actuation or energizing of the magnet 60 is interrupted. Thus, the spring 59 presses the cylinder 58, and the fork 57, towards the left. The cylinder 56 is thereby also pressed towards the left and the stub 54 (the position of which corresponds to that shown in FIG. 3) passes into the path of movement of the roller 52 secured to the continuously actuated member 50. Roller 52 presses the stub 54 rearwardly. In this way, the tooth segments 44 and 70 are again pivoted, but in this case in the direction opposite to that of the first pivoting movement. Consequently, the advantage of a guided forward and a guided rearward movement of the suction nozzle 30 and of the yarn holder 25 is achieved. Thus, the yarn holder 25 and the suction nozzle 30 are pivoted back into their inactive position. Also the member 61 is again pivoted back, the roller 64 rolling over the raised portion 49 and, as a result of the pull of the spring 65, being pressed again into the recess 63.

In this way, there is again achieved the accurate “fixing” of a predetermined, stable pivoting or rotating position of the shaft 45, i.e., its inactive position. In this position, the stub 54 is disposed externally of the path of movement of the roller 52, since the last component part of the movement of the shaft 45 is no longer produced by the roller 52 of the continuously actuating means, but is produced in consequence of the fact that the spring 65 presses the roller 64 completely into the recess 63.

Then, another of the magnets 60 is actuated, whereby the fork associated therewith is displaced and the corresponding shaft 45, with the toothed segments 44 and 70 arranged thereon, is actuated. This new operation takes place in exactly the same way as the one just described.

In order to transfer a weft yarn displaced into the transfer position, for example, the weft yarn shown in dot-dash lines in FIG. 1 to the shuttle 12, the hook 32 is, after the arrival of the shuttle 12 into its right-hand inoperative position (this being the position of the shuttle 12 shown in FIG. 1), displaced through the aperture 33 in the shuttle, forwardly into the position shown in FIG. 1. In this way, the yarn, which is retained by the yarn-presenting means in the yarn transfer position, can be engaged by the hook 32. When the hook 32 again moves rearwardly and again out of the aperture 33, it draws the yarn with it through the aperture 33 in the shuttle 12. During this procedure, the clamp 21 is opened, so that the free end of the yarn is drawn out of its suction nozzle 30. When the sley 11 moves rearwardly again, in consequence of the sley drive which now takes place towards the left, the yarn is completely drawn off from the hook 32 and is transferred to a yarn-retaining means (not shown) disposed in the aperture 33 in the shuttle 12. The clamp 21 opens and, from this instant on, the weft yarn is, as it is drawn off from the large supply source, picked into the shed.

On actuation of each of one of the yarn-presenting means 23, 28, 24, 29, 25, 30, or 22, 31, the yarn transfer procedure always takes place in the above-described manner. When the shuttle 12 is, as it travels through the shed during the final portion of its travel path, about to emerge out of the shed, the corresponding one of the clamps 19 to 22 is closed. In this way, the weft yarn carried by the shuttle 12 is drawn out of the shuttle. After the shuttle 12 has arrived at the left-hand end of the sley 11, the picked weft yarn is beaten up by the reed 13 traveling forwardly with the sley 11, and the shed is changed. Furthermore, on the right-hand side (shown in FIG. 1) of the cloth 14, the weft yarn just picked is cut at the selvedge and the free end thus formed (which is connected with the yarn supply) is sucked into the nozzle disposed in the transfer position 38, and is thus retained.

Since, during the movement of the yarn holders 23 to 26 and of the nozzles 28 to 31 into their working positions, the points thereof constituting the yarn-retaining or guide means proper (nozzle apertures or eyelets 86) always move towards the same point 77 or 46 respectively, it is clear that, with the mode of operation of the weft yarn-presenting means shown, each of the weft yarns 15 to 18 passes into exactly identical positions with its yarn length located between two yarn-retaining means proper. In this connection, it is essential that the yarns or threads should, at least within the zone of the yarn transfer point, i.e., in the immediate vicinity of the hook 32, have an accurately defined position which is always identical. In optimum reliability of the yarn transfer is achieved and losing of the yarn during the yarn transfer is practically speaking impossible.

The suction nozzles 28 to 31 make an additional contribution to these advantageous conditions. Due to the provision of the nozzles, the result is achieved that the yarns 15 to 18 are each continually subjected to a tensioning force. If, for any reason whatsoever, the yarn loses tension for a period of time and consequently becomes loose, its end is drawn somehow out of the suction nozzle and is then once again drawn in by the nozzle. The suction nozzles 28 to 31 thereby endeavour to always retain the yarn in the stretched conditions between the first yarn holders 23 to 26 and the nozzles 28 to 31 serving as the second yarn holders.

The paths over which the suction nozzles 28 to 31 and the yarn holders 23 to 26 travel during their actuation are, advantageously, designed to be of equal length. In this way, there is obtained a movement of the yarns arranged between the suction nozzles 28 to 31 and the yarn holders 23 to 26 which is parallel to itself. Consequently, the yarn disposed in the transfer position is cleanly separated from the entanglement of the yarns takes place. The elements such as, for example, the guide members 40 and 72, the tooth segments 44, 70 and the racks 42 and 71 may, under these circumstances, be designed to be identical, and advantageously this construction saves costs.

In the embodiment of the invention illustrated, the receiving means is, as shown in FIG. 1, a hook 32. In order to further increase the reliability of the receiving means, a corresponding pivoting of the yarn holders 23 to 26 is additionally effected. For this purpose, the plates 78 shown in FIG. 4 are provided. Each plate is fast with its associated yarn holder 23 to 26 and is pivotal therewith about the appropriate pivot 75. Associated with each of the plates 78 is one of the pins 79. All the pins 79 are arranged on a common plate (not shown) and are adapted to be displaced upwardly and downwardly due to movement of the plate. Shortly after the passage of the hook 32 through the aperture 33 (see FIG. 1), the pins 79 are displaced downwardly in rhythm with this hook movement. In this way, the plate 78 of the yarn holder 25 which (for example according to FIG. 4) is disposed in the working position, is pressed downwardly, the yarn holder 25 is pivoted about its pivot 75 and the eyelet of the yarn holder 25 is lifted. Thereby, the yarn which is disposed in its working position (shown in dot-dash lines in FIG. 1) is raised. As this takes place, it bears against the hook 32, underneath the latter, and extends therewith upwardly to the eyelet of the yarn holder which is disposed in the receiving or transfer position. If, thereupon, the hook 32 has moved back through the aperture 33, the pins 79 again travel upwards, whereby the yarn holder 25, which is biased anticlockwise by a spiral spring (not shown) is pivoted back in this direction of rotation, so that its nozzle 86 again descends. In this way, the weft yarn 17 retained by the yarn holder 25 is guided quite clearly into the zone of the hook 32 and absolutely reliable yarn transfer to the hook 32 is assured.

The movements of the yarn holders 23 to 26 and of the suction nozzles 28 to 31 have been shown as rectilinear movements in the embodiment described. It is obvious that these rectilinear movements may be replaced by rotational movements. Such movements could be carried into effect for example in the manner of the movement of the type bars of a typewriter. As is known, with this form of movement, all the members carrying the type travel towards the same point.

While the novel features of the invention have been shown and described and are pointed out in the appended claims, it is to be understood that various omissions, substitutions and changes in construction and arrangement of the features shown and described may be made by those skilled in the art without departing from the spirit and scope of the invention.
I claim: 1. An arrangement for selectively presenting one of a plurality of weft yarns to a yarn transfer position for transferring the yarn means for picking the yarn into a shed of a loom, said arrangement comprising a plurality of yarn-presenting means, each yarn-presenting means being associated with one of the plurality of weft yarns for selectively presenting an end portion of its associated weft yarn to said transfer position, each of said yarn-presenting means comprising a first yarn holder and a second yarn holder disposed in spaced relationship relative to each other, each associated weft yarn extending with its end portion from one holder to the other, the first yarn holders having a yarn guide means and the second yarn holders having a yarn-retaining means, the first yarn holders, of said yarn-presenting means being so arranged in their yarn-transferring positions that the yarn guide means thereof are all displaced to a first predetermined point and the second yarn holders of said yarn-presenting means being so arranged that in their yarn-transferring positions the yarn-retaining means thereof are all displaced to a second predetermined point, the yarn transfer position being located between said first and second predetermined points, guide means for allowing each of said yarn holders to move independently of the other to said predetermined points, means for simultaneously actuating the first and second yarn holder of each yarn-presenting means, and control means for selectively moving each of said yarn presenting means from an inactive position into the yarn transfer position, the yarn-presenting means being so arranged and so controlled that each of the end portions of the yarns that are selectively presented to the yarn transfer position assume substantially identical positions.

2. The arrangement of claim 1 in which the yarns retained by the yarn-presenting means are permanently subjected to a tensioning force.

3. The arrangement of claim 1 in which each of the second yarn holders comprises a suction means enabling alternate engagement and release of the yarns.

4. The arrangement of claim 1 in which each of the first yarn holders is carried by a guide member and is adapted to be displaced by movement of said member, the paths of movement of each guide member being located on straight lines extending radially from a central point, located within the sector of a circle and distributed over the said sector with equal angular spacing, and the paths of movement of the first yarn holders being of identical length, and with the exception of, at maximum, one of said yarn holders, the yarn guide means thereof are laterally offset by predetermined amounts relatively to the radially extending straight lines, so that the yarn guide means of the first holders are, in the transferring positions of the first holders, displaced from said central point.

5. The arrangement of claim 1 in which at the yarn transfer position the weft yarn retained by the yarn-presenting means is disposed in the path of a hook for effecting the transfer of said yarn to the means for picking said yarn into the shed.

6. The arrangement of claim 3 in which said suction means comprise suction nozzles having suction apertures which form the yarn-retaining means of the second yarn holders, the second predetermined point being in the yarn-receiving position of each of said suction apertures, being located in the vicinity of the cloth beatup and of a selvedge, and at this last mentioned position the woven-in weft yarn ends, which are still connected with the yarn supply, are located in the suction zone of said suction nozzles.

7. The arrangement of claim 1 in which the first predetermined point for all the yarn guide means of the first yarn holders is located directly adjacent the yarn transfer position, said means for actuating said first and second yarn holders includes a guide member for moving each of the first yarn holders to said first predetermined point and back again to an inactive position, and the yarn means for causing said holder to have supplementary pivoting movements relative to its associated guide member, said pivoting movements being coordinated with the movements of a receiving means for receiving the end portion of a weft yarn moved to said transfer position whereby the reliability of the transfer to said receiving means is increased.

8. The arrangement of claim 7, in which the first yarn holders are pivotally carried by the guide members and are disposed, in their yarn-transferring position, in the path of movement of an actuating member of said actuating means and are adapted to be pivoted by the actuating member within an entrainment zone of the receiving means, the actuating member operating in rhythm with the movement of the receiving means.

9. An arrangement for selectively presenting one of a plurality of weft yarns to a yarn transfer position for transferring the yarn to a means for picking the yarn into a shed of a loom, said arrangement comprising a plurality of yarn-presenting means, each yarn-presenting means being associated with one of the plurality of weft yarns for selectively presenting an end portion of its associated weft yarn to said transfer position, each of said yarn-presenting means comprising a first yarn holder and a second yarn holder disposed in spaced relationship relative to each other, each associated weft yarn extending with its end portion from one holder to the other, the first yarn holders having a yarn guide means and the second yarn holders having a yarn-retaining means, the first yarn holders, of said yarn-presenting means being so arranged in their yarn-transferring positions that the yarn guide means thereof are all displaced to a first predetermined point, and the second yarn holders of said yarn-presenting means being so arranged in their yarn-transferring positions that the yarn guide means thereof are all displaced to a first predetermined point and the second yarn holders of said yarn-presenting means being so arranged and so controlled that each of the end portions of the yarns that are selectively presented to the yarn transfer position assume substantially identical positions.

10. The arrangement of claim 9 in which the yarn guide members of the first yarn holders and the guide members of the second yarn holders are so positioned from the first and second predetermined points, respectively, the yarn holders of each of said yarn-presenting means travel along a path of equal length between their inactive positions and their yarn-transferring positions and the yarn holders of the same yarn-presenting means travel along paths that extend parallel to each other.

11. The arrangement of claim 9 in which said gear segment is fixedly carried by the shaft and a displacement means is keyed to said shaft for axially movement thereof and for pivoting movement therewith, said displacement means being adapted to be displaced by a magnet, due to the displacement movements along said shaft, into the path of the continuously actuated driving means, said shaft having pivoting movements imparted thereto upon actuation by said driving means.

12. The arrangement of claim 9 in which the first and second yarn holders associated with each yarn-presenting means are actuated by gear wheel segments arranged on a common shaft and connected for pivoting with said common shaft.

13. The arrangement of claim 9 further comprising a continuously biased element which is fast with said shaft and which endeavors to retain the shaft in the one or other of two stable pivoting positions corresponding to the inactive position of the other of two stable pivoting positions, a dead center being provided between the two stable pivoting positions, and the continuously biased element exerting on the one side of the dead center a force pressing the shaft towards one of the stable pivoting positions.
14. The arrangement of claim 13 further comprising a displacement means keyed to said shaft for axial displacement thereon and for pivoting movement therewith, said displacement means being adapted to be subjected to the driving action of a continuously actuated driving means via the pivoting movements of the shaft, one of which pivoting movements extends from one of the stable pivoting positions as far as a position located between the dead center and other stable pivoting position, whereas the other pivoting movement extends from the other stable pivoting position as far as a position located between the dead center and said one of the stable pivoting positions.