Office de la Propriete Canadian CA 2392706 A1 2001/07/05

Intellectuell Intellectual P
du Canada Office o opery en 2 392 706
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depdot PCT/PCT Filing Date: 2000/12/01 (51) Cl.Int.//Int.Cl.” GOBF 7/58

(87) Date publication PCT/PCT Publication Date: 2001/0/7/05| (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2002/05/31 RONEYWELL INC., US
(86) N° demande PCT/PCT Application No.: US 2000/032633| (/2) Inventeur/Inventor:

DRISCOLL, KEVIN, US
(87) N° publication PCT/PCT Publication No.: 2001/048594 _
o o (74) Agent: GOWLING LAFLEUR HENDERSON LLP
(30) Prioritée/Priority: 1999/12/02 (09/453,008) US

(54) Titre : REGISTRE INFORMATIQUE A DECALAGE A REBOUCLAGE LINEAIRE
(54) Title: COMPUTER EFFICIENT LINEAR FEEDBACK SHIFT REGISTER

20
32 32
22 . 42 .
f’ Private-Key _r Private-Key
2 R
} } ! Receiver 4
| | | : |
e | | e e L ; |
32;1(;?3%" : Pseudo-Random : I\l;:;? ;izatlon : Pseudo-Random :
. Bit Generator { . Bit Generator {
34 l | 34 | . |
: T : i
i Key Stream E i Key Stream E
| | |)
| | l I
| | l |
: : : :
Plain Text | { Cipher Text ! Decryption ! Plain Text
: , , Combiner :
5 i E 0
= 60 0 |
| | l |
o e e e ——— — —— A e e e e e e e e e e - |
(57) Abrége/Abstract:

A fast pseudo-random number generator, which can be employed in a variety of systems, such as a stream cipher cryptosystem
or a Monte Carlo simulation system, includes a linear feedback shift register (LFSR) having a state contained in N storage
elements storing N bits of binary data which are separated into w words having word length M. At least two tap sources provide
binary data, each tap source has a number of bits which Is a mJItlpIe of M. The LFSR also includes a linear feedback function
coupled to tap sources and providing a temporary value which is a linear function, such as bit-wise exclusive-or, of the binary
data provided from the tap sources. The LFSR state I1s advanced by shifting the binary data In the storage elements by a
multiple of M bits and provide the temporary value to fill in storage elements that would otherwise be empty from the shifting.

<o
Sy SR VEEEEN
.l.!.\‘\-c.c..--.
. N r
' e [[[
T
o

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02392706 2002-05-31

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

O 00 000 0 0 O 0

(10) International Publication Number

WO 01/48594 A3

(81) Designated States (national): AE. AL, AM. AT, AU, AZ.
BA.BB.BG, BR, BY, CA,.CH, CN, CR, CU, CZ. DE. DK,
DM, EE. ES. F1, GB. GD. GE, GH, GM. HR, HU. 1D, IL.
IN,IS.JP, KE, KG, KP, KR, KZ.LC, LK, LR, LS, LT, LU.
LV, MA, MD, MG, MK, MN. MW, MX. NO, NZ, PL. PT,
RO, RU, SD, SE, SG, S1, SK, SL, TJ, TM, TR, TT. TZ, UA.
UG, UZ, VN. YU. ZA, ZW.

(43) International Publication Date
S July 2001 (05.07.2001)

PCT

GO6F 7/58

(S1) International Patent Classification’:

(21) International Application Number: PCT/US00/32633

(22) International Filing Date: | December 2000 (01.12.2000)

(25) Filing Language: English
(34) Designated States (regional): ARIPO patent (GH, GM.,
(26) Publication Language: English KE, LS. MW, MZ, SD, SL. §Z, TZ, UG. ZW), Eurasian
patent (AM, AZ, BY. KG, KZ,MD. RU, T}, TM), European
(30) Priority Data: patent (AT, BE, CH. CY, DE. DK. ES, FI. FR, GB, GR. IE,
09/453.,008 2 December 1999 (02.12.1999) US . LY. MC. NL. PT, SE. TR). OAPI patent (BF, B), CF
CG. CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant: HONEYWELL, INC. [US/US]; 101 Colum- Published:

bia Avenue, P.O. Box 2245, Morristown, NJ 07960 (US).

—_

with international search report

(72) Inventor: DRISCOLL, Kevin; 7249 West Timber Lane,
Maple Grove, MN 55369 (US).

(88) Date of publication of the international search report:
2 May 2002

(74) Agents: HOIRIIS, David et al.: Honeywell Inc., 101 Co-
lumbia Avenue., P.O. Box 2245, Morristown, NJ 07960
(US).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations"” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER EFFICIENT LINEAR FEEDBACK SHIFT REGISTER

304a

) >
300

\ 304m
A ——

MSB LSB

/ /

Carry-Flag] |/

/

e o o /! /
MSB LSB s 1

LFSR(w-1) _ LFSR 1 I LFSR O

302

(37) Abstract: A fast pseudo-random number generator, which can be employed in a variety of systems, such as a stream cipher
cryptosystem or a Monte Carlo simulation system, includes a linear feedback shift register (LFSR) having a state contained in N
storage elements storing N bits of binary data which are separated into w words having word length M. At least two tap sources
provide binary data, each tap source has a number of bits which is a multiple of M. The LFSR also includes a linear feedback
tunction coupled to tap sources and providing a temporary value which is a linear function, such as bit-wise exclusive-or. of the
binary data provided from the tap sources. The LFSR state is advanced by shifting the binary data in the storage elements by a
multiple of M bits and provide the temporary value to till in storage elements that would otherwise be empty from the shifting.

306

YOO O O

01/48594 A3

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

30

COMPUTER EFFICIENT LINEAR FEEDBACK SHIFT REGISTER

The Field of the Invention
The present invention generally relates to psuedo-random number generators
(PRNGs), and more particularly relates to systems, such as private-key stream
cipher cryptosystems, which employ linear feedback shift registers to produce
pseudo-random bit keystreams, such as keystreams for combining with plaintext to

encrypt the plaintext into ciphertext and keystreams for combining with the

ciphertext to decipher the ciphertext into plaintext.

Background of the Invention

Pseudo-random number generators (PRNGs) are used 1n a variety of systems
such as cryptosystems, Monte Carlo simulation systems, games, and heuristic
design systems (e.g., gate array placement and routing systems). In particular,
cryptosystems perform cryptography to transform plaintext into ciphertext so that
only an authorized receiver can transform the ciphertext back into the original
plaintext. Encryption or enciphering is the process that transforms plaintext into
ciphertext. Decryption or deciphering is the process that transforms ciphertext into
plaintext.

A parameter called an encryption key 1s employed by a cryptosystem to
prevent the plaintext from being easily revealed by an unauthorized person. A
sender transforms a given plaintext into a large variety of possible ciphertexts
selected by the specific encryption key. A receiver of the ciphertext deciphers the
ciphertext by employing a parameter referred to as a decryption key. In a public-
key cryptosystem, the encryption key is made public while the decryption key 1s
kept secret. Therefore, in public key cryptosystems, the decryption key must be

computationally infeasible to deduce from the encryption key. In a private-key

cryptosystem, the sender and the receiver typically share a common key that 1s used

CA 02392706 2002-05-31
WO 01/48594 PCT/US00/32633

for both enciphering and deciphering. In such a private-key cryptosystem, the
common Key 1s alterable and must be kept secret.
Private-key cryptosystems are typically implemented as block cipher
cryptosystems or stream cipher cryptosystems. Block cipher cryptosystems divide
5 the plaintext into blocks and encipher each block independently using a stateless
transform. In block cipher cryptosystems if one fixed common private-key is
employed to encipher different occurrences of a particular plaintext block, all of
these occurrences are encrypted 1nto 1dentical corresponding ciphertext blocks.
Theretore, the block size 1s preferably selected to be large enough to frustrate
10 attacks from a cryptanalyst, which analyzes the occurrence frequencies of various
patterns among the ciphertext blocks. Example block sizes are 64 bits and 128 bats.
In stream cipher cryptosystems, the plaintext is typically encrypted on a or
word-by-word basis using a stateful transform that evolves as the encryption
progresses. In encrypting the plaintext binary data sequence for transmission as a
15 ciphertext binary data sequence, the common private-key is a parameter that
controls a pseudo-random bit generator to create a long sequence of binary data
referred to as a keystream. The stream cipher cryptosystem includes a
cryptographic combiner, which combines the keystream with the plaintext sequence.
The cryptographic combiner 1s typically implemented with exclusive-or (XOR) bit-
20 wise logic functions, which perform bit-wise modulo-2 addition. The cryptographic
combiner produces the ciphertext. At the receiver, the common private-key controls
a receiver pseudo-random bit generator to produce a decryption keystream. The
decryption keystream i1s combined with a decryption combiner to decrypt the
ciphertext to provide the plaintext to the receiver. The receiver decryption combiner
25 operation must be the inverse of the sender encryption combiner operation. For this
reason, the most common combiner operation is bit-wise XOR, which is its own
INVErse.
One problem with stream cipher cryptosystems is the difficulty of generating

a long, statistically uniform, and unpredictable sequence of binary data in the

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

keystream from a short and random key. Such sequences are desirable in the
keystream 1n cryptography to make it impossible, given a reasonable segment of its
data and sufficient computer resources, to find out more about the sequences.

There are four general requirements for cryptographically secure keystream
PRNGs. First, the period of a keystream must be large enough to accommodate the
length of the transmitted message. Second, the keystream output bits must have
good statistical properties (e.g. values are uniformally distributed). Third, the
keystream output bits must be easy to generate. Fourth, the keystream output bits
must be hard to predict. For example, given the PRNG and the first N output bits,
a(0), a(1)...., a(N-1), it should be computationally infeasible to predict the (N+1)"
bit a(N) 1n a sequence with better than a 50-50 chance. In otherwords, a
cryptanalyst should not be able to generate other forward bits or backward bits 1f
presented with a given portion of the keystream output sequence.

The PRNG employed 1n stream cipher cryptosystems, often employs a
feedback shift register (FSR) which includes N storage elements and a feedback
function that expresses each new element a(t) of the sequence in terms of the
previous generated elements a(t-N), a(t-N+1)...., a(t-1). Each individual storage
element of the FSR 1s called a stage, and the binary signals a(0), a(1), a(2),..., a(N-
1) are loaded 1nto the stages as 1nitial data to generate the keystream sequence. The
period of the keystream sequence produced by the FSR depends both on the number
of stages and on the details of the feedback function. The maximal period of a
keystream sequence generated by an N-stage FSR with a non-singular feedback
function is 2", which represents the number of possible states of the N-stage FSR.

Depending on whether the feedback function 1s linear or is non-linear, the
FSR 1s referred to respectively as a linear feedback shift register (LFSR) or a non-
linear feedback shift register (NLFSR).

In particular, the LFSR 1s employed in many pseudo-random bit generators
for stream cipher cryptosystems. LFSRs are preferred over most other PRNGs

because mathematics are available to design LFSRs with guaranteed long sequence

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

length and good statistics. The LFSR feedback function is of the form a(t) = c; a(t-
[) XOR ¢ a(t-2) XOR...XOR cn.; a(t-N+1) XOR cn a(t-N), where c; 1s an element
of the set {0,1}. Each stage that is associated with a non-zero c; 1s referred to as a
tap. The feedback function of an LFSR can be represented formally by what is

referred to as a feedback polynomial:

N N

-1+CNX

f(x)=1+c;x + oy X2 +. . .+ CN-1 X
where the intermediate x has no other meaning than as a mathematical symbol. This
teedback polynomial decides the period and the statistical behavior of the keystream
output sequence. 1o avoid trivial output, the zero-state should be excluded from the
initial setting. This limits the largest possible period of an LFSR to 2™-1

In general, to generate the largest possible period 2™-1 for the output
sequence, the feedback polynomial f(x) of the LFSR should be primitive. A
sequence generated by an LFSR with a primitive feedback polynomial is referred to
as a maximal-length LFSR sequence or simply an m-sequence. However, m-
sequences cannot be used as keystreams without undergoing further cryptographic
transtformation. Without this further cryptographic transformation, the key of
secrecy (1.e, the mnitial state of the LFSR and the feedback function of the LFSR) of
an N-stage LFSR can be determined from just 2N successive bits of the output
sequence.

Efficient synthesis procedures exist for finding feedback polynomials of the
shortest LFSR that would generate a given output sequence. The length of such an
LFSR 1s referred to as the linear complexity of the sequence. As a result, an LFSR
suitable for employment in a cryptosystem, must guarantee a large enough key-
iIndependent lower bound to the linear complexity of the sequences the LFSR
generates.

Conventional LFSRs implemented in software are particularly slow, because
a relatively large number of instructions need to be executed to obtain each new one
b1t element a(t) and to shift the new element a(t) into the LFSR by shifting each bit
of the LFSR to the left or right depending on the implementation of the LESR. A

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

detailed example of this problem with conventional LFSRs 1s provided in the
Description of the Preferred Embodiment section of the present specification.

Because LFSRs implemented 1n software are very slow, various techniques
have been attempted to speed-up the software implemented LFSR. For example, a
matrix multiply has been used to advance an LFSR by multiple bits. Another speed-
up technique 1s to run parallel LFSRs. However, parallel LFSRs are slow to
initialize and occupy many times more memory than the equivalent senial
implementation. None of the conventional speed-up techniques provide a
significant time reduction in implementing an LFSR 1n software.

For reasons stated above and for other reasons presented 1n greater detail n
the Description of the Preferred Embodiments section of the present specification, a
PRNG 1s desired which uses an LFSR implemented 1n software and which 1s
significantly faster than the conventional speed-up techniques used for LFSRs

which generate pseudo-random numbers.

Summary of the Invention

The present invention provides a pseudo-random number generator (PRNG)
that includes a linear feedback shift register (LFSR) having a state. The LFSR
includes N storage elements (stages) storing N bits of binary data, which are
separated into w words having word length M. T tap sources provide binary data
frdm the stages. Each tap source has a number of bits, which 1s a multiple of M,
taken from contiguous LFSR stages beginning or ending on a stage that 1s a multiple
of M. The LFSR also includes a linear feedback function coupled to the T tap
sources and providing a temporary value, having a number of bits which 1s a
multiple of M, which 1s a linear function of the binary data provided from the T tap
sources. The LFSR state 1s advanced by shifting the binary data in the storage
elements by a multiple of M bits and providing the temporary value to fill in storage
elements that would otherwise be empty from the shifting. Thus, each advance of

the LFSR produces a multiple of M new bits in the PRNG sequence.

10

15

20

25

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

One b1t of each tap source 1s a tap bit. This tap bit 1s the most significant bit
1f the LFSR 1s left shifted or the least significant bit if the LFSR 1s right shifted.

In one embodiment of the PRNG, the LFSR 1s implemented in software. In
another embodiment, the LFSR 1s implemented in hardware. In one embodiment of
the software implementation of the LFSR, the LFSR 1s implemented in a computer
system which accesses more than one computer word size, where each computer
word size includes M bits. In one embodiment of the software implementation of
the LFSR, register or location renaming 1s used instead of movement of words for
the shift the binary data 1n the storage elements by a multiple of M bits.

In one embodiment, N 1s one less than a multiple of the M (e.g., N =127 or
N = 159 where M= 32 bits). For this reason, in an embodiment where the LFSR 1s
left shifted in response to each clock pulse, the least significant bit of the least
significant LFSR word 1s a zero. The LFSR can also be embodied in a nght shifting
LFSR. '

In one embodiment, for each LFSR state advancement, the temporary value
1s left shifted by one bit with a zero shifted into the least significant bit and then
stored 1n the least significant LFSR word. The lost bit resulting from the temporary
value being left shifted by one bit is stored 1n a carry-flag. Subsequently, the carry-
flag 1s stored 1n the least significant bit of the second least significant LFSR word, to
replace the least significant bit that had been zeroed by the left shift of the
temporary value in the previous iteration. In one form of this embodiment, the
storage of the carry-flag 1n the least significant bit of the second least significant
LFSR word 1s accomplished by adding the carry-flag to the word with an ADD
WITH CARRY 1nstruction.

One form of a stream cipher cryptosystem according to the present invention
includes a PRNG receiving a kéy and providing a keystream. The PRNG includes a
word-by-word shifting LFSR according to the present invention for providing a
LFSR output word of word length M. The stream cipher cryptosystem also includes

a cryptographic combiner for combining a first binary data sequence and the

CA 02392706 2002-05-31
WO 01/48594 PCT/US00/32633

10

15

20

25

keystream to provide a second binary data sequence. In encryption operations, the
cryptographic combiner 1s an encryption combiner and the first binary data
sequence 1s a plaintext binary data sequence and the second binary data sequence is
a ciphertext binary data sequence. In decryption operations, the cryptographic
combiner is a decryption combiner and the first binary data sequence is a ciphertext
binary data sequence and the second binary data sequence is a plaintext binary data
sequence.

The PRNG according to the present invention includes a word-by-word
shifting LFSR, which can be implemented in software significantly faster than the
conventional speed-up techniques used for LFSRs which generate pseudo-random

numbers.

- Brief Description of the Drawings

Figure 1 1s a block diagram of a privateékey stream cipher cryptosystem

-according to the present invention.

Figure 2 1s a block diagram of a sender or receiver of the cryptosystem of -

Figure 1 wherein a pseudo-random number generator is illustrated in greater detail.
“Figure 3 1s a block diagram of a prior art linear feedback shift register.

Figure 4 1s a block diagram of a linear feedback shift register according to

the present invention.

Description of the Preferred Embodiments

In the tollowing detailed description of the preferred embodiments, reference
1s made to the accompanying drawings, which form a part hereof, and in which is
shown by way of illustration specific embodiments in which the invention may be
practiced. It 1s to be understood that other embodiments may be utilized and .
structural or logical changes may be made without departing from the scope of the

present invention. The following detailed description, therefore, is not to be taken

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

in a limiting sense, and the scope of the present invention is defined by the
appended claims.

A private-key stream cipher cryptosystem according to the present invention
is 1llustrated generally at 20 in Figure 1 in block diagram form. Stream cipher
cryptosystem 20 includes a sender 22, such as a computer system, and a receiver 42,
such as a computer system.

Sender 22 includes a pseudo-random number generator (PRNG) 24 and an
encryption combiner 26. PRNG 24 receives a private-key 32 which controls PRNG
24 to produce an encryption keystream 28 to be provided to encryption combiner
20. In the embodiment 1llustrated in Figure 1, an initialization vector 34 is also
provided to PRNG 24 to ensure that encryption keystream 28 is not the same even if
the same private-key 32 1s used to control PRNG 24 for multiple messages.
Initialization vector 34 can be embodied as a true random number to ensure that
every message which 1s encrypted is slightly different.

Plaintext 30 is also provided to encryption combiner 26. Plaintext 30 is a
binary data sequence. Encryption combiner 26 combines plaintext 30 and
encryption keystream 28 to form ciphertext 36, which is also a binary data
sequence. In one embodiment, encryption combiner 26 is implemented with
exclusive-or (XOR) bit-wise logic functions which perform bit-wise module-2
addition.

Receiver 42 includes PRNG 44 and decryption combiner 46. PRNG 44

receives private-key 32', which is the same private-key as the private-key 32.

- PRNG 44 1s controlled by private-key 32' to produce keystream 48, which is

provided to decryption combiner 46. In the embodiment illustrated in Figure 1, an
initialization vector 34' which is the same initialization vector as initialization vector
34 1s provided to PRNG 44 to ensure that decryption keystream 48 is identical to
encryption keystream 28 for a given private key 32/32' and initialization vector

34/34'.

10

15

20

25

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

Decryption combiner 46 receives ciphertext 36 and combines ciphertext 36
with decryption keystream 48 to produce plaintext 30", which is a binary data
sequence which substantially matches plaintext 30. Decryption combiner 46 must
have a combiner operation which is the inverse of the combiner operation of
encryption combiner 26 so that encryption keystream 28 can be used to encrypt
plaintext 30 to form ciphertext 36 and decryption keystream 48, which 1s 1dentical to
encryption keystream 28, can be used to decrypt ciphertext 36 to form plaintext 30".
For this reason, the most common cryptorgraphic combiner operation is bit-wise
XOR, which can be used for both the encryption and decryption combiner
operations.

As mentioned in the Background of the Invention section of the present
specification, PRNG 24 and 44 should have the following general characteristics to
produce cryptographically secure keystreams 28 and 48. First, the period of a
keystream must be large enough to accommodate the length of the transmitted
message. Second, the keystream output bits must be easy to generate. Third, the

keystream output bits must be hard to predict.

The sender 22 or receiver 42 of cryptosystem 20 of Figure 1 1s 1llustrated
generally in block diagram form 1n Figure 2 wherein the PRNG 24/44 is 1llustrated
in greater detail. The present invention 1s described herein relative to a
cryptosystem which employs a PRNG according to the present invention, but the
PRNG according to the present invention can be used 1n a variety ot systems, such
as cryptosystems, Monte Carlo simulation systems, games, and heuristic design
systems (e.g., gate array placement and routing systems). PRNG 24/44 includes a
linear feedback shift register (LFSR) 100. LFSR 100 includes N storage elements
102 and a linear feedback function 104 that expresses each new element a(t) of the
sequence 1n terms of the previous generated elements a(t-N), a(t-N+1),....a(t-1).
LFSR storage elements 102 are referred to as stages and binary signals a(0), a(1),

a(2),....a(N-1) are loaded into the stages as initial data to generate a keystream

sequence.

10

15

20

25

WO 01/48594

CA 02392706 2002-05-31
PCT/US00/32633

LFSR storage elements 102 are divided into w LFSR words of word length
M represented as LFSR 0, LFSR 1,..., LFSR (w-1). LFSR 0 includes a 0 bit in its
least significant bit (LSB), because LFSR 100 must have a feedback polynomial f(x)
represented by linear feedback function 104 which is primitive, to provide a
maximal length sequence with good statistics. To be primitive, the number of
storage elements N must not be a multiple of 8, according to the known
mathematics. Suitable example sizes for N and w, where each word length M is 32
bits, are: N=127andw=4;and N =159, w=5.

Most crypto-systems using LFSRs incorporate means to non-linearize the
LFSR output to prevent certain plaintext attacks. Plaintext attacks by cryptanalysts
are performed by knowing certain plaintext and observing the ciphertext to yield
information about the keystream and then working backwards to determine the key
of secrecy of the LFSR (i.e., the initial state of the LFSR and the feedback function
of the LFSR). Since the LFSR is linear, it is possible to ascertain the initial state
and the linear feedback function if sufficient plaintext is known by the cryptanalyst.
The non-linearization techniques include “clock control” (the LFSRs are advanced
pseudo-randomly), non-linear transforms of the LFSR output, and non-linear
combination of multiple LFSR. Any or all of these means can be used with the

present invention. In Figure 2, optional post processor 110 can be employed to

perform post processing, such as non-linear filtering, of the LFSR 100 output to
non-linearize the LFSR output to prevent certain plaintext attacks. In the
embodiment 1llustrated in Figure 2, the output from LFSR 100 is provided from the
most significant word LFSR (w-1). In other embodiments, the LFSR 100 output is
obtained from a selected one of the other LFSR words (i.e., LFSR 0, LFSR 1, . . .,
LEFSR (w-2) depending on the characteristics of the particular LFSR 100.

A conventional bit-by-bit LFSR 1s illustrated generally at 200 in Figure 3.
Conventional LFSR 200 includes N storage elements 202 which are divided into w
words of word length M represented as LFSR 0, LFSR 1,..., LFSR (w-1). In the

embodiment of LFSR 200 illustrated in Figure 3, a linear feedback function is

10

10

15

20

25

30

WO 01/48594

CA 02392706 2002-05-31
PCT/US00/32633

performed by a XOR logic function 204, which performs a XOR logical operation
on the most significant bit (MSB) of the most significant word LFSR (w-1) and one
or more other bits of one or more other words such that the bits used represent a
primitive polynomial. The LFSR 1s shifted to the left and the output from XOR
logic function 204 is fed back into the second most LSB of LFSR 0. Again, LFSR 0
includes a zero bit 1n its LSB location because the feedback polynomial {(x) of
LFSR 200 must be primitive to provide maximal length and good statistics.
Accordingly, the N number of storage elements 202 must not be a multiple of 8.
The following pseudo-C code I implements a 127-bit two-tap conventional

bit-by-bit left shifting LFSR 200 on a 32-bit word computer system.

Pseudo-C code I

for(1=0, 1<32, 1++) {
temp = (LFSR[3] >> 31) "
(LFSR[1] >> 31);
LFSR][3] = (LFSR[3] << 1)
(LFSR[2] >> 31];
LFSR[2] = (LFSR[2] << 1)
' (LFSR[1] >> 31];
LFSR][1] = (LFSR[1] << 1)]|
(LESR[0} >> 31];
LFSR[0] = (LFSR[0] << 1) | temp;

d

As can be seen by the above pseudo-C code I, implementation of a 127-bit
two-tap conventional bit-by-bit LFSR 200 on a 32-bit word computer system, there
are approximately 17 instructiohs required to obtain each new one-bit element a(t)
and to left shift the new element a(t) into the 127-bit conventional bit-by-bit LESR
200. Moreover, 17 instructions per bit times 32 bits per word or 544 instructions
(plus loop overhead) are required to obtain a whole new 32-bit word left shifted into
the conventional bit-by-bit LFSR 200. Therefore, software implementations of
conventional bit-by-bit LFSR 200, such as represented by the above pseudo-C code,

are extremely slow.

11

10

15

20

25

WO 01/48594

CA 02392706 2002-05-31
PCT/US00/32633

A word-by-word left shifting LESR according to the present invention 1s
illustrated generally at 300 in Figure 4. Although the following description
describes word-by-word left shifting LFSR 300, the present invention equally
applies to a word-by-word right shifting LFSR. Word shifting LFSR 300 includes
N storage elements 302 which are divided into w words of word length M
represented as LFSR 0, LESR 1,..., LFSR(w-1). In the embodiment of LFSR 300
illustrated in Figure 4, a linear feedback function 1s performed by XOR logic
functions 304a-304m corresponding to the number of bits M 1n a word of word
length M. An alternative embodiment of a LEFSR according to the present invention
includes a linear feedback function performed by exclusive-nor logic functions.
XOR logic functions 304a-304m perform XOR logical operations on corresponding
bits of LFSR(w-1) and LFSR 1 to provide a temporary value or storage word 306.
For example, the MSB of LFSR(w-1) and the MSB of LFSR 1 are XORed by XOR
logic function 304a to provide the MSB of temporary storage word 306. Similarly,
the LSB of LFSR(w-1) 1s XORed with the LSB of LFSR 1 by XOR logic function
304m to provide the LSB of temporary storage word 306. All intervening bits are
similarly XORed. The MSB of the temporary storage word 306 has exactly the
same value that would be used to advance an equivalent bit-by-bit implementation
by one bit, The next most significant bit of the temporary storage word 306 has
exactly the same value that would be used to advance an equivalent bit-by-bit
implementation by a second bit. And so on, with the LSB of the temporary storage
word 306 having exactly the same value as the Mth bit produced by an equivalent
bit-by-bit implementation. Again, LFSR 0 includes a zero bit 1n i1ts LSB location
because the feedback polynomial f(x) of LFSR 300 must be primitive to provide
good statistics (1.¢., to make LFSR 300 a maximal-length LFSR). Accordingly, the
N number of storage elements 302 must not be a multiple of 8. In one
embodiment, the state of word-by-word LFSR 300 1s advanced as follows. The
contents of LFSR 2 are placed into to LFSR3. The contents of LFSR 1 are placed
into to LFSR 2. Temporary storage word 306 1s left shifted by one-bit location to

12

10

15

20

25

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

shift a zero 1nto the LSB of temporary storage word 306. In one embodiment, the
MSB 1s left shifted out of temporary storage word 306 into a carry-flag. The
contents of LFSR 0 are placed into the m-1 MSBs of LFSR 1 and the carry-flag is
placed into the LSB of LFSR 1. The contents of temporary storage word 306 are
then placed into LFSR 0 to complete the word advancement of LFSR 300.

Thus, the state of word-by-word left shifting LFSR 300 advances a full word
at a time. The LFSR feedback through XOR functions 304a-304m is selected from
T tap sources from storage elements 302, each tap source being multiples of the
computer system’s word size M. On computer systems which can access and
manipulate words of different sizes M, such as the Intel Pentium Processor, which
can access &, 16, 32, or 64 bit words, any of the available word sizes M are usable.
The larger word sizes produce more bits per each advancement of the LFSR 300.

The preferred length N of LFSR 300 1s selected to be one less than the exact
multiple of the word size M. It would be desirable to have the number N of LFSR
storage elements 302 be an exact multiple of the word size M; but as stated above,
there are no maximal-length LFSRs with a size N which 1s a multiple of 8.

An adjustment 1s needed to place the full word stored in temporary storage
word 306 1nto a register (1.e., LFSR 0) which uses one less bit than a word size (i.e.,
LEFSR O has a stage length of M-1). It is for this reason, that the temporary word
resulting from the XOR linear feedback function 304 is first stored in temporary
stofage word 306 and then temporary storage word 306 is left shifted one bit to shift
In a zero bit and to shift out the MSB into the carry-flag. The carry flag is then put
in the LSB of LFSR 1 to replace the bit in that word that had been zeroed by the left
shift in the previous iteration.

The following pseudo-C code Il implements a 127-bit two-tap (i.e., T=2)
word-by-word left shifting LFSR 300 according to the present invention on a 32-bit

word computer system and produces exactly the same output sequence as Pseudo-C

code I previously described.

13

10

15

20

25

30

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

Pseudo-C code 11

temp = (LFSR[3] " LFSR[1]) <<1; /* lost bit put into carry-flag */
LFSR[3] = LFSR][2];

LFSR[2] = LFSR[1];

LFSR[1] = LFSR[O] + carry; /* use ADD WITH CARRY instruction * /
LFSR[0] = temp;

As can be seen by the above pseudo-C code II implementation of 127-bit
word-by-word left shifting LFSR 300 on a 32-bit word computer system, there are
only about eight instructions required to obtain a whole new 32-bit word left shifted
into the word-by-word LFSR 300 according to the present invention. This
compares to the more than 544 instructions represented by the above pseudo-C code
I required to obtain a whole new 32-bit word left shifted into the 127-bit
conventional bit-by-bit LFSR 200. As noted in the above pseudo-C code 1I for
implementing the 127-bit word-by-word left shifting LFSR 300, the lost bit from
left shifting “temp” is stored in the carry-flag. Thus, when the contents of LFSR[1]
are replaced with the contents of LFSR[0], the carry-flag is added into LFSR[1]
along with LFSR[0] with an ADD WITH CARRY instruction, which exists on
almost all modern computers.

If the above pseudo-C code II for implementing the word-by-word LFSR
300 1s performed 1n a software loop, the software loop can be unrolled to shift the
four LFSR words each iteration. In one embodiment, register or location renaming,
such as arithmetic logic unit (ALU) register renaming, is used instead of movement
of words for each of the “LFSR[]=" operations. In this embodiment, only three
Instructions are required to obtain a whole new 32-bit (or any other word size) word
left shifted into word-by-word LFSR 300 implemented as a 127-bit LFSR.
Comparing these three mstruction versus the more than 544 instructions required to
produce the same sequence using the conventional art, one can appreciate that the
word-by-word LFSR of the present invention is over 180 times faster than the

conventional art bit-by-bit LFSR for this particular 127-bit LFSR implementation.

14

10

15

20

235

WO 01/48594

CA 02392706 2002-05-31
PCT/US00/32633

Using 64-bit words, three instructions can produce 64 new bits of the exact same
LFSR sequence, which 1s another two times faster.

Although the word-by-word LFSR 300 according to the present invention
can be implemented 1n hardware or software, the word-by-word LFSR 300 1s
particularly useful for replacing other types of conventional software implemented
LFSRs.

The conventional matrix multiply speed-up technique where a matrix
multiply operation (1mplemented as a table look-up) 1s employed to advance an
LFSR by multiple bits would require a 16-gigabyte table for 32-bit word
advancements. This table would not fit into the first or second level caches of any
known processors and the accesses would be essentially random, causing a double
cache miss for almost all table fetches. In addition, 1t would take a long time to
initialize the 16-gigabyte table. Thus, the 32 x 32 matrix multiply would require a

very large amount of memory and would be much slower than the above word-by-

word LFSR 300 according to the present invention.

The conventional technique to run parallel LFSRs would be much slower to
initialize than the word-by-word LFSR 300 according to the present invention,
because an array of words would be 1mitialized. The number of words 1n the array
has to be the same as the number of stages; e.g. a 127 stage LFSR needs 127 words
of storage. Moreover, the parallel LFSRs would be slower than the word-by-word
LFSR 300 1n creating each new word of output because either all 127 words have to
be shifted, or modular arithmetic (mod 127) has to be performed on the addresses
fbr the 127 words to calculate the address of where the taps are and where the newly
produced word 1s to be stored.

For the above reasons, the software implemented word-by-word LFSR 300
according to the present invention 1s significantly faster than any of the known
conventional LFSR software implementations. Thus, word-by-word LFSR 300
according to the present invention can be employed in a real-time cryptosystem,

which needs to produce bits at a very high frequency. For example, when

15

10

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

implementing the above pseudo-C code II unrolled on a 500 MHz Pentium Intel
Processor, the LFSR can be advanced at a rate greater than 10 Gigabits per second
(Gbps).

Although specific embodiments have been 1llustrated and described herein
for purposes of description of the preferred embodiment, 1t will be appreciated by
those of ordinary skill in the art that a wide vaniety of alternate and/or equivalent
implementations calculated to achieve the same purposes may be substituted for the
specific embodiments shown and described without departing from the scope of the
present invention. Those with skill in the mechanical, electro-mechanical,
electrical, and computer arts will readily appreciate that the present invention may
be implemented 1n a very wide vanety of embodiments. This application 1s
intended to cover any adaptations or variations of the preferred embodiments
discussed herein. Therefore, 1t 1s manifestly intended that this invention be limited

only by the claims and the equivalents thereof.

16

10

15

20

25

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

WHAT IS CLAIMED IS:

1. A pseudo-random number generator comprising:
a linear feedback shift register (LFSR) having a state and including:
N storage elements together storing N bits of binary data which are
separated into w words having word length M and including T tap sources,
each tap source providing binary data from the storage elements and having

a number of bits which 1s a multiple of M;
a linear feedback function coupled to the T tap sources and providing
a temporary value, having a number of bits which is a multiple of M, which
1s a linear function of the binary data provided from the T tap sources; and
wherein the LFSR state is advanced by shifting the binary data in the
storage elements by a multiple of M bits and providing the temporary value

to f1ll in storage elements that would otherwise be empty from the shifting.

2. The pseudo-random number generator of claim 1 wherein the LFSR is

implemented in software.

3. The pseudo-random number generator of claim 2 wherein the LFSR 1s
implemented 1n a computer system which accesses more than one computer word

size, wherein each computer word size includes M bits.

4. The pseudo-random number generator of claim 1 wherein N 1s one less than
a multiple of the M.
5. The pseudo-random number generator of claim 4 wherein the LFSR state is

advanced by left shifting and the least significant bit of the least significant LFSR

word 1s a zero.

17

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

6. The pseudo-random number generator of claim 5 wherein the temporary
value 1s left shifted by one bit with a zero shifted into the least significant bit and
then stored 1n the least significant LFSR word(s).

7. The pseudo-random number generator of claim 6 wherein the lost bit

resulting from the temporary value being left shifted by one bit is stored in a carry-

flag.

8. The pseudo-random number generator of claim 7 wherein the carry-flag
replaces the least significant bit that had been zeroed by the left shift of the

temporary value 1n the previous iteration.

9. The pseudo-random number generator of claim 8 wherein the carry-flag
replacement 1s performed with an ADD WITH CARRY instruction prior to left

shifting that word to the second least significant LFSR word position.

10. The pseudo-random number generator of claim 4 wherein the LFSR state is

advanced by right shifting.

11. The pseudo-random number generatorof claim 2 wherein register or location
renaming 1s used instead of movement of words for the shift the binary data in the

storage elements by a multiple of M buts.

12. The pseudo-random number generator of claim 1 wherein the LFSR 1s

implemented 1n hardware.

13. The pseudo-random number generator of claim 1 wherein the linear

feedback function i1s a bit-wise exclusive-or function.

18

CA 02392706 2002-05-31
WO 01/48594 PCT/US00/32633

14. The pseudo-random number generator of claim 1 wherein the liner feedback

function 1s a bit-wise exclusive-nor function.

> 15. The psuedo-random number generator of claim 1 wherein each tap source
has a number of bits which is a multiple of M and taken from contiguous storage

elements beginning or ending on a storage element that is a multiple of M.

16. A stream cipher cryptosystem comprising:
10 pseudo-random bit generator receiving a key and providing a keystream, the
pseudo-random bit generator including:
a linear feedback shift register (LFSR) having a state and including:
N storage elements together storing N bits of binary data which are
separated 1nto w words having word length M and including T tap sources,
15 each tap source providing binary data having a number of bits which is a
multiple of M;
a linear feedback function coupled to the T tap sources and providing
a temporary storage word which 1s a linear function of the binary data
provided from the T tap sources; and
20 wheren the LFSR state is advanced by shifting the binary data in the
storage elements by a multiple of M bits and providing the temporary
storage word to {11l in storage elements that would otherwise be empty from
the shifting; and
a cryptographic combiner for combining a first binary data sequence and the

25 keystream to provide a second binary data sequence.

17. The stream cipher cryptosystem of claim 16 wherein the cryptographic

combiner 1s an encryption combiner and the first binary data sequence is a plaintext

19

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

binary data sequence and the second binary data sequence 1s a ciphertext binary data

sequence.

18. The pseudo-random number generator of claim 17 wherein the
cryptographic combiner is a decryption combiner and the first binary data sequence
1s a ciphertext binary data sequence and the second binary data sequence 1s a

plaintext binary data sequence.

19. A method of generating a pseudo-random number, the method comprising
the steps of:

storing N bits of binary data in storage locations in a linear feedback shift
register (LFSR), wherein the N bits of binary data are separated into w words

having word length M;
providing T tap sources of binary data from the N bits of binary data, each
tap source providing binary data having a number of bits which 1s a multiple of M;
providing a temporary value, having a number of bits which 1s a multiple of
M, which 1s a linear function of the binary data provided from the T tap sources;
shifting the stored binary data by a multiple of M bats; and
providing the temporary value to fill in storage locations that would

otherwise be empty from the shifting step.

20. The method of claim 19 wherein the method 1s implemented 1n a computer
system which accesses more than one computer word size, wherein each computer
word size includes M biats.

21. The method of claim 19 wherein N 1s one less than a multiple of the M.

22. The method of claim 19 wherein the shifting step includes left shifting the
LFSR.

20

CA 02392706 2002-05-31

WO 01/48594 PCT/US00/32633

10

15

20

25

23. The method of claim 22 wherein the least significant bit of the least

significant LFSR word 1s a zero.

24. The method of claim 23 further comprising the steps of:
left shifting the temporary value by one bit with a zero shifted into the least

significant bit; and

storing the left shifted temporary value into the least significant LFSR word.

25. The method of claim 24 further comprising the step of:
storing the lost bit resulting from the temporary value being left shifted by

one bit into a carry-flag.

26. The method of claim 25 further comprising the step of:
replacing the least significant bit that had been zeroed by the left shift of the

temporary value in the previous iteration.

27. The method of claim 26 wherein the replacing step is performed with an

ADD WITH CARRY instruction prior to left shifting the LFSR.

28. The method of claim 19 wherein the shifting step includes right shifting the
LFSR.

29. The method of claim 19 wherein the shifting step is performed by register or

location renaming instead of movement of words.

30. The method of claim 19 wherein the linear feedback function i1s a bit-wise

exclusive-or function.

21

CA 02392706 2002-05-31
WO 01/48594 PCT/US00/32633

31. The method of claim‘19 wherein the linear feedback function is a bit-wise

exclusive-nor function.

32. The method of claim 19 wherein each tap source has a number of bits which
1s a multiple of M and taken from contiguous storage elements beginning or ending

on a storage element that is a multiple of M.

22

CA 02392706 2002-05-31

PCT/US00/32633

WO 01/48594

1/3

0t

1Xo] ure[d

e —————————_——— e ——————

o
IUIQUIO))
uondAra(g
weang Aoy

1%

101RI5U90) NI
wWopueY-opnasd

cr

Y43

—_—— e e e o

9t

1xa 1 1oydin

142

10109 A
uoneZIEnIu]

0C

9¢
IauIquIo))
uondArouyg
weang Aoy

8¢C

10)eIdUAD) 11
WOpUeRY-0pnasyd

¢C

Ct

S ——

0t

X, ureld

147

10109 A
UOneZI[eN A

CA 02392706 2002-05-31

PCT/US00/32633

WO 01/48594

2/3

10J99A
uonEZI[enIu]

W0E9€ | 9p/97

9¢/0€ > Q@r&

xoymreld xouoydr

IxaIaydin
weans Aoy

L
IBOUIT-UON

IXojuIe[d

.,
llII.IIIIII""I"'I'lIl'lltllll'llll'llllll'l

Ol

1012I0UJN)

A1O
ASAT

901

CA 02392706 2002-05-31
WO 01/48594 PCT/US00/32633

3/3

200

LFSR(W-I) LFSR1 | LFSRO E

202

Fig.3 (Prior Art)

300

LFSR(w-1) _ LFSR 1 I LFSR 0 a

302

rg.4

32 > 32'
42 .
r Private-Key

~ I B =
} } | Receiver 44 |
| | | |
Vitalization : ! Initialization | |
Vector | Pse.udo-Random | Vector ! Psgudo-Random i
| Bit Generator \ . Bit Generator |
34 : i 34 E |
‘ : : 8o
: Key Stream | | Key Stream |
I | . |
| | l l
| | | !
: : : :
Plain Text : Encryption { Cipher Text ! Decryption I Plain Text

, Combiner , . Combiner .

| l l | 30"
o { 36 | |
W 26 | | 46 |
: | | [
b e e - e - b e e e e o -

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - abstract drawing

