
USOO7404181B1

(12) United States Patent (10) Patent No.: US 7.404,181 B1
Banning et al. (45) Date of Patent: *Jul. 22, 2008

(54) SWITCHING TO ORIGINAL CODE (56) References Cited
COMPARISON OF MODIFIABLE CODE FOR
TRANSLATED CODEVALIDITY WHEN U.S. PATENT DOCUMENTS

FREQUENCY OF DETECTING MEMORY 5,832,205 A 1 1/1998 Kelly et al.
OVERWRITES EXCEEDS THRESHOLD 5,875,318 A 2/1999 Langford

6,164,841 A 12/2000 Mattson et al.
(75) Inventors: John Banning, Sunnyvale, CA (US); H. 6,199,152 B1 3/2001 Kelly et al.

Peter Anvin, San Jose, CA (US); Robert 6,363.336 B1 3/2002 Banning et al.
Bedichek, Palo Alto, CA (US); 2. R ck 3. SE et al. 717/138
Guillermo J. Rozas, Los Gatos, CA W I ugnon
(US); Andrew Shaw, Sunnyvale, CA 6,845,353 B1* 1/2005 Bedichek et al. TO3.26
(US); Linus Torvalds, Santa Clara, CA FOREIGN PATENT DOCUMENTS
(US); Jason Wilson, San Francisco, CA
(US) WO WO-01 (48605 A1 T 2001

(73) Assignee: Transmeta Corporation, Santa Clara, * cited by examiner
CA (US) Primary Examiner Kenneth S Kim

(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. A method of translating instructions from a target instruction
Thi set to a host instruction set. In one embodiment, a plurality of is patent is Subject to a terminal dis
claimer. first target instructions is translated into a plurality of first host

instructions. After the translation, it is determined whether
(21) Appl. No.: 11/507,779 the plurality of first target instructions has changed. A copy of

a second plurality of target instructions is stored and com
(22) Filed: Aug. 21, 2006 pared with the plurality of first target instructions if the deter

mining slows the operation of the computer system. After
Related U.S. Application Data comparing, the plurality of first host instructions is invali

dated if there is a mismatch. According to one embodiment,
(63) Continuation of application No. 10/463,846, filed on the storing, the comparing and the invaliding is initiated when

Jun. 16, 2003, now Pat. No. 7,096,460. the determining indicates that a page contains at least one
(51) Int. Cl. change to the plurality of first target instructions. In one

G06F 9/455 (2006.01) embodiment, the determining is by examining a bit indicator
(52) U.S. Cl. 717/136; 712/226; 717/138; associated with a memory location of the plurality of first

717/139 target instructions.
(58) Field of Classification Search None

See application file for complete search history. 16 Claims, 4 Drawing Sheets

MEASri Rouency
Foccurric of

ExecutoN

YS

copy Arger
NSRCNS

NErASE
checkNGProcess

RWEs
PROTECTON

SEFCECKEAct
ExcNo
RANSAON

Excut

Nd

NWAA
RANSAN

404,181 B1 9 US 7 Sheet 1 of 4 Jul. 22, 2008 U.S. Patent

?, ERIT,5)|=|

SNELLSIS) EN SDN IXI^IONA

HOLVdSIC] º HOLE!=| NOI LOTNo. LSN||

US 7.404,181 B1 Sheet 2 of 4 Jul. 22, 2008 U.S. Patent

(‘LNOO) | HMnºl-l TORILNOSO "SAS EKOV/-]>|ELNI ST18 EKOV-RIELNI ÅèJOINE IN

— | — W NOWETIN ? LSOH

G) (G) (6) () O GO

U.S. Patent Jul. 22, 2008 Sheet 4 of 4 US 7.404,181 B1

LOAD DATA
STRUCTURE ADDRESS

MEASURE FRECUENCY
OF OCCURRENCE OF
T BIT EXECUTON

BEYOND LIMIT?

YES

COPY TARGET
NSTRUCTIONS

GENERATE SELF
CHECKING PROCESS

REMOVE TBT
PROTECTION

SELF CHECKEACH
EXECUTION OF
TRANSLATON

YES

JUMP TO TRAL
TRANSLATON

RECORD ITERATION

EXECUTE TRIAL
TRANSAON

FIGURE 5

EXECUTE

NO

NVALIDATE
TRANSLATON

FIGURE 3

US 7,404,181 B1
1.

SWITCHING TO ORIGINAL CODE
COMPARISON OF MODIFIABLE CODE FOR
TRANSLATED CODEVALIDITY WHEN
FREQUENCY OF DETECTING MEMORY
OVERWRITES EXCEEDS THRESHOLD 5

This Continuation application claims the benefit of the
application Ser. No. 10/463,846, which is now issued as a
U.S. Pat. No. 7,096.460 that is commonly-owned by the same
assignee that was filed on Jun. 16, 2003, entitled “SWITCH- 10
ING TO ORIGINAL MODIFIABLE INSTRUCTION
COPY COMPARISON CHECK TO VALIDATE PRIOR
TRANSLATION WHEN TRANSLATED SUB-AREA
PROTECTION EXCEPTION SLOWS DOWN OPERA
TION” and that is a Continuation Application claiming the 15
benefit of the application Ser. No. 09/539,987, which is now
issued as a U.S. Pat. No. 6,594,821 that is commonly-owned
by the same assignee that was filed on Mar. 30, 2000, entitled
TRANSLATION CONSISTENCY CHECKING FOR
MODIFIED TARGET INSTRUCTIONS BY COMPARING 20
TO ORIGINAL COPY” that are incorporated herein by ref
CCC.

BACKGROUND OF THE INVENTION
25

1. Field of the Invention
This invention relates to computer systems and, more par

ticularly, to methods and apparatus for assuring consistency
of translated instructions being executed by a microprocessor
which dynamically translates instructions from a target to a 30
host instruction set.

2. History of the Prior Art
Recently, a new microprocessor was developed which

combines a simple but very fast host processor (called a
“morph host’) and software (referred to as “code morphing 35
Software’) to execute application programs designed for a
processor having an instruction set different than the instruc
tion set of the morph host processor. The morph host proces
Sor executes the code morphing software which translates the
application programs dynamically into host processor 40
instructions that are able to accomplish the purpose of the
original Software. As the instructions are translated, they are
stored in a translation buffer where they may be executed
without further translation. Although the initial translation of
a program is slow, once translated, many of the steps normally 45
required for hardware to execute a program are eliminated.
The new microprocessor has provenable to execute translated
“target” programs as fast as the “target processor for which
the programs were designed.

The morph host processor includes a number of hardware 50
enhancements which allow sequences of target instructions
spanning known states of the target processor to be translated
into host instructions, stored for further use in the translation
buffer, and tested to determine if the translated instructions
will execute correctly. These hardware enhancements allow 55
the buffering of the effects of execution of translations until
execution has succeeded. Memory stores and target processor
state are updated upon Successful execution in a process
referred as “committing.” These hardware enhancements
allow the rapid and accurate handling of exceptions which 60
occur during the execution of the sequences of host instruc
tions by returning execution to the beginning of a sequence of
instructions at which known state of the target processor
exists. Returning the operations to a point in execution at
which target state is known is called “rollback.” The new 65
microprocessor is described in detail in U.S. Pat. No. 5,832,
205, Memory Controller For A Microprocessor For Detecting

2
A Failure Of Speculation On The Physical Nature Of A Com
ponent Being Addressed, Kelly et al. Nov. 3, 1998, assigned
to the assignee of the present invention.
One problem which can arise with the new processor is that

it is possible with some target programs to write to target
instructions stored in memory. If this happens, the host
instructions which are translations of the target instructions
which have been overwritten may no longer be valid. In order
to assure that invalid host translations are not executed, the
new processor utilizes an indicator termed a “Tbit.” AT bit is
set to indicate a physical page address in memory which
stores target instructions which have been translated into host
instructions. If a write is attempted to a memory page pro
tected by a T bit, a T bit exception is generated. A T bit
exception causes an exception handler to look up a data
structure which holds references to addresses of host instruc
tions translated from the target instructions on the page pro
tected by the T bit. The exception handler invalidates these
host translations and turns off the T bit protection for the
memory page. The arrangement for utilizing T bits is
described in detail in U.S. patent application Ser. No. 08/702,
771, entitled Translated Memory Protection Apparatus For
An Advanced Microprocessor, Kelly et al, filed Aug. 22.
1996, and assigned to the assignee of the present invention.
The arrangement which utilizes T bits to indicate memory

pages storing target instructions which have been translated
was refined to address problems in operation which occurred
in translating programs designed for target processors
employing operating systems which do not discriminate
between areas in which instructions and data are stored. For
example, Microsoft Windows allows instructions and data to
be stored on the same memory pages. When an attempt is
made to write to data on a memory page protected by the Tbit
arrangement described above, a Tbit fault occurs. The result
ing exception causes all translations of target instructions on
the protected memory page to be invalidated even though a
write to data does not change any target instruction. Similarly,
an attempt to write to one target instruction on a memory page
does not affect the validity of translations from other target
instructions stored on the same memory page. Invalidating
correct translations on a memory page protected by a T bit
significantly slows the operation of the new microprocessor.

In order to overcome these difficulties, a process which
allows finer grain discrimination between memory areas Stor
ing data and areas storing target instructions was imple
mented. The improved process detects writes to a memory
page storing target instructions which have been translated to
host instructions, detects whether a Sub-area of the memory
page to which a write is addressed stores target instructions
that have been translated, and invalidates host instructions
translated from target instructions at an addressed protected
Sub-area. The process improves the operational speed of the
new microprocessor by eliminating the invalidation of trans
lations which are not affected by writes to memory pages
protected by Tbits and reduces the number of Tbit traps taken
that do not cause invalidation of translations. The process is
described in detail in U.S. patent application Ser. No. 09/417.
356, entitled Fine Grain Translation Discrimination, Banning
etal, filed Oct. 13, 1999, and assigned to the assignee of the
present invention.

Although the improved arrangement functions quite well
in most circumstances, there are situations in which addi
tional improvement is desirable. For example, there are situ
ations in which a write to a memory address having fine grain
T bit protection initiates the T bit process to invalidate a
translation even though the write is to a portion of the memory
Sub-area which stores data. This occurs because the Sub-areas

US 7,404,181 B1
3

protected by fine grain T bits are still larger than the area
which may be addressed. There are other situations in which
a data portion of an instruction is constantly being changed
although the instruction is not. Other situations also arise in
which fine grain Tbit protection causes system operation to
slow significantly. For example, sometimes T bit exceptions
generated by writes to particular Sub-areas occur so fre
quently that the T bit method of invalidating translations
simply slows the system too much.

It is desirable to increase the computer system operating
speed by improving the operation of the system for assuring
the consistency of translations of instructions.

SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to
improve the operating speed of a microprocessor capable of
running programs designed for other microprocessors while
maintaining consistency between target instructions and host
translations of those target instructions.

This and other objects of the present invention are realized
by a method for determining whether target instructions
which have been translated to host instructions have changed
since being translated, including the steps of storing a copy of
a target instruction which has been translated to host instruc
tions, comparing the copy of the target instruction which has
been translated with data at a memory address at which the
target instruction was stored when translated when an attempt
to execute the host instructions occurs, and invalidating host
instructions translated from a target instruction if the data at
the memory address and the copy of the target instruction
differ.

These and other objects and features of the invention will
be better understood by reference to the detailed description
which follows taken together with the drawings in which like
elements are referred to by like designations throughout the
several views.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the new micropro
cessor which is adapted to carry out the present invention.

FIG. 2 is a flow chart illustrating the operation of a gener
alized embodiment of the present invention.

FIG. 3 is a flow chart illustrating the operation of one
embodiment of the present invention.

FIG. 4 is a diagram illustrating the operation of another
embodiment of the present invention.

FIG. 5 is a flow chart illustrating the operation of a process
implementing the present invention.

DETAILED DESCRIPTION

FIG. 1 illustrates a microprocessor 11 which may utilize
the present invention. The microprocessor pictured is
described in detail in U.S. Pat. No. 5,832.205. The micropro
cessor includes a floating point unit 12, an integer unit 13, a
translation buffer 14 which is a part of system memory, target
memory 15 which is another portion of system memory, and
a translation lookaside buffer 16 which is a part of a memory
management unit.
As described above, the new microprocessor utilizes a

unique method for assuring that translated host instructions
remain consistent with the target instructions from which they
were translated. The method utilizes what is referred to as a
“Tbit exception.” AT bit enabled in an entry in the translation
lookaside buffer 16 signals that a memory page in target

10

15

25

30

35

40

45

50

55

60

65

4
memory 15 to which a write is attempted stores target instruc
tions which have been translated into host instructions stored
in translation buffer 14. A T bit causes an exception to be
generated when there is an attempt to write to a memory page
which stores the target instructions that have been translated.
The Tbit exception allows translated host instructions to be

invalidated when there has been a change in the target instruc
tions from which the host instructions were translated. How
ever, some target processors (notably the X86 family) utilize
operating systems such as Microsoft Windows which allow
both instructions and data to exist on the same memory pages.
If the act of writing data to a memory page does not alter target
instructions on the page, there is no reason to invalidate host
instructions translated from instructions on the memory page.
Moreover, a write to one target instruction on a memory page
does not necessarily affect other target instructions on that
memory page and require that host instructions translated
from the other target instructions be invalidated. For this
reason, a refined T-bit process has been devised by which the
code morphing software may determine whether an
attempted write to a memory page is to target instructions
which have been translated so that writes to data may occur
without invalidating host translations of target instructions on
the memory page.
The new process also limits the effect of writes to instruc

tions on the page to areas of the memory page actually writ
ten.
The process by which this is accomplished provides a finer

grain Tbit protection for memory pages storing target instruc
tions. The process divides protected pages into a plurality of
Sub-areas and stores indicators for each of the Sub-areas of
such memory page. The indicators for each sub-area which is
protected are referred to as “fine-grain Tbits.” In one embodi
ment, each fine-grain Tbit protects a 128 byte sub-area of a
4096 byte memory page. For each sub-area which includes
target instructions that have been translated, a fine-grain Tbit
is enabled.
When a Tbit exception occurs, the exception handler tests

the indicators to determine if fine grain Tbit protection has
been provided for the memory page to which the write is
being attempted. If a write occurs to a memory page which
has not been divided into Sub-areas (e.g., only target instruc
tions have been written to the page), a Tbit exception causes
all host translations of target instructions on this memory
page to be invalidated. If the memory page has been divided
into fine-grain T bit Sub-areas and a lookup shows that the
write is to one or more Sub-areas not designated by a fine
grain Tbit, then the original T bit exception is ignored by the
Software. If the memory page has been divided into Sub-areas
and the lookup shows that the write is to one or more sub
areas protected by a fine grained T bit (an area storing trans
lated instructions), the original T bit exception is affirmed:
and the exception handler invalidates the host instructions
stored in the translation buffer translated from target instruc
tions stored in the particular Sub-area on the protected
memory page.

Fine-grain Tbit protection eliminates a significant propor
tion of the T bit exceptions generated by the new processor.
Fine-grain T bit protection also limits the translations dis
carded to those in Sub-areas to which a write is attempted.
Thus, the process is much faster than constantly discarding
entire memory pages.

Even though the fine-grain Tbit protection process works
well in most situations, it does not eliminate all problems
related to writing to memory pages including target instruc
tions which have been translated. For example, limiting T-bit
protection to Small Sub-areas of memory pages does not

US 7,404,181 B1
5

eliminate all unnecessary and time consuming T bit faults
because the Sub-areas are not small enough so that each can
include only a single target instruction. Moreover, even with
fine-grain T bit protection, writes to some T bit protected
Sub-areas occurso frequently that the T-bit protection process
is not really feasible.
An improved protection process has been devised which

allows operations to be further accelerated. The improved
process combines a number of processes to progressively
overcome the various problems which may arise.
The improved protection process of this invention may

utilize any of a number of techniques for choosing when the
T bit process should be modified. The techniques may be
chosen to measure when the different problems discussed
above have adversely affected the operation of the fine-grain
T bit system. For example, to determine when the process
requires modification, a technique might measure the fre
quency with which fine-grain T bit exceptions occur for
writes to data areas of target memory. Another technique
might measure the frequency at which fine-grain Tbit excep
tions occur for writes to target instructions which have not
been translated yet are stored in Tbit protected sub-areas. A
similar test might check for writes to Tbit protected areas to
modify data. Another technique might simply measure the
number of fine-grain T bit exceptions for a page of target
memory. One variation of this last technique might launch the
modification process whenever a fine-grain Tbit exception
occurs. All of these techniques indicate Some problem with
the T bit protection process which would be lessened by
initiating the improved process.

In any case, as a first step in the process (shown in FIG. 2),
one or more of these or other tests are put in place to determine
when the normal fine-grain T bit protection scheme is not
functioning efficiently. When a test indicates that the fine
grain T-bit process is not functioning efficiently, the code
morphing software process replaces the T-bit protection pro
cess with a process which uses one of the methods described
in this patent. Each of the methods described replaces or
modifies the fine-grain T-bit protection process in Some man
ner in order to obviate the problem which is occurring. In
general, each of these methods causes a copy of the original
target instructions (which have been translated and would
normally be protected by the fine grain Tbit process) to be
placed in host memory along with the host translation of the
target instruction. Each method also provides a process for
checking the stored copy of a target instruction against the
target instruction at the target memory address in order to
make sure that the translation is valid when the host instruc
tion is to be executed. There are many variations on this basic
theme.

The most basic of these methods is referred to as “self
checking. A self-checking process such as that illustrated in
FIG.3 may be utilized to assure that any translation is still
valid when it is to be executed. One embodiment for carrying
out self-checking utilizes a simple T-bit exception generated
by a write to a translated target instruction as a technique for
identifying when a translation is a problem translation and
causing a copy of the target instructions to be copied and the
self-checking process to replace fine-grain Tbit protection
for the particular instructions.
Once the self-checking process has been put in place, the

next attempt to execute the host translation initiates a com
parison of the copy of the original target instructions from
which the translation was generated with the target instruc
tions presently at the target memory address. If the instruc

10

15

25

30

35

40

45

50

55

60

65

6
tions are the same, then the host translation is still correct and
execution takes place. If the instructions are different, then the
translation is invalidated.
The self-checking process replaces T bit protection

entirely for the particular translation sub-area. If all of the
target instructions in the Sub-area which have been translated
are using the self-checking process, then fine-grain T bit
protection may be removed for that sub-area. With T bit
protection removed, an attempt to write the target memory
sub-area will be effective. Thus, data may be written to the
Sub-area. Since a write to a data area does not affect the target
instruction from which the translation was made, the self
check test will be passed on the next attempt to execute the
host translation. However, if any write occurs to the target
instruction, the self-check test will fail on the next attempt to
execute the translation. The self checking process remains in
place until it fails and the translation is invalidated.
The basic self-checking process is effective in reducing the

number of times invalidation of translations occurs where
writes to target memory occur frequently but are to data areas
within T-bit protected sub-areas of target memory or are to
instructions in a T-bit protected sub-area which are not related
to the translation being executed. Self-checking is also effec
tive in reducing the time required by the T-bit protection
process in cases in which T-bit exceptions are occurring so
frequently that system operations are significantly slowed.

However, the basic self-checking process itself cannot
handle certain situations. When the instructions being
executed include a store operation to target memory, the basic
self-checking process is problematic because the store
instruction may be modifying the code which is presently
being executed. If the self-check occurs before the store is
executed and the store changes the target instructions, then
the comparison is not effective to detect an invalid translation.
On the other hand, if the store occurs before the comparison,
then it may change an instruction which would not have
compared before the store to one which does compare after
the store. Again, the result of the comparison is incorrect.
One way to solve this problem is to end the translation after

each store instruction. However, store instructions do not
necessarily cause the translation to be incorrect. A preferred
way to obviate this problem, is to utilize a refined self-check
ing process. This process, referred to as “incremental self
checking, is illustrated in FIG. 4 of the drawing. In this
process, the self-checking process is apportioned into incre
ments in which those copied instructions that represent the
translated instructions being executed and which precede the
store instruction together with the store instruction are self
checked before the store operation is executed. This assures
that the translated instructions which would be executed
before the store operation and might be changed by the store
operation are compared before they can be changed. On the
other hand, those of the translated instructions which follow
the store operation are self-checked after the store operation
but before their execution so the result of the store is also
taken into account by the checking for these instructions. In
this manner, the self-checking is done on exactly the instruc
tions that would be fetched and executed by a native imple
mentation of the target instruction set.

FIG. 4 is a diagram which illustrates the incremental self
checking process as applied to a translation including five
instructions A-E. The instructions A, B, and C (the last of
which is a store instruction) are self-checked before the store
operation of instruction C is executed. After checking, the
three instructions A, B, and C are executed. Next, the instruc
tions D and E are self checked and, if still the same as the
incremental instructions with which they are being compared,

US 7,404,181 B1
7

then they are executed. Since the self-check of instructions D
and E occurs after the store, the test will determine if the host
instructions translated from target instructions represented by
D and Eremain the same and are therefore valid for execution
after the store has taken place. Thus, incremental self-check
ing may be utilized for testing validity before the execution of
translations which include an instruction which stores to tar
get memory.

It should be noted that the execution and the checking of the
instructions A, B, and C can be intermixed as long as the
checking is finished before the store is done for instruction C.
Instructions D and E can be treated similarly. Further, if the
host machine has hardware that allows reordering of loads
and stores by detecting conflicts between the loads and stores
(see U.S. patent application Ser. No. 09/332.338, entitled
Method and Apparatus for Enhancing Scheduling in an
Advanced Microprocessor, Rozas et al, filed Jun. 14, 1999,
and assigned to the assignee of the present invention), then
Such hardware can be used to move the loads used for com
paring instructions such as A, B, and C to a point after the
store for instruction C.

In order to assist in the incremental self-checking opera
tion, the embodiment illustrated in FIG. 4 utilizes a pair of
registers RX and Rp to store, respectively, the addresses of the
target instructions in target memory and the addresses of the
copies of the target instructions in host memory. The
addresses of the instructions in each of the registers are
advanced as the instructions at the two addresses are com
pared. This manner of implementing the incremental self
checking process allows the size of the code used to be held to
a minimum.

Target instructions may include data fields (called imme
diate or displacement fields) which are used in the operation
of the instruction. Some times these fields are changed by
other parts of the target program eventhough the remainder of
the instruction remains constant. Typically, prior art methods
translate each of these target instructions into host instruc
tions which also include data fields. Because Such host trans
lations include data fields which change when data in the
target instruction changes, the host translations must be
retranslated whenever the data field of the target instruction
changes. To accomplish this, a T bit exception is generated,
the translation is discarded, and a new translation is gener
ated. This is time consuming and slows the operation of the
new microprocessor.
The self-checking process of the present invention does not

solve this problem in its basic form. However, the self-check
ing process of the present invention may be refined to obviate
the slowing caused by either T-bit exceptions or self-checking
failures generated in response to changes only in the data
fields of target instructions.
A test to detect T-bit exceptions or self-checking failures

caused by writes to data areas of Such instructions is first
implemented in accordance with the generalized process
illustrated in FIG. 2. When the problem is detected, the first
step is to use modified translation Software to generate host
instructions which, rather than encoding the fetch immediate
or fetch displacement data, encode the address of the data in
the target instruction and load the data each time they execute.
In this way, a retranslation of the host instruction is not nec
essary when these data fields are the only things which change
in a target instruction. The result is that when T-bit protection
for the target instructions which has been translated is
replaced by self-checking (or incremental self-checking), the
process tests the target instruction except for the data field
upon execution of the translation.

5

10

15

25

30

35

40

45

50

55

60

65

8
When this is done, a write to the data field of the target

instruction does not affect the translated instruction in any
way. If only the data changes in the target instruction, when
the copy of the original target instructions is compared to the
target instructions presently at the original address in target
memory, the self-checking test will be passed since the
instruction remains the same for all but the data fields for
which the self-check has been eliminated. When the host
translation is executed, the translation performs its usual
operation of accessing the data field in the target image and
thus automatically implements the change made to the data
field of the target instruction without retranslation of the
instruction. This allows self-checking to proceed without
causing a self-checking fault to occur.
The self-checking process may be utilized to modify the T

bit protection process in a somewhat different manner to
provide more efficient operation in situations in which T bit
exceptions occur somewhat less frequently and the target
instructions are not changed. The Tbit protection may be left
in operation but modified so that a T bit exception causes a
self-checking operation to occur only a single time. If the test
of the self-checking operation shows that the copy of the
target instructions stored in host memory and the target
instructions stored at the original target address are the same,
then the T bit process is reinstated for the translation. If the
translation fails the test, then the translation is invalidated;
and a new translation is prepared. As Suggested, this form of
self-checking (referred to as “revalidation') is effective in
situations in which T bit exceptions are occurring infre
quently. An advantage of this refined process is that it elimi
nates the time consuming process of self-checking on each
execution of the translation. The process takes effect only
when a T-bit exception actually occurs and then, only for one
iteration if the test is met.

In one embodiment, revalidation is accomplished utilizing
a data structure which is maintained to indicate the Sub-areas
of a memory page that are T bit protected and which transla
tions translate target instructions from each sub-area. When a
T bit fault for a Sub-area occurs, all non-revalidating transla
tions that translate target instructions from that Sub-area are
invalidated. The revalidating translations that translate target
instructions from that Sub-area are put in an “armed State.
The next time an armed revalidating translation is executed, it
does a self check. If this demonstrates that the target instruc
tions which were translated remain at the target memory
address, the translation is disarmed, T bit protected (so that
the next attempt to write to the T bit protected sub-area will
generate a T bit exception), and executed normally. In the
disarmed State, this translation executes normally without self
checking until the next time a Tbit fault causes it to be armed.
If, when execution occurs for an armed translation, the self
check indicates that the target instructions have changed and
are no longer those which were translated, the translation is
invalidated and replaced in some manner.
The self-revalidating translation may incorporate the tech

nique for fetching immediate and displacement fields for the
target instructions it translates. In this case, the self check
does not compare those immediate and displacement fields.
One embodiment of processes for carrying out this inven

tion responds to an indication that a particular translation is a
problem translation by creating a new process to replace the
host translation of the target instructions. The new process is
referred to in this specification as a "Zombie' process. This
Zombie process is executed whenever the problem translation
would have been executed. The Zombie process has a data
structure which records whether there is a trial translation to
be run and holds statistics on how often the trial translation

US 7,404,181 B1
9

has been executed and how many previous trial translations
have been created. When a Zombie process is executed, it
looks in the data structure to determine whether a trial trans
lation exists that is to be executed. If there is a trial translation,
the Zombie process records that it is being executed in the
data structure and then starts the trial translation. The trial
translation for the purpose of this explanation implements
target instructions to be executed and carries out one of the
processes to test the validity of the translation described
above. For example, the process may be a basic self-checking
process if the problem discovered requires such a process.
Preferably, any self-checking process will be an incremental
self-checking process. The process may be a self-revalidation
process which responds to a T bit fault by instituting a one
time self-check of the translated instruction. The process may
be a refined self-checking or revalidating process which has
been modified to eliminate the test of data areas and which is
used with a modified translation which includes instead of a
data field a reference for accessing a data field. Other tests
might be devised by those skilled in the art. If the test indi
cates the translation is still valid, the trial translation then
continues with the original host translation.
On the other hand, if the test process determines that the

host instructions are no longer valid, then the trial translation
is deleted; and the deletion is recorded in the data structure.
The next time the Zombie is called, there will be no trial
translation, so some different process of executing the target
code such as a new translation must be implemented. This
may include creating another trial translation and executing
it. The general operation of a Zombie is illustrated in FIG. 5.
A Zombie process may be utilized in accordance with the

invention to implement a plurality of the various forms of
self-checking for any T-bit protected area. Since the different
forms of protection have different efficiencies with respect to
the different types of problems which may occasion a change
from the T bit protection process, a sequence of different
protections may be instituted. For example, a Zombie process
may first be set to provide revalidation for a particular sub
area which has been the subject of a T bit exception. A
revalidation process will function efficiently so long as Tbit
exceptions occur infrequently. If the Sub-area is being written
to quite often, then the Zombie may replace the revalidation
process with the incremental self-checking process which
removes the T bit protection and self-tests each attempt to
execute the translation. If self-checking fails and would cause
invalidation of the translation, the Zombie may invalidate the
translation, retranslate with the data fields modified to access
the original target instruction, and provide refined self-check
ing to test all but the data fields. In this manner, the process
allows the type of problem which is occurring to determine
the method for testing which allows the most efficient form of
validity test.

At some point, a trial translation will have been executed
Successfully for an extended period; and the Zombie process
can be removed and replaced by the trial translation.

If no trial translation executes for a sufficiently long period
of time to replace the Zombie process, then the Zombie pro
cess may begin keeping multiple trial translations. If this is
done, when a trial translation executes and fails its self check,
then instead of invalidating the translation, the Zombie pro
cess tries to execute the next trial translation. If no trial trans
lation executes successfully, the Zombie process uses some
other means to execute the target instructions including pos
sibly making a new trial translation. If a trial translation does
not execute successfully after many attempts, it may be invali
dated; and if a Zombie process accumulates too many pro
cesses, it may eliminate one or more of them. This technique

10

15

25

30

35

40

45

50

55

60

65

10
is used to deal with the situation in which a handful of code
templates are being written to Some of target memory and a
handful of translations will cover the different cases.

Although the present invention has been described in terms
of a preferred embodiment, it will be appreciated that various
modifications and alterations might be made by those skilled
in the art without departing from the spirit and scope of the
invention. The invention should therefore be measured in
terms of the claims which follow.

What is claimed is:
1. In a computer which translates instructions from a target

instruction set to a host instruction set, a method comprising:
after translation of a plurality of first target instructions,

determining whether detecting changes in a memory
location containing said translated plurality of first tar
get instructions slows operation of said computer; and

if said detecting slows the operation of said computer:
storing a copy of a plurality of second target instructions

from said target instruction set;
comparing said plurality of first target instructions with

said plurality of second target instructions;
in response to a match based on said comparison,

executing said translated plurality of first target
instructions; and

in response to a mismatch based on said comparison,
disabling said translated plurality of first target
instructions.

2. The method as described in claim 1, further comprising:
comparing said stored copy with said plurality of first

target instructions for a first increment of copies up to
and including a store instruction of said plurality of first
target instructions; and

comparing said stored copy with said plurality of first
target instructions for a remaining increment of copies
after execution of said translated plurality of first target
instructions from the first increment of copies.

3. The method as described in claim 2, further comprising:
resolving conflicts by executing said translated plurality of

first target instructions in another way if a load instruc
tion used to implement the comparing of said copies and
said plurality of first target instructions at the memory
location has been reordered with respect to the store
instruction.

4. The method as described in claim3, further comprising:
ending translation of target instructions into translated tar

get instructions and committing state when a store
occurs to target memory.

5. The method as described in claim 1, wherein said slow
down is with respect to the execution of said translated plu
rality of first target instructions.

6. The method as described in claim 1 further comprising:
disabling said detecting when said detecting system slows

the operation of said computer.
7. A computer system that translates target instructions

from a target instruction set into host instructions from a host
instruction set, the computer system having computer read
able code which when executed by the computer system
cause the computer system to implement a method for invali
dating translated host instructions, comprising:

translating a plurality of first target instructions into a plu
rality of first host instructions:

after said translating, determining whether said plurality of
first target instructions have changed; and

if said determining slows the operation of said computer
system:

US 7,404,181 B1
11

storing a copy of a second plurality of target instructions;
comparing said stored copy with said plurality of first

target instructions; and
in response to a mismatch based on said comparison,

invalidating said plurality of first host instructions.
8. The computer system as described in claim 7 further

compr1S1ng:
initiating said storing, said comparing and said invalidating
when said determining indicates that a page contains at
least one change to said plurality of first target instruc
tions.

9. The computer system as described in claim 7 further
comprising:

initiating said storing, said comparing and said invalidating
when at least one of a plurality of Sub areas of a page
contains a target instruction from said first plurality of
target instructions that has been changed.

10. The computer system as described in claim 7, wherein
said determining is by examining a bit indicator associated
with a memory location of said plurality of first target instruc
tions.

11. The computer system as described in claim 7 further
comprising:

testing for an indicator that said plurality of first target
instructions have been overwritten by examining a plu
rality of bit indicators; and

initiating said storing, said comparing and said invalidating
when there is an indication that said testing is slowing
operation of said computer system.

12. In a computer system that translates target instructions
from a target instruction set into host instructions from a host
instruction set, a method for checking for changes in a
sequence of target instructions, comprising:

10

15

25

30

12
after translating a first sequence of a plurality of target

instructions, testing to determine changes to said first
Sequence;

determining whether said testing slows the operation of
said computer system;

if said testing slows the operation of said computer system:
storing a copy of said first sequence;
comparing said copy with a second sequence of a plu

rality of target instructions; and
in response to a mismatch based on said comparison,

invalidating said first sequence.
13. The method as described in claim 12 further compris

ing:
initiating said storing, said comparing and said invalidating
when a page containing said first sequence has been
changed.

14. The method as described in claim 12, wherein said
testing is based on examining a bit indicator associated with
a memory location where said first sequence is stored.

15. The method as described in claim 14 further compris
ing:

initiating said storing, said comparing and said invalidating
when said bit indicator indicates that at least one of a
plurality of Sub areas of a page containing said first
sequence has been changed.

16. The method as described in claim 14 further compris
ing:

testing for an indicator that said first sequence has been
overwritten by examining a plurality of bit indicators;
and

initiating said storing, said comparing and said invalidating
when there is an indication that said testing is slowing
operation of said computer.

k k k k k

